高考文科数学向量专题讲解及高考真题精选(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向 量
1.向量的概念
(1)向量的基本要素:大小和方向.
(2)向量的表示:几何表示法 AB ;字母表示:a ;
坐标表示法 a =xi+yj =(x,y). (3)向量的长度:即向量的大小,记作|a |. (4)特殊的向量:零向量a =O ⇔|a |=O .
单位向量a O 为单位向量⇔|a O |=1.
(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)⎩⎨
⎧==⇔2
12
1y y x x
(6) 相反向量:a =-b ⇔b =-a ⇔a +b =0
(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量.
2..向量的运算 运算类型
几何方法
坐标方法
运算性质
向量的 加法
1.平行四边形法则
2.三角形法则
1212(,)a b x x y y +=++
a b b a +=+
()()a b c a b c ++=++
AC BC AB =+
向量的 减法
三角形法则
1212(,)a b x x y y -=--
()a b a b -=+-
AB BA =-,AB OA OB =-
数 乘 向 量
1.a λ是一个向量,满
足:||||||a a λλ= 2.λ>0时, a a λ与同向;
λ<0时, a a λ与异向; λ=0时, 0a λ=.
(,)a x y λλλ=
()()a a λμλμ=
()a a a λμλμ+=+
()a b a b λλλ+=+
//a b a b λ⇔= 向 量 的 数 量 积
a b •是一个数
1.00a b ==或时,
0a b •=.
2.
00||||cos(,)
a b a b a b a b ≠≠=且时,
1212a b x x y y •=+
a b b a •=•
()()()a b a b a b λλλ•=•=•
()a b c a c b c +•=•+• 2
222||||=a a a x y =+即
||||||a b a b •≤
3.向量加法运算:
⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;
②结合律:()()
a b c a b c ++=++;③00a a a +=+=.
⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 4.向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量.
⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 5.向量数乘运算:
⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①
a a λλ=;
②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()
a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.
6.向量共线定理:向量()
0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.
设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()
0b b ≠共线. 7.平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)
8.分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫
⎪++⎝⎭
.(当时,就为中点公式。)1=λ 9.平面向量的数量积:
⑴()
cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.
b
a
C
B
A
a b C C -=A -AB =B
⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;2
2
a a a a ⋅==或a a a =⋅.③a
b a b ⋅≤.
⑶运算律:①a b b a ⋅=⋅;②()()()
a b a b a b λλλ⋅=⋅=⋅;③()
a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则2
2
2a x y
=+,或2a x y =
+. 设()11,a x y =,()22,b x y =,则
12120a b x x y y ⊥⇔+=.
设a 、b 都是非零向量,()11,a x y =,()22,b x y =,
θ是a 与b 的夹角,则
121
cos x x a b a b
x θ⋅=
=
+.
⑤线段的定比分点公式:(0≠λ和1-)
设 P 1P =λPP 2 (或P 2P λ1P P ),且21,,P P P 的坐标分别是),(),,(,,2211y x y x y x )(,则1212
11y y y x x x λλλλ+⎧
=⎪⎪+⎨
+⎪=⎪
+⎩ 推广1:当1=λ时,得线段21P P 的中点公式:121222
y y y x x x +⎧
=⎪⎪⎨
+⎪=⎪⎩ 推广2λ=MB
则λ
λ++=1PB PA PM (λ对应终点向量).
三角形重心坐标公式:△ABC 的顶点()()()332211,,,,,y x C y x B y x A ,重心坐标()y x G ,:12312333x x x x y y y y ++⎧
=⎪⎪⎨
++⎪=⎪⎩
注意:在△ABC 中,若0为重心,则0=++OC OB OA ,这是充要条件.
⑥平移公式:若点P ()y x ,按向量a =()k h ,平移到P ‘()
''
,y x ,则⎪⎩⎪⎨⎧+=+=k
y y h x x ''
4.(1)正弦定理:设△ABC 的三边为a 、b 、c ,所对的角为A 、B 、C ,则
R C
c
B b A a 2sin sin sin ===. (2)余弦定理:⎪⎪⎩
⎪⎪⎨⎧-+=-+=-+=C ab a b c B ac c a b A
bc c b a cos 2cos 2cos 2222222
222 (3)正切定理:2tan 2tan B A B A b a b a -+=
-+ (4)三角形面积计算公式:
设△ABC 的三边为a ,b ,c ,其高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r .
B