高中数学_圆的方程题型总结

合集下载

高中数学圆的方程知识点题型归纳

高中数学圆的方程知识点题型归纳

高中数学圆的方程知识点题型归纳第一讲圆的方程一、知识清单一)圆的定义及方程圆的定义是平面内距离定点距离相等的点的轨迹。

圆的标准方程为 (y-b)2=r2,一般方程为 x2+y2+Dx+Ey+F=0,其中圆心为 (a,b),半径为 r。

标准方程和一般方程可以互相转化。

二)点与圆的位置关系点 M(x,y) 与圆 (x-a)2+(y-b)2=r2 的位置关系有三种情况:在圆外、在圆上和在圆内。

三)温馨提示求圆的方程时,可以利用圆的几何性质简化运算,如圆心在过切点且与切线垂直的直线上、圆心在任一弦的中垂线上、两圆内切或外切时,切点与两圆圆心三点共线。

此外,中点坐标公式也是常用的计算方法。

二、典例归纳本讲内容主要是圆的方程和点与圆的位置关系。

在求圆的方程时,需要注意利用圆的几何性质简化运算。

同时,中点坐标公式也是常用的计算方法。

在实际问题中,需要根据具体情况选择合适的方法来解决问题。

且圆心在直线2x+y=0上,求该圆的方程。

变式3】已知圆C的方程为x2+y2-4x-6y+9=0,直线l的方程为2x+3y-6=0,求圆C与直线l的交点坐标。

变式4】已知圆C的方程为x2+y2-2x+4y-4=0,直线l的方程为x-y+2=0,求圆C与直线l的交点坐标。

方法总结:1.对于一般的圆方程,可以通过平移变换将其化为标准方程,然后根据圆的几何性质求出圆心和半径,进而写出标准方程。

2.对于已知圆心和半径的问题,可以利用圆的几何性质直接写出标准方程。

3.对于圆与直线的交点问题,可以将直线方程代入圆方程中解方程,或者将圆方程代入直线方程中解方程,求出交点坐标。

变式3】给定四个点A(0,1),B(2,1),C(3,4),D(-1,2),判断它们能否在同一个圆上,并说明原因。

这题可以通过计算四边形ABCD的两条对角线的中垂线是否相交来判断四个点是否在同一个圆上。

首先可以计算出AC的中点坐标为M(1.5.2.5),斜率为-3/2,所以AC的中垂线的方程为y-2.5 = 2/3(x-1.5)。

高中数学圆与方程知识点归纳与常考题型专题练习(附解析)

高中数学圆与方程知识点归纳与常考题型专题练习(附解析)

高中数学圆与方程知识点归纳与常考题型专题练习(附解析) 知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系 直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆> 直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。

高中数学必修2--圆与方程知识点归纳总结

高中数学必修2--圆与方程知识点归纳总结

圆与方程知识点1.圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.2.点与圆的位置关系:(1).设点到圆心的距离为d,圆半径为r:a.点在圆内d<r;b.点在圆上d=r;c.点在圆外d>r(2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x <-+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔(③M 在圆C 外22020)()(r b y a x >-+-⇔(3)涉及最值:1圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r==+2圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC==-max PA AM r AC==+思考:过此A 点作最短的弦?(此弦垂直AC )3.圆的一般方程:022=++++F Ey Dx y x .(1)当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.(2)当0422=-+F E D 时,方程表示一个点⎪⎭⎫ ⎝⎛--2,2E D .(3)当0422<-+F E D 时,方程不表示任何图形.注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.4.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-圆心到直线的距离22B A C Bb Aa d +++=1)无交点直线与圆相离⇔⇔>r d ;2)只有一个交点直线与圆相切⇔⇔=r d ;3)有两个交点直线与圆相交⇔⇔<r d ;弦长|AB|=222d r -还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当0>∆时,直线与圆有2个交点,,直线与圆相交;(2)当0=∆时,直线与圆只有1个交点,直线与圆相切;(3)当0<∆时,直线与圆没有交点,直线与圆相离;5.两圆的位置关系(1)设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-,圆心距221221)()(b b a a d -+-=1条公切线外离421⇔⇔+>r r d ;2条公切线外切321⇔⇔+=r r d ;3条公切线相交22121⇔⇔+<<-r r d r r ;4条公切线内切121⇔⇔-=r r d ;5无公切线内含⇔⇔-<<210r r d ;外离外切相交内切(2)两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程.补充说明:1若1C 与2C 相切,则表示其中一条公切线方程;2若1C 与2C 相离,则表示连心线的中垂线方程.(3)圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)补充:1上述圆系不包括2C ;22)当1λ=-时,表示过两圆交点的直线方程(公共弦)3过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=6.过一点作圆的切线的方程:(1)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y 求解k,得到切线方程【一定两解】例1.经过点P(1,—2)点作圆(x+1)2+(y —2)2=4的切线,则切线方程为。

圆与方程 解答压轴题(六大题型)(教师版) 2024-2025学年高二数学期中期末挑战(人教选修一)

圆与方程 解答压轴题(六大题型)(教师版) 2024-2025学年高二数学期中期末挑战(人教选修一)

特训04 圆与方程 解答压轴题(六大题型)题型1:定值问题1.已知圆C 过点()2,6A ,圆心在直线1y x =+上,截y 轴弦长为.(1)求圆C 的方程;(2)若圆C 半径小于10,点D 在该圆上运动,点()3,2B ,记M 为过B 、D 两点的弦的中点,求M 的轨迹方程;(3)在(2)的条件下,若直线BD 与直线:2l y x =-交于点N ,证明:BM BN ×恒为定值.因为直线l 的斜率为1,则所以,CBM NBF △∽△,因此,又E 到l 的距离2321BF -=所以,122BM BN ×=×【点睛】方法点睛:求定值问题常见的方法有两种:2.在平面直角坐标系xOy 中,已知圆心在x 轴上的圆C 经过点()3,0A ,且被y 轴截得的弦长为坐标原点O 的直线l 与圆C 交于,M N 两点.(1)求圆C 的方程;(2)求当满足20OM ON +=uuuu r uuu r r时对应的直线l 的方程;(3)若点()5,0P -,直线PM 与圆C 的另一个交点为R ,直线PN 与圆C 的另一个交点为S ,分别记直线l 、直线RS 的斜率为1k ,2k ,求证:21k k 为定值.由20OM ON +=uuuu r uuu r r得到,DN =所以2223CN CD CO -=即22431CD CD -=-,【点睛】关键点睛:本题第二问的关键是采用设点法,再得到直线方程与圆方程联立求出,R S的坐标,最后得到斜率表达式并化简即可.6,4,端点A的运动轨迹是曲线C,线段AB的中点M的轨迹方程是3.已知线段AB的端点B的坐标是()()()22421x y -+-=.(1)求曲线C 的方程;(2)已知斜率为k 的直线l 与曲线C 相交于两点E ,F (异于原点O )直线OE ,OF 的斜率分别为1k ,2k ,且125k k =,①证明:直线l 过定点P ,并求出点P 的坐标;②若BD EF ^,D 为垂足,证明:存在定点Q ,使得||DQ 为定值.因为65BP =为定值,且BD 所以当点Q 是BP 的中点时,此时因为(6,4)B ,(1,0)P -,所以由中点坐标公式得所以存在定点5,22Q æöç÷èø使得|DQ 题型2:定点问题4.已知线段AB 的端点B 的坐标是()64,,端点A 的运动轨迹是曲线C ,线段AB 的中点M 的轨迹方程是()()22421x y -+-=.(1)求曲线C 的方程;(2)已知斜率为k 的直线l 与曲线C 相交于异于原点O 的两点E F ,,直线OE OF ,的斜率分别为1k ,2k ,且122k k =.证明:直线l 恒过定点.【答案】(1)()2224x y -+=(2)证明见解析【分析】(1)利用中点坐标公式以及求轨迹方程的方法求解;(2)利用韦达定理结合题意求解.5.为了保证我国东海油气田海域的海上平台的生产安全,海事部门在某平台O的正东方向设立了两个观测站A 和B (点A 在点O 、点B 之间),它们到平台O 的距离分别为1海里和4海里,记海平面上到两观测站的距离,PA PB 之比为12的点P 的轨迹为曲线E ,规定曲线E 及其内部区域为安全预警区(如图).(1)以O 为坐标原点,1海里为单位长度,AB 所在直线为x 轴,建立平面直角坐标系,求曲线E 的方程;(2)海平面上有巡航观察点Q 可以在过点B 垂直于AB 的直线L 上运动.(i )若M 为PB 的中点,求PM PQ +的最小值;(ii )过Q 作直线,QC QD 与曲线E 相切于点,C D .证明:直线CD 过定点.PM PQ PA PQ AQ \+=+³当,,A P Q 三点共线且,Q B 重合时,(ii )设()4,Q t ,()11,C x y ,当10x =时,OC 斜率不存在,此时过点题型3:最值问题6.已知以点()2,0C t t t æö>ç÷èø为圆心的圆经过原点O ,且与x 轴交于点A ,与y 轴交于点B .(1)求证:AOB V 的面积为定值.(2)设直线240x y +-=与圆C 交于点M ,N ,若=OM ON ,求圆C 的方程.(3)在(2)的条件下,设P ,Q 分别是直线:20l x y ++=和圆C 上的动点,求PB PQ +的最小值及此时点P 的坐标.Q \原点O 在线段MN 的垂直平分线上,设线段MN 的中点为H ,则又OC 的斜率22k t =,()2221t æö\´-=-ç÷èø,解得2t =±,由(2)可知:圆心()2,1C ,半径7.已知圆C :2220x y tx y +--=(0t >)分别与x 轴、y 轴交于点P ,Q (均异于坐标原点O ),过点()1,0E 作两条直线1l ,2l ,斜率分别为1k ,2k ,且121k k =-,直线1l 与y 轴交于点F ,直线2l 与圆C 交于A ,B 两点.(1)若()6,0P ,6AB =,求直线2l 的方程;(2)若原点O 到直线PQ ABF △面积的最小值.因为6AB =,所以2162r =-故直线2l 的方程为4340x y --=(2)令0x =,0y =,得(,0P t 所以直线PQ 方程为1x y +=,即所以11222ABF S AB EF =×=´△222224211444k k k æö=++=++ç÷èø所以ABF △面积的最小值为1528.如图,已知圆M :22430x y x +-+=,点()1,P t -为直线l :1x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B .(1)1t =时,求PA 、PB 方程(点A 在点B 上方);(2)求线段AB 中点的轨迹方程;(3)若两条切线PA ,PB 与y 轴分别交于S ,T 两点,求ST 的最小值.当,H F 不重合时,则HF 又5,03H æöç÷èø,()2,0M ,故该圆圆心为11,06æöç÷èø,半径9.如图,在平面直角坐标系中,P 为直线4y =上一动点,圆22:4O x y +=与x 轴的交点分别为,M N 点,圆O 与y 轴的交点分别为,S T 点.(1)若MTP △为等腰三角形,求P 点坐标;PT PS分别交圆O于,A B两点.(2)若直线,①求证:直线AB过定点,并求出定点坐标;②求四边形ASBT面积的最大值.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.题型4:取值范围问题10.如图,经过原点O 的直线与圆()22:14M x y ++=相交于A ,B 两点,过点()1,0C 且与AB 垂直的直线与圆M 的另一个交点为D .(1)当点B 坐标为()1,2--时,求直线CD 的方程;(2)记点A 关于x 轴对称点为F (异于点A ,B ),求证:直线BF 恒过x 轴上一定点,并求出该定点坐标;(3)求四边形ABCD 的面积S 的取值范围.11.已知在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F,离心率e =P 为椭圆C 上任意一点,12PF F V 面积的最大值为2.(1)求椭圆C 的方程;(2)若斜率为k 的直线l 与圆221x y +=相切,且l 与椭圆C 相交于M ,N 两点,若弦长MN的取值范围为83éêë,求OM ON ×uuuu r uuu r 的取值范围.42)设直线l 的方程为y kx m =+,M (x 1,y 由直线l 与圆221x y +=相切,可得22142y kx mx y =+ìïí+=ïî,消去y 并整理得题型5:存在性问题12.已知圆22:4O x y +=和圆22:(4)1C x y +-=.(1)判断圆O 和圆C 的位置关系;(2)过圆C 的圆心C 作圆O 的切线l ,求切线l 的方程;(3)过圆C 的圆心C 作动直线m 交圆O 于A ,B 两点.试问:在以AB 为直径的所有圆中,是否存在这样的圆P ,使得圆P 经过点(2,0)M 若存在,求出圆P 的方程;若不存在,请说明理由.斜式设出切线方程,然后用点线距离公式建立关于的方程;【点睛】关键点睛:本题第三问的关键是利用设线法,展开化简,将韦达定理式整体代入求出直线方程,同时不忘考虑直线斜率不存在的情况13.在平面直角坐标系xOy 中,已知两点()()4,0,1,0S T ,动点P 满足2PS PT =,设点P 的轨迹为C .如图,动直线l 与曲线C 交于不同的两点,A B (,A B 均在x 轴上方),且180ATO BTO Ð+Ð=o .(1)求曲线C 的方程;(2)当A 为曲线C 与y 轴正半轴的交点时,求直线l 的方程;(3)是否存在一个定点,使得直线l 始终经过此定点?若存在,求出定点的坐标;若不存在,请说明理由.(2)由题意知()0,2A ,设B (x 2,y 2),依题意可知直线l 的斜率存在,设直线由180ATO BTO Ð+Ð=o ,得AT BT k k +则22222014y x x y ì-+=ï-íï+=î,所以2202x y =ìí=-î(舍去(3)设直线l 方程为y kx b =+联立方程224x y y kx b ì+=í=+î,得(2k 212122224,,11kb b x x x x k k --\+==++180,ATO BTO Ð+Ð=o Q AT k \【点睛】求解曲线的方程,可以有以下两种方法:一是根据圆锥曲线的定义,求得曲线的方程;另一个是题型6:其他问题14.已知圆O 的方程为224x y +=.(1)求过点()2,1-的圆O 的切线方程;(2)已知两个定点(),2A a ,(),1B m ,其中R a Î,0m >.P 为圆O 上任意一点,PA n PB=(n 为常数),①求常数n 的值;②过点(),E a t 作直线l 与圆22:C x y m +=交于M 、N 两点,若M 点恰好是线段NE 的中点,求实数t 的取值范围.附:可能用到的不等关系参考:(1)若0a >,0b >,1ba£,则b a £;(2)若a b >,且()()0x a x b --£,则有b x a ££.(2)①设点P (x,y ),则2x +()()222,PA x a y PB =-+-PAn PB=Q ,222PA n PB =×②由①知,2a =,1m =,设00(,)M x y ,M 是线段NE 又M ,N 在圆C 上,即关于【点睛】方法点睛:求解圆的切线方程,首先要判断题目所给点是在圆上还是在圆外,如果所给点在圆上,则切线方程只有一条,如果所给点在圆外,则切线方程有两条切线的斜率是否存在.15.平面直角坐标系中,圆(1)求圆M的标准方程;(2)设D(0,1),过点D作直线1l,交圆M于PQ两点,PQ不在y轴上.①过点D作与直线1l垂直的直线2l,交圆M于EF两点,记四边形EPFQ的面积为S,求S的最大值;②设直线OP,BQ相交于点N,试证明点N在定直线上,求出该直线方程.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点(00,x y16.公元前3世纪,古希腊数学家阿波罗尼斯在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆,后世把这种圆称之为阿波罗尼斯圆.已知平面直角坐标系中()()2,0,1,0A B -且2PA PB =.(1)求点P 的轨迹方程;(2)若点P 在(1)的轨迹上运动,点M 为AP 的中点,求点M 的轨迹方程;(3)若点(),P x y 在(1)的轨迹上运动,求46y t x +=-的取值范围.。

高中数学必考内容,圆的方程,(高考热点)

高中数学必考内容,圆的方程,(高考热点)
2 2
2 2
(2)当D2+E2-4F=0时,方程只有一组解X=-D/2
D E y=-E/2,表示一个点( 2 , 2 )
(3)当D2+E2-4F<0时,方程(1)无实数解,所以 不表示任何图形。
所以形如x2 +y 2+Dx+Ey+F=0 (D2+E2-4F>0) 可表示圆的方程
思考5:方程 x y Dx Ey F 0 2 2 ( D E 4F 0)叫做圆的一般方程,其 圆心坐标和半径分别是什么?
用待定系数法求圆方程的基本步骤: (1)设圆方程 ;(2)列方程组; (3)求系数; (4)小结.
例2 方程 x y ax 2ay 2a a 1 0 表示的图形是一个圆,求a的取值范围.
2 2 2
求动点轨迹的步骤:
1.建立坐标系,设动点坐标M(x, y);
2.列出动点M满足的等式并化简; 3.说明轨迹的形状.
圆的方程
问题提出 1.在平面直角坐标系中,两点确定一条 直线,一点和倾斜角也确定一条直线, 那么在什么条件下可以确定一个圆呢?
圆心和半径
2.直线可以用一个方程表示,圆也可 以用一个方程来表示,怎样建立圆的 方程是我们需要探究的问题.
知识探究一:圆的标准方程
思考1:圆可以看成是平面上的一条曲线,在 平面几何中,圆是怎样定义的?
x y 8x 6 y 0
2 2
用待定系数法求圆的方程的步骤: 1)根据题意设所求圆的方程为标准式或一般式; 2)根据条件列出关于a、b、r或D、E、F的方程; 3)解方程组,求出a、b、r或D、E、F的值,代入 所设方程,就得要求的方程.
根据题目条件,恰当选择圆方程形式: ①若知道或涉及圆心和半径,我们一般采用圆的标准方程较简单. ②若已知三点求圆的方程,我们常常采用圆的一般方程用待定系数 法求解.

圆高二数学选择性必修第一册)(解析版)

圆高二数学选择性必修第一册)(解析版)

专题6圆目录一、热点题型归纳【题型一】求圆1:圆心在直线上求方程......................................................................................1【题型二】求圆2:外接圆..............................................................................................................2【题型三】求圆3:内切圆..............................................................................................................5【题型四】点与圆的关系...............................................................................................................7【题型五】弦长与弦心距.................................................................................................................9【题型六】到直线距离为定值的圆上点个数............................................................................10【题型七】弦长与弦心距:弦心角...............................................................................................12【题型八】圆过定点.......................................................................................................................13【题型九】两圆位置关系...............................................................................................................15【题型十】两圆公共弦.................................................................................................................17培优第一阶——基础过关练...........................................................................................................18培优第二阶——能力提升练...........................................................................................................21培优第三阶——培优拔尖练.. (24)【题型一】求圆1:圆心在直线上求方程【典例分析】(2022·全国·高二)已知圆M 的圆心在直线40x y +-=上,且点(1,0)A ,(0,1)B 在M 上,则M 的方程为()A .22(2)(2)13x y -+-=B .22(1)(1)1x y -+-=C .22(2)(2)5x y -+-=D .22(1)(1)5x y +++=【答案】C【分析】由题设写出AB 的中垂线,求其与40x y +-=的交点即得圆心坐标,再应用两点距离公式求半径,即可得圆的方程.【详解】因为点(1,0)A ,(0,1)B 在M 上,所以圆心在AB 的中垂线0x y -=上.由400x y x y +-=⎧⎨-=⎩,解得22x y =⎧⎨=⎩,即圆心为(2,2),则半径r =,所以M 的方程为22(2)(2)5x y -+-=.故选:C1.(2022·安徽省亳州市第一中学高二阶段练习)已知圆C 过点(7,2)A -,(4,1)B ,且圆心在x 轴上,则圆C 的方程是()A .22(5)8x y -+=B .22(6)5x y -+=C .22(5)4x y -+=D .22(4)13x y -+=【答案】B【分析】根据圆心在x 轴上,设出圆C 的方程,把点(7,2)A -,(4,1)B 的坐标代入圆的方程即可求出答案.【详解】因为圆C 的圆心在x 轴上,所以设圆C 的方程为()222x a y r -+=,因为点(7,2)A -,(4,1)B 在圆C 上,所以()()22227441a r a r ⎧-+=⎪⎨-+=⎪⎩,解得26,5a r ==,所以圆C 的方程是22(6)5x y -+=.故选:B.2.(2021·山西·太原市第六十六中学校高二期中)过点(2,1)M -,且经过圆224440x y x y +--+=与圆2240x y +-=的交点的圆的方程为()A .2260x y x y +++-=B .2280x y x y ++--=C .2220x y x y +-+-=D .2240x y x y +---=【答案】A 【分析】根据题意,设所求圆的方程为()222244440x y x y x y λ+--+++-=,再待定系数求解即可.【详解】解:由圆系方程的性质可设所求圆的方程为()222244440x y x y x y λ+--+++-=,因为所求圆过点(2,1)M -,所以()()()222221424142140λ⎡⎤+--⨯-⨯-+++--=⎣⎦,解得:5λ=-所以所求圆的方程为:2260x y x y +++-=故选:A【题型二】求圆2:外接圆【典例分析】(2022·福建漳州·高二期末)在平面几何中,将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.如线段的最小覆盖圆就是以该线段为直径的圆,锐角三角形的最小覆盖圆就是该三角形的外接圆.若(2,0)A -,(2,0)B ,(0,4)C ,则ABC 的最小覆盖圆的半径为()A .32B .2C .52D .3【答案】C【分析】根据新定义只需求锐角三角形外接圆的方程即可得解.【详解】(2,0)A -,(2,0)B ,(0,4)C ,ABC ∴△为锐角三角形,ABC ∴△的外接圆就是它的最小覆盖圆,设ABC 外接圆方程为220x y Dx Ey F ++++=,则420420,1640D F D F E F -+=⎧⎪++=⎨⎪++=⎩解得034D E F =⎧⎪=-⎨⎪=-⎩ABC ∴△的最小覆盖圆方程为22340x y y +--=,即22325()24x y +-=,ABC ∴△的最小覆盖圆的半径为52.故选:C1.(2022·全国·高二专题练习)已知△ABC 的顶点坐标分别为A (1,3),B (﹣2,2),C (1,﹣7),则该三角形外接圆的圆心及半径分别为()A .(2,﹣2)B .(1,﹣2)C .(1,﹣2),5D .(2,﹣2),5【答案】C【分析】根据题意,设三角形外接圆的圆心为M ,其坐标为(a ,b ),半径为r ,由|MA |=|MC |和|MA |=|MB |,求出a 、b 的值,可得圆心坐标,进而可得r 的值,即可得答案.【详解】根据题意,设三角形外接圆的圆心为M ,其坐标为(a ,b ),半径为r ,△ABC 的顶点坐标分别为A (1,3),B (﹣2,2),C (1,﹣7),|MA |=|MC |,必有b =﹣2,|MA |=|MB |,则有(a ﹣1)2+25=(a +2)2+16,解可得a =1,则r =|MA |=5;即圆心为(1,﹣2),半径r =5;故选:C.2.(2021·全国·高二专题练习)已知曲线22020y x x =+-与x 轴交于M ,N 两点,与y 轴交于P 点,则MNP △外接圆的方程为()A .22201920200x y x y ++--=B .22202120200x y x y ++--=C .22201920200x y x y +++-=D .22202120200x y x y +++-=【答案】C【分析】设MNP △外接圆的方程为220x y Dx Ey F ++++=,分别令0,0x y ==,结合韦达定理求得D ,E ,F ,代入即可求得圆的方程.【详解】设MNP △外接圆的方程为220x y Dx Ey F ++++=,点Q 是MNP △的外接圆与y 轴的另一个交点,分别令0,0x y ==,则20y Ey F ++=,20x Dx F ++=.设()()()()1212,0,,0,0,,0,M x N x P y Q y ,则1212x x y y =,又曲线22020y x x =+-与x 轴交于M ,N 两点,则122020x x =-,121x x +=-,12020y =-,1D =,2020F =-,所以21y =,()12(20201)2019E y y =-+=--+=,故MNP △外接圆的方程22201920200x y x y +++-=.故选:C.3.(2022·江苏·高二单元测试)已知圆22:(1)(1)4C x y -+-=,P 为直线:220l x y ++=上的动点,过点P 作圆C 的切线PA ,切点为A ,当PAC △的面积最小时,PAC △的外接圆的方程为()A .22115224x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭B .22119224x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭C .221524x y ⎛⎫+-= ⎪⎝⎭D .221524x y ⎛⎫-+=⎪⎝⎭【答案】C【分析】先确定PAC △的面积最小时P 点坐标,再由PAC △是直角三角形求出外接圆的圆心和半径,即可求出外接圆方程.【详解】由题可知,PA AC ⊥,半径2AC =,圆心(1,1)C,所以12PAC S PA AC PA =⋅==要使PAC △的面积最小,即PC 最小,PC 的最小值为点(1,1)C 到直线:220l x y ++==P 点运动到PC l ⊥时,PAC S 最小,直线l 的斜率为2-,此时直线PC 的方程为11(x 1)2y -=-,由11(1)2220y x x y ⎧-=-⎪⎨⎪++=⎩,解得10x y =-⎧⎨=⎩,所以(1,0)P -,因为PAC △是直角三角形,所以斜边PC 的中点坐标为10,2⎛⎫ ⎪⎝⎭,而PC ==PAC △的外接圆圆心为10,2⎛⎫ ⎪⎝⎭,,所以PAC △的外接圆的方程为221524x y ⎛⎫+-= ⎪⎝⎭.故选:C.【题型三】求圆3:内切圆【典例分析】(2022·全国·高二单元测试)已知三角形三边所在直线的方程分别为0y =、20x y -+=和40x y +-=,求这个三角形的内切圆圆心和半径.【答案】圆心()3;半径为3.【分析】由三角形所在位置设出其内切圆圆心坐标,利用三角形内切圆性质列方程,求解作答.【详解】依题意,由020y x y =⎧⎨-+=⎩得直线0y =与20x y -+=的交点(2,0)B -,由040y x y =⎧⎨+-=⎩得直线0y =与40x y +-=的交点(4,0)C ,由2040x y x y -+=⎧⎨+-=⎩得直线20x y -+=与40x y +-=的交点(1,3)A ,显然AC AB ⊥,且||||AC AB ==,即ABC 是等腰直角三角形,则直线1x =平分BAC ∠,设ABC 的内切圆圆心为(1,)M b ,03b <<,则b ==3b =,即()3M ,半径3r b ==,所以这个三角形的内切圆圆心和半径分别为圆心()3,3.1.(2022·全国·高二课时练习)若直线34120x y ++=与两坐标轴分别交于A ,B 两点,O 为坐标原点,则AOB ∆的内切圆的标准方程为__________.【答案】22(1)(1)1x y +++=【分析】结合三角形面积计算公式,建立等式,计算半径r ,得到圆方程,即可.【详解】设内切圆的半径为r ,结合面积公式1111342222OA r OB r AB r ⋅⋅+⋅⋅+⋅⋅=⋅⋅则1r =因而圆心坐标为()1,1--,圆的方程为()()22111x y +++=2.(2022·重庆南开中学高二阶段练习)平面直角坐标系中,点()A 、()3B -、()C ,动点P 在ABC 的内切圆上,则12PC PA -的最小值为_________.【答案】2-##【分析】求出ABC 的内切圆方程,设点(),P x y ,计算得出2PC PE =,其中点3,02E ⎛⎫⎪ ⎪⎝⎭,数形结合可求得12PC PA -的最小值.【详解】由两点间的距离公式可知6AB BC AC ===,则ABC 是边长为6的等边三角形,设ABC 的内切圆的半径为r ,则216182ABC S r ==⨯△,解得r =,因为点A 、B 关于x 轴对称,所以,ABC 的内切圆圆心在x 轴上,易知直线AB 的方程为x =O 到直线AB 的距离为所以,ABC 的内切圆为圆22:3O x y +=,设点(),P x y ,PC =2PE ===,其中点E ⎫⎪⎪⎝⎭,所以,122PC PA PE PA AE -=-≥-==-,当且仅当点P 为射线AE 与圆O 的交点时,等号成立,故12PC PA -的最小值为故答案为:3.(2016·重庆·一模(理))已知直线1:22l x y a +=+和直线2:221l x y a -=-分别与圆()22(1)16x a y -+-=相交于,A B 和,C D ,则四边形ACBD 的内切圆的面积为________.【答案】8π【分析】由两直线方程,得出两直线垂直且交于点(,1)a ,结合圆的几何性质判断出四边形ACBD 是边长为.【详解】联立22221x y a x y a +=+⎧⎨-=-⎩,解得1x ay =⎧⎨=⎩,即直线1:22l x y a +=+和直线2:221l x y a -=-互相垂直且交于点(,1)a ,而(,1)a 恰好是圆()22(1)16x a y -+-=的圆心,则AB,CD 为圆的两条互相垂直的直径,且8AB CD ==,所以,四边形ACBD是边长为因此其内切圆半径是2π8π⨯=,故答案为:8π.【题型四】点与圆的关系【典例分析】(2021·全国·高二课时练习)如果直线2140(0,0)ax by a b -+=>>和函数1()1(0,1)x f x m m m +=+>≠的图象恒过同一个定点,且该定点始终落在圆22(1)(2)25x a y b -+++-=的内部或圆上,那么ba的取值范围是()A .34,43⎡⎫⎪⎢⎣⎭B .34,43⎛⎤ ⎝⎦C .34,43⎡⎤⎢⎥⎣⎦D .34(,)43【答案】C 【分析】由已知可得()7,0,0a b a b +=>>.再由由点()1,2-在圆22(1)(2)25x a y b -+++-=内部或圆上可得2225a b +≤()0,0a b >>.由此可解得点(),a b 在以()3,4A 和()4,3B 为端点的线段上运动.由ba表示以()3,4A 和()4,3B 为端点的线段上的点与坐标原点连线的斜率可得选项.【详解】函数()11x f x m +=+恒过定点()1,2-.将点()1,2-代入直线2140ax by -+=可得22140a b --+=,即()7,0,0a b a b +=>>.由点()1,2-在圆22(1)(2)25x a y b -+++-=内部或圆上可得()()22112225a b --+++-≤,即2225a b +≤()0,0a b >>.2273254a b a a b b +==⎧⎧⇒⎨⎨+==⎩⎩或43a b =⎧⎨=⎩.所以点(),a b 在以()3,4A 和()4,3B 为端点的线段上运动.ba表示以()3,4A 和()4,3B 为端点的线段上的点与坐标原点连线的斜率.所以min 303404b a -⎛⎫== ⎪-⎝⎭,max 404303b a -⎛⎫== ⎪-⎝⎭.所以3443b a ≤≤.故选:C.1.(2022·安徽·合肥市第八中学高二开学考试)若点()1,2R -在圆C :22220x y x y a +--+=的外部,则实数a 的取值范围为()A .3a <-B .3a >-C .32a -<<D .23a -<<【答案】C【分析】根据点与圆的位置关系建立不等式求解,并注意方程表示圆所满足的条件.【详解】因为点()1,2R -在圆C :22220x y x y a +--+=的外部,所以14240a ++-+>,解得3a >-,又方程22220x y x y a +--+=表示圆,所以22(2)(2)40a -+-->,解得2a <,故实数a 的取值范围为32a -<<.故选:C2.(2020·河北·高二期中)直线1ax by +=与圆221x y +=有两个公共点,那么点(),a b 与圆22+1x y =的位置关系是()A .点在圆外B .点在圆内C .点在圆上D .不能确定【答案】A【解析】直线1ax by +=与圆221x y +=||1<1>,由此可得点与圆的位置关系.【详解】因为直线1ax by +=与圆221x y +=有两个公共点,1<,1>,因为点(,)b a 与221x y +=,圆224x y +=的半径为1,所以点P 在圆外.故选:A.3.(2021·辽宁·沈阳市第一中学高二阶段练习)已知三点(3,2)A ,(5,3)B -,(1,3)C -,以(2,1)P -为圆心作一个圆,使得A ,B ,C 三点中的一个点在圆内,一个点在圆上,一个点在圆外,则这个圆的标准方程为______.【答案】22(2)(1)13x y -++=【分析】计算,,PA PB PC ,根据大小确定半径,即可求出圆的方程.【详解】PA =PB =5PC =,PA PB PC ∴<<,故所求圆以PB 为半径,方程为22(2)(1)13x y -++=.故答案为:22(2)(1)13x y -++=【题型五】弦长与弦心距【典例分析】(2021·江苏·滨海县八滩中学高二期中)已知圆C :()()223216x y -+-=,直线l :y x t =+与圆C 交于A ,B 两点,且ABC 的面积为8,则直线l 的方程为()A .3y x =-或5y x =-B .3y x =+或5y x =+C .3y x =+或5y x =-D .3y x =-或5y x =+【答案】C【分析】由三角形面积定理求出等腰三角形顶角,进而求出其高,再用点到直线距离得解.【详解】由圆C 的方程可得圆心C 的坐标为()3,2,半径为4.∵ABC 的面积为144sin 82ACB ⨯⨯∠=,∴90ACB ∠=︒,∴⊥CB CA ,∴点C 到直线AB的距离为.由点到直线的距离公式可得点C 到直线AB=∴3t =或5t =-,∴l 的方程为3y x =+或5y x =-.故选:C .1.(2021·江苏·高二期中)已知的OMN 三个顶点为()0,0O ,()6,0M ,()8,4N ,过点()3,5作其外接圆的弦,若最长弦与最短弦分别为AC,BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】B【分析】由已知O ,M ,N 三点的坐标可得OMN 外接圆的方程,根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,利用对角线垂直的四边形的面积等于对角线乘积的一半即可求得面积.【详解】设OMN 的外接圆的方程为(x ﹣a )2+(y ﹣b )2=r 2,由O (0,0),M (6,0),N (8,4),得()()()222222222684a b r a b ra b r ⎧+=⎪⎪-+=⎨⎪-+-=⎪⎩,解得345a b r =⎧⎪=⎨⎪=⎩.∴圆的标准方程为(x ﹣3)2+(y ﹣4)2=52,点(3,5)在圆内部,由题意得最长的弦|AC |=2×5=10,点(3,5)到圆心(3,4)的距离为1.根据勾股定理得最短的弦|BD |==AC ⊥BD ,四边形ABCD 的面积S =12|AC |•|BD |=2×10×故选:B .2.(2022·四川成都·高二开学考试(文))直线l 与圆()2224x y -+=相交于A ,B 两点,则弦长AB =l 共有().A .1条B .2条C .3条D .4条【答案】D【分析】先利用题意得到圆心到直线l 的距离,然后分直线过原点和不过原点进行假设直线方程,结合弦长即可得到答案;【详解】解:由()2224x y -+=可得圆心为()2,0,半径为2,所以圆心到直线l 的距离为1d ==,当直线不过原点时,设直线l 的方程为1ya a+=即0x y a +-=,所以圆心到直线l的距离为1d ==,解得2a =此时直线l 为20x y +-=或20x y +-=;当直线过原点时,设直线l 的方程为y kx =即0kx y -=,所以圆心到直线l 的距离为1d ==,解得k =此时直线l 为y=或y x =;综上所述,直线l 共有4条,故选:D .3.(2022·江西南昌·模拟预测(文))若直线x =-224x y +=相交于,A B 两点,OOA AB ⋅=()A.B .4C .-D .-4【答案】D【分析】先求出圆心到直线的距离,再利用弦心距,半径和弦的关系可求出AB ,然后利用向量的数量积的定义及几何意义可求得结果.【详解】由题意得圆224x y +=的圆心(0,0)O 到直线x =-d =AB=AB =所以()cos OA AB OA AB OAB π⋅=-∠cos OA AB OAB =-∠242AB =-=-,故选:D【题型六】到直线距离为定值的圆上点个数【典例分析】(2021·天津市西青区杨柳青第一中学高二期中)已知圆()()22:129C x y -+-=上存在四个点到直线:0l x y b -+=的距离等于2,则实数b范围是()A .()(,11-∞-⋃++∞B .(1-+C .()(,11-∞⋃+∞D .(1+【答案】D【分析】根据题意可知,圆心到直线的距离小于1,即求.【详解】由()()22:129C x y -+-=知圆心(1,2)C ,半径为3,若圆()()22:129C x y -+-=上存在四个点到直线:0l x y b -+=的距离等于2,则点C 到直线:0l x y b -+=的距离1d <1<,∴11b <<.故选:D.【变式训练】1.(2020·全国·高二课时练习)已知圆22(2)(1)12x y -++=上恰有三个点到直线:0l kx y +=l 的斜率为()A .2B .2-±C 2D .2±【答案】A【分析】由于圆22(2)(1)12x y -++=上恰有三个点到直线:0l kx y +=而圆的半径为l 的距离等于半径的一半即可,然后利用点到直线的距离公式列方程可求出直线的斜率.【详解】解:由题意,圆心到直线l 的距离等于半径的一半,,解得2k =故选:A.2.(2016·湖北黄石·高二阶段练习)能够使得圆222410x y x y +-++=上恰好有两个点到直线20x y c ++=的距离等于1的一个c 值为A .2B .C .3D .【答案】C【分析】根据当M 到直线l :2x +y +c =0的距离d ∈(1,3)时,⊙M 上恰有两个点到直线l 的距离等于1求解.【详解】解:圆的方程可化为:()()22124x y -++=,所以圆心M (1,-2),半径r =2,由题意知:当M 到直线l :2x +y +c =0的距离d ∈(1,3)时,⊙M 上恰有两个点到直线l 的距离等于1,(1.3)d =,得(c ∈-⋃3<<c 可以是3故选:C3.(2021·山东·日照青山学校高二期末)定义:如果在一圆上恰有四个点到一直线的距离等于1,那么这条直线叫做这个圆的“相关直线”.则下列直线是圆()()22:124C x y ++-=的“相关直线”的为()A .1y =B .34120x y -+=C .20x y +=D .125170x y --=【答案】BC【分析】分析可知,圆心C 到“相关直线”的距离d 满足1d <,然后计算出圆心到每个选项中直线的距离,即可得出合适的选项.【详解】由题意可知,圆C 的圆心为()1,2C -,半径为2r =.设圆心C 到“相关直线”的距离为d ,由图可知12d +<,可得1d <.对于A 选项,121d =-=,不合乎题意;对于B 选项,15d =,合乎题意;对于C 选项,0d =,合乎题意;对于D 选项,3d =,不合乎题意.故选:BC.【题型七】弦长与弦心距:弦心角【典例分析】(2022·江苏·高二课时练习)若直线1y kx =+与圆221x y +=相交于A B ,两点,且60AOB ∠=(其中O 为原点),则k 的值为()A.BC.D 【答案】A【分析】根据点到直线的距离公式即可求解.【详解】由60AOB ∠=可知,圆心(0,0)到直线1y kx =+23k =⇒=±故选:A 【变式训练】1.(2023·全国·高二专题练习)已知直线l :10x my ++=与圆O :2234x y +=相交于不同的两点A ,B ,若∠AOB 为锐角,则m 的取值范围为()A.⎛⎛-⋃⎝⎭⎝⎭B.⎛⎝⎭C.,∞∞⎛⎛⎫-⋃+ ⎪⎪⎝⎭⎝⎭D.⎛ ⎝⎭【答案】A【分析】以∠AOB 为直角时为临界,此时圆心O 到直线l的距离d ==d <<【详解】因为直线l :10x my ++=经过定点()1,0-,圆O :2234x y +=的半径为32,当∠AOB 为直角时,此时圆心O 到直线l的距离d ,解得3m =,则当∠AOB 为锐角时,m <又直线与圆相交于A ,B 两点,则2d =<,即m >,所以m <<m <<A .【题型八】圆过定点【典例分析】(2022·江苏·高二课时练习)点(),P x y 是直线250x y +-=上任意一点,O 是坐标原点,则以OP 为直径的圆经过定点()A .()0,0和()1,1B .()0,0和()2,2C .()0,0和()1,2D .()0,0和()2,1【答案】D【分析】设点(),52P t t -,求出以OP 为直径的圆的方程,并将圆的方程变形,可求得定点坐标.【详解】设点(),52P t t -,则线段OP 的中点为52,22t t M -⎛⎫⎪⎝⎭,圆M 的半径为OM =所以,以OP 为直径为圆的方程为2225252025224t t t t x y --+⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,即()22250x y tx t y +-+-=,即()()22520x y y t y x +-+-=,由222050y x x y y -=⎧⎨+-=⎩,解得00x y =⎧⎨=⎩或21x y =⎧⎨=⎩,因此,以OP 为直径的圆经过定点坐标为()0,0、()2,1.故选:D.1.(2022·河北沧州·高二期末)已知点A 为直线2100x y +-=上任意一点,O 为坐标原点.则以OA 为直径的圆除过定点()0,0外还过定点()A .()10,0B .()0,10C .()2,4D .()4,2【答案】D【分析】设OB 垂直于直线2100x y +-=,可知圆恒过垂足B ;两条直线方程联立可求得B 点坐标.【详解】设OB 垂直于直线2100x y +-=,垂足为B ,则直线OB 方程为:12y x =,由圆的性质可知:以OA 为直径的圆恒过点B ,由210012x y y x +-=⎧⎪⎨=⎪⎩得:42x y =⎧⎨=⎩,∴以OA 为直径的圆恒过定点()4,2.故选:D.2.(2022·宁夏·银川一中高二期末)如果直线2140(0,0)ax by a b -+=>>和函数1()1(0,1)x f x m m m +=+>≠的图象恒过同一个定点,且该定点始终落在圆22(1)(2)25x a y b -+++-=的内部或圆上,那么ba的取值范围是()A .34,43⎡⎫⎪⎢⎣⎭B .34,43⎛⎤ ⎝⎦C .34,43⎡⎤⎢⎥⎣⎦D .34(,)43【答案】C 【分析】由已知可得()7,0,0a b a b +=>>.再由由点()1,2-在圆22(1)(2)25x a y b -+++-=内部或圆上可得2225a b +≤()0,0a b >>.由此可解得点(),a b 在以()3,4A 和()4,3B 为端点的线段上运动.由ba表示以()3,4A 和()4,3B 为端点的线段上的点与坐标原点连线的斜率可得选项.【详解】函数()11x f x m +=+恒过定点()1,2-.将点()1,2-代入直线2140ax by -+=可得22140a b --+=,即()7,0,0a b a b +=>>.由点()1,2-在圆22(1)(2)25x a y b -+++-=内部或圆上可得()()22112225a b --+++-≤,即2225a b +≤()0,0a b >>.2273254a b a a b b +==⎧⎧⇒⎨⎨+==⎩⎩或43a b =⎧⎨=⎩.所以点(),a b 在以()3,4A 和()4,3B 为端点的线段上运动.ba表示以()3,4A 和()4,3B 为端点的线段上的点与坐标原点连线的斜率.所以min 303404b a -⎛⎫== ⎪-⎝⎭,max 404303b a -⎛⎫== ⎪-⎝⎭.所以3443b a ≤≤.故选:C .3.(2022·全国·高二)若动圆C 过定点A (4,0),且在y 轴上截得的弦MN 的长为8,则动圆圆心C 的轨迹方程是()A .221412x y -=B .()2212412x y y -=>C .28y x=D .28y x =(0x ≠)【答案】C【分析】设(),C x y 并作CE y ⊥轴于E ,由垂径定理得4ME =,又2222==+CA CM ME EC ,利用两点间的距离公式化简,即可得结果.【详解】设圆心C 的坐标为(),x y ,过C 作CE y ⊥轴,垂足为E ,则4ME =,2222CA CMME EC ∴==+,()222244x y x ∴-+=+,得28y x =.故选:C.【题型九】两圆位置关系【典例分析】(2021·浙江·兰溪市厚仁中学高二期中)已知圆1C :2216x y +=和圆2C :()()()222340x y r r -+-=>,则()A .2r =时,两圆相交B .1r =时,两圆内切C .9r =时,两圆外切D .10r =时,两圆内含【答案】AD【分析】根据题意得两圆圆心距为125C C =,圆1C 半径4R =,再依次讨论求解即可得答案.【详解】解:由题知圆1C :2216x y +=的圆心为()0,0,半径4R =;圆2C :()()()222340x y r r -+-=>的圆心为()3,4,半径r ,所以两圆圆心距为125C C =,故对于A 选项,当2r =,12256R r C C R r =-<=<+=,故两圆相交,正确;对于B 选项,当1r =,125C C R r ==+,故两圆外切,错误;对于C 选项,当9r =,125r R C C -==,故两圆内切,错误;对于D 选项,当10r =,12r R C C ->,故两圆内含,正确.故选:AD 【提分秘籍】基本规律圆与圆位置关系的判定(1)几何法:若两圆的半径分别为1r ,2r ,两圆连心线的长为d ,则两圆的位置关系的判断方法如下:位置关外离外切相交内切内含1.(2020·湖南省邵东市第一中学高二期末)已知圆O 1:(x -a )2+(y -b )2=4,O 2:(x -a -1)2+(y -b -2)2=1(a ,b ∈R ),则两圆的位置关系是()A .内含B .内切C .相交D .外切【答案】C【详解】两圆圆心之间的距离为|O 1O 2|,由12+1=3,所以两圆相交,答案C2.(2022·全国·高二专题练习)分别求当实数k 为何值时,两圆C1:x 2+y 2+4x -6y +12=0,C 2:x2+y 2-2x -14y +k =0相交和相切.【答案】答案见解析【分析】根据两圆的位置关系,可得圆心距和半径之间的关系,由两圆半径分别为1和|C 1C 2|=5,进行比较即可得解.【详解】将两圆的一般方程化为标准方程,C 1:(x +2)2+(y -3)2=1,C 2:(x -1)2+(y -7)2=50-k ,圆C 1的圆心为C 1(-2,3),半径长r 圆C 2的圆心为C 2(1,7),半径长r 2(k <50),从而|C 1C 2|5=,当15,即k =34时,两圆外切.当1|=56,即k =14时,两圆内切.当1|<5<1即14<k <34时,两圆相交,∴当k =14或k =34时,两圆相切,当14<k <34时,两圆相交.【题型十】两圆公共弦【典例分析】(2022·全国·高二课时练习)已知圆221:20C x y kx y +--=和圆222:220C x y ky +--=相交,则圆1C 和圆2C 的公共弦所在的直线恒过的定点为()A .(2,2)B .(2,1)C .(1,2)D .(1,1)【答案】B 【分析】根据题意,联立两个圆的方程可得两圆公共弦所在的直线方程,由此分析可得答案.【详解】根据题意,圆221:20C x y kx y +--=和圆222:220C x y ky +--=相交,则222220220x y kx y x y ky ⎧+--=⎨+--=⎩,则圆1C 和圆2C 的公共弦所在的直线为2220kx ky y -+-=,变形可得(2)2(1)k x y y -=-,则有2010x y y -=⎧⎨-=⎩,则有21x y =⎧⎨=⎩,即两圆公共弦所在的直线恒过的定点为(2,1),故选:B .1.(2021·全国·高二专题练习)垂直平分两圆222620x y x y +-++=,224240x y x y --++=的公共弦的直线方程为()A .3430x y --=B .4350x y ++=C .3490x y ++=D .4350x y -+=【答案】B【分析】分别求解两个圆的圆心,圆心连线即为所求.【详解】根据题意,圆222620x y x y +-++=,其圆心为M ,则(1,3)M -,圆224240x y x y --++=,其圆心为N ,则(2,1)N -,垂直平分两圆的公共弦的直线为两圆的连心线,则直线MN 的方程为313(1)12y x --+=-+,变形可得4350x y ++=;故选:B.2.(2020·山东泰安·高二期中)圆2260x y x +-=和圆22460x y x y +-+=交于A ,B 两点,则两圆公共弦的弦长AB 为()A .5B .10C .5D .10【答案】A【解析】两圆两式相减,得到公共弦所在直线的方程为30x y +=,结合弦长公式,即可求解.【详解】由题意,圆2260x y x +-=和圆22460x y x y +-+=,两式相减,可得30x y +=,即公共弦所在直线的方程为30x y +=,又由圆2260x y x +-=可化为22(3)9x y -+=,可得圆心坐标为(3,0),半径为3r =,则圆心到直线的距离为d =所以5AB ===,即两圆公共弦的弦长AB 为5.故选:A.3.2022·全国·高二专题练习)圆心都在直线:0l x y a -+=上的两圆相交于两点(0,1)A ,(2,)B b ,则ab =()A .1B .0C .1-D .2-【答案】A【分析】由相交两圆的公共点性质求解,即由直线l 是线段AB 的垂直平分线求解.【详解】由题意直线l 是线段AB 的垂直平分线,所以1121102b b a -⎧=-⎪⎪⎨+⎪-+=⎪⎩,解得11a b =-⎧⎨=-⎩,所以1ab =.故选:A .培优第一阶——基础过关练1..(2022·浙江省兰溪市第三中学高二开学考试)已知圆C 过点(2,0),(0,4)A B -,圆心在x 轴上,则圆C 的方程为()A .22(1)(2)5x y ++-=B .22(1)9x y -+=C .22(3)25x y -+=D .2216x y +=【答案】C【分析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为222()x a y r -+=,将(2,0),(0,4)A B -坐标代入得:()2222216a r a r ⎧+=⎪⎨+=⎪⎩,解得2325a r =⎧⎨=⎩,故圆的方程为22(3)25x y -+=,故选:C.2.(2022·全国·高二专题练习)已知((0,3)A B C ,则ABC 外接圆的方程为()A .22(1)2x y -+=B .22(1)4x y -+=C .22(1)2x y +-=D .22(1)4x y +-=【答案】D【分析】求得ABC 外接圆的方程即可进行选择.【详解】设ABC 外接圆的方程为()222()x a y b r -+-=则有()()()222222222()0)0(0)3a b r a b r a b r ⎧+-=⎪⎪-+-=⎨⎪-+-=⎪⎩,解之得012a b r =⎧⎪=⎨⎪=⎩则ABC 外接圆的方程为22(1)4x y +-=故选:D3.(2022·全国·高二专题练习)在平面直角坐标系中,已知三点()1,2A -,()3,2B ,21,3C ⎛⎫- ⎪⎝⎭,则ABC 的内切圆的方程为()A .()()22164x y -+-=B .()()22114x y -+-=C .()()22161x y -+-=D .()()22111x y -+-=【答案】D【分析】结合题意设出圆心,再利用圆心到直线AC 与到直线AB 的距离相等列出一个等式,即可求出圆心,即可进而求出半径,得到答案.【详解】易知ABC 是等腰三角形,且AC BC =,∴圆心D 在直线1x =上,设圆心()()1,2D b b <,易得直线AC 的方程为4320x y +-=,直线AB 的方程为2y =,则2b -=1b =,则内切圆的半径为211r =-=,∴所求圆的方程为()()111x y -+-=.故选:D.4.(2022·全国·高二课时练习)已知点A (1,2)在圆C :22220x y mx y ++-+=外,则实数m 的取值范围为()A .()()3,22,--+∞B .()()3,23,--⋃+∞C .()2,-+∞D .()3,-+∞【答案】A【分析】由22220x y mx y ++-+=表示圆可得22(2)420m +--⨯>,点A (1,2)在圆C 外可得22122220m ++-⨯+>,求解即可【详解】由题意,22220x y mx y ++-+=表示圆故22(2)420m +--⨯>,即2m >或2m <-点A (1,2)在圆C :22220x y mx y ++-+=外故22122220m ++-⨯+>,即3m >-故实数m 的取值范围为2m >或32m -<<-即()()3,22,m --∞∈+故选:A5.(2023·全国·高二专题练习)已知直线(0)y kx k =>与圆()()22:214C x y -+-=相交于A ,B两点AB =,则k =()A .15B .43C .12D .512【答案】B【分析】圆心()2,1C 到直线(0)y kx k =>的距离为d ,则d =而1d =,所以1d =,解方程即可求出答案.【详解】圆()()22:214C x y -+-=的圆心()2,1C ,2r =所以圆心()2,1C 到直线(0)y kx k =>的距离为d ,则d =,而1d =,所以1d =,解得:43k =.故选:B.6.(2021·北京八中高二期末)已知圆C :()2221x y r ++=(0r >),直线l :3420x y +-=.若圆C 上恰有三个点到直线的距离为1,则r 的值为()A .2B .3C .4D .6【答案】A 【解析】圆C 的圆心为()1,0-到直线l 的距离为1,由圆C 上恰有三个点到直线l 的距离为1,得到圆心为()1,0-到直线l 的距离为2rd =,由此求出r 的值.【详解】圆C 的圆心为()1,0-,则圆心C 到直线l 的距离1d ==.又圆C 上恰有三个点到直线l 的距离为1.所以圆心为()1,0-到直线l 的距离为2r d =,即12rd ==。

高中数学必修2圆与方程(教师用)

高中数学必修2圆与方程(教师用)

圆的方程知识点与题型1. 确定圆方程需要有三个互相独立的条件.圆的方程有两种形式,要注意各种形式的圆方程的适用范围.(1) 圆的标准方程:(x -a)2+(y -b)2=r 2,其中(a ,b)是圆心坐标,r 是圆的半径; (2) 圆的一般方程:x 2+y 2+Dx +Ey +F =0 (D 2+E 2-4F >0),圆心坐标为(2,2ED --),半径为r =2422FE D -+2. 直线与圆的位置关系的判定方法.(1) 法一:直线:Ax +By +C =0;圆:x 2+y 2+Dx +Ey +F =0.消元⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 一元二次方程⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆−−→−相离相切相交判别式000 (2) 法二:直线:Ax +By +C =0;圆:(x -a)2+(y -b)2=r 2,圆心(a ,b)到直线的距离为d =⎪⎩⎪⎨⎧⇔>⇔=⇔<→+++相离相切相交r d r d r d B A C Bb Aa 22. 3. 两圆的位置关系的判定方法.设两圆圆心分别为O 1、 O 2,半径分别为r 1、 r 2, |O 1O 2|为圆心距,则两圆位置关系如下: |O 1O 2|>r 1+r 2⇔两圆外离;|O 1O 2|=r 1+r 2⇔两圆外切; |r 1-r 2|<|O 1O 2|<r 1+r 2⇔两圆相交;|O 1O 2|=|r 1-r 2|⇔两圆内切; 0<|O 1O 2|<|r 1-r 2|⇔两圆内含. 一、圆的方程1 、以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(22=-++y x (C)9)1()2(22=++-y x(D)9)1()2(22=-++y x解:已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2243546+++=d r ==3,∴所求的圆方程为9)1()2(22=++-y x ,故选(C).2、方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是( )A.-1<t <71 B.-1<t <21 C.-71<t <1D .1<t <2 :由D 2+E 2-4F >0,得7t 2-6t -1<0,即-71<t <1.答案:C3、已知两点P 1(4,9)、P 2(6,3),求以P 1P 2为直径的圆的方程.【思考与分析】 根据已知条件,我们需要求出圆的圆心位置,又由点P 1P 2的坐标已知,且P 1P 2为所求圆的直径,所以圆的半径很容易求出,这是常规的解法,如下面解法1所示,另外还有一些其它的解法,我们大家一起来欣赏:解法1:设圆心为C (a ,b )、半径为r. 由中点坐标公式,得 a ==5,b ==6.∴ C (5,6),再由两点间距离公式,得∴ 所求的圆的方程为(x -5)2+(y -6)2=10.解法2:设P (x ,y )是圆上任意一点,且圆的直径的两端点为P 1(4,9)、P 2(6,3), ∴ 圆的方程为(x -4)(x -6)+(y -9)(y -3)=0, 化简得 (x -5)2+(y -6)2=10,即为所求.4、求过两点A (1,4)、B (3,2),且圆心在直线y =0上的圆的标准方程,并判断点M 1(2,3),M 2(2,4)与圆的位置关系.A 、B 两点,所以圆心在线段ABk AB =3124--=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2,即x -yy =0上,因此圆心坐标是方程组x -y +1=0,y =0半径r =22)40()11(-+--=20,所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C (-1,0)的距离为22)03()12(-++=18,|M 1C |<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C |=22)04()12(-++=25>20,所以M 2在圆C 外.5、已知圆2260x y x y m ++-+=和直线230x y +-=交于P 、Q 两点,且OP ⊥OQ (O 为坐标原点),求该圆的圆心坐标及半径长.解:将32x y =-代入方程2260x y x y m ++-+=,得2520120y y m -++=.的解,即圆心坐标为(-1,0).设P ()11,x y ,Q ()22,x y ,则12,y y 满足条件:1212124,5m y y y y ++==. ∵ OP ⊥OQ , ∴12120,x x y y +=而1132x y =-,2232x y =-,∴()121212964x x y y y y =-++.∴3m =,此时Δ0>,圆心坐标为(-12,3),半径52r =.二、位置关系问题(点、直线、圆与圆的位置关系)1、点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( D )A.|a |<1B.a <131C.|a |<51 D .|a |<131解析:点P 在圆(x -1)2+y 2=1内部⇔(5a +1-1)2+(12a )2<1⇔|a |<131.答案:D 2、直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( A )(A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+解 化为标准方程222)(a a y x =-+,即得圆心),0(a C 和半径a r =.∵直线1=+y x 与已知圆没有公共点,∴线心距a r a d =>-=21,平方去分母得22212a a a >+-,解得1212-<<--a ,注意到0>a ,∴120-<<a ,故选(A).点评:一般通过比较线心距d 与圆半径r 的大小来处理直线与圆的位置关系:⇔>r d 线圆相离;⇔=r d 线圆相切;⇔<r d 线圆相交.3、 直线2x -y +1=0与圆O ∶x 2+y 2+2x-6y-26=0的位置关系是( ).A . 相切B . 相交且过圆心C . 相离D . 相交不过圆心 【解析】 要想确定一条直线与圆的位置关系,我们需要得出圆心到直线的距离与圆半径的大小关系.所以将圆的方程化为标准形式为:圆O ∶(x+1)2+(y-3)2=36.圆心为(-1,3),半径为r =6,圆心到直线的距离为d =从而知0<d <r ,所以直线与圆相交但不过圆心. 故正确答案为D4、已知圆C 与圆0222=-+x y x 相外切,并且与直线03=+y x 相切于点)3,3(-Q ,求圆C 的方程设圆C 的圆心为),(b a ,则6234004231)1(33322==⇒⎩⎨⎧-==⎩⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧++=+-=-+r r b a b a b a b a a b 或或 所以圆C 的方程为36)34(4)4(2222=++=+-y x y x 或三、切线问题1、过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( ) (A)x y 3-=或x y 31= (B)x y 3=或x y 31-= (C)x y 3-=或x y 31-=(D)x y 3=或x y 31=解 化为标准方程25)1()2(22=++-y x ,即得圆心)1,2(-C 和半径25=r . 设过坐标原点的切线方程为kx y =,即0=-y kx ,∴线心距251122==++=r k k d ,平方去分母得0)3)(13(=+-k k ,解得3-=k 或31,∴所求的切线方程为x y 3-=或x y 31=,故选(A). 点评:一般通过线心距d 与圆半径r 相等和待定系数法,或切线垂直于经过切点的半径来处理切线问题.2、求由下列条件所决定圆422=+y x 的圆的切线方程:(1)经过点)1,3(P ,(2)经过点)0,3(Q ,(3)斜率为1-解:(1) 41)3(22=+ ∴点)1,3(P 在圆上,故所求切线方程为43=+y x 。

2024高考数学常考题型 第18讲 直线与圆常考6种题型总结(解析板)

2024高考数学常考题型  第18讲 直线与圆常考6种题型总结(解析板)

第18讲直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m ≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P 作圆224x y +=的两条切线,切点分别为A 、B ,则直线AB 的方程为_______.【答案】2+-x y 0=【分析】由题知()0,2A 、()2,0B ,进而求解方程即可.【详解】解:方法1:由题知,圆224x y +=的圆心为()0,0,半径为2r =,所以过点(2,2)P 作圆224x y +=的两条切线,切点分别为()0,2A 、()2,0B ,所以1AB k =-,所以直线AB 的方程为2y x =-+,即2+-x y ;方法2:设()11,A x y ,()22,B x y ,则由2211111142.12x y y y x x ⎧+=⎪-⎨=-⎪-⎩,可得112x y +=,同理可得222x y +=,所以直线AB 的方程为2+-x y 0=.故答案为:2+-x y 题型五:圆中最值问题【例1】已知l :4y x =+,分别交x ,y 轴于A ,B 两点,P 在圆C :224x y +=上运动,则PAB △面积的最大值为()A .82-B .1682-C .842+D .162+【答案】C 【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离422d =O 的半径2r =,()4,0A -,()0,4B ,则42AB =PAB △面积的最大值为()14222822⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295【答案】B【分析】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,计算出圆心E 到直线125240x y -+=的距离d ,结合对称性可得出PQ QR +的最小值为25d -,即可得解.【详解】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为()221265247125d ⨯-+==+-,【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。

高中数学直线与圆的方程知识点总结

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向;②平行:α=0°;③范围:0°≤α<180° 。

2、斜率:①找k :α (α≠90°);②垂直:斜率k 不存在;③范围: 斜率 k ∈ R 。

3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合);②斜率k 值于两点先后顺序无关;③注意下标的位置对应。

4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+=①相交:斜率21k k ≠(前提是斜率都存在)特例垂直时:<1> 0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=∙k k 。

②平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直。

③重合: 斜率都存在时:2121,b b k k ==;二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式:1=+by a x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0用得比较多的是点斜式、斜截式与一般式。

2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=②点到直线距离:2200B A CBy Ax d +++=③平行直线间距离:2221B A C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①中点),(00y x :)2,2(2121y y x x ++ ②三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。

(完整版)高中数学圆的方程(含圆系)典型题型归纳总结

(完整版)高中数学圆的方程(含圆系)典型题型归纳总结

高中数学圆的方程典型题型归纳总结类型一:巧用圆系求圆的过程在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。

常用的圆系方程有如下几种:⑴以为圆心的同心圆系方程⑵过直线与圆的交点的圆系方程⑶过两圆和圆的交点的圆系方程此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。

当时,得到两圆公共弦所在直线方程例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。

分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。

倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。

而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。

解:过直线与圆的交点的圆系方程为:,即………………….①依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得又满足方程①,则故例2:求过两圆和的交点且面积最小的圆的方程。

解:圆和的公共弦方程为,即过直线与圆的交点的圆系方程为,即依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。

即,则代回圆系方程得所求圆方程 例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。

分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得m(x +2y -1)-(x +y -5)=0,①即⎩⎨⎧-==⎩⎨⎧=-+=-+4y 9x 05y x 01y 2x 解得, ∴直线过定点P (9,-4)注:方程①可看作经过两直线交点的直线系。

例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程.剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1,即l 恒过定点A (3,1).∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =-21, ∴l 的方程为2x -y -5=0.评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢?思考讨论类型二:直线与圆的位置关系例5、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.解:∵曲线24x y -=表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x=21y -恰有一个公共点,则k 的取值范围是___________.解析:利用数形结合. 答案:-1<k ≤1或k=-2例6 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设∵m ∈R ,∴得所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.类型三:圆中的最值问题例7:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是解:∵圆18)2()2(22=-+-y x 的圆心为(2,2),半径23=r ,∴圆心到直线的距离r d >==25210,∴直线与圆相离,∴圆上的点到直线的最大距离与最小距离的差是262)()(==--+r r d r d .例8 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求yx 2-的最大、最小值.分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决.解:(1)(法1)由圆的标准方程1)4()3(22=-+-y x .可设圆的参数方程为⎩⎨⎧+=+=,sin 4,cos 3θθy x (θ是参数).则θθθθ2222sin sin 816cos cos 69+++++=+=y x d)cos(1026sin 8cos 626φθθθ-+=++=(其中34tan =φ). 所以361026max =+=d ,161026min =-=d .(法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离'1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'1d 减去半径1.所以6143221=++=d .4143222=-+=d .所以36max =d .16min =d .(2) (法1)由1)2(22=++y x 得圆的参数方程:⎩⎨⎧=+-=,sin ,cos 2θθy x θ是参数.则3cos 2sin 12--=--θθx y .令t =--3cos 2sin θθ, 得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ1)sin(1322≤-=+-⇒φθt t 433433+≤≤-⇒t . 所以433max +=t ,433min -=t . 即12--x y 的最大值为433+,最小值为433-.此时)cos(52sin 2cos 22φθθθ++-=-+-=-y x . 所以y x 2-的最大值为52+-,最小值为52--. (法2)设k x y =--12,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值. 由11222=++--=k k k d ,得433±=k . 所以12--x y 的最大值为433+,最小值为433-.令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.由152=--=m d ,得52±-=m .所以y x 2-的最大值为52+-,最小值为52--.例9、已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.设圆1)1(22=-+y x 上任一点)sin 1,(cos θθ+P )2,0[πθ∈ ∴θcos =x ,θsin 1+=y ∵0≥++m y x 恒成立 ∴0sin 1cos ≥+++m θθ即)sin cos 1(θθ++-≥m 恒成立.∴只须m 不小于)sin cos 1(θθ++-的最大值. 设1)4sin(21)cos (sin -+-=-+-=πθθθu∴12max -=u 即12-≥m .说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆222)()(r b y a x =-+-上的点设为)sin ,cos (θθr b r a ++()2,0[πθ∈).采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.。

高中直线和圆的方程知识点总结

高中直线和圆的方程知识点总结

高中数学:直线和圆的方程知识点总结1. 引言高中数学中,直线和圆的方程是重要的知识点。

理解直线和圆的方程能够帮助我们准确描述和解决几何问题。

本文将总结和介绍直线和圆的方程的相关知识点。

2. 直线的方程2.1. 点斜式方程直线的点斜式方程是直线方程的一种常见形式。

给定直线上一点P (x₁, y₁) 和直线的斜率 k,点斜式方程可以表示为:y - y₁ = k(x - x₁)其中,(x, y) 表示直线上任意一点。

点斜式方程可以方便地描述直线的位置和方向。

2.2. 截距式方程直线的截距式方程是直线方程的另一种常见形式。

给定直线与x轴和y轴的截距分别为 a 和 b,截距式方程可以表示为:x/a + y/b = 1截距式方程可以直观地描述直线与坐标轴的交点。

2.3. 一般式方程直线的一般式方程是直线方程的一种标准形式。

给定直线上任意一点的坐标 (x, y) 和直线的系数 A、B、C,一般式方程可以表示为:Ax + By + C = 0一般式方程可以用于判断两条直线的位置关系。

3. 圆的方程3.1. 标准方程圆的标准方程是圆的方程的常见形式。

给定圆心坐标 (h, k) 和半径 r,标准方程可以表示为:(x - h)² + (y - k)² = r²标准方程可以方便地描述圆的位置和形状。

3.2. 参数方程圆的参数方程是圆的方程的另一种常见形式。

给定圆心坐标 (h, k) 和半径 r,参数方程可以表示为:x = h + rcosθy = k + rsinθ其中,θ 是圆上任意一点的极角。

参数方程可以用于描述圆上的点的坐标。

3.3. 一般方程圆的一般方程是圆的方程的一种一般形式。

给定圆心坐标 (h, k) 和半径 r,一般方程可以表示为:x² + y² + Dx + Ey + F = 0其中,D、E、F 是圆的参数。

一般方程可以用于推导标准方程或参数方程。

4. 总结直线和圆的方程是高中数学中的重要知识点。

高中数学必修2直线与圆常考题型:圆的一般方程

高中数学必修2直线与圆常考题型:圆的一般方程

圆的一般方程【知识梳理】圆的一般方程(1)圆的一般方程的概念:当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程.(2)圆的一般方程对应的圆心和半径:圆的一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的圆的圆心为(-D 2,-E 2),半径长为12D 2+E 2-4F . 【常考题型】题型一、圆的一般方程的概念辨析【例1】 若方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求(1)实数m 的取值范围;(2)圆心坐标和半径.[解] (1)据题意知D 2+E 2-4F =(2m )2+(-2)2-4(m 2+5m )>0,即4m 2+4-4m 2-20m >0, 解得m <15, 故m 的取值范围为(-∞,15). (2)将方程x 2+y 2+2mx -2y +m 2+5m =0写成标准方程为(x +m )2+(y -1)2=1-5m , 故圆心坐标为(-m,1),半径r =1-5m .【类题通法】形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时可有如下两种方法: ①由圆的一般方程的定义令D 2+E 2-4F >0,成立则表示圆,否则不表示圆,②将方程配方后,根据圆的标准方程的特征求解,应用这两种方法时,要注意所给方程是不是x 2+y 2+Dx +Ey +F =0这种标准形式,若不是,则要化为这种形式再求解.【对点训练】1.下列方程各表示什么图形?若表示圆,求其圆心和半径.(1)x 2+y 2+x +1=0;(2)x 2+y 2+2ax +a 2=0(a ≠0);(3)2x 2+2y 2+2ax -2ay =0(a ≠0).解:(1)∵D =1,E =0,F =1,∴D 2+E 2-4F =1-4=-3<0,∴方程(1)不表示任何图形.(2)∵D =2a ,E =0,F =a 2,∴D 2+E 2-4F =4a 2-4a 2=0,∴方程表示点(-a,0).(3)两边同除以2,得x 2+y 2+ax -ay =0,D =a ,E =-a ,F =0,∴D 2+E 2-4F =2a 2>0,∴方程(3)表示圆,它的圆心为(-a 2,a 2), 半径r =12 D 2+E 2-4F =22|a |. 题型二、圆的一般方程的求法【例2】 已知△ABC 的三个顶点为A (1,4),B (-2,3),C (4,-5),求△ABC 的外接圆方程、外心坐标和外接圆半径.[解] 法一:设△ABC 的外接圆方程为x 2+y 2+Dx +Ey +F =0,∵A ,B ,C 在圆上,∴⎩⎪⎨⎪⎧ 1+16+D +4E +F =0,4+9-2D +3E +F =0,16+25+4D -5E +F =0,∴⎩⎪⎨⎪⎧ D =-2,E =2,F =-23,∴△ABC 的外接圆方程为x 2+y 2-2x +2y -23=0,即(x -1)2+(y +1)2=25.∴外心坐标为(1,-1),外接圆半径为5.法二:∵k AB =4-31+2=13,k AC =4+51-4=-3, ∴k AB ·k AC =-1,∴AB ⊥AC .∴△ABC 是以角A 为直角的直角三角形,∴外心是线段BC 的中点,坐标为(1,-1),r =12|BC |=5. ∴外接圆方程为(x -1)2+(y +1)2=25.应用待定系数法求圆的方程时:(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a ,b ,r .(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D 、E 、F .【对点训练】2.求经过点A (-2,-4)且与直线x +3y -26=0相切于点B (8,6)的圆的方程. 解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝⎛⎭⎫-D 2,-E 2. ∵圆与x +3y -26=0相切,∴6+E 28+D 2·⎝⎛⎭⎫-13=-1,即E -3D -36=0.①∵(-2,-4),(8,6)在圆上,∴2D +4E -F -20=0,②8D +6E +F +100=0.③联立①②③,解得D =-11,E =3,F =-30,故所求圆的方程为x 2+y 2-11x +3y -30=0.题型三、代入法求轨迹方程【例3】 已知△ABC 的边AB 长为4,若BC 边上的中线为定长3,求顶点C 的轨迹方程.[解] 以直线AB 为x 轴,AB 的中垂线为y 轴建立坐标系(如图),则A (-2,0),B (2,0),设C (x ,y ),BC 中点D (x 0,y 0).∴⎩⎨⎧2+x 2=x 0,0+y 2=y 0. ①∵|AD |=3,∴(x 0+2)2+y 20=9. ②将①代入②,整理得(x +6)2+y 2=36.∵点C 不能在x 轴上,∴y ≠0.综上,点C 的轨迹是以(-6,0)为圆心,6为半径的圆,去掉(-12,0)和(0,0)两点. 轨迹方程为(x +6)2+y 2=36(y ≠0).用代入法求轨迹方程的一般步骤【对点训练】3.过点A (8,0)的直线与圆x 2+y 2=4交于点B ,则AB 中点P 的轨迹方程为________________. 解析:设点P 的坐标为(x ,y ),点B 为(x 1,y 1),由题意,结合中点坐标公式可得x 1=2x -8,y 1=2y ,故(2x -8)2+(2y )2=4,化简得(x -4)2+y 2=1,即为所求.答案:(x -4)2+y 2=1【练习反馈】1.圆x 2+y 2-4x +6y =0的圆心坐标是( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)解析:选D 圆的方程化为(x -2)2+(y +3)2=13,圆心(2,-3),选D.2.已知方程x 2+y 2-2x +2k +3=0表示圆,则k 的取值范围是( )A .(-∞,-1)B .(3,+∞)C .(-∞,-1)∪(3,+∞)D .(-32,+∞) 解析:选A 方程可化为:(x -1)2+y 2=-2k -2,只有-2k -2>0,即k <-1时才能表示圆.3.方程x 2+y 2+2ax -by +c =0表示圆心为C (2,2),半径为2的圆,则a =________,b =________,c =________.解析:∵⎩⎪⎨⎪⎧ -2a 2=2,--b 2=2,12 4a 2+b 2-4c =2,∴⎩⎪⎨⎪⎧ a =-2,b =4,c =4.答案:-2,4,44.设A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线且|P A |=1,则P 点的轨迹方程是________.解析:设P (x ,y )是轨迹上任一点,圆(x -1)2+y 2=1的圆心为B (1,0),则|P A |2+1=|PB |2,∴(x -1)2+y 2=2.答案:(x -1)2+y 2=25.求过点(-1,1),且圆心与已知圆x 2+y 2-6x -8y +15=0的圆心相同的圆的方程. 解:设所求的圆的方程为:x 2+y 2+Dx +Ey +F =0,又圆x 2+y 2-6x -8y +15=0的圆心为(3,4),依题意得⎩⎪⎨⎪⎧2-D +E +F =0,-D 2=3,-E 2=4, 解此方程组,可得⎩⎪⎨⎪⎧D =-6,E =-8,F =0. ∴所求圆的方程为x 2+y 2-6x -8y =0.。

高中数学-圆与方程章末归纳总结

高中数学-圆与方程章末归纳总结

已知三条直线l1:2x-y+a=0(a>0),直线l2:4x+2y+1=0和直线l3:x+y-1=0,且l1与l2的距离是7105 . (1)求a的值; (2)能否找到一点P,使得P点同时满足下列三个条件: ①P是第一象限的点;②P点到l1的距离是P点到l2的距 离的12;③P点到l1的距离与P点到l3的距离之比是 2:5 . 若能,求P点坐标;若不能,说明理由.
【解析】假设存在直线l满足已知中的两个条件, 设该直线的斜率为k. (1)当斜率k不存在时,过点P的直线方程为x=-3, 代入x2+y2=25,得y1=4,y2=-4. 弦长为|y1-y2|=8,符合题意.
【点评】是否存在这一类问题,结论并不确定, 属于开放型探索创新问题,解答时一般从假设存 在后开始研究.题中有关圆的弦长问题,可用几 何法从半径、弦心距、半弦长所组成的直角三角 形进行求解.需要特别注意的是,要考虑斜率不 存在的情况.
【分析】先求出“串圆”圆心所在直线方程,再 利用“串圆”中圆的关系求出圆C2的半径,再求 出圆心坐标,即可求圆的方程.
【解析】依题意,可得C1(0,1),C3(6,7), 由两点式可得直线C1C3的方程y=x+1. 又|C1C3|=6 2 ,圆C1,C3的半径都是2, 所以圆C2的半径为2 2 .设C2(a,a+1), 则有(a-0)2+(a+1-1)2=3 2, 解得a=3,所以圆心C2的坐标为(3,4), 因此,圆C2的方程为(x-3)2+(y-4)2=8.
|232| 7 2
2
2
,故圆上的点到
直线的最远距离为7 2 +2,最近距离为 7 2 -2.
2
2
专题三 存在性问题学点精讲

(完整版)直线与圆题型总结

(完整版)直线与圆题型总结

高中数学圆的方程典型例题类型一:圆的方程1求过两点A(1,4)、B(3,2)且圆心在直线y 0上的圆的标准方程并判断点 2、设圆满足:(1)截y 轴所得弦长为2; (2)被x 轴分成两段弧, 求圆心到直线I : x 2y 0的距离最小的圆的方程.类型二:切线方程、切点弦方程、公共弦方程1已知圆O : x 2 y 2 4,求过点P 2,4与圆0相切的切线.2两圆C 1: x 2 y 2D 1xE 1 yF 1 0与C 2: x 2 y 2 D 2x E 2y F 2 0相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.3、过圆x 2 y 2 1外一点M(2,3),作这个圆的两条切线 MA 、MB ,切点分别是 A 、B ,求直线AB 的方程。

练习:2 2 1•求过点 M(3,1),且与圆(x 1) y4相切的直线I 的方程 __________________ 2 2 52、 过坐标原点且与圆 x y 4x 2y 0相切的直线的方程为 _________22 2 3、 已知直线5x 12y a 0与圆x 2x y 0相切,则a 的值为 _________________________ .类型三:弦长、弧问题2 21、 求直线I : 3x y 6 0被圆C : x y 2x 4y 0截得的弦AB 的长 ________________________________2、 直线 3x y 2 3 0截圆x 2 y 2 4得的劣弧所对的圆心角为 _________________________3、求两圆x 2 y 2 x y 2 0和x 2 y 2 5的公共弦长 __________________________类型四:直线与圆的位置关系 I1、若直线y x m 与曲线y 4 x 2有且只有一个公共点,实数 m 的取值范围 _________________________________4、 若直线y kx 2与圆(x 2)2 (y 3)2 1有两个不同的交点,贝U k 的取值范围是 ________________________ .5、 圆x 2 y 2 2x 4y 3 0上到直线x y 1 0的距离为 2的点共有().(A ) 1 个 (B ) 2 个 (C ) 3 个(D ) 4 个2 2 6、 过点P 3, 4作直线l ,当斜率为何值时,直线I 与圆C: x 1 y 24有公共点 类型五:圆与圆的位置关系2 2 2 2 1、判断圆C 1 : xy 2x 6y 26 0与圆C 2 : x y 4x 2y 4 0的位置关系 ___________________________________2 2 2 2 P(2,4)与圆的其弧长的比为3:1 ,在满足条件(1)(2)的所有圆中,2 圆(x 3)2 (y 3)29上到直线3x 4y 11 0的距离为1的点有_________ 个? 2 2 3、直线 x y 1 与圆 x y 2ay 0 (a 0)没有公共点,则a 的取值范围是 __________2圆x y 2x 0和圆x y 4y 0的公切线共有___________________________条。

人教版高中数学【必修二】[知识点整理及重点题型梳理]_圆的方程_提高

人教版高中数学【必修二】[知识点整理及重点题型梳理]_圆的方程_提高

人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习圆的方程【学习目标】1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.【要点梳理】【圆的方程370891 知识要点】 要点一:圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.要点二:点和圆的位置关系 如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<要点三:圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E--. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 要点四:几种特殊位置的圆的方程求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是: (1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程. 要点六:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等. 3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标; (2)列出关于,x y 的方程;(3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点); (5)作答. 【典型例题】类型一:圆的标准方程例1.求满足下列条件的各圆的方程: (1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上; (3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++= 【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||CB =,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C -∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++=又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r =∴所求圆的方程是()()228325x y -++=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x―a)2+(y―b)2=r 2; (2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.举一反三:【变式1】圆心是(4,―1),且过点(5,2)的圆的标准方程是( ) A .(x―4)2+(y+1)2=10 B .(x+4)2+(y―1)2=10C .(x―4)2+(y+1)2=100D .22(4)(1)x y -++=【答案】A例2.(2015秋 湖北宜昌月考)求下列各圆的标准方程: (1)圆心在直线y =0上,且圆过两点A (1,4),B (3,2);(2)圆心在直线2x +y =0上,且圆与直线x +y ―1=0切于点M (2,―1). 【思路点拨】(1)求出圆心和半径,即可求圆C 的方程;(2)设出圆心坐标,列方程组解之.其中由圆心在直线2x +y =0上得出一个方程;再由圆心到直线x +y ―1=0的距离即半径得出另一个方程.【答案】(1)22(1)20x y ++=;(2)22(1)(2)2x y -++= 【解析】(1)∵圆心在直线y =0上, ∴设圆心坐标为C (a ,0), 则|AC |=|BC |,= 即 22(1)16(3)4a a -+=-+, 解得a =―1,即圆心为(―1,0),半径||r AC ===, 则圆的标准方程为 22(1)20x y ++=, (2)设圆心坐标为(a ,b ),则20a b +=⎧⎪=解得a =1,b =-2,∴r =∴要求圆的方程为 22(1)(2)2x y -++=. 举一反三:【圆的方程370891 典型例题1】【变式1】(1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上;(2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为 【答案】(1)22(1)(2)10x y +++=(2)22(1)(3)9x y -+-=或22(1)(3)9x y +++= 【解析】(1)设圆的方程为:()222()x a y b r -+-=,则()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10a b r =-=-= 所求圆的方程为:22(1)(2)10x y +++=(2)设圆的方程为:()222()x a y b r -+-=,则()222230142r b a b a b r ⎧=⎪⎪-=⎨⎪-+=⎪⎩解得:2139a b r ⎧=⎪=⎨⎪=⎩或2139a b r ⎧=-⎪=-⎨⎪=⎩ 所求圆的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.类型二:圆的一般方程例3.已知直线x 2+y 2―2(t+3)x+2(1―4t 2)y+16t 4+9=0表示一个圆. (1)求t 的取值范围;(2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.【思路点拨】若一个圆可用一般方程表示,则它具备隐含条件D 2+E 2―4F >0,解题时,应充分利用这一隐含条件.【答案】(1)117t -<<(2)(t+3,4t 2-1)3222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭【解析】(1)已知方程表示一个圆⇔D 2+E 2―4F >0,即4(t+3)2+4(1―4t 2)2―4(16t 4+9)>0,整理得7t 2―6t―1<0117t ⇔-<<. (2)圆的方程化为[x―(t+3)]2+[y+(1―4t 2)]2=1+6t―7t 2. ∴它的圆心坐标为(t+3,4t 2-1).(3)由7r ===≤. ∴r的最大值为7,此时圆的标准方程为 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【总结升华】 在本例中,当t 在1,17⎛⎫-⎪⎝⎭中任取一个值,它对应着一个不同的圆,它实质上是一系列的圆,因此本例中的圆的方程实质上是一个圆系方程,由2341x t y t =+⎧⎨=-⎩得y=4(x―3)2―1,再由117t -<<,知2047x <<,因此它是一个圆心在抛物线2204(3)147y x x ⎛⎫=--<< ⎪⎝⎭的圆系方程. 举一反三:【圆的方程370891 典型例题2】【变式1】(1)求过(2,2),(5,3),(3,1)A B C -的圆的方程,及圆心坐标和半径; (2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程. 【答案】(1)()224(1)5x y -+-= (4,1)(2)22113300x y x y +-+-=【解析】(1)法一:设圆的方程为:220x y Dx Ey F ++++=,则8220345301030D E F D E F D E F +++=⎧⎪+++=⎨⎪+-+=⎩,解得:8212D E F =-⎧⎪=-⎨⎪=⎩所以所求圆的方程为:228220x y x y +--+=,即()224(1)5x y -+-=,所以圆心为(4,1),法二:线段AB 的中点为为75,22⎛⎫⎪⎝⎭,321523AB k -==-线段AB 的中垂线为57322y x ⎛⎫-=-- ⎪⎝⎭,即3130x y --= 同理得线段BC 中垂线为260x y +-=联立2603130x y x y +-=⎧⎨+-=⎩,解得41x y =⎧⎨=⎩所以所求圆的方程为(4,1),半径r ==所以()224(1)5x y -+-=.(2)法一:设圆的方程为:220x y Dx Ey F ++++=,则2024062382100860D E F ED DEF --+=⎧⎪⎪+⎪=⎨⎪+⎪⎪+++=⎩,解得:11330D E F =-⎧⎪=⎨⎪=-⎩ 所以圆的方程为22113300x y x y +-+-=.法二:过点B 与直线3260x y +-=垂直的直线是3180x y --=, 线段AB 的中垂线为40x y +-=,由318040x y x y --=⎧⎨+-=⎩得:圆心坐标为113,22⎛⎫- ⎪⎝⎭,由两点间距离公式得半径21252r =,所以圆的方程为22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【变式2】判断方程ax 2+ay 2―4(a―1)x+4y=0(a≠0)是否表示圆,若表示圆,写出圆心和半径长.【答案】表示圆,圆心坐标2(1)2,a aa -⎛⎫- ⎪⎝⎭,半径2222||a a r a -+= 【变式3】方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 A .2a <-或23a > B .203a -<< C .20a -<< D .223a -<< 【答案】D【解析】方程x 2+y 2+ax+2ay+2a 2+a-1=0转化为2223()124a x y a a a ⎛⎫+++=--+ ⎪⎝⎭,所以若方程表示圆,则有23104a a --+>,∴ 23440a a +-<,∴ 223a -<<. 例4.(1)△ABC 的三个顶点分别为A (―1,5),B (―2,―2),C (5,5),求其外接圆的方程; (2)圆C 过点P (1,2)和Q (―2,3),且圆C 在两坐标轴上截得的弦长相等,求圆C 的方程. 【思路点拨】在(1)中,由于所求的圆过三个点,因而选用一般式,从而只要确定系数D 、E 、F 即可;注意到三角形外接圆的圆心为各边的垂直平分线的交点,所以也可先求圆心,再求半径,从而求出圆的方程.在(2)中,可用圆的一般方程,但这样做计算量较大,因此我们可以通过作图,利用图形的直观性来进行分析,从而得到圆心或半径所满足的条件.【答案】(1)x 2+y 2―4x―2y―20=0(2)(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25 【解析】(1)解法一:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0,由题意有5260228055500D E F D E F D E F -+++=⎧⎪--++=⎨⎪+++=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩. 故所求的圆的方程为x 2+y 2―4x―2y―20=0.解法二:由题意可求得AC 的中垂线的方程为x=2,BC 的中垂线方程为x+y―3=0.∴圆心是两中垂线的交点(2,1),∴半径22(21)(15)5r =++-=,∴所求的圆的方程为(x―2)2+(y―1)2=25,即x 2+y 2―4x―2y―20=0.(2)解法一:如右图所示,由于圆C 在两坐标轴上的弦长相等,即|AD|=|EG|,所以它们的一半也相等,即|AB|=|GF|,又|AC|=|GC|,∴Rt △ABC ≌Rt △GFC ,∴|BC|=|FC|. 设C (a ,b ),则|a|=|b|. ①又圆C 过点P (1,2)和Q (―2,3), ∴圆心在PQ 的垂直平分线上,即51322y x ⎛⎫-=+ ⎪⎝⎭,即y=3x+4,∴b=3a+4. ②由①知a=±b ,代入②得11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩.∴22(1)(2)5r a b =-+-=或5.故所求的圆的方程为(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25.即x 2+y 2+2x―2y―3=0或x 2+y 2+4x+4y―17=0. 解法二:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0. ∵圆C 过点P (1,2)和Q (-2,3),∴22122049230D E F D E F ⎧++++=⎨+-++=⎩,解得38117E D F D =-⎧⎨=-⎩.∴圆C 的方程为x 2+y 2+Dx+(3D―8)y+11―7D=0,将y=0代入得x 2+Dx+11―7D=0. ∴圆C 在x 轴上截得的弦长为212||4(117)x x D D -=--.将x=0代入得y 2+(3D―8)y+11―7D=0,∴圆C 在y 轴上截得的弦长为212||(38)4(117)y y D D -=---.由题意有224(117)(38)4(117)D D D D --=---,即D 2―4(11―7D)=(3D―8)2―4(11―7D),解得D=4或D=2.故所求的圆的方程为x 2+y 2+4x+4y―7=0或x 2+y 2+2x―2y―3=0.【总结升华】 (1)本例(1)的解法二思维迂回链过长,计算量过大,而解法一则较为简捷,因此,当所有已知的条件与圆心和半径都无直接关系,在求该圆的方程时,一般设圆的方程为一般方程,再用待定系数法来确定系数即可.(2)本例(2)中,尽管所给的条件也都与圆心和半径无直接关系,但可通过画图分析,利用平面几何知识,找到与圆心和半径相联系的蛛丝马迹,从而避免了选用圆的一般方程带来的繁琐的计算.(3)一般地,当给出了圆上的三点坐标,特别是当这三点的横坐标和横坐标之间、纵坐标和纵坐标之间均不相同时,选用圆的一般方程比选用圆的标准方程简捷;而在其他情况下的首选应该是圆的标准方程,此时要注意从几何角度来分析问题,以便找到与圆心和半径相联系的可用条件.举一反三:【变式1】如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.【答案】30,3⎛⎫ ⎪ ⎪⎝⎭,233,223433x y ⎛⎫+-= ⎪ ⎪⎝⎭ 类型三:点与圆的位置关系例5.判断点M (6,9),N (3,3),Q (5,3)与圆(x ―5)2+(y ―6)2=10的位置关系. 【答案】M 在圆上 N 在圆外 Q 在圆内 【解析】∵圆的方程为(x ―5)2+(y ―6)2=10, 分别将M (6,9),N (3,3),Q (5,3)代入得 (6―5)2+(9―6)2=10,∴M 在圆上; (3―5)2+(3―6)2=13>10,∴N 在圆外;(5―5)2+(3―6)2=9<10,∴Q 在圆内.【总结升华】点与圆的位置关系,从形的角度来看,设圆心为O ,半径为r ,则点P 在圆内⇔|PQ |<r ;点P 在圆上⇔|PQ |=r ;点P 在圆外⇔|PO |>r .从数的角度来看,设圆的标准方程为(x ―a )2+(y ―b )2=r 2,圆心为A (a ,b ),半径为r ,则点M (x 0,y 0)在圆上⇔(x 0―a )2+(y 0―b )2=r 2;点M (x 0,y 0)在圆外⇔(x 0―a )2+(y 0―b )2>r 2;点M (x 0,y 0)在圆内⇔(x 0―a )2+(y 0―b )2<r 2.举一反三:【变式1】点(a +1,a ―1)在圆22240x y ay +--=的内部,则a 的取值范围是________. 【思路点拨】直接把点(a +1,a ―1)代入圆的方程左边小于0,解不等式可得a 的范围. 【答案】(-∞,1) 【解析】∵点(a +1,a ―1)在圆22240x y ay +--=的内部(不包括边界), ∴ 22(1)(1)2(1)40a a a a ++----<,整理得:a <1. 故答案为:(-∞,1). 类型四:轨迹问题 例6.(2016 广东中山市模拟)已知曲线C 上任意一点到原点的距离与到A (3,―6)的距离之比均为12. (1)求曲线C 的方程. (2)设点P (1,―2),过点P 作两条相异直线分别与曲线C 相交于B ,C 两点,且直线PB 和直线PC 的倾斜角互补,求证:直线BC 的斜率为定值.【思路点拨】(1)利用直接法,建立方程,即可求曲线C 的方程.(2)直线与圆的方程联立,求出A ,B 的坐标,利用斜率公式,即可证明直线BC 的斜率为定值.【答案】(1)22(1)(2)20x y ++-=;(2)直线BC 的斜率为定值12-. 【解析】(1)曲线C 上的任意一点为Q (x ,y ),221(1)(2)202x y =⇒++-= (2)证明:由题意知,直线PB 和直线PC 的斜率存在,且互为相反数,P (1,―2), 故可设P A :y +2=k (x ―1), 由2222222(1)(1)2(14)830(1)(2)20y k x k x k k x k k x y +=-⎧⇒++--++-=⎨++-=⎩因为点P 的横坐标x =1一定是该方程的解,故可得22831A k k x k +-=+, 同理,22831B k k x k --=+,所以(1)(1)2()12B A B A B A AB B A B A B A y y k x k x k k x x k x x x x x x ------+====----故直线BC 的斜率为定值12-. 【总结升华】本例求轨迹方程的方法是直接法.用直接法求曲线方程的步骤如下: (1)建系设点:建立适当的直角坐标系,设曲线上任一点坐标为M (x ,y ); (2)几何点集:写出满足题设的点M 的集合P ={M |P (M )};(3)翻译列式:将几何条件P (M )用坐标x 、y 表示,写出方程f (x ,y )=0; (4)化简方程:通过同解变形化简方程;(5)查漏除杂:验证方程表示的曲线是否为已知的曲线,重点检查方程表示的曲线是否有多余的点,曲线上是否有遗漏的点. 例7.已知定点A (4,0),P 点是圆x 2+y 2=4上一动点,Q 点是AP 的中点,求Q 点的轨迹方程. 【答案】(x―2)2+y 2=1【解析】 设Q 点坐标为(x ,y ),P 点坐标为(x ',y '),则4'2x x +=且0'2y y +=,即x '=2x―4,y '=2y .又P 点在圆x 2+y 2=4上,∴x '2+y '2=4,将x '=2x―4且y '=2y 代入得(2x―4)2+(2y)2=4,即(x―2)2+y 2=1.故所求的轨迹方程为(x―2)2+y 2=1.【总结升华】 本题是求轨迹时常用的方法——代入法,对于“双动点”问题,即若已知一动点在某条曲线上运动而求另一动点的轨迹方程时,通常用这一方法.代入法是先设所求轨迹的动点坐标为(x ,y ),在已知曲线上运动的点的坐标为(x ',y '),用x ,y 表示x ',y ',即x '=f (x,y),y '=g (x,y),并将它代入到已知曲线方程,即求出所求动点的轨迹方程.一般情况下,证明可以省略不写,如有特殊情况,可适当予以说明,即扣除不合题意的解或补上失去的解.举一反三:【变式1】已知定点A (2,0),点Q 是圆x 2+y 2=1上的动点,∠AOQ 的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.【答案】222439x y ⎛⎫-+= ⎪⎝⎭【圆的方程370891 典型例题5】【变式2】平面内到两定点距离的比值是一个不等于1的常数的动点的轨迹是一个圆.【解析】以两定点所在的直线为x 轴,以两定点所在线段的中垂线为y 轴建立直角坐标系,设两定点分别为()1,0,(1,0)A B -,设动点(,)P x y ,则||(1)||PA c c PB =≠,c =,整理得:()2222221(1)(22)10cxc y c x c -+-+++-=所以222222101c x y x c ++++=-,即()22222221411c c x y c c ⎛⎫+++= ⎪-⎝⎭- 所以动点的轨迹是一个圆.。

高中数学圆的方程与性质解析

高中数学圆的方程与性质解析

高中数学圆的方程与性质解析一、引言在高中数学中,圆是一个重要的几何概念,它具有独特的性质和方程。

掌握圆的方程与性质,对于解决与圆相关的问题至关重要。

本文将详细介绍圆的方程与性质,并通过具体的题目举例,帮助读者理解和掌握这一知识点。

二、圆的方程1. 圆的标准方程圆的标准方程为:(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为半径的长度。

这个方程的推导可以通过距离公式得到。

例题1:已知圆心为(2, 3),半径为4,求圆的方程。

解析:根据圆的标准方程,代入已知的圆心和半径,得到方程为:(x - 2)² + (y - 3)² = 16。

2. 圆的一般方程圆的一般方程为:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。

这个方程的推导可以通过将标准方程展开得到。

例题2:已知圆的方程为x² + y² - 4x + 6y + 9 = 0,求圆心和半径。

解析:根据圆的一般方程,将方程与标准方程进行比较,得到圆心的坐标为(2, -3),半径的长度为√(D² + E² - F) = √(16 + 36 - 9) = 7。

三、圆的性质1. 圆的切线性质圆的切线与半径垂直。

这个性质可以通过证明圆心、切点和切线之间的关系得到。

例题3:已知圆的方程为(x - 1)² + (y + 2)² = 25,求过点(3, 4)的切线方程。

解析:首先,计算圆心到点(3, 4)的距离,得到√[(3 - 1)² + (4 + 2)²] = √20。

由于这个距离小于圆的半径,所以点(3, 4)在圆上。

然后,计算切线的斜率,得到斜率为-2/5。

最后,代入点(3, 4)和斜率-2/5,得到切线方程为y = -2/5x + 14/5。

2. 圆的切点性质切线与圆的切点处,切线的斜率等于切线与半径的夹角的正切值。

高中数学圆的方程典型例题(含答案)

高中数学圆的方程典型例题(含答案)

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的方程题型总结一、基础知识1.圆的方程圆的标准方程为___________________;圆心_________,半径________.圆的一般方程为___________ _________ ____;圆心________ ,半径__________.二元二次方程220AxCy Dx Ey F 表示圆的条件为:(1)_______ _______; (2) _______ __ . 2.直线和圆的位置关系:直线0Ax By C ++=,圆222()()x a y b r -+-=,圆心到直线的距离为d. 则:(1)d=_________________;(2)当______________时,直线与圆相离;当______________时,直线与圆相切; 当______________时,直线与圆相交; (3)弦长公式:____________________. 3. 两圆的位置关系圆1C :222111xa yb r ; 圆2C :222222x a y b r则有:两圆相离⇔ __________________; 外切⇔__________________;相交⇔__________________________; 切⇔_________________; 含⇔_______________________.二、题型总结:(一)圆的方程☆1.22310x y x y ++--=的圆心坐标 ,半径 .☆☆2.点(1,2-a a )在圆x 2+y 2-2y -4=0的部,则a 的取值围是( )A .-1<a <1B . 0<a <1C .–1<a <51 D .-51<a <1 ☆☆3.若方程22220(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称,必有( )A .E F =B .D F =C .DE = D .,,D EF 两两不相等☆☆☆4.圆0322222=++-++a a ay ax y x 的圆心在( )A .第一象限B .第二象限C .第三象限D .第四象限☆5.若直线34120x y 与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是( )A. 22430x y x y B. 22430x y x y C. 224340xy x yD. 224380x y x y☆☆6.过圆224x y +=外一点()4,2P 作圆的两条切线,切点为,A B ,则ABP ∆的外接圆方程是( )A. 42x y --22()+()=4 B. 2x y -22+()=4 C. 42x y ++22()+()=5 D. 21x y -+22()+()=5 ☆7.过点1,1A ,1,1B且圆心在直线20xy 上的圆的方程( )A. 22314xy B.22314x yC. 22111x y D. 22111x y☆☆8.圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( )A .22(7)(1)1x y +++=B .22(7)(2)1x y +++=C . 22(6)(2)1x y +++= D .22(6)(2)1x y ++-= ☆9.已知△ABC 的三个项点坐标分别是A (4,1),B (6,-3),C (-3,0),求△ABC 外接圆的方程.☆10.求经过点A(2,-1),和直线1=+y x 相切,且圆心在直线x y 2-=上的圆的方程.2.求轨迹方程☆11.圆224120x y y +--=上的动点Q ,定点()8,0A ,线段AQ 的中点轨迹方程________________ .☆☆☆12.方程()04122=-+-+y x y x 所表示的图形是( ) A .一条直线及一个圆B .两个点C .一条射线及一个圆D .两条射线及一个圆☆☆13.已知动点M 到点A (2,0)的距离是它到点B (8,0)的距离的一半, 求:(1)动点M 的轨迹方程;(2)若N 为线段AM 的中点,试求点N 的轨迹.3.直线与圆的位置关系 ☆14.圆2211x y 的圆心到直线33yx 的距离是( )A.12B. 2☆☆15.过点2,1的直线中,被22240x y x y 截得弦长最长的直线方程为( )A. 350x yB. 370x yC. 330xy D. 310x y☆☆16.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值围是( )A. ),(2222-B. ),(22-C.),(4242- D. ),(8181- ☆17.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x☆☆18.过点P (2,1)作圆C :x 2+y 2-ax +2ay +2a +1=0的切线有两条,则a 取值围是( ) A .a >-3 B .a <-3C .-3<a <-52D .-3<a <-52或a >2 ☆☆19.直线032=--y x 与圆9)3()2(22=++-y x 交于E 、F 两点,则EOF ∆(O为原点)的面积为( )A .32B .34C D☆☆20.过点M (0,4),被圆4)1(22=+-y x 截得弦长为32的直线方程为 _ _.☆☆☆21.已知圆C :()()252122=-+-y x 及直线()()47112:+=+++m y m x m l .()R m ∈(1)证明:不论m 取什么实数,直线l 与圆C 恒相交;(2)求直线l 与圆C 所截得的弦长的最短长度及此时直线l 的方程.☆☆☆22.已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P 、Q 两点,且以PQ 为直径的圆恰过坐标原点,数m 的值.4.圆与圆的位置关系☆23.圆2220x y x +-=与圆2240x y y ++=的位置关系为☆24.已知两圆01422:,10:222221=-+++=+y x y x C y x C .求经过两圆交点的公共弦所在的直线方程_______ ____.☆25.两圆x 2+y 2-4x +6y =0和x 2+y 2-6x =0的连心线方程为( ) A .x +y +3=0 B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0☆26.两圆221:2220C x y x y +++-=,222:4210C x y x y +--+=的公切线有且仅有( )A .1条B .2条C .3条D .4条☆☆☆27.已知圆1C 的方程为0),(=y x f ,且),(00y x P 在圆1C 外,圆2C 的方程为),(y x f =),(00y x f ,则1C 与圆2C 一定( )A .相离B .相切C .同心圆D .相交☆☆28.求圆心在直线0x y +=上,且过两圆22210240x y x y +-+-=, 22x y +2280x y ++-=交点的圆的方程.5.综合问题☆☆29.点A 在圆222x y y +=上,点B 在直线1y x =-上,则AB 的最小 ( )1 B 12-D 2☆☆30.若点P 在直线23100x y ++=上,直线,PA PB 分别切圆224x y +=于,A B 两点,则四边形PAOB 面积的最小值为( )A 24B 16C 8D 4☆☆31. 直线b x y +=与曲线21y x -=有且只有一个交点,则b 的取值围是( ) A .2=bB .11≤<-b 且2-=bC .11≤≤-bD .以上答案都不对☆☆32.如果实数,x y 满足22410x y x +-+=求:(1)yx的最大值; (2)y x -的最小值;(3)22x y +的最值.☆☆33.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的围是半径长30 km的圆形区域.已知港口位于台风正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?圆的方程题型总结参考答案1. 3122(-,)2.D ;3.C ;4.D ;5.A ;6.D ;7.C ;8.A ; 9.解:解法一:设所求圆的方程是222()()x a y b r -+-=. ① 因为A (4,1),B (6,-3),C (-3,0)都在圆上,所以它们的坐标都满足方程①,于是222222222(4)(1),(6)(3),(3)(0).a b r a b r a b r ⎧-+-=⎪-+--=⎨⎪--+-=⎩可解得21,3,25.a b r =⎧⎪=-⎨⎪=⎩所以△ABC 的外接圆的方程是22(1)(3)25x y -++=.解法二:因为△ABC 外接圆的圆心既在AB 的垂直平分线上,也在BC 的垂直平分线上,所以先求AB 、BC 的垂直平分线方程,求得的交点坐标就是圆心坐标.∵31264AB k --==--,0(3)1363BC k --==---,线段AB 的中点为(5,-1),线段BC 的中点为33(,)22-, ∴AB 的垂直平分线方程为11(5)2y x +=-, ①BC 的垂直平分线方程333()22y x +=-. ②解由①②联立的方程组可得1,3.x y =⎧⎨=-⎩∴△ABC 外接圆的圆心为E(1,-3),半径||5r AE ===.故△ABC 外接圆的方程是22(1)(3)25x y -++=.10.解:因为圆心在直线x y 2-=上,所以可设圆心坐标为(a ,-2a ),据题意得:2|12|)12()2(22--=+-+-a a a a , ∴ 222)1(21)21()2(a a a +=-+-, ∴ a =1, ∴ 圆心为(1,-2),半径为2, ∴所求的圆的方程为2)2()1(22=++-y x .11.41x y --22()+()=4;12.D ;13.解:(1)设动点M (x ,y )为轨迹上任意一点,则点M 的轨迹就是集合 P 1{|||||}2M MA MB ==.由两点距离公式,点M 适合的条件可表示为平方后再整理,得 2216x y +=. 可以验证,这就是动点M 的轨迹方程.(2)设动点N 的坐标为(x ,y ),M 的坐标是(x 1,y 1).由于A (2,0),且N为线段AM 的中点,所以 122x x +=, 102y y +=.所以有122x x =-,12y y = ① 由(1)题知,M 是圆2216x y +=上的点,所以M 坐标(x 1,y 1)满足:221116x y +=②将①代入②整理,得22(1)4x y -+=.所以N 的轨迹是以(1,0)为圆心,以2为半径的圆(如图中的虚圆为所求). 14.A ;15.A ; 16.B ; 17.D ; 18.D ; 19.C ; 20.x =0或15x +8y -32=0;21.解:(1)直线方程()()47112:+=+++m y m x m l ,可以改写为()0472=-++-+y x y x m ,所以直线必经过直线04072=-+=-+y x y x 和的交点.由方程组⎩⎨⎧=-+=-+04,072y x y x 解得⎩⎨⎧==1,3y x 即两直线的交点为A )1,3( 又因为点()1,3A 与圆心()2,1C 的距离55<=d ,所以该点在C ,故不论m 取什么实数,直线l 与圆C 恒相交.(2)连接AC ,过A 作AC 的垂线,此时的直线与圆C 相交于B 、D .BD 为直线被圆所截得的最短弦长.此时,545252,5,5=-===BD BC AC 所以.即最短弦长为54.又直线AC 的斜率21-=AC k ,所以直线BD 的斜率为 2.此时直线方程为:().052,321=---=-y x x y 即22.解:由01220503206222=++-⇒⎩⎨⎧=-+=+-++m y y y x m y x y x ⎪⎩⎪⎨⎧+==+∴51242121m y y y y又OP ⊥OQ , ∴x 1x 2+y 1y 2=0,而x 1x 2=9-6(y 1+y 2)+4y 1y 2= 5274-m ∴05125274=++-m m 解得m =3. 23.相交; 24.02=-+y x ; 25.C ; 26.B ; 27.C ; 28.解法一:(利用圆心到两交点的距离相等求圆心)将两圆的方程联立得方程组22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,解这个方程组求得两圆的交点坐标A (-4,0),B (0,2).因所求圆心在直线0x y +=上,故设所求圆心坐标为(,)x x -,则它到上面的两上交点 (-4,0)和(0,2即412x =-,∴3x =-,3y x =-=,从而圆心坐标是(-3,3).又r = 故所求圆的方程为22(3)(3)10x y ++-=. 解法二:(利用弦的垂直平分线过圆心求圆的方程)同解法一求得两交点坐标A (-4,0),B (0,2),弦AB 的中垂线为230x y ++=,它与直线0x y +=交点(-3,3)就是圆心,又半径r = 故所求圆的方程为22(3)(3)10x y ++-=. 解法三:(用待定系数法求圆的方程)同解法一求得两交点坐标为A (-4,0),B (0,2).设所求圆的方程为222()()x a y b r -+-=,因两点在此圆上,且圆心在0x y +=上,所以得方程组 222222(4)(3)0a b r a b r a b ⎧--+=⎪+-=⎨⎪+=⎩,解之得3310a b r ⎧=-⎪=⎨⎪=⎩, 故所求圆的方程为22(3)(3)10x y ++-=. 解法四:(用“圆系”方法求圆的方程.过后想想为什么?)设所求圆的方程为222221024(228)0x y x y x y x y λ+-+-++++-=(1)λ≠-,即 222(1)2(5)8(3)0111x y x y λλλλλλ-+++-+-=+++.可知圆心坐标为15(,)11λλλλ-+-++.因圆心在直线0x y +=上,所以15011λλλλ-+-=++,解得2λ=-. 将2λ=-代入所设方程并化简,求圆的方程226680x y x y ++-+=.29.A ; 30.C ; 31.B ;32.(1)3;(2)62--;(3)()22min 43x y += ;()22max 743x y +=+.33.解:我们以台风中心为原点O ,东西方向为x 轴,建立如图所示的直角坐标系. 这样,受台风影响的圆形区域所对应的圆的方程为22230x y +=① 轮船航线所在直线l 的方程为17040x y +=,即472800x y +-=② 如果圆O 与直线l 有公共点,则轮船受影响,需要改变航向;如果O 与直线l 无公共点,则轮船不受影响,无需改变航向.由于圆心O (0,0)到直线l 的距离22|4070280|280306747d ⨯+⨯-==>+,所以直线l 与圆O 无公共点.这说明轮船将不受台风影响,不用改变航向.。

相关文档
最新文档