泛函分析在力学和工程中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泛函分析在力学和工程中的应用
陆章基
(复旦大学应用力学系)
摘要
本文简单介绍泛函分析方法在力学和工程中的若干应用,包括泛函观点下的结构数学理论、直交投影法、超圆方法、变分法、变分不等式与凸分析、算子的特征值与谱方法、与实验技术有关的泛函方法等。并介绍当前非线性分析中部分动态。
$ 1 泛函分析概述
泛函分析是高度抽象的数学分支,研究各类泛函空间及算子理论。所谓泛函空间是带有某类数学结构(主要是拓扑和代数结构)的抽象集。其元(或点)可以是数、向量、函数、张量场,甚至各种物理状态等。根据不同拓扑和代数结构,泛函空间划分为各个类别。力学和工程中常见的有①:(i)度量(距离)空间。对任意两抽象元引入距离,由此自然地引入开集等拓扑结构。从而,度量空间是一特殊拓扑空间,但尚未赋予代数结构;(ii)线性拓扑空间(拓扑向量空间。同时带有拓扑和代数结构。所谓拓扑无非是在抽象集中规定某些子集为开集),他们满足开集的基本公理。有了拓扑后,即能引入极限、连续、紧致和收敛等初等分析的重要概念。这里所述的代数结构指的是线性结构(加法和数乘运算)。由此可讨论线性无关、基和维数等代数概念。泛函分析的空间(尤其各类函数空间)绝大部分是无限维的。线性空间(带有线性结构的度量空间)是线性拓扑空间的一例。但最重要的线性拓扑空间应是下列线性赋范空间;(iii)线性赋范空间。每个元(常称向量)配有番薯||x||(是普通向量长度的推广)。线性空间配上范数后,能自然地诱导出度量和拓扑。就这个意义而言,它是特殊的线性拓扑和度量空间。于是,具有这两个空间中所有概念。例如可以讨论该空间(或其子集)是否完备。即任何柯西序列是否为收敛序列。(iv)Banach空间。它是完备的线性赋范空间。完备性使该空间具有十分良好的性质。例如闭图像定理、共鸣定理、逆算子定理和开映照原理等。(v)内积空间。内积的引入使该空间更直观形象,内容格外丰富。内积把普通的几何术语差不多全带到抽象空间中。例如:长度、两向量交角、直交性、直交投影、就范直交系、点(向量)和子空间的距离等。使抽象泛函空间涂上浓厚的几何色彩。力学家和工程师对此尤感兴趣。由于内积可诱导番薯,内积空间是特殊线性赋范空间,但反之不然。与普通欧式空间最相像的应数下述Hilbert空间;(vi)Hilbert空间。它是完备的内积空间,内容最丰富。例如Fourier展开、Bessel不等式和Parseval等式等。由于本文讨论泛函的力学应用,必须提及的最后一类空间是Sobolev空间。(vii)Sobolev空间W m,p(Ω)(p ≥1,m≥0)[3]。它是由L p(Ω)空间中可以连续求m阶分布导数的函数u组成的子空间,并配上Sobolev空间。它是特殊的线性赋范空间。其中,分布导数是普通导数的推广,对于性质极差的Dirac delta之类的广义函数,也能求分布导数。因此,对函数的“光滑程度”提供更一般、更精确的含义。由于Sobolev嵌入定理,可以通过找弱解来讨论偏微分方程的定解问题。p=2这类Sobolev空间特别重要,它是特殊的Hilbert空间,记之为H m(Ω),称作Hilbert-Sobolev空间。
泛函分析另一内容是算子理论,可以讲更为重要。它研究上述各类泛函空间上线性与非线性算子的各种特性。对于单个算子,可引入连续、有界、下有界、闭、紧致和全连续等性质。对于算子集(线性连续算子集或线性连续泛函集等)又可引入新的线性结构和范数等,构成高层的算子空间。其中对偶(共轭)空间尤为重要。据此,可引入自共轭(自伴)算子、投影算子、酉算子、正常算子、自反空间、强和弱收敛等。在初等分析中卓见成效的微分运算
也可推广于泛函或算子。例如ˆGatean 微分,Fr échet 微分和次微分等。为了剖析算子的结构
和特性,谱分析是重要的手段,全连续和正常算子的谱分析已成熟。除了上述各类泛函空间和算子理论外,目前仍在不断深入发展,有关新的尤其适用于非线性问题的函数空间可参阅
[4] 。
综上所述,泛函分析是测度论、代数、几何和分析(拓扑)的综合性学科,它的高度抽象性使该学科更深刻、更广泛地反应各种复杂的力学、工程和其它实用学科的规律。然而,借助几何工具,它们在Banach 空间,尤其在Hilbert 空间获得直观几何解释,使力学和工程人员较易接受。因此,该学科不仅为应用数学家所欣赏,也为广大力学人员所重视。后者的队伍中不仅包括理论工作者,也包括实验和设计人员。但由于泛函分析的难度,正如[5]所述,若把应用数学家和实用科学工作者(力学家和工程师等)比拟为两支队伍,分别从山的两端挖地道,他们应该在精确解那个位置相遇。从目前状况而言,后面这支队伍人员严重不足。基于这一情况,本文打算从力学和工程角度,对泛函方法的特点及实际应用作不全面的介绍,以引起抛砖引玉的作用。
$ 2 泛函观点下的近代结构理论
众所周知,为研究固体平衡与变形,已提出多种模型(三维、二维、一维和离散模型等)。经典固体理论(弹性、板壳和杆等)立足于上述诸模型求解平衡与变形的种种具体问题。Oliveira [6][7]以有限元和板壳理论为背景提出“结构的数学理论(The Matrematical Theory of Structures )”。该理论不涉及具体解法,而是用近代泛函工具建立一般的响应模型,考察各具体模型的类同性,并研究由一个模型生成另一模型的可能性和合理性。
固体响应的一般模型举例
1. 给定某弹性结构,把满足应力-应变方程的任一对应力场和应变场 X = (e ,σ)称为结构场。若还满足
-- 应变位移方程、初应变条件、位移边界条件(非协调系统)
力应力方程,力边界条件(外力系统)
称之为 协调场
平衡场
既协调又平衡的场称为精确场。记全体结构场的集为X ,按应变和应力分别引入线性运算,然后配上如下范数
X = X = X 成为Banach 空间。对于任给的 协调场
外力系统,X 中与之协调
平衡的所有结构场构成X 的等协调
等平衡子集。X 的全体等协调
等平衡子集类记为I E ∈Γ
∈N 。通常,假定等协调和等平衡子集
之交仅包含一个元。于是,可建立X 的元与笛卡尔积 Γ⨯N (记为A )的元之间的一一对应,X = x (I ,E )。称A X 为外部作用响应空间。由功原理得到的总势余
能原理表明:精