分块矩阵的若干应用

合集下载

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其应用
分块矩阵是由若干个子矩阵组成的大矩阵,通常将行和列分成若干块,每块均为矩阵,因而得名。

分块矩阵在数学和工程领域有广泛应用。

一些应用包括:
1.矩阵求逆:对于大规模矩阵求逆,可以先将矩阵分成较小的块,在每个块的范围内求逆并重新组合。

2.矩阵乘法:矩阵乘法的时间复杂度与矩阵的大小有关,但矩阵块的大小也会影响乘法的效率。

分块矩阵可以提高矩阵乘法的效率。

3.矩阵分解:对于某些特定类型的矩阵,如对称正定矩阵和稀疏矩阵,分块矩阵分解可以有效地降低计算复杂度。

4.图像处理:分块矩阵可以用于图像处理中的分块压缩和离散余弦变换等算法,以提高图像处理的效率和质量。

5.结构力学:分块矩阵广泛应用于结构力学和有限元方法中,可以描述复杂的结构系统和分析结构系统的动态行为。

分块矩阵的初等变换及其若干应用

分块矩阵的初等变换及其若干应用
⎛E 解 将 T 与分块单位矩阵 ⎜ m ⎝O O⎞ ⎛A O 排成分块矩阵 ⎜ ⎟ En ⎠ ⎝C D
4
Em O
O⎞ .对上述分块 En ⎟ ⎠
矩阵进行分块矩阵的初等行变换,将“ T ”的部分变为单位矩阵:
⎛A O ⎜C D ⎝
第1块行左乘A−1
Em O O
O ⎞ 第1块行左乘-CA−1加到第2块行 ⎛ A O Em ⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎜ ⎟ −1 En ⎠ ⎝ O D −CA A−1
⎛E (1) 交换分块单位阵 ⎜ m ⎝ 0t × m
用此矩阵左乘 T ,有
3
⎛ 0t × m ⎜ ⎝ Em
Et ⎞ ⎛ A B ⎞ ⎛ C D ⎞ ⎟ ⎟=⎜ ⎟, 0m×t ⎠ ⎜ ⎝C D⎠ ⎝ A B ⎠
这正是交换 T 的两块行得到的矩阵.
⎛E (2) 用 P 乘分块单位阵 ⎜ m ⎝ 0t × m 0m×t ⎞ ⎟ 的第一块行,得分块初等矩阵 Et ⎠ ⎛ P ⎜ ⎝ 0t × m 0m×t ⎞ ⎟. Et ⎠
⎛ En1 ⎜O ⎜ ⎜O ⎜ ⎜O ⎝ O En2 O O O ⎞ O O ⎟ ⎟ % O ⎟ ⎟ O E ns ⎟ ⎠ O
1
的分块矩阵称为分块单位矩阵. 定义 分块单位矩阵经过一次分块矩阵的初等行(列)变换后得到分块矩阵就叫 做分块初等矩阵.因为分块矩阵的初等变换有三种形式,因此分块初等矩阵也相 应的有以下三种类型: (1)交换分块单位矩阵的第 i , j 块行(或块列)得到的分块矩阵.例如,
T 的左边乘上相应的 2×2 分块初等矩阵.同理可证对一个 2×2 分块矩阵
⎛A B⎞ T =⎜ ⎟ 作一分块矩阵的初等列变换就相当于在 T 的右边乘上相应的 2×2 分 ⎝C D⎠ 块初等矩阵. 2.分块矩阵初等变换的应用 ⎛ A O⎞ 例 求T = ⎜ ⎟ 的逆,其中 A 是 m 阶可逆矩阵, B 是 n 阶可逆矩阵. ⎝C D⎠

分块矩阵的若干应用

分块矩阵的若干应用

分块矩阵的若干应用摘要:本文归纳了分块矩阵的一些应用,这些应用主要涉及到用分块矩阵计算行列式,求解逆矩阵,解线性方程组以及证明矩阵秩的不等式.关键词:分块矩阵,行列式,可逆矩阵,线性方程组,秩Abstract: This article summarizes the number of block matrix applications mainly related to the use of block matrix determinant calculation, solving the inverse matrix, solution of linear equations, as well as proof of the inequality rank matrix.Key words: block matrix,determinant,invertible matrix,linear equations,rank目录1 引言 (4)2 分块矩阵的应用 (4)2.1 利用分块矩阵求n阶行列式 (4)2.2 利用分块矩阵求矩阵的逆 (6)2.3 利用分块矩阵解非齐次线性方程组 (10)2.4 利用分块矩阵证明矩阵的秩的性质 (11)结论 (13)参考文献 (14)致谢 (15)1 引言矩阵的分块是处理级数较高的矩阵时常用的方法.有时候,我们把一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样.特别是在运算中,把这些小矩阵当作数一样来处理,这就是所谓矩阵的分块[]1.分块矩阵是矩阵论中重要内容之一.在线性代数中,分块矩阵也是一个十分重要的概念,它可以使矩阵的表示简单明了,使矩阵的运算得以简化,而且还可以利用分块矩阵解决某些行列式的计算问题.事实上,利用分块矩阵方法计算行列式,时常会使行列式的计算变得简单,并能收到意想不到的效果.矩阵是一种新的运算对象,我们应该充分注意矩阵运算的一些特殊规律.为了研究问题的需要,适当对矩阵进行分块,把一个大矩阵看成是由一些小矩阵为元素组成的,这样可使矩阵的结构看的更清楚.运用矩阵分块的思想,可使解题更简洁,思路更开阔,在教学中有着非常广泛的应用,一些复杂的问题,经分块矩阵处理就显得非常简单.而在高等代数和线性代数教材中,这部分内容比较少,本文归纳并讨论了分块矩阵在行列式,矩阵的逆及解非齐次线性方程组等方面的一些应用.2 分块矩阵的应用行列式的计算是一个重要的问题,也是一个很麻烦的问题.n 级行列式一共有!n 项,计算它就需要做()!1n n -个乘法.当n 较大时,!n 是一个相当大的数字,直接从定义来计算行列式几乎是不可能的事,因此我们有必要进一步讨论解行列式的方法.利用分块矩阵的方法]2[求行列式的值是行列式求值常用的方法.但通常教材中介绍的方法,多数为计算特殊形式的行列式,本文将在教材的基础上给出另外一些行列式的分块矩阵的解法.2.1 利用分块矩阵求n 阶行列式各高等代数教材主要介绍了用定义,性质,展开定理计算n 阶行列式.常用的技巧有递推法,加边法等.但有些行列式计算起来仍很麻烦,下面给出运用分块矩阵计算n 级行列式的一种方法,该方法使n 阶行列式的求值更加简便易行.本文我们主要以⨯22分块矩阵为例. 命题1 设n 阶行列式W 分块为A B W C D ⎛⎫=⎪⎝⎭,则 (1) 当A 为r 阶可逆矩阵时, 1A B W A D C A BCD-==-;(2) 当D 为n r -阶可逆矩阵时,1A B W D A BD CCD-==-.证明(1)由1100rrn r n r E A B E A B C AE CD E ----⎛⎫-⎛⎫⎛⎫ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭=10A D C A B -⎛⎫⎪-⎝⎭, 得1A B W A D C A BCD-==-.(2)由1100rrn r n rE A B EB D D CE CD E ----⎛⎫-⎛⎫⎛⎫ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭=100A B D C D -⎛⎫- ⎪⎝⎭, 得1A B W D A BD C CD-==-.推论1 设,,A B C 都是n 阶方阵,且可逆,则A B A DD=,()210nA B B CC=-.推论2 设,A B 都是n 阶方阵,则有A B A B A BB A=+-.证明A B A B B BAB AA-=-0A B B A B A BA B-==+-+.推论3 设,,,A B C D 都是n 阶方阵,则当AC CA =时,有AB ADC BCD=-,当D B B D =时,有A B D A BC CD =-.例1 计算行列式na ca ca cb b b a P0000321=,其中n i a i ,,3,2,0 =≠.解 设()1a A =,()b b b =B ,()'c c cC=,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n a a a D0000032 .则032≠=n a a a D ,故D 为可逆矩阵,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=----11312100000n a a a D, 得A B P CD=1D A B D C -=-()()[]11312132---+++-=n n a a a bc a a a a .注 这里并不需要10a ≠的条件.在使用定理来计算阶行列式时,关键是对矩阵进行分块,构造出可逆矩阵A 或D .例2求矩阵1111111111111111A ⎛⎫ ⎪-- ⎪= ⎪-- ⎪--⎝⎭的行列式. 解 设1111B ⎛⎫=⎪-⎝⎭,则BB A B B ⎛⎫= ⎪-⎝⎭,且20B =-≠,故B 可逆.得 B BA BB=-02B B B=-()22B B =-=16.当我们看到这道题时,首先想到的是消去法,用这种方法解级数较高的矩阵计算量很大.但当我们观察到矩阵是有若干相同的矩阵构成时,用分块矩阵的方法是很简单的.例3 计算行列式00000000a b a b D b a ba=.解 设00a A a ⎛⎫=⎪⎝⎭,00b B b ⎛⎫= ⎪⎝⎭. 得A B D BA=A B A B =+-()()2222b a b a b ab aab ab-==---()222b a=-.这道题看似简单,但是如果方法选择不当,做起来并不简单.这里对矩阵进行分块,大大降低了计算量.在利用分块矩阵计算阶行列式时,需要根据具体情况把原行列式的元素组成的矩阵分成若干项,它需要学生具有较强的观察能力,这种方法特别能锻炼学生的思维,提高学生分析问题和解决问题的能力,增强其探究意识.2.2 利用分块矩阵求矩阵的逆n 阶可逆矩阵的逆矩阵求解普遍采取初等变换的方法.除此之外,用分块矩阵来求逆矩阵也是很简单的方法.命题1]3[ 00A B ⎛⎫⎪⎝⎭是一个分块矩阵,其中,A B 分别是n 阶可逆矩阵,则00A B ⎛⎫⎪⎝⎭的逆矩阵为1100B A--⎛⎫ ⎪⎝⎭.证明由11000000000000n n nn nnA E BE E BBE AE E A--⎛⎫⎛⎫⎛⎫→→ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得100A B-⎛⎫ ⎪⎝⎭=1100B A--⎛⎫ ⎪⎝⎭.推论 1 00C D ⎛⎫⎪⎝⎭是一个分块矩阵,其中,C D 分别是n 阶可逆矩阵,则100C D -⎛⎫ ⎪⎝⎭=1100C D --⎛⎫⎪⎝⎭. 命题 2 0A B D ⎛⎫⎪⎝⎭是一个分块矩阵, 其中D B A ,,分别是n 阶可逆矩阵,则1A B D -⎛⎫ ⎪⎝⎭=⎪⎪⎭⎫ ⎝⎛-----11110D BDA A . 证明由111110000n n nn nnA B E AE B D E AA B DDE DE E B-----⎛⎫⎛⎫--⎛⎫→→ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得1A B D -⎛⎫ ⎪⎝⎭=⎪⎪⎭⎫ ⎝⎛-----11110DBDA A . 推论 2 0AB TC ⎛⎫=⎪⎝⎭是一个分块矩阵,其中C B A ,,分别是n 阶可逆矩阵,则111110CTBB AC -----⎛⎫= ⎪-⎝⎭. 推论 30A T C D ⎛⎫=⎪⎝⎭是一个分块矩阵,其中D C A ,,分别是n 阶可逆矩阵,则⎪⎪⎭⎫⎝⎛-=-----111110D CA D A T.推论 4 0B T C D ⎛⎫=⎪⎝⎭是一个分块矩阵,其中D C B ,,分别是n 阶可逆矩阵,则111110C D B CTB -----⎛⎫-= ⎪⎝⎭. 例4已知⎪⎪⎪⎪⎪⎭⎫⎝⎛=-00000011nn a a a T ,求1T -. 解令⎪⎪⎪⎪⎪⎭⎫⎝⎛=-12100000n a a a D,则00nD T a ⎛⎫= ⎪⎝⎭,得 11100n a T D---⎛⎫=⎪⎝⎭⎪⎪⎪⎪⎪⎭⎫⎝⎛=----00000011111n n a a a. 例5已知201302240010001A ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭,求1A -.解设2002B ⎛⎫=⎪⎝⎭,1324C ⎛⎫= ⎪⎝⎭,1001D -⎛⎫= ⎪-⎝⎭, 则0BC AD ⎛⎫=⎪⎝⎭,且1102102B -⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭,11001D --⎛⎫= ⎪-⎝⎭, 11132212B C D --⎛⎫ ⎪-= ⎪⎝⎭, 所以111111130222101220001001B B C D AD -----⎛⎫ ⎪ ⎪⎛⎫-⎪== ⎪ ⎪⎝⎭⎪- ⎪ ⎪-⎝⎭. 求矩阵的逆可以用伴随矩阵,初等变换等方法来解决,而这些方法对级数较高的矩阵运算量较大,对某此矩阵进行适当的分块再进行运算,可起到事半功倍的作用.定理3 2n阶方阵A BTC D⎛⎫= ⎪⎝⎭,其中,,,A B C D分别是n n⨯阶矩阵,则有(1)当A可逆时,则11111111 111111()()()()A AB DC A B C A A BD C A BTD C A B C A D C A B--------------⎛⎫+---= ⎪---⎝⎭;(2)当B可逆时,则1111 111111111()()()()C D B A D B C D B ATB B ACD B A D B B A C D B A-------------⎛⎫---= ⎪+---⎝⎭;(3)当C可逆时,则11111111 111111()()()()C D B A C D C C D B A C D A CTB ACD B A C D A C--------------⎛⎫--+-= ⎪---⎝⎭;(4)当D可逆时,则11111 111111111()()()()A B D C A B D C B DTD C A B D C D D C A B D C B D--------------⎛⎫---= ⎪--+-⎝⎭.证明(1)由题意可知分块矩阵A BTC D⎛⎫= ⎪⎝⎭可逆,且方阵A可逆.因为11nnA B AE A BC D C D C A BE--⎛⎫-⎛⎫⎛⎫=⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,且上式的右端仍可逆,故11()D C A B---存在.由定理2的推论2知11111111 00()()A AC D C A B D C A B C A D C A B--------⎛⎫⎛⎫= ⎪ ⎪----⎝⎭⎝⎭,所以有11A BTC D--⎛⎫= ⎪⎝⎭1110nnAE A BE C D C A B---⎛⎫⎛⎫-= ⎪⎪⎪-⎝⎭⎝⎭11111110()()nnE A B AE D C A B C A D C A D-------⎛⎫⎛⎫-= ⎪ ⎪---⎝⎭⎝⎭111111111111()()()()A AB DC A B C A A BD C A BD C A B C A D C A B-------------⎛⎫+---= ⎪---⎝⎭.例6 求矩阵a b a bc d c dTa b a bc d c d⎛⎫⎪--⎪=⎪--⎪--⎝⎭的逆矩阵,其中0ad bc+≠.解设a bHc d⎛⎫= ⎪-⎝⎭,则H HTH H⎛⎫= ⎪-⎝⎭.又有001102022HH E H H E HH E HHE HEE HE E ⎛⎫⎛⎫⎛⎫ ⎪→→→ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭1102211022H E E HEE ⎛⎫ ⎪→ ⎪ ⎪- ⎪⎝⎭11111102211022E H HEHH ----⎛⎫⎪⎪ ⎪- ⎪⎝⎭,故1111112HHT HH -----⎛⎫= ⎪-⎝⎭. 由11d b H ca ad bc ---⎛⎫=⎪---⎝⎭,得112()d b d b c a c a T db d b ad bc ca ca -----⎛⎫ ⎪-- ⎪=⎪---+ ⎪--⎝⎭.有些矩阵阶数较高,而且形如:100A TB ⎛⎫=⎪⎝⎭,200C T D⎛⎫= ⎪⎝⎭,11121220A M A A ⎛⎫=⎪⎝⎭,11122220A A MA ⎛⎫= ⎪⎝⎭,11123210A A M A ⎛⎫= ⎪⎝⎭,12421220A M A A ⎛⎫= ⎪⎝⎭的分块矩阵,用分块矩阵来求逆较方便,可简化计算.2.3 利用分块矩阵解非齐次线性方程组设非齐次线性方程组为11112211211222221122,,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(1),将(1)式写成矩阵方程[4]为A X B=,其中A 为系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222111211,⎪⎪⎪⎭⎫ ⎝⎛=nx x X1,⎪⎪⎪⎭⎫ ⎝⎛=nb b B1.若A 是非奇异阵,即0A ≠,则方程组有唯一确定的解.将矩阵A 分块,得11122122A A A A A ⎛⎫=⎪⎝⎭,且22A 是非奇异矩阵.同时将X及B 进行相应的分块,令12X X X ⎛⎫= ⎪⎝⎭,12B B B ⎛⎫= ⎪⎝⎭,11,X B 的行数等于11A 的行数,22,X B 的行数等于21A 的行数.则(1)可写成111211212222A A X B A A X B ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2),将(2)式两端分别左乘上三角分块矩阵11222kmE A A M E -⎛⎫-=⎪⎝⎭,其中,K M 分别为112,A A的行数,则得()111112222111122222112222,.A A A A XB A A B A X A X B --⎧-=-⎪⎨+=⎪⎩由于()111122221AAA A --的逆矩阵存在,故()()111111122221112222X A A A A BA AB ---=--.再将1X 代入21122A X A X B+=,得()12222211X A B A X -=-,由此得12X X X ⎛⎫= ⎪⎝⎭.例7 求解方程组123451234512345123452241,23428,323,434222,23 3.x x x x x x x x x x x x x x x x x x x x x x x x x +-+-=-⎧⎪-+-+=⎪⎪+-+-=⎨⎪+++-=-⎪⎪--+-=-⎩ 解 将方程写成矩阵方程的形式,并进行分块.令11122213311A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 12414221A -⎛⎫⎪=- ⎪⎪-⎝⎭, 21434111A ⎛⎫= ⎪--⎝⎭, 222223A -⎛⎫= ⎪-⎝⎭, 1183B -⎛⎫ ⎪= ⎪ ⎪⎝⎭, 223B -⎛⎫=⎪-⎝⎭, 得111211212222A A X B A A X B ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 且易得11112055111710210111222A -⎛⎫-⎪ ⎪ ⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭,12221111237625A A A A --⎛⎫⎪-= ⎪- ⎪⎝⎭,()112221111233526525152652A A A A --⎛⎫- ⎪-= ⎪ ⎪-⎪⎝⎭,()()111222211112221111X A A A A BA AB ---=--13⎛⎫= ⎪⎝⎭,()11111122220X A B A X -⎛⎫⎪=-=- ⎪ ⎪⎝⎭,即得原方程组有唯一解123452,2,01,3x x x x x ==-===.我们看到,采用分块矩阵解法后,非齐次线性方程组的解向量的求得、基础解系的构成以及通解的表示都显得更加直观,解题步骤更加简练,从而有利于学生从更高起点去理解线性方程组的结构及存在性,也有利于加深对矩阵理论及其应用的认识.2.4 利用分块矩阵证明矩阵的秩的性质关于矩阵的秩的一些性质的证明,一般有联系到齐次线性方程组的基础解系来证明的,有用矩阵的初等变换或高阶矩阵来证明.下面我们将充分利用分块矩阵来证明这些性质.这种方法带有一定的技能性,但并不难掌握.特别的是这种证法与其他方法比较,不仅证明本身显得非常简洁,而且也很统一,具有较大的优越性.定理1 设,,A B C 是n 阶矩阵,则()()⎪⎪⎭⎫⎝⎛≤+B CAB A 0秩秩秩. 证明[5] 设秩()r A =,秩()s B =,则⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛−−−−−→−⎪⎪⎭⎫⎝⎛00000000000000000000000000000432143214321C C C E C E C C E C C E C C E C C E B CA s rs r s r 经过若干初等变换 所以()()B A s r B C A 秩秩秩+=+≤⎪⎪⎭⎫⎝⎛0. 易见,当0=C 时,等号成立,即()()⎪⎪⎭⎫⎝⎛=+B AB A 00秩秩秩. 定理2 设A 是m n ⨯矩阵, B 是n p ⨯矩阵.若0=AB ,则有()()n B A ≤+秩秩. 证明()()n E B E B E AB B E AB AB A n n n n =⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-≤⎪⎪⎭⎫ ⎝⎛=+00000000秩秩秩秩秩秩秩.定理3 设B A ,分别是s n ⨯,n m ⨯阶矩阵,则()()()AB n B A 秩秩秩+≤+.证明 对矩阵⎪⎪⎭⎫⎝⎛0AB E n 进行广义初等变换, ⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫⎝⎛AB E AB BE A B E nnn 0000 则()()()AB n AB E AB BE A B E n nn 秩秩秩秩秩+=-+=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛00. 而()()B A AB E n 秩秩秩+≥⎪⎪⎭⎫⎝⎛0,所以()()()AB n B A 秩秩秩+≤+. 综上可知,利用分块矩阵来证明矩阵秩的不等式,思路清晰流畅,充分展示了分块矩阵的优越性,因此是一种值得重视的好方法.结论矩阵是高等代数中的一个重要内容,也是高等数学的很多分支研究问题的工具.有时,为了研究问题的需要,适当地对矩阵进行分块,把一个大矩阵看成是由一些小矩阵块为元素组成的,这样可以使矩阵的结构看的更清楚,使大量的高等代数的习题变得容易.分块矩阵是矩阵的一种推广,一般矩阵的元素是数量,而分块矩阵的元素可以是数量,也可以是矩阵.分块矩阵的引进使得矩阵这一工具的使用更加便利,解决问题的作用更强有力,其应用也就更广泛.本文主要研究分块矩阵在计算行列式、求矩阵的秩、求可逆矩阵的逆矩阵、证明矩阵的秩的一些性质等方面的应用.本文是对分块矩阵几个应用方面的说明及例子,可以让人对分块矩阵这一工具的实用价值的有所认识和了解,它既是一种解题的方法又是一种解题技巧,但它的应用并不仅仅是所列举的几个方面,它还有更宽更广的应用还有待于我们去深入的探索与深究.参考文献[1] 王萼芳,石生明.高等代数[M].北京:高等教育出版社,2003:46-47.[2] 廖军.分块矩阵求n阶行列式的值[J].文山师范高等专科学校学报,2004,17(2):164-168.[3] 王丽霞.逆矩阵的几种求法[J].雁北师范学报,2007,23(2):82-84.[4] 刘红旭.利用分块矩阵解非齐次线性方程组[J].辽宁师专学报,2003,5(2):9-10.[5] 常训.用分块矩阵证明矩阵秩的不等式[J].菏泽师专学报,1995,2(2):7-11.致谢本学位论文是在我的指导老师何梅老师的亲切关怀和悉心指导下完成的,在这里请接受我诚挚的谢意!。

(完整版)分块矩阵及其应用汇总,推荐文档

(完整版)分块矩阵及其应用汇总,推荐文档

分块矩阵及其应用徐健,数学计算机科学学院摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量,而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理.关键词:分块矩阵;行列式;方程组;矩阵的秩On Block Matrixes and its ApplicationsXu Jian, School of Mathematics and Computer ScienceAbstract In the higher algebra, block matrix is a generalization of matrix content.In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc.Keywords Block matrix; Determinant; System of equations; Rank of a matrix11 ⎪1 引 言我们在高等代数中接触到矩阵后,学习了矩阵的相关性质,但是对于一些复杂高阶矩阵,我们希望能将问题简化. 考虑将矩阵分割为若干块,并将矩阵的部分性质平移至分块矩阵中,这样的处理往往会使问题简化.定义 1.1 [1] 分块矩阵是把一个大矩阵分割成若干“矩阵的矩阵”,如把 m ⨯ n 矩阵分割为如下形式的矩阵:⎛A 11A ⎫ 1n ⎪A m ⨯n = ⎪A m 1 A m n特别地,对于单位矩阵分块:⎝ ⎭ ⎛E 0 0 ⎫ ⎪ E n ⨯n = 0 0 0 ⎪ 0 E ⎝n n ⎭ 显然,这里我们认识的矩阵元素不再局限于数字,而是一个整体,这里的A 所代表的是大矩阵囊括的小矩阵,而小矩阵一般是我们熟知的常见矩阵.ij依照以上设想,有关矩阵性质的一些问题,我们可以考虑用分块矩阵的思路来解决.2.1 矩阵的相关概念2 分块矩阵在矩阵的学习中,我们学过一些最基本的概念,比如矩阵的行列式、矩阵 的秩、矩阵的逆、初等变换、初等矩阵等等.事实上,我们发现:分块后的矩阵同样用到这些概念.a 11 定义 2.1.1[2]n 级行列式a 21a 12 a 22 a 1n a 2n等于所有取自不同行不同列的a n 1 a n 2a nn 个元素的乘积a 1j a 2ja n j的代数和,这一定义又可写成:12na 11 a 21 a 12a 22a 1na 2n =(-1) (j 1j 2 j n )a aa .a n 1 a n 2a n∑j 1j 2 j n1j 1 2j 2n j n[2]定义 2.1.2向量组的极大无关组所含向量的个数称为这个向量组的的秩.所O I ⎪ ⎪ ⎪1谓矩阵的行秩就是指矩阵的行向量组的秩;矩阵的列秩就是矩阵列向量组的秩. 定义 2.1.3 [2] n 级方阵称为可逆的,如果有n 级方阵 B ,使得A B = A -1 .BA = E (这里 E 是n 级单位矩阵),那么B 就称为 A 的逆矩阵,记为定义 2.1.4 [3] 对分块矩阵施行下列三种初等变换: (1) 互换分块矩阵的某两行(列);(2) 用一个非奇异阵左(右)乘分块矩阵的某一行(列);(3) 用一个非零阵左(右)乘分块矩阵的某一行(列)加至另一行(列)上, 分别称上述三种初等行(列)变换为分块矩阵的初等行(列)变换. 定义 2.1.5 [3] m + n 2 ⨯ 2 ⎛I m O ⎫对 阶单位矩阵作 分块,即I m +n = O I ⎪ ,然后⎝ n ⎭对其作相应的初等变换所得到的矩阵称为分块初等矩阵. 分块矩阵具有以下形式:(1) 分块初等对换阵⎛I n O ;⎫ ⎝ m ⎭⎛P O ⎫ ⎛I m O ⎫(2) 分块初等倍乘阵 0 I ⎪ , ⎪ ;⎝ n ⎭ (3) 分块初等倍加阵⎛I m R 1 ⎫ O I ⎝ 0 Q ⎭ ,⎛I m O ⎫ ; S I ⎝ n ⎭ ⎝ n ⎭其中 P , Q 分别是m 阶和n 阶可逆方阵,且R ∈ R m ⨯n ,S ∈ R n ⨯m为非零阵.2.2 矩阵的运算性质矩阵的运算包括加法、乘法、数乘,这里主要讨论矩阵的运算性质: 定义 2.2.1 [4] 矩阵加法:设A = (a ) , B = (b ) 是两个同型矩阵,ij snij sn则矩阵C = (c i j )= (a i j+ b i j )称为 A 和 B 的和,记为C = A + B .元素全为零的矩阵称为零矩阵,记为O s n ,可简单记为O,对于矩阵 A 、 B ,有:(1) A + O = A(2) A + ( -A ) = 0(3) A - B = A + ( -B )(4) ( A + B ) + C = A + ( B + C )snsnn11 (5)A + B = 定义 2.2.2 [4] B + A矩阵乘法:设A = (a ) ,B = (b ) 是两个不同型矩阵,i k s nk j n m那么矩阵C = A B =(c i j ),称为矩阵 A 与 B 的乘积,其中:smc i j = a i 1b 1j + a i 2b 2j+ a i n b n j= ∑a i k b k jk =1在乘积的定义中,我们要求第二个矩阵行数和第一个矩阵列数相等.特别地,矩阵的乘法和加法满足以下性质:(1) A ( B + C ) = A B + A C(2) ( B + C )A = B A + C A(3) (A B )D =A (B D )⎛k a 11 k a 1k a 1 ⎫定义 2.2.3 [4] 矩阵数乘: k a 21k ak a 2n ⎪ ⎪A = (a ) 与 数 22 ⎪称为矩阵 ⎪⎪ ij sn k a k a k a ⎝ s 1 s 2 s n ⎭k 的数量乘积,记为kA ,有以下性质:(1) 1 * A = A ;(2) k(l A ) = (k l )A ;(3) k ( A + B )= kA + kB ;(4) (k + l )A = kA +lA ; (5) k (A + B ) = kA +kB .2.3 分块矩阵的初等变换性质我们对于分块矩阵,也有其运算性质:设 A 、 B 是m ⨯ n 矩阵,若对它们有相同的划分,也就有:⎛A 11 + B A 1t + B 1t ⎫ ⎪ 加法:A + B = ⎪ . ⎪ A + B A + B ⎪ ⎝ s 1 s 1 st st ⎭乘法:C = A B , 其中:∑ ⎪ 1 C i j = A i 1B 1j + A i 2B 2j+ + A i n B n j⎛k A 11k A 1 ⎫⎪ n= A i k B k j .k =1数乘:k A =⎪ .⎪ k Ak A⎝s 1 s t ⎭总结了矩阵的运算性质,我们主要看看分块矩阵初等变换性质:定义 2.3.1 [2] 由单位矩阵 E 经过一次初等变换得到的矩阵称为初等矩阵. 初等矩阵都是方阵,包括以下三种变换:(1) 互换矩阵 E 的i 行与 j 行的位置; (2) 用数域 P 中的非零数c 乘 E 的i 行; (3) 把矩阵 E 的 j 行的k 倍加到i 行.定义 2.3.2 [5] 将单位矩阵分块,并施行如下三种变换中的一种变换而得到的方阵称为分块初等矩阵:(1) 对调两块同阶的块所在的行或列; (2) 某一块乘以同阶的满秩方阵;(3) 某一块乘以一个矩阵后加到另一行上(假定这种运算可以进行).如:我们对分块矩阵⎛ A B ⎫进行相应变换,只要应用矩阵的计算性质,左乘对⎝C D ⎭ 应分块矩阵: ⎛ O E m ⎫ ⎛ A B ⎫ ⎪⎪⎛C D ⎫ ⎪ ⎝E n O ⎭ ⎝C D ⎭⎝ A B ⎭ ⎛P O ⎫ ⎛ A B ⎫ ⎛P A = P B ⎫ O E ⎪C D ⎪ ⎪⎝ n ⎭ ⎝⎭ ⎝ C D ⎭ ⎛E m O ⎫ ⎛ A B ⎫ ⎛ = A B⎫P E ⎪C D ⎪ ⎪C + P AD + P B⎝ n ⎭ ⎝⎭ ⎝ ⎭2.4 矩阵的分块技巧对矩阵的分块不是唯一的,我们往往根据问题的不同进行不同的分块,分块的合适与否,都对问题的解决至关重要,最常见的有四种分块方法[6] :(1) 列向量分法,即A =(1,⎛ ⎫ ⎪, n ),其中j 为 A 的列向量.(2) 行向量分法,即A = ⎪ ,其中j 为 A 的行向量.⎪ ⎝ m ⎭=1⎪ (3)分两块,即A = (A 1, A 2 ),其中A 1 ,A 2 分别为A 的各若干列作成.或 A = ⎛B ⎫ ,其中B ,B 分别为 A 的若干行作成. B ⎪1 2 ⎝ 2 ⎭⎛C 1 C 2 ⎫(4) 分四块,即A =C C ⎪ .⎝ 3 4 ⎭我们在进行分块时,希望分割的矩阵块尽可能是我们所熟悉的简单矩阵,于是,我们有必要熟悉一些常见的矩阵.2.5 常见的矩阵块我们把高等代数中学习过的一些常见矩阵总结如下: (1) 单位矩阵:对角线元素都为1,其余元素为0 的n 阶方阵. (2) 对角矩阵:对角线之外的元素都为0 的n 阶方阵. (3) 三角矩阵:对角线以上(或以下)元素全为0 的n 阶方阵. (4) 对称矩阵:满足矩阵 A 的转置和 A 相等. (5) 若尔丹(Jordan )块:形如⎛ 0 1 0 0 ⎫ 0 ⎪J ( ,t ) ⎪= ⎪0 0 ⎪ 0 0 0 1 ⎝ ⎭(6) 若尔丹形矩阵:由若干个若尔丹块组成的准对角矩阵, 其一般形状形如:⎛A 1 ⎫⎪ A 2⎪ ⎪ ⎪A ⎪ ⎝n ⎭在复杂矩阵中,找到这些矩阵块,会使计算简化.3.1 行列式计算的应用3 分块矩阵及其应用定理 3.1.1 [2] 拉普拉斯(Laplace )定理:设在行列式 D 中任意取定了k 个 行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式 D .事实上,行列式计算中的拉普拉斯定理就包括了矩阵分块的思想,它通过取k 级子式的方法,提取出矩阵内的矩阵块. 然而,在行列式计算中,行列式a ⎪ a 按行或列的展开更为常用. 这里,我们最常用到的是取列向量分块和行向量分块.例 3.1.1 [7] :(爪形行列式)计算行列式:a 01 1 1 1 a 10 0 1 0 a 2 0 ,其中a i ≠ 0(i = 1, 2, , n ) .1 0 0 a n解:设Q =A D ,其中A = (a )C B a 1 B =,C = ( 1, 1, , 1)T ,D = ( 1, 1, , 1) .a n因为a i ≠ 0(i = 1, 2, , n ) ,所以 B 是可逆矩阵.-1⎛n 1 ⎫又易知: A - D B C = a 0 - ∑ ⎪ . ⎝ i =1 i ⎭根据分块矩阵乘法: ⎛ E0 ⎫ ⎛ A D ⎫ --1 ⎪ ⎪= ⎛A D ⎫-1 ⎝ C A E ⎭ ⎝C B ⎭ ⎝ 0 B - C A D ⎭A D -1 -1 ⎛ n 1 ⎫则:= AB - C A D =B A - D BC = a a a a-∑ a ⎪C B⎛n 1 ⎫ 12n 0⎝i =1 i ⎭故:原行列式=a 1a 2 a n a 0 - ∑ ⎪ . ⎝ i =1 i ⎭例 3.1.2 [7] :(对角行列式)计算行列式:adH 2n= a d.c bcb解:令⎪ a x A =⎛a ⎫⎪ ,B = ⎛b ⎫⎪ ,C = ⎛ c ⎫ ⎛ ,D = d ⎫⎪ ⎪ ⎪ ⎪ ⎪ a ⎪ b ⎪ c ⎪ d ⎪ ⎝ ⎭ 为n 阶方阵. 由于a ≠ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 0,故 A 为可逆方阵.⎛ b - c a -1d⎫⎪ 又易知:B - C A -1D =⎝ b - c a -1d ⎪ b - -1 ⎪ ca d ⎭故 H 2n= A D = C BAB - C A -1D = a n (b - c a -1d )n= (a b - c d )n .例 3.1.3 [8] :设 A 、 B 、C 、 D 都是n 阶矩阵,证明当 AC = CA 时, A 可逆时,有A D= A B - C DC B⎛ A D ⎫ ⎛E -A 1D-⎛ A 0 ⎪ ⎫,证明:若 A 可逆,⎪ ⎪ =-1 ⎝C B ⎭ ⎝OE ⎭ ⎝C B - C A D ⎭A D故:=C BAB - C A -1D = A B - A C A-1D = A B - C D .注意到,这里计算分块矩阵行列式和计算一般数字矩阵行列式有所区别,不是简单的a d c b= a b - c d ,其矩阵块限制条件有所加强. 所以本例告诉我们,在矩阵分块以后,并非所有一般矩阵性质都可以应用到分块矩阵中.3.2 线性方程组的应用对于线性方程组,我们有以下四种表述: (1) 标准型:⎧a 11x 1 + a 12x 2+ + ax = b ⎪ 1nn 1⎨ax + ax + + a x = b ; ⎪a 21 x 1+ 22 2 + + 2n n a x = b ⎩ m1 1 m2 2 m n n m (2) 矩阵型:令A = ⎣a i j ⎦m ⨯n,x = (x 1, x 2, , x n )' ,B = (b 1, b 2, b m )' 方程组可以表述为: Ax = B ;(3) 列向量型:令2⎢a ⎥ ⎝O O⎪ ⎪ ⎪ ⎡a 11 ⎤ ⎢21 ⎥⎡a 12 ⎤⎥ 22 ⎡a 1n ⎤ ⎢ ⎥ = , 1 ⎢ ⎥ 2 = , , ⎢ ⎥= ⎢a 2n ⎥ n ⎢ ⎥ ⎢ ⎥ ⎣a m 1 ⎦ ⎢ ⎥ ⎣a m 2 ⎦ ⎢ ⎥ ⎣a m n ⎦则方程组又可以表述为:x 11 + x22+ + x nn = B ;(4)行向量型: x ' + x ' + + x' = B ' .1 12 2n n可见,矩阵分块为我们解方程组提供了新的思路.事实上,在求齐次线性方程组系数矩阵的秩时,在判断非齐次线性方程组是否有解时,行列向量组的合理应用,使得问题解决更加便捷、明了.例 3.2.1:(齐次线性方程组)求解方程组:⎧ x 1 + 2x 2 2x ⎪ + x + 2x 3 - 2x + x 4 = 0 - 2x = 0 ⎨ 1 x -2x - 4x 3 - 3x 4=0 ⎩ 1 2 3 4 解:对系数矩阵施行行变换,并将结果用分块矩阵表示:⎛1 0 -25 ⎫ - 3⎪ ⎛ 1 2 2 1 ⎪⎫ ⎛ 1 2 2 1 ⎪⎫4 ⎪ ⎛E C ⎫ A = 2 1 -2 -2 0 -3 -6 -4 0 1 2 ⎪ = 2 ⎪ ⎪1 -1 -4 -3⎪ 0 -3 -6 -4⎪ 3 ⎪ 12 ⎭ ⎝ ⎭ ⎝ ⎭ 0 0 0 0 ⎪⎪ ⎝ ⎭R ( A ) = 2,基础解系含4 - 2 = 2 个.而方程又满足:相应的可以取:⎛E 2 C ⎫ ⎛1 ⎫ = ⎛ 0⎫⎪ ,⎝O 1 O 2 ⎭ ⎝2 ⎭⎝ 0⎭⎛ 5 ⎫ 2 3 ⎪ ⎛ -C ⎫⎪⎝ E 2 ⎭⎪ = -2 4 ⎪3 ⎪1 0 ⎪ ⎝ 0 1 ⎭-⎪ 0 3 ⎪⎭⎛ 2 ⎫ ⎛ 5 ⎫3 ⎪有通解: = k + k,其中= -2⎪1, =- ⎪ 4 ⎪ . 1 12 21 ⎪2 ⎪ ⎪ ⎝ 0 ⎭⎪ 1 ⎪ ⎝ ⎭例 3.2.2 [9] :(非齐次线性方程组)求解方程组:⎧⎪ x 1 + 2x 2- 3x 4 + 2x 5 = 1 x - x - 3x + x - 3x = 2 ⎪ ⎨ 1 2 3 4 52x - 3x + 4x - 5x + 2x = 7 ⎪ 9x ⎩ 1= 25 解:我们分别对于方程组的系数矩阵和增广矩阵求秩:r ( A ) = 3,而r ( A ) = 4 , 故r ( A ) ≠ r ( A) . 从而方程组无解. ⎛ Λ45 -b ⎫事实上,我们可以利用分块矩阵叙述:经对分块矩阵 ⎝ E变换,都不能把最后一列变成0 ,所以该方程组无解.例 3.2.3:证明: n 阶方阵 A 的秩为n- 1,则r a n k ( A* )=1首先证明此例需要利用的一个引理: 4进行行列0 引理:A = (a i j )n ⨯n ,B = (b i j )n ⨯n ,r( A ) = r ,A B =0 ,则r ( B ) ≤ n - r证明:对矩阵 B 进行列向量的分块,B = (B 1, B 2, B n ) ,A B = 0 则有:A B i= 0 ,B i 是AX = 0 的解. 而A X =0 基础解系有n - r 个解.故:r ( B ) ≤ n - r 再证明本例: 因为r ( A )= n - 1,则 A = 0 ,A 至少有一个n -1级子式不为零,r a n k ( A* ) ≥ 1.而:A * =AE = 0 .利用引理得:r a n k ( A * ) ≤ 1,故r a n k ( A )=*.51 - 9 x +2 6x - 163 x4 + 2x 52 3 4 5⎝⎪ 1 2= ⎪ ⎪ 得证.3.3 求矩阵逆的应用我们在求矩阵逆的时候包括很多方法:利用定义求逆、利用伴随矩阵求逆、 利用初等变换求逆、混合采用初等行列变换求逆等等.这里我们统一用矩阵分块的思路来求矩阵的逆.例 3.3.1 [6] :设 A 、 B 是n 阶方阵,若 A + B 与 A - B 可逆,试证明: ⎛ A B ⎫可逆,并求其逆矩阵. B A ⎭ ⎪ 解:令D = ⎛ A B ⎫,由假设知 A + B ≠ 0 , A - B ≠ 0B A ⎪ .那么:D =A B⎝ ⎭A +B B =A + BB= A + B A - B ≠ 0 .B AB + A AA - B即 D 可逆. 再令D -1 ⎛D 1= D 2⎫ , 由D -1 = E ,即:可得:D D ⎝ 3 4 ⎭⎛ A B ⎫ ⎛D D ⎫ ⎛E 0 ⎫ ⎪ ⎪⎪ ⎝B A ⎭ ⎝D 3D 4 ⎭ ⎝ 0E ⎭⎪⎧A D 1 + B D 3 = E B D + A D = 0⎪12⎨A D +B D = 0 B D 2 + A D 4 = E ⎩ 2 4将第一行和第二行相加、相减,得:⎪D + D = ( A + B )-1 ⎨1 3⎩D 1 - D 3= ( A - B )-1 解之得:D = 1 ⎡( A + B )-1 + ( A - B )-1 ,D = 1⎡( A + B )-1 - ( A - B )-11 2 ⎣⎦ 2 2 ⎣⎦类似地:D 2所以: = D 3 ,D 4= D 1 .⎛ A B ⎫-11 ⎛( A + B )-1 + ( A - B )-1 ( A + B )-1 - ( A - B )-1 ⎫⎪ = 2 -1 -1 -1-1 ⎪ . ⎝B A ⎭ ⎝( A + B ) - ( A - B )( A + B ) + ( A - B ) ⎭ =⎝⎭ ⎝ - ⎪⎪ ⎪0 例 3.3.2 [6] :已知分块形矩阵M = ⎛ A B ⎫可逆,其中 B 为p ⨯ p 块, C 为C 0 ⎪ ⎝ ⎭q ⨯ q 块,求证: B 与C 都可逆,并求M-1 . 解:由0 ≠M = (-1)p qBC ,则: B ≠0 , C ≠ 0 ,即证 B 、C 都可逆.这里用分块矩阵的广义初等变换来求逆: ⎛ A B E p0 ⎫ → ⎛ A B E 0 ⎫ → ⎛ 0B E -AC -1 ⎫⎪ ⎪ -1 ⎪ -1⎝C 0 0 Eq ⎭ ⎝E 0 0 C ⎭ ⎝E 0 0 E ⎭→ ⎛ 0 E B -1-B -1A C -1 ⎫ → ⎛E 0 0 C-1 ⎫E 0 0 C-1⎪ 0 E B -1-B -1A C -1 ⎪ ⎭-1⎛C -1 ⎫故 :M = B -1-B -1A C-1 ⎪ . ⎝⎭备注:本例和上例属于同一个类型的问题,但我们利用分块矩阵,可以有两种不同的方法来解决,待定系数法和广义初等变换都是求逆的有效方法.值得注意的是,在题目没有直接给出分块矩阵的情况时,我们要学会自己构造:⎛ 1 0 1 ⎫ 例 3.3.3 [10] :求矩阵A = 2 1 0 ⎪的逆矩阵.⎝ ⎭ 解:构造矩阵:⎛ 10 1 1 00⎫⎪⎛ 1 0 1 1 0 0⎫⎪2 0 0 1 -2 -2 1 0 D = ⎛ A E ⎫= -3 1 0 0 1 2 -5 0 0 1⎪ → 0 2 -2 3 0 1⎪ ⎪⎪ ⎪ ⎝E O ⎭6⨯6 1 0 0 0 00 1 0 0 0 0⎪ 1 0 0 0 0 0⎪ 0⎪ 0 1 0 0 0 0⎪0 0 1 0 0 0 0 1 0 0 0 ⎝ ⎭ ⎝ ⎭⎛ 1 0⎫⎪ 00 1⎪ →1 0⎪ ⎛ 1 0 1 1 0 0⎫ 0 1 -2 -2 1 0 0 1⎪ → 1 0⎪⎪ ⎪ 0 0⎪ 0 0⎪ 00⎪ 0 0⎪ ⎝⎭ ⎝ ⎭ 0 1 1 0 1 -2 -2 1 0 2 7 -2 0 0 0 0 1 0 0 0 0 1 0 00 2 7 -2 0 -1 0 0 1 0 0 0 0 1 0 0- - ⎪ ⎝ ⎭ ⎝ ⎭1 ⎛ 1 0 0 1 0 0⎫⎪0 1 0 2 1 0 ⎛ 10 0 1 0 0⎪⎫ 0 1 0 2 1 0 0 0 17 -2 1⎪0 0 2 7 -2 1⎪1 ⎪→ ⎪ → 10 - 0 0 0⎪ .1 0 -1 0 0 0⎪2⎪ 0 1 2 0 0 0⎪ 00 10 01 0 0 0⎪0 0 1 0 0 0⎪⎝所以;⎭⎪⎝2⎭⎛1 0 1 ⎫ ⎛ 5 1 ⎫- 2 ⎪⎛ 1 0 0⎫ - 2 -1 - 2 ⎪ A -1 = 0 1 1 ⎪ -2 1 0⎪ = 5 -1 1 ⎪ . ⎪ ⎪ ⎪ 1 ⎪ 7 -2 17 1 ⎪ 0 0 2 ⎪ ⎝ ⎭ 2 -1 2 ⎪ 此方法在计算上并不简单,但是它把平常的单纯的一种变换变成了两种变换同时应用,把已知的可逆矩阵置于含单位矩阵的分块矩阵中,以此求逆矩阵, 有时比较简单.3.4 矩阵秩基本不等式矩阵理论中, 矩阵的秩是一个重要的概念,而矩阵经过运算后所得新矩阵 的秩往往与原矩阵的秩有一定关系. 现把高等代数书中有关矩阵秩最基本的不等式总结如下:(1)矩阵和的秩不超过两矩阵秩的和.即:设 A 、 B 均为m ⨯ n 矩阵,则:r ( A + B ) ≤ r(A ) + r ( B ) .(2)矩阵乘积的秩不超过各因子的秩.即:设 A 是m ⨯ n 矩阵 , B 是n ⨯ s 矩(3)r ⎛A B ⎫阵,则:r ( A B ) ≤≥ r ( A ) + r ( B ) . m i n {r ( A ) , r ( B )}.(4)r ⎝ 0 C ⎭ ⎪ ⎛A ⎫ ⎪⎪ ≥ A i j .A ⎪ ⎝ m ⎭再来介绍由分块矩阵证明导出的两个基本不等式例 3.4.1[11] :(薛尔弗斯特不等式)设A = (a ) ,B = (b ) ,证明:ij s ⨯nij n ⨯mr a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) - n⎪ 证明:由分块矩阵的乘积⎛ E n 0⎪ ⎫ ⎛E B ⎫ ⎪⎛E n -B ⎫⎛E n 0 ⎫ -A E A n0 0 E ⎪ = ⎪0 - ⎝ s ⎭ ⎝ ⎭ ⎝ 知:m ⎭⎝ A B ⎭ r a n k⎛E n B⎫ = r a n k (E ) + r a n k ( -A B ) = n + r a n k ( A B )A 0 ⎪n.⎝ ⎭但,r a n k⎛E nB ⎫ A 0⎪= r a n k⎛B E n ⎫ ≥ r a n k ( A ) + r a n k ( B ) ⎪故:得证.⎝⎭ ⎝ 0 A ⎭.n + r a n k ( A B )≥ r a n k ( A ) + r a n k ( B )备注:在矩阵秩不等式的证明过程中,我们往往会构造如下的分块矩阵: (1) 矩阵不等式中含两个不同矩阵:构造 ⎛A 0 ⎫⎪;⎝ 0 B ⎭(2) 矩阵不等式中含有两个不同矩阵及阶数:构造⎛ A E ⎫ ⎪ 或者 ⎛ A 0 ⎫ ⎪.⎝ 0 B ⎭ ⎝E B ⎭具体分块矩阵的元素则要看题目所给的条件.例 3.4.2 [6] :(Frobenius 不等式)设 A 、 B 、C 是任意3 个矩阵,乘积ABC 有意义,证明:r ( A B C ) ≥ r ( A B ) + r ( B C ) - r ( B )证明:设 B 是n ⨯ m 矩阵,r ( B ) = r那么存在n 阶可逆阵 P , m 阶可逆阵Q ,使B = ⎛Er0⎫ P ⎪ Q .⎝ 0 0⎭把 P 、Q 适当分块:P = (M , S ),Q =⎛N ⎫, 由上式有: T ⎝ ⎭故:r ( A B C )= r ( A M N C ) B = (M , S )⎛E r0⎫ ⎛N ⎫ = M N .⎪ ⎪ ⎝ 0 0⎭ ⎝T ⎭≥ r ( A M ) + r ( N C ) - r0 ≥ r ( A M N ) + r ( M N C ) - r ( B )得证.= r ( A B ) + r ( B C ) - r ( B ) .3.5 矩阵秩不等式证明的应用矩阵基本不等式的证明思路,在一般不等式中也常常用到, 以下例题是对矩阵秩不等式的推广及其应用:例 3.5.1[11] :设 A 为m ⨯ k 矩阵, B 为k ⨯ n 矩阵,则证明:r a n k ( A )+r ank( B ) - k≤ r ank( AB) ≤ m i n {r a n k ( A ) , r a n k ( B )}证明:先证明右边的不等式,由:(A 0)(E k0 B ) = ( A A B ) ;E n可得:⎛E k A E 0⎪ ⎫ ⎛B ⎪⎫ = ⎛ B A B ⎫⎪ ,⎝m ⎭ ⎝ ⎭⎝ ⎭r a n k ( A ) =r ank( A 0) = r a n k ( A A B ) ≥ r a n k ( A B ) ;r a n k ( B ) = r a n k ⎛ B ⎫ = r a n k ⎛ B ⎫≥ r a n k ( A B ) .⎪ ⎪⎝ 0 ⎭ ⎝AB ⎭ 再证左边的不等式.注意到下列事实:⎛E m -A ⎫ ⎛ A 0 ⎫ ⎛E ⎪k -B ⎫ = ⎛ 0 -A B ⎫⎪ 0 E ⎪E B 0E⎪ E 0 ⎝k ⎭ ⎝ k 则:⎭ ⎝ n ⎭⎝ k ⎭0 ⎫⎛ 0r a n k ⎛ A ⎪ = r a n k-A B ⎫ ⎪于是:⎝E kB ⎭ ⎝E k0 ⎭⎛ A 0 ⎫r a n k ( A ) + r ank ( B ) ≤r ank ⎪ = r a n k ( -A B ) + r a n k (E k )= r a n k ( A B ) + k⎝E kB ⎭ 从而: r a n k ( A ) + r a n k ( B ) - k ≤ r a n k ( A B ) .这里也是用到构造矩阵的方法.例 3.5.2 [6] :设n 阶矩阵 A 、 B 可交换,证明:r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B )→ → , ⎝ ⎭ 解:利用分块初等变换,有:⎛A O ⎫ ⎛A B ⎫ ⎛A + B B ⎫⎪ ⎪⎪ ⎝O B ⎭ ⎝O B ⎭ ⎝ B B ⎭ 因为 AB = BA ,所以:⎛ E O ⎫ ⎛A + B B ⎫ = ⎛A + B B ⎫ .B -A - ⎪ B ⎪ O- ⎪B B A B ⎝ 于是,有:⎭ ⎝ ⎭ ⎝ ⎭r a n k ( A ) + r a n k ( B )= r a n k⎛A + B B ⎫≥ r a n k ⎛A + B B ⎫B ⎪⎝ B ⎭ ⎝ ⎪O-A B ⎭即:r a n k ( A + B )得证.≥ r a n k ( A + B ) + r a n k ( A B ) .≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B ) .例 3.5.3:设 A 是n 阶方阵,且r ( A ) = r ( A 2 ,证明:对任意自然数k ,有r ( A k ) = r ( A )⎛A 2O ⎫证:构造分块矩阵 O A 2 ⎪,由 Frobenius 不等式: 2 2 2 ⎛A O ⎫ ⎛A 2 -A 3 ⎫ ⎛O -A 3 ⎫ 3 r ( A )+r( A ) ≤ r ⎪ = r A A 2 A O ⎪ = r A O ⎪ = r ( A ) + r ( A ) . 由:r ( A ) = r ( A 2 ) ⎝ ⎭ ⎝ ⎭ ⎝ ⎭所以,r ( A3 ) = r ( A 2 * A )≤ r ( A2 ) .故: r(A 2 ) = r ( A 3 .由此可推得:r ( A3) = r ( A 4) , r ( A4) = r ( A5 ) , .故:对任意自然数k , 有:r ( A k ) = r ( A ) .3.6 综合应用在掌握了分块矩阵的技巧之后,可以由其导出的一个重要的定理:特征多项式的降阶定理,以下主要讨论该定理及其结论的应用.例 3.6.1 [6] :(特征多项式的降阶定理)设 A 是m ⨯n 矩阵, B 是n ⨯ m 矩阵. 证明: AB 的特征多项式f A B ( ) 与 BA 的特征多项式f B A( ) 有如下的关系:nm1 2 s证:先要把上式改写为:n f () =m f () .A BB AnE -m A B =mEE 1 Bn - B A .用构造法,设 ≠ 0 ,令: H =n.A E m⎛1 ⎫ ⎛E 1 B ⎫对 ⎛E n 0⎪ ⎫ E n B ⎪= n ⎪ ⎝ -A E⎪⎪ 1 ⎪ 两边取行列式得: n ⎭ A E⎝ m ⎭ 0 E - ⎝A B ⎪⎭ H = E -1 A B = 1 m E - A B .⎛E 1 B ⎫ ⎛E nm 0 ⎫⎛ 1( ) m1 B ⎫ 再对 n ⎪ -A E ⎪ E - B A ⎪ 两边取行列式得: ⎪ ⎪ = n⎪⎝ A E m ⎭⎝ n ⎭ ⎝ H = E -0 1B A = E m ⎭ 1 n E - B A .故: 1nE n- B A =1Em mn- A B() nmE n - B A = nE m - A B .上述等式是假设了 ≠ 0 ,但是两边均为的n + m 次多项式,有无穷多个值使它们成立(0)≠ ,从而一定是恒等式,即证.这个等式也称为薛尔弗斯特(Sylvester )公式. 以下例题是定理的应用. 例 3.6.2 [6] :设 A 为m ⨯ n 矩阵, B 为n ⨯ m 矩阵,证明: AB 与 BA 有相同的非零特征值.证:由定理:m E - B A = n E - A B .设 E m- A B = m -s (- ) ( - ) ( - ) ,其中12 m ≠么有:0 ,即 AB 有s 个非零特征值:1, 2, , s , 由上面两式,那nE - B A = ( - 1) ( - ) 2 (- )n- s s即证 BA 也只有s 个非零特征值:1, 2, , s .m∑ 例 3.6.3 [6] :设 A 、 B 分别是m ⨯n 和n ⨯ m 矩阵,证明:t r A B = t r B A .解:由上例知,若E - A B = m -s ( - a ) ( - a )m1s其中a 1a 2 a s ≠ 0. 则 AB 的全部特征值为1 = a 1, , s= a s , s +1= = m = 0 ,且:E - B A = n -s ( - a ) ( - a ) .n1s即 BA 的全部特征值为:1 = a 1,2 = a2, ,s +1= = n = 0 .从而 t r A B =sa ii=1=t r B A .可见,在一些问题中,直接利用特征多项式的降阶定理会更加方便处理,这里则要求我们对分块矩阵的了解更加深刻.结论本文主要通过“分块矩阵、分块矩阵及其应用”两个部分,分别简单介绍了分块矩阵的性质概念、导出的定理结论和相关应用.主要是将分块矩阵的技巧和推广做了一个内容的总结.本文简单的将矩阵工具应用于计算行列式、解决线性方程组、求矩阵的逆、证明矩阵秩的相关定理等,对应不同问题也举了几个重要的应用以及它们的综合应用.将以前出现的矩阵思想整体化,并对相关知识也做了一个系统的复习.最后,本文还有一些不足之处,有待于进一步的改善和提高.参考文献[1] 上海交通大学线性代数编写组. 线性代数[M]. 高等教育出版社, 1982. [2] 北京大学. 高等代数{M}. 高等教育出版社, 1998.[3] 高百俊. 分块矩阵的初等变换及其应用[J]. 伊犁师范学院学报, 2007(4):14-18.[4]张红玉, 魏慧敏. 矩阵的研究[M]. ft 西人民出版社, 2010.[5]雷英果. 分块初等方阵及其应用[J].工科数学, 1998, 14(4):150-154. [6]钱吉林. 高等代数题解精粹(第二版)[M]. 中央民族大学出版社, 2010.[7] 王莲花, 李念伟, 梁志新. 分块矩阵在行列式计算中的应用[J]. 河南教育学院学报(自然科学版), 2005, 14(3):12-15.[8] 张贤科, 许甫华. 高等代数学[M]. 清华大学出版社, 1998:91-96.[9]杨子胥. 高等代数习题集[M]. ft东科学技术出版社, 1981.[10]鲁翠仙. 分块矩阵在求矩阵逆的应用[D]. 云南:云南大学数学系数学研究所,2009:14-15.[11]刘丁酉. 高等代数习题精解[M].中国科学技术大学出版社, 1999.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

分块矩阵的初等变换及其应用

分块矩阵的初等变换及其应用

分块矩阵的初等变换及其应用一、引言分块矩阵作为矩阵的一种特殊形式,具有重要的数学应用。

在线性代数中,我们学习到了矩阵的初等变换,它们是一类重要的矩阵操作,可以通过一系列的行变换和列变换来改变矩阵的形态。

而分块矩阵的初等变换则是在分块矩阵中进行的一种特殊的操作,本文将详细介绍分块矩阵的初等变换及其应用。

二、分块矩阵的初等变换分块矩阵的初等变换是指对分块矩阵进行一系列的操作,包括交换分块的位置、对某个分块进行乘法变换和加法变换等。

这些操作可以通过矩阵的行变换和列变换来实现。

1. 交换分块的位置交换分块的位置是指将分块矩阵中的两个分块进行位置交换。

这种操作可以通过交换两个分块所在的行或列来实现。

2. 对某个分块进行乘法变换对某个分块进行乘法变换是指对分块矩阵中的某个分块进行乘以一个非零标量的操作。

这种操作可以通过将分块矩阵中对应的行或列乘以一个非零标量来实现。

3. 对某个分块进行加法变换对某个分块进行加法变换是指对分块矩阵中的某个分块进行加上另一个分块的操作。

这种操作可以通过将分块矩阵中对应的行或列加上另一个分块所在的行或列来实现。

三、分块矩阵的应用分块矩阵的初等变换在数学和工程领域中有着广泛的应用。

下面将介绍几个典型的应用场景。

1. 线性代数中的矩阵运算在线性代数中,我们经常需要对矩阵进行运算,如求逆矩阵、求特征值等。

分块矩阵的初等变换可以简化这些运算的过程,使得计算更加简便和高效。

2. 线性方程组的求解线性方程组的求解是数学中的一个重要问题。

分块矩阵的初等变换可以通过行变换和列变换将线性方程组转化为简化的形式,从而更容易求解。

3. 矩阵的相似性在矩阵的相似性中,我们经常需要对矩阵进行相似变换。

分块矩阵的初等变换可以通过对分块矩阵进行相似变换,从而得到相似的简化矩阵。

4. 矩阵的分解矩阵的分解是数学中的一个重要问题,可以帮助我们更好地理解矩阵的结构和性质。

分块矩阵的初等变换可以通过对分块矩阵进行分解,从而得到更简化的形式。

分块矩阵应用

分块矩阵应用

例如
A11 A = A 21 A 31
1 3
A12 A 22 A 32
A13 A 23 A 33
A 32 A 22 A12 A 33 A 23 A13
A14 A 24 A 34
A 34 A 24 = B1 A14
A 31 R ← R → A → A 21 A 11
(2)分块矩阵的某行左乘某矩阵 ,表示为 i。需要 )分块矩阵的某行左乘某矩阵P,表示为PR 注意的是矩阵P的列数要等于R 的子块行数。 注意的是矩阵P的列数要等于Ri的子块行数。 的列数要等于 (3)分块矩阵的某列右乘某矩阵 表示为 jQ )分块矩阵的某列右乘某矩阵Q, 表示为C (4)分块矩阵的的某行的对应子块左乘某矩阵加到分 ) 块矩阵的另一行对应的子块上, 表示为R 块矩阵的另一行对应的子块上 表示为 i+PRj (5)分块矩阵的的某列的对应子块右乘某矩阵加到分 ) 块矩阵的另一列对应的子块上, 表示为C 块矩阵的另一列对应的子块上 表示为 i + CjQ
E1 L 0 E = L 0 L 0
L 0 L 0 L 0 O L L L L L L Ei L 0 L 0 L L O L L L L 0 L Ej L 0 L L L L O L L 0 L 0 L Et
进行一次分块矩阵初等变换得到的分块矩阵称为 分块初等矩阵 以下我们用二阶分块初等矩阵来定义这些分块初等矩阵
A12 + A14Q A13 A 22 + A 24Q A 23 A 32 + A 34Q A 33
A14 A 24 = B 6 A 34
Q的列数等于第二列子块的列数,行数为第四列子块的列数 的列数等于第二列子块的列数, 的列数等于第二列子块的列数

分块矩阵的初等变换及其若干应用.

分块矩阵的初等变换及其若干应用.

第1块行左乘-D C加到第 2 块行⎯⎯⎯⎯⎯⎯⎯⎯⎯ → −1 ⎛ Em ⎜⎝O 故M −1 O En (A − BD −1C −1 − D −1C(A − BD −1C −1 ⎞ −(A − BD −1C −1 BD −1 . −1 −1 −1 −1 −1 ⎟ D C(A − BD C BD + D ⎠⎛ ( A − BD −1C −1 =⎜ −1 −1 −1 ⎝ − D C ( A − BD C ⎞⎟. D −1C ( A − BD −1C −1 BD −1 + D −1 ⎠−( A − BD −1C −1 BD −1 例设 A, B 是 n 阶方阵.用分块矩阵理论证明 | AB |=| A || B | . ⎛ A O⎞证明考虑分块矩阵⎜⎟ . 对该分块矩阵进行分块矩阵的初等变换:⎝ −E B ⎠⎛ A O ⎞第 2块行左乘A加到第1块行⎛ O →⎜⎜ − E B ⎟⎯⎯⎯⎯⎯⎯⎯⎯⎝⎠⎝ −E ⎛E 于是⎜⎝O A⎞⎛ A O ⎞⎛ O ⎟⎜ −E B ⎟ = ⎜ −E E⎠⎝⎠⎝ AB ⎞⎛E . 记 Pij = ⎜⎟ B ⎠⎝O AB ⎞ . B ⎟⎠ Fij ⎞ , 其中 Fij 是 (i, j 元素为 aij , E⎟⎠⎛ A O⎞而其余元素均为零的 n 阶方阵.则 Pij 是初等矩阵,且用 Pij 左乘矩阵⎜⎟就相⎝ −E B ⎠⎛ A O⎞⎛E 当于将⎜的第 n + j 行乘上 aij 加到第 i 行.容易验证 P 11 P 12 " P nn = ⎜⎟⎝ −E B ⎠⎝O 于是⎛E ⎜O ⎝ A⎞⎛ A O ⎞ A O ⎛ A O⎞ = = P =| A || B | . 11 P 12 " P nn ⎜⎟⎜⎟⎟ E ⎠⎝ −E B ⎠⎝ −E B ⎠ −E B A⎞ . E⎟⎠另一方面, 有O −E 故结论成立. a11 " a1k 例设A = (aij n×n ,且对任意1 ≤ k ≤ n, 有# # ≠ 0. 则存在 n 阶下三角形矩 ak 1 " akk AB O 2 AB 2 2 =( − n = ( −1 n | AB || − E |= ( −1 n + n | AB | = | AB | . B B −E 阵 B 使得 BA 为上三角形矩阵. 证明对 n 用数学归纳法. 当 n = 1 时结论显然成立. 设命题对于n − 1 阶矩阵成立. 考虑 n 阶矩阵 A = (aij n×n 的情形. 记 6⎛a11 " a1,n −1 ⎞⎜⎟ # ⎟. A1 = ⎜ # ⎜a ⎟⎝ n −1,1 " an −1,n −1 ⎠由归纳假设,存在n − 1 阶下三角矩阵 B1 使得 B1 A1 为上三角形矩阵. 对 A 作如下⎛A 分块 A = ⎜ 1 ⎝α ⎟并对其进行初等行变换: ann ⎠⎛ A1 ⎜α ⎝ −1 ⎛A 第1块行左乘-α A1 加到第 2 块行⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎜ 1 ⎟ ann ⎠⎝O β ⎞ β ⎞ β ⎞ . −α A β + ann ⎟⎠ −1 1 O ⎞⎛ A1 ⎛ E 这表明⎜⎜ −1 1⎟⎝ −α A1 ⎠⎝ α ⎛A =⎜ 1 ⎟ ann ⎠⎝ O β ⎞ β ⎞ . 于是−α A β + ann ⎟⎠ −1 1 O ⎞⎛ A1 ⎛ B1 O ⎞⎛ E ⎜ O 1 ⎟⎜ −α A−1 1 ⎟⎜ α ⎝⎠⎝⎠⎝ 1 ⎛ B O ⎞⎛ A1 =⎜ 1 ⎟⎜⎝ O 1 ⎠⎝ O −1 1 ann ⎟⎠ β ⎞ β B1 β ⎞⎛ B1 A1 ⎞ =⎜⎟ −1 −α A β + ann ⎠⎝ O −α A1 β + ann ⎟⎠是上三角形矩阵.记 O ⎞⎛ B1O⎞⎛B O⎞⎛ E B=⎜ 1 . =⎜⎜⎟⎟ −1 −1 1 ⎠⎝ −α A1 1⎟⎝ O 1 ⎠⎝ −α A1 ⎠则 B 是下三角形矩阵且 BA 为上三角形矩阵. 7。

分块矩阵的原理和应用

分块矩阵的原理和应用

分块矩阵的原理和应用1. 原理分块矩阵是一种特殊的矩阵结构,将大型矩阵分割成更小的块状矩阵,以便进行更高效的运算和存储。

分块矩阵的原理主要包括以下几个方面:1.1 分块矩阵的定义分块矩阵由多个块状子矩阵组成,每个子矩阵都是相对较小的矩阵。

这些子矩阵可以是任意维度的矩阵,但通常都是方阵。

分块矩阵的维度取决于它所包含的子矩阵的维度和排列方式。

1.2 分块矩阵的运算分块矩阵可以进行各种矩阵运算,例如加法、减法和乘法等。

在进行这些运算时,可以利用分块矩阵的特殊结构,将运算过程分解为对各个子矩阵的运算,从而提高计算效率。

1.3 分块矩阵的存储分块矩阵的存储方式也与普通矩阵存储方式有所不同。

在分块矩阵中,每个子矩阵都被存储在一个相邻的内存块中,而各个子矩阵之间的存储空间可以是非连续的。

这种存储方式可以提高数据的局部性,进而提高计算效率。

2. 应用分块矩阵在科学计算和工程领域有广泛的应用,以下列举了一些常见的应用领域:2.1 计算机图形学在计算机图形学中,分块矩阵常用于表示和处理三维图形中的几何变换矩阵。

通过分块矩阵的运算,可以实现旋转、缩放和平移等常见的几何变换操作。

2.2 信号处理在信号处理中,分块矩阵常用于表示和处理信号的频谱信息。

通过分块矩阵的乘法运算,可以实现信号的卷积和相关等基本操作,进而实现滤波和频谱分析等应用。

2.3 优化算法在优化算法中,分块矩阵常用于表示优化问题的约束矩阵。

通过分块矩阵的运算,可以将大规模的优化问题分解为小规模的子问题,从而提高求解效率。

2.4 数据压缩在数据压缩领域,分块矩阵常用于表示和处理图像和视频数据。

通过分块矩阵的变换和压缩算法,可以实现图像和视频数据的无损或有损压缩,从而减小存储空间和传输带宽的需求。

3. 总结分块矩阵作为一种特殊的矩阵结构,在科学计算和工程领域有着广泛的应用。

它的原理包括定义、运算和存储等方面,通过合理利用分块矩阵的结构,可以提高计算效率和存储效率。

浅谈分块矩阵的性质及应用doc

浅谈分块矩阵的性质及应用doc

浅谈分块矩阵的性质及应用doc分块矩阵是由几个矩阵块组成的矩阵,它的出现主要是为了更好地解决某些复杂的数学问题。

在实际应用中,分块矩阵既可以用于表示线性系统,也可以用于表示迭代算法的计算过程。

本文将从性质和应用两个方面对分块矩阵进行浅谈。

1. 分块矩阵的性质分块矩阵的一些性质能够帮助我们更好的理解它的本质。

下面将介绍几个较为常见的性质。

(1) 直和分块矩阵:如果一个分块矩阵的所有矩阵块都是对角矩阵,那么我们称这个分块矩阵为直和分块矩阵。

直和分块矩阵与对角矩阵非常相似,都具有稳定的性质和巨大的计算优势。

(2) 块矩阵的转置:对于一个分块矩阵A,通常有以下转置公式:(A^T)_i,j=A_j,i。

也就是说,分块矩阵的转置相当于交换原矩阵的每一块。

(3) 块矩阵的乘法:设A和B是两个分块矩阵,当且仅当A的列数等于B的行数时,我们才可以进行矩阵乘法AB。

具体方法是将A中的每一块分别与B中的每一列乘起来,然后对结果进行相加。

另外还有两个性质需要注意。

首先,如果A和B都是直和分块矩阵,则它们的乘积也是直和分块矩阵。

其次,如果A和B都是分块对称矩阵,那么它们的乘积也是分块对称矩阵。

(1) 线性系统求解:分块矩阵可以用于求解大规模的线性系统,它的基本思想是将系统分成若干个小规模的子系统,利用线性代数中的基本定理,通过求解小系统的逆矩阵逐步求解全局矩阵的逆矩阵。

具体而言,我们可以将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。

然后,我们可以将原始线性系统Ax=b转化为一个新的线性系统(D^-1CB)x=D^-1b。

由于B和D都是对角矩阵,所以它们的逆矩阵很容易求得。

接下来,我们只需要在新的线性系统中解x即可。

(2) 特征值计算:分块矩阵也可以用于特征值问题的求解,尤其是在计算大规模稀疏矩阵的特征值时特别有效。

具体而言,我们可以采用分块对角化的方法,将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其运用摘要分块矩阵是高等代数中的一个重要内容,是处理阶数较高的矩阵时常采用的技巧,也是数学在多领域的研究工具。

对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。

有不少数学问题利用分块矩阵来处理或证明,将显得简洁、明快。

本文先介绍了分块矩阵的概念、运算,几类特殊的分块矩阵,讨论了分块矩阵的初等变换,接着介绍了分块初等矩阵及其性质,最后分类举例说明了分块矩阵在高等代数中的一些应用,包括在在行列式计算中的应用,在证明矩阵秩的问题中的应用,在矩阵求逆问题中的应用,在解线性方程组问题中的应用,在线性相关性及矩阵分解中的应用,在特征值问题中的应用,在相似与合同问题中的应用以及在其他问题中的应用等。

大量的例体现了矩阵分块法的基本思想,说明了应用分块矩阵可以使高等代数中的很多计算与证明问题简单化,所以了解分析并掌握分块矩阵的性质与应用及相关的技巧是非常必要的。

关键词矩阵分块矩阵初等变换应用Block Matrix and its ApplicationAbstract:Matrix is an important concept in high algebra,it's often used to deal with high order matrix and it's an instrument of math in many fields.Dividing matrix in a proper way can turn the operation of high order matrix into the operation of a low order matrix.At the same time,it makes the structure of the original matrix look simple and clear,so it can simplify the steps of the operation a lot or bring the convenience for the theory derivation of matrix.A lot of math problems solved or proved by using block matrix appears concise.At the beginning,this paper introduces the concepts and operations of block matrix and some special kinds of block matrix,then,it discusses the elementary transformation of block matrix and introduces the elementary block matrix and it's natures.At last,it explains the use of block matrix in high algebra by making examples in several kinds,including the use in the calculation of determinant,the testify of the problem of the rank of matrix,the answer of the inverse of matrix,the answer of system of linear equations,the linear correlation and the dividing of matrix,the problem of the eigenvalue,the similar matrix and Contract matrix and so on.A lot of example shows the basic theory of block matrix,It shows that using block matrix can make the calculation and the testify in high algebra easier.It is necessary that we must learn and analyse and grasp the skill of block matrix which is an important concept in high algebra.Key words: matrix block matrix elementary transformation application目录1前言 (1)2分块矩阵 (1)2.1分块矩阵的定义 (1)2.2分块矩阵的运算 (2)2.2.1加法 (2)2.2.2数乘 (2)2.2.3乘法 (2)2.2.4转置 (4)2.3两种特殊的分块矩阵 (4)2.3.1分块对角矩阵 (4)2.3.2分块上(下)三角形矩阵 (5)2.4两种常见的分块方法 (6)2.5分块矩阵的初等变换 (7)2.6分块初等矩阵及其性质 (7)3分块矩阵的应用 (8)3.1在行列式计算中的应用 (9)3.2在证明矩阵秩的问题中的应用 (17)3.3在逆矩阵问题中的应用 (25)3.3.1解线性方程组法 (26)3.3.2初等变换法 (27)3.3.3三角分解法 (29)3.4在解线性方程组问题中的应用 (30)3.4.1齐次线性方程组 (30)3.4.2非齐次线性方程组 (31)3.5在线性相关性及矩阵分解中的应用 (34)3.5.1关于矩阵列(行)向量的线性相关性 (34)3.5.2矩阵的分解 (34)3.6在特征值问题中的应用 (35)3.7分块矩阵在相似问题中的应用 (37)3.8分块矩阵在合同问题中的应用 (38)3.9分块矩阵在矩阵分解中的应用 (40)3.10分块矩阵的其他应用 (41)4结束语 (42)参考文献 (43)致谢 (44)1 前言矩阵作为重要的数学工具之一,有极其实用的价值。

分块矩阵的应用相关例题

分块矩阵的应用相关例题

分块矩阵的应用相关例题分块矩阵是为了简化矩阵的运算而产生的一种工具,在处理高阶矩阵的时候,可以将大矩阵看成是由一些小矩阵组成的,这就将矩阵中的元素由数扩展为矩阵,在运算时,把这些小矩阵当作数来处理,这就是分块矩阵的运算。

分块矩阵的运算在形式上和数字矩阵完全一样,在本文中不再叙述。

本文主要列举了分块矩阵在高等代数课程中的若干应用。

分为三章,第一章讲了分块矩阵在化简运算方面的应用,包括对矩阵乘法新的理解和Gramer 法则的证明。

第二章讲了分块矩阵的思想在证明一些经典定理中的应用,主要证明了Cayley-Hamilton 定理和齐次线性方程组解的结构定理。

第三章列举了一些运用分块矩阵的例题。

关键词:高等代数;分块矩阵;化简运算。

1.1 例题1.1.1 例题1:给定n m ⨯矩阵A ,试求出下面矩阵方程的通解:''A X X A =.解:设矩阵A 的秩为r .已知存在n 阶非异方阵P 和m 阶非异方阵Q ,使得000rEPAQ ⎛⎫=Λ= ⎪⎝⎭. 由此可知11A P Q --=Λ,所以1111()''P Q X X P Q ----Λ=Λ,即1111(')'(')'Q P X X P Q ----Λ=Λ.等式两边左乘以'Q ,再右乘以Q ,于是等式变成111'()'''(()')'P XQ Q X P P XQ ---Λ=Λ=Λ.利用矩阵的分块,将n m ⨯矩阵1()'P XQ -和Λ同法分块,即记111212122()'Y Y P XQ Y Y -⎛⎫= ⎪⎝⎭,于是有 1112112121221222''00''0000rr Y Y Y Y EE Y Y Y Y ⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 因此 11111212'0'000Y Y Y Y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,即120Y =,1111'Y Y =.所以11121220()'YP XQ Y Y -⎛⎫= ⎪⎝⎭,1111'Y Y =.这证明了所求的n m ⨯矩阵X 可表为11121220'Y X P Q Y Y -⎛⎫= ⎪⎝⎭,1111'Y Y =.反之,任意上面形式的n m ⨯矩阵X ,只要r 阶方阵适合条件1111'Y Y =,则''A X X A =.故求出了矩阵方程''A X X A =的通解.1.1.2 例题2:设,A B 分别为数域F 上的m 阶方阵和n 阶方阵,C 为数域F 上秩为r 的m n ⨯阶矩阵,其中m n >且AC CB =.证明:A 与B 至少有r 个公共特征值,且1>若A 与B 的特征多项式互素,则0C =.2>若C 为列满秩矩阵,则B 的特征值全部为A 的特征值. 证明:首先对特殊的C 进行证明,假设000rI C ⎛⎫= ⎪⎝⎭,11122122A A A A A ⎛⎫= ⎪⎝⎭,11122122B B B B B ⎛⎫= ⎪⎝⎭, 则 112100A AC A ⎛⎫= ⎪⎝⎭,111200B B CB ⎛⎫=⎪⎝⎭. 由AC CB =得1111A B =,210A =,120B =.显然,A 和B 至少有r 个相同的特征值.现在来证明一般情形.因为C 的秩等于r ,不妨设000rE C P Q ⎛⎫=⎪⎝⎭,其中P 是m 阶可逆矩阵,Q 是n 阶可逆矩阵,则000000rrEE AC AP Q CB P QB ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.于是 11000000rr EE P AP QBQ --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. 由前面的证明,1P AP -和1QBQ -至少有r 个相同的特征值,因此A 和B 至少有r 个相同的特征值.1>A 与B 的特征多项式互素,说明A 与B 有零个公共特征值,则矩阵C 秩为零,所以0C =.2>若C 为列满秩矩阵,即C 的秩为n ,则A 与B 至少有n 个公共特征值,又因为B 是n 阶方阵,故B 的特征值全部为A 的特征值.1.1.3 例题3:令A ,B ,C 为数域F 上的n 阶方阵,A 可逆,并且0i CB CA B ==,1,2,,i n =.证明:A B C A ⎛⎫⎪⎝⎭可逆,并求其逆矩阵.证明:先证()()r C r B n +=的情形.设()r C r =,我们知道存在n 阶可逆矩阵P 和Q ,使得 000rEPCQ ⎛⎫= ⎪⎝⎭,1112112122B B Q BP B B --⎛⎫= ⎪⎝⎭,111212122A A Q AQ A A -⎛⎫= ⎪⎝⎭, 其中矩阵分块方式都遵照PCQ 的形式. 由条件0i CB CA B ==,1,2,,i n =.及分块矩阵运算可知110B =,120B =.()()122122122221220i A B B A A B B ==,1,2,,1i n =-. (7)则可记 11121212221221000000**0**r A A A B Q A A B B Q M C A P E P --⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭, 其中1****PAP -⎛⎫= ⎪⎝⎭.由于11()()r Q BP r B n r --==-和式(7)知,()2122B B 中存在()()n r n r -⨯-可逆矩阵022B 使得012220A B =,则120A =.所以11122det()det()det()0Q AQ A A -=⋅≠,则11A 可逆.于是我们可以对M 左乘初等行变换矩阵1P ,使得1112122212211100000000**0**A A B Q A A B B Q PM P C A P P --⎛⎫⎪⎛⎫⎛⎫⎛⎫ ⎪==⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭, (8) 故 1121det()det()det()det()0PM Q AQ PAP A --=⋅=≠, 这就说明det 0A B C A ⎛⎫≠ ⎪⎝⎭,A B C A ⎛⎫⎪⎝⎭可逆得证.由于以上对A B C A ⎛⎫ ⎪⎝⎭的操作都是可逆的,并且上三角可逆矩阵0a b c ⎛⎫⎪⎝⎭的逆矩阵是11110a a bc c ----⎛⎫- ⎪⎝⎭,则可以求出A B C A ⎛⎫⎪⎝⎭的逆矩阵,对之后讨论的情形,求逆矩阵方式都类似,不再赘述.我们还是把重点放在证明上. 下面证()()r C r B n +<的情形.易知()0r C =或()0r B =时结论一定成立,设()0r C r =>,()0r B s =>. 我们先从简单情形入手,令3n =,1r =,1s =,这时1112212221221000**0**a A A A B B M E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 可对其进行初等行变换消去()2122B B 的一行并对M 进行初等列变换让33b 为可逆量(此时即非零量)11121313233100000**0**00**a A M b b b E ⎛⎫⎪⎪⎪= ⎪⎪ ⎪⎝⎭,即111213222321133331000****0**00**a a a a a a M a b E ⎛⎫⎪⎪ ⎪=⎪⎪ ⎪⎝⎭,其中*代表无关紧要的量.由条件式(7)计算后可知130a =,12230a a =,1222230a a a =.若120a =,则110a ≠,经初等行变换可消去1E ,得类似式(8)的11222321233330000000****00**00**a a a a M a b ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭,随即得证.若230a =,则330a ≠,经初等列变换消去()2122B B 的最后一行,得到1112222123310000000**0000**00**a a a a M a E ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭,类似之前的讨论也可证明结论成立.到此3n ≤时结论成立.以上讨论是从求C 的等价标准型的角度出发,若从求B 的等价标准型开始,也能得到以上结论,也就是说C 和B 有某种“对称性”,所以我们只考虑()()r C r B ≤的情形.再证一下4n =的情形,则需要考虑的有两种情况:()()1r C r B ==或()1r C =,()2r B =.()()1r C r B ==时,对M 进行类似之前的处理后得111222214414410000*****0**00**a A A Ab M a E ⨯⨯⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭, 其中m n A ⨯代表矩阵A 中的m n ⨯小矩阵. 由条件式(7)计算后可知12210A A ⨯⨯=,1222210i A A A ⨯⨯⨯=,1,2i =. (9)若120A ⨯=或210A ⨯=,则对应的11a 可逆或33a 可逆,则进行适当的初等行变换或列变换就得到我们想要的式(8)或“对称”的类似式,总之都能得证.反之,1221()()1r A r A ⨯⨯==,对1M 中12A ⨯所在的列进行初等列变换,对21A ⨯所在的行进行初等行变换,得111222233334442441000000*******0**00**a a a a a ab M a E ⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 由条件式(9)得230a =,22330a a =,2232330a a a =,则220a =或330a =,对应的进行初等行变换或列变换可以消去12a 或34a ,进而可消去1E 或44b ,进而可证结论成立.()1r C =,()2r B =时, 对M 进行类似之前的处理后得1112221222122100000****0**00**a a a A B M A E ⨯⨯⨯⎛⎫ ⎪⎪⎪= ⎪⎪ ⎪⎝⎭,由条件式(7)知12120a A ⨯=,由此说明120a =或120A ⨯=,则类似之前讨论,可证结论成立.最后证一般情形,处理后的()()()()()()()000000**00**rrr n r s n r s n r s n r s sn r rs n r s ss s n r s ss sr rA A A A AA AB B M B E ⨯----⨯----⨯-⨯⨯--⨯--⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭, 其中ss B 是可逆矩阵. 由条件式(7)可得()()()()()()0i r n r s n r s s r n r s n r s n r s n r s s A A A A A ⨯----⨯⨯----⨯----⨯==,1,2,,2i n =-. (10)若()0r n r s A ⨯--=或()0n r s s A --⨯=,则对应的rr A 可逆或ss A 可逆,则进行适当的初等行变换或列变换就得到我们想要的式(8)或“对称”的类似式,总之都能得证.反之,我们可以继续对()()()(),,r n r s n r s n r s n r s s A A A ⨯----⨯----⨯仿照矩阵,,C A B 的形式进行分块,经过适当处理后可得到()()n r s n r s A --⨯--中类似式(10)的条件式,并重复上述判别,若能消去()r n r s A ⨯--或()n r s s A --⨯中对应的类似“r E ”或“ss B ”的矩阵,则能消去r E 或ss B ,进而证明结论.不行的话就对新得到的条件式中的相应矩阵再分块…,由于n 是有限数,如此进行下去,最终能得到条件0LN =,而其中一定有一个矩阵是一阶的,也就是一定有0L =或0M =,再经过适当行变换列变换可使M 变成类似式(8)的矩阵,从而结论得证.。

浅谈分块矩阵的应用

浅谈分块矩阵的应用

分块矩阵的应用09理学研 470920622 王庆权分块矩阵是矩阵的一种推广,一般矩阵的元素是数量,而分块矩阵的元素可以是数量,也可以是矩阵。

分块矩阵的引进使得矩阵这一工具的使用更加便利,解决问题的作用更强有力,其应用也就更广泛.本文主要研究分块矩阵在计算行列式、求矩阵的秩、求可逆矩阵的逆矩阵、证明矩阵的秩的一些性质等方面的应用。

首先指出以下两点事实:矩阵乘积的秩不大于每个因子的秩;两个矩阵中有一个是可逆矩阵时,它们乘积的秩等于另一因子的秩;在一个分块矩阵中,若把每个块看成一个元素,则进行通常的初等变换仍不改变矩阵的秩。

有了以上的说明,现在来谈分块矩阵的应用.一 用分块矩阵计算行列式定理 1 设1234A A H A A ⎛⎫=⎪⎝⎭是一个四分块n 阶矩阵,其中1A 、2A 、3A 、4A 分别为,(),()()r r r n r n r n r ⨯⨯--⨯-矩阵,(1)若1A 可逆,则114312H A A A A A -=*- (2)若4A 可逆,则141243H A A A A A -=*-证明:现在只对(1)进行证明,(2)可类似于(1)的方法证明。

由分块矩阵的乘法,有112112113134431200I A A A I A A A A I A A A A A A I ---⎛⎫⎛⎫⎛⎫-⎛⎫= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭ 两边取行列式,由于 11213110II A A A A I I---=-所以 1121143121344312A A A H A A A A A A A A A A A --===--推论1 设1234A A H A A ⎛⎫=⎪⎝⎭是一个四分块n 阶矩阵,若1A 可逆,且1331A A A A =,则 1432H A A A A =-;若4A 可逆,且2442A A A A =,则4123H A A A A =-。

推论 设1234A A H A A ⎛⎫=⎪⎝⎭是一个四分块n 阶矩阵,若1A 可逆,且1221A A A A =则1212H A A A A =+-例1 计算1223100001000000000000001nn n x x x H x a a a a a ----=-解 令11000010000010000x x A x x -⎛⎫ ⎪-⎪ ⎪= ⎪- ⎪ ⎪⎝⎭20001A ⎛⎫ ⎪⎪ ⎪= ⎪⎪⎪-⎝⎭31241(,,,),n n A a a a A x a -==+ 那么11n A x-=,21121111110100n n x x x A x x x ---⎛⎫⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭所以114312H A A A A A -=*-= 112111()()n n n n n a a a xx a xxx----++++12121nn n n n x a x a x a x a ---=++++类似定理的证明可得。

分块矩阵的应用

分块矩阵的应用

目录摘要 (1)引言: (1)1.分块矩阵 (2)1.1. 分块矩阵的定义 (2)1.2 运算规则 (2)1.3分块矩阵的性质及其推论 (2)2.1分块矩阵在矩阵的秩的相关证明中的应用 (6)3.1 分块矩阵在求逆矩阵方面的应用 (7)3.2 分块矩阵在行列式计算式方面的应用 (10)引理设矩阵 (10)3.2.1矩阵A或B可逆时行列式|H|的计算 (10)3.2.2矩阵,==时行列式|H|的计算 (13)A B C D参考文献 (14)分块矩阵及其应用摘要: 在线性方程组的讨论中,我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵上,并且解线性方程组的过程也表现为变换这些矩阵的过程.除了解线性方程组之外,还有大量的各种各样的问题也都是提出矩阵的概念..关键词:分块矩阵矩阵的分块矩阵的计算证明应用引言:在已有的相关文献中,分块矩阵的一些应用如下:(1)从行列式的性质出发 , 推导出分块矩阵的若干性质 , 并举例说明这些性质在行列式计算和证明中的应用 .(2)通过论述证明矩阵的分块在高等代数中的应用 ,包括用分块矩阵证明矩阵乘积的秩的定理问题 ,用分块矩阵求逆矩阵问题 ,用分块矩阵求矩阵的行列式问题 ,用分块矩阵求矩阵的秩的问题 ,利用分块矩阵证明一个矩阵是零矩阵问题.(3)给出利用分块矩阵计算行列式的H =BCD A 方法,可分几方面讨论,当矩阵A 或B可逆时;当矩阵A =B ,C =D 时;当A 与C 或者B 与C 可交换时;当矩阵H 被分成两个特殊矩阵的和时行列式的计算.(4)分块矩阵有非常广泛的应用,特别利用分块矩阵证明矩阵秩的性质显得非常简洁,而且方法也比较统一,有其独特的优越性. 主要内容1.分块矩阵1.1. 分块矩阵的定义用纵线与横线将矩阵A 划分成若干较小的矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡st s s tt A A A A A A A A A 212222111211 其中每个小矩阵 .),1;,1(t j s i A ij==叫做A 的一个子块;分成子块的矩阵叫做分快矩阵[2].1.2 运算规则()1 stij ij st ij st ij B A B A )()()(+=± ()2 tsTji st T ij A A )()(= ()3 sp ij tp ij st ij C B A )()()(=,ij C =∑-==tk kjik t j s i B A 1),...1,,...1( ()4 stij st ij A k A k )()(=(k 是数量) 在用规则1)时,A 与B 的分块方法须完全相同;用性质3)时,A 的列的分法与B 的行的分法须相同.1.3分块矩阵的性质及其推论在行列式计算中 ,我们经常用到下面三条性质[3]:()1 若行列式中某行有公因子 ,则可提到行列式号外面;()2 把行列式中的某行乘上某一个非零数 ,加到另一行中去 ,其值不变; ()3 把行列式中的某两行互换位置 ,其值变号;利用矩阵的分块 ,我们可以把行列式的三条性质在分块矩阵中进行广.性质 设方阵A 是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 级方阵 .对于矩阵B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C MB MB MB A A A 则B =M A证明 设s E 为s 级单位矩阵 ,则B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321000000C C C B B BA A A E M E s s=A E M E s s ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00000 于是B =00000ssEM EA =sEM sEA =M A性质 2 设矩阵是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 阶方阵 .对于矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=321321321C C C MC B MC B MC B A A A D 则A =D证明 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s sE E E 00000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++321321321C C C MC B MC B MC B A A A 其中 s E 是s 级单位矩阵 ,对上式两边同时取行列式得A =D性质 3 设方阵A 和'A 写成如下形式A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A ,'A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C A A A B B B 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是 s ×t 矩阵,则|'A |=⎩⎨⎧-为奇数时,当为偶数时当s A s A |||,| 证明 A 可由'A 中的1B ,2B ,3B 与1A ,2A ,3A 相应的两行对换而得到 ,而对换行列式的两行 , 行列式反号 ,故当s 为偶数时|'A |=A 当s 为奇时|'A |=-A可以证明 ,对于一般分块矩阵也具有类似性质.同时 ,这些性质不仅对行成立 ,对列也同样成立.下面举例说明这些性质在行列式计算和证明中的应用.推论 设A ,都是n 阶方阵,则有AB =A B ()2.6证明 作2n 阶行列式C =EA AB由拉普拉斯展开定理得C =ABE =AB又由性质2并应用于列的情况,有E AAB 0=E EB AAB AB --0=EB A -0=B A nn n --+++++++2)1(21)1( =B A 推论 2 设,A B 都是n 阶方阵,则有ABB A =B A B A -+ 证明 根据定性质2并应用于列的情况,有A BBA =A AB BBA ++=BA B BA ++0=B A B A -+ 例1 计算n 2阶行列式D =aba b a b b a b a b a 000000000000000000000解 令A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡a 000a 0000a 0000aB =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000000000000bb b 则 D =ABB A=B A B A -+=aba b ba b a000000aba b b ab a 0000000---- =n b a )(+n b a )(-=nb a )(22-推论 3 设,B ,C ,D 都是n 阶方阵 ,其中A ≠0,并且AC =CA ,则有DCB A =CB AD - ()2.8 证明 根据性质2,因为1-A 存在,并注意到AC =CA ,用1CA --乘矩阵⎥⎦⎤⎢⎣⎡D C B A 的第一行后加到第二行中去得⎥⎦⎤⎢⎣⎡----B CA D B CA A 110 从而D CB A =11ACA B D CA B----=A B CA D 1--=B ACA AD 1--B CAA AD 1--=CB AD -把行列式的性质在分块矩阵中进行推广之后,我们又由这三个新的性质得到了三个结论.设A ,B ,C ,D 都是n 级方阵则有AB=A BABB A =B A B A -+ 结论()2.6告诉我们,两个方阵的乘积的行列式等于这两个方阵的行列式的乘积.结论()2.7则说明,当一个行列式可以分成四个级数相等的方阵A ,B ,B ,A 时(即ABB A ),2.1分块矩阵在矩阵的秩的相关证明中的应用定理 1 秩()AB ≤秩()A ,且秩()AB ≤秩()B ,则秩()AB ≤min{秩A ,秩B }[4] 证明 令s m C ⨯=n m A ⨯s n B ⨯,A =()12,na a a ,C =()12,s γγγ 则(sγγγ 21,)=()12,n a a a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ns n n ss b b b b b b b b b212222111211∴nns s s s nn nn a b a b a b a b a b a b a b a b a b +++=+++=+++=22112222112212211111γγγ∴s γγγ 21,()1可由n a a a 21,()2线性表示 ∴秩()I ≤秩()I I ,即秩()C =秩()A B ≤秩()A令=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡m n n n21,B=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n βββ21所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡m n n n21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m nn a a a a a a a a a212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n βββ21即nmn m m s nn n n a a a a a a a a a βββηβββηβφβη+++=+++=+++=22112222112212211111∴m ηηη 21,()3可由n βββ 21,()4线性表示 ∴秩()I I I ≤秩()I V ,即秩()C =秩()A B ≤秩()B即秩()A B≤()()m i n {A B }秩,秩 定理 2 设、都是n 级矩阵,若0A B =则秩()A +秩()B ≤n[5].证明 对分块如下:()12nBB B B = 由于0A B =即()120nA B A B A B = 即()01,2,,iA B i n == 说明的各列B 都是0AX =的解.从而 秩()12nBB B ≤基础解系=n -秩()A即秩()A+秩()B ≤n3.1 分块矩阵在求逆矩阵方面的应用命题1[10]设P =⎥⎦⎤⎢⎣⎡D C B A是一个四分块方阵,其中B 为r 阶方阵, C 为k 阶方阵,当B 与)(1A DBC --都是可逆矩阵时,则P 是可逆矩阵,并且1-P=⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DBC DB A DB C 特例 ()1 当A =0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡--0011BC. ()2 当A =0,D ≠0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----01111B CDB C ()3 当A ≠0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----1111AC B BC证明 设P 可逆,且1-P=⎥⎦⎤⎢⎣⎡W Z Y X ,其中Y 为k 阶方阵,Z 为r 阶的方阵.则应有 于是得到下面的等式(4.1)0(4.2)0(4.3)(4.4)k rX A Y C E X B Y D Z A W C Z B W D E +=⎧⎪+=⎪⎨+=⎪⎪+=⎩因为可逆,用1-B 右乘(3.2)式可得代入(3.1)式得Y-11)(---A DB C则X=11)(----A DB C D 1-B .用右乘(3.4)式可得=()rE W D -1-B =1-B -1WDB - 代入 (3.3)式得W =1B A -11)(---A DBC则 可得Z =1-B +1B A -11)(---A DBC D 1-B.所以1X Y D B-=1-P=⎥⎦⎤⎢⎣⎡W ZY X ⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DBA DBC A B B A DBC DB A DB C . 命题2 设Q =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中A 为r 阶方阵,D 为k 阶方阵,当A 与(B CAD 1--)都是可逆矩阵时,则Q 是可逆矩阵,并且1-Q =1-⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡------+-------------1111111111111)()()()(B CAD CA B CA D B CAD B A CA B CA D B A A 特例 (1) 当B =0,C =0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡--1100D A (2) 当B≠0,C =0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110DBDA A (3) 当B =0,C ≠0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D CAD A 此结论参考命题1.例1 设M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------60004000001001095201473,求1-M . 解 令=⎥⎦⎤⎢⎣⎡--5273,=⎥⎦⎤⎢⎣⎡--109014,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--60040001. 则很容易求得1-A=⎥⎦⎤⎢⎣⎡--3275,1-D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--6/10004/10001且11---BD A =-⎥⎦⎤⎢⎣⎡--3275⎥⎦⎤⎢⎣⎡--109014⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--60040001=⎥⎦⎤⎢⎣⎡---2/12/1196/74/543 由命题2可得,1-M=⎥⎦⎤⎢⎣⎡-----1111D OBD A A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------6/10004/1000001002/12/119326/74/543753.2 分块矩阵在行列式计算式方面的应用在线性代数中 ,分块矩阵是一个十分重要的概念 ,它可以使矩阵的表示简单明了 ,使矩阵的运算得以简化. 而且还可以利用分块矩阵解决某些行列式的计算问题. 而事实上 ,利用分块矩阵方法计算行列式 ,时常会使行列式的计算变得简单 ,并能收到意想不到的效果[11]. 本节给出利用分块矩阵计算行列式的几种方法.引理 设矩阵H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A OOA O A A21或H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A AO A O OA21其中sA A A ,,,21 均为方阵,则 H=s A A A 21.3.2.1矩阵A 或B 可逆时行列式|H|的计算命题 1 B A 、分别为m 与n 阶方阵. 证明 :(1)当可逆时 ,有BCD A =A D CA B 1-- (3.5)(2)当可逆时 ,有BCD A =C DB A 1--B (3.6)证明 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D CA B D A B C D A E CA E 1100 由引理知,两边取行列式即得(3.5).()2 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡--E DB E 01⎥⎦⎤⎢⎣⎡B CD A=⎥⎦⎤⎢⎣⎡--B C C DB A 01两边取行列式即得(3.6).此命题可以用来解决一些级数较高的矩阵求逆问题,但在利用命题1时,要特别注意条件有矩阵或可逆,否则此命题不适用,下面给出此命题的应用.推论1 设,,,A B C D 分别是,,m n n m⨯和m n ⨯矩阵. 证明 BCD E m =CD B - ( 3.7) nECD A =DC A - (3.8) 证明 只需要在命题的(3.5)中令=m E , 即得(3.7);在(3.6)中令=n E ,即得(3.8). 推论2 ,C D 分别是n m ⨯和mn ⨯矩阵.证明 nm E CD E =CD E n -=DC E m - (3.9) 证明 在推论1的(3.7)中,令=n E ,在(3.8)中,令=m E ,即得(3.9) 例3 计算下面2n 阶行列式nH2=b cbc d a da()0a ≠解 令=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a,=B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡b b,C =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡cc ,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡dd为n 阶方阵.由于0a ≠,故为可逆方阵.又易知-D CA 1-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------d ca b d ca b d ca b 111从而由命题中()1得nH2=AD CB=D CA B A 1--=n n d ca b a )(1--=ncd ab )(-.例4 计算行列式 ()1);,,2,1,0(,00100101111210n i a a a a a i n =≠ ()2cb b b b a a a a nn3213211000010000100001解 ()1 设=BCD A,其中=()0a ,=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n a a a21,=T )1,,1,1( ,D =)1,,1,1( . 因为n i a i,,2,1,0 =≠所以是可逆矩阵.又易知 A -C DB1-=⎥⎦⎤⎢⎣⎡-∑=ni i a a 10/1 从而由命题中的结论()4.2得BCD A =1A DBC B --=⎥⎦⎤⎢⎣⎡-∑=ni i n a a a a a 1021/1 (2)设Q =BCD E n,其中B =(c ),C =),,,(21n b b b ,D =Tna a a ),,(21 由于C D =),,,(21n b b b Tna a a ),,(21 =∑=ni i i b a 1从而由推论知,=BCD E n=B CD -=c -∑=ni i i b a 1.3.2.2矩阵,A B C D==时行列式|H|的计算 命题 2 ,A C 是两个n 阶方阵.则ACC A =|A+C||A-C|证明 根据行列式的性质和定理,有A CCA =A AC CC A ++=CA C CA -+0=A C A C +-. 例1 计算行列式.D =000xyzx z yy z xz y x解 这道题看似简单 ,但如果方法选择不好,做起来并不轻松. 这里设=⎥⎦⎤⎢⎣⎡00xx ,=⎥⎦⎤⎢⎣⎡y zz y由命题2知D=ACC A =C A C A -+ =yzx z x y++yzx z x y ----=])(][)([2222z x y z x y --+- =))()()((z y x z y x z y x z y x ++--+-+-++ 行列式的计算是线性代数中的一个重要内容,本节就行列式的计算问题具体就形如H=BCD A (,,,A B C D 分别是,,m n n m⨯和m n ⨯矩阵)的类型的行列式计算进行了分析,其中将一个行列式分块成,,,A B C D 后,又细分为几种情况进行了讨论,依据不同的情况给出了不同的计算方法,在计算行列式时可根据这几种不同的情况具体问题具体对待,从而简化行列式的计算过程.在这一部分可见,利用分块矩阵计算行列式主要是靠分块矩阵来改变原来矩阵的级数从而达到简化计算过程,快速解决问题的目的.综上所述,分块矩阵是高等代数中的一个有力的工具和方法,除了以上几个方面外,分块矩阵在其它方面的应用也很广泛,我们主要是利用分块矩阵来方便计算,从而快速解决问题。

研究矩阵分块的方法及应用

研究矩阵分块的方法及应用

研究矩阵分块的方法及应用矩阵分块(Matrix Partition)是一种将一个大矩阵分割成若干个块或子矩阵的方法。

这种方法在许多数学和工程应用中非常有用,因为它可以简化复杂的矩阵运算,并提供更高效的算法和快速的计算。

矩阵分块的方法具有广泛的应用,包括线性代数、微积分、信号处理、图像处理、统计学、优化等领域。

矩阵分块的方法可以根据不同的目的和要求采用不同的策略和分块方式。

一般来说,矩阵分块的方法分为两种类型:按行分块和按列分块。

按行分块是将矩阵按照横向划分为若干行向量子矩阵,而按列分块则是将矩阵按照纵向划分为若干列向量子矩阵。

除了按行和按列划分外,还可以将矩阵按照主对角线、次对角线、对称轴等方式进行分块。

矩阵分块的方法可以大大简化复杂的矩阵运算,使得问题的求解更加直观和高效。

一种常见的应用是矩阵乘法。

对于两个大型矩阵相乘的情况,采用普通的矩阵乘法算法的计算复杂度很高,但通过将大矩阵分块成若干小块矩阵,可以采用并行计算的方式,提高计算效率。

另一个常见的应用是矩阵求逆。

对于大型矩阵求逆的计算复杂度很高,并且可能出现数值不稳定的问题。

通过将大矩阵分块成若干小块矩阵,可以使用分块逆矩阵的方法来计算整体矩阵的逆矩阵,从而提高计算的稳定性和效率。

矩阵分块的方法还广泛应用于图像处理和信号处理领域。

在这些领域中,矩阵表示图像或信号的数据,通过将大矩阵分块为若干小块,可以对局部区域进行处理,从而实现对整体数据的处理和分析。

例如,对图像进行滤波操作时,可以将图像分为若干小块,分别进行滤波处理,然后将处理后的小块矩阵合并成一个大矩阵,从而得到滤波后的图像。

此外,矩阵分块的方法还可以应用于线性代数的求解和优化问题。

例如,在解线性方程组时,可以将系数矩阵和右侧向量分块,从而将问题分解为多个小规模的子问题,通过求解这些子问题,最终获得整个线性方程组的解。

类似地,在优化问题中,可以通过将大矩阵分块为若干小块,将复杂的优化问题分解为多个简单的子问题,从而更高效地求解问题。

分块矩阵的应用

分块矩阵的应用

本科生毕业论文(设计)册学院数学与信息科学学院专业数学与应用数学班级 07级C班学生常会敏指导教师刘稳河北师范大学本科毕业论文(设计)任务书论文(设计)题目:分块矩阵的应用学院:数学与信息科学学院专业:数学与应用数学学班级: 07级C班学生姓名:常会敏学号: 2007010656 指导教师:刘稳职称:1、论文(设计)研究目标及主要任务分块矩阵在高等代数中具有很重要的应用,本文旨在总结分块矩阵在代数学中的几个重要的应用,体会分块矩阵的应用技巧,恰当利用分块矩阵可使问题变得简单而明了。

本文的主要任务是通过大量理论和具体的例子总结出分块矩阵在证明有关矩阵的秩、求解矩阵方程以及求矩阵的最小多项式,判断矩阵是否相似三方面发挥出的巨大作用。

2、论文(设计)的主要内容①分块矩阵证明有关矩阵的秩②求解矩阵方程③求矩阵的最小多项式,判断矩阵是否相似3、论文(设计)的基础条件及研究路线在复数域上,关于分块矩阵及其初等变换的研究已经有深刻的结果,关于分块矩阵的应用也有不少的文章提及,可见分块矩阵的应用之广泛,因此要想将其应用全部总结出来是不可能的。

正式基于这样一种情况,本文分别就分块矩阵在证明有关矩阵的秩、求解矩阵方程以及求矩阵的最小多项式,判断矩阵是否相似三方面做一详细总结,展示分块矩阵的应用技巧,从而开拓思维,培养创新能力。

4、主要参考文献[1]王萼芳,石生明.高等代数(第三版)[M].北京:高等教育出版社,2003:181~320.[2]丘维声.高等教育学习指导用书[M].北京:清华大学出版社,2005:213~238.[3]陈公宁.矩阵理论与应用[M].北京:北京科学出版社,2007:1~25.[4]张焕玲,刘爱奎.利用分块矩阵法求解矩阵方程的一种简单方法[J].山东工业大学学报,2000,Vol.30(3):268~273.[5]钱吉林.高等代数题解精粹(修订版)[M].北京:中央民族大学出版社,2002:189.[6]徐天保.分块矩阵的应用[J].安庆师范学院学报(自然科学版),2010,Vol.16(2):105~108.[7]王卿文,杨家骐.用矩阵的初等行变换解矩阵方程A X=B[J].数学通报,1993:m n ns m s16~25.[8]A.J.M.SPENCER & R.S.RIVELIN .Further Results in the Theory of Matrix Polynomials [J].Brown University Providence ,1959:214 ~230.5、计划进度指导教师:刘稳 2010 年 11 月日教研室主任: 2010 年 11 月日河北师范大学本科生毕业论文(设计)开题报告书数学与信息科学学院学院数学与应用数学专业 2011 届河北师范大学本科生毕业论文(设计)文献综述河北师范大学本科生毕业论文(设计)翻译文章本科生毕业论文设计题目分块矩阵的应用作者姓名常会敏指导教师刘稳所在学院数学与信息科学学院专业(系)数学与应用数学班级(届) 2011届完成日期 2011 年 5 月日目录中文摘要、关键词 (1)1、分块矩阵的定义及运算法则 (1)1.1定义矩阵的分块 (1)1.2分块矩阵的运算法则 (1)2、利用分块矩阵证明有关矩阵的秩 (4)2.1证明关于矩阵乘积的秩的定理 (4)2.2证明有关矩阵秩的等式 (5)2.3证明Sylvester不等式 (6)2.4证明Sylvester公式 (7)3、利用分块矩阵求解矩阵方程 (8)3.1解矩阵方程A X=B的原理 (8)m n ns m s3.2求解矩阵方程 (9)4、分块矩阵在其它方面的应用 (10)4.1求矩阵的最小多项式 (10)4.2判断两矩阵是否相似 (12)5、总结 (13)参考文献 (13)英文摘要、关键词 (14)分块矩阵的应用数学与信息科学学院 数学与应用数学专业指导教师 刘稳 作者 常会敏中文摘要:矩阵是代数特别是线性代数中一个极其重要的应用广泛的概念,而矩阵的分块则是在处理级数较高的矩阵时常用的方法。

分块矩阵的定义及应用

分块矩阵的定义及应用

分块矩阵的定义及应用分块矩阵,也称为块矩阵或子矩阵,是由多个小矩阵按照一定规则排列所组成的矩阵。

它的特点是矩阵中的各个元素被分成了若干个块,每个块是一个分离的矩阵。

分块矩阵的形式可以写为:A = [A11 A12 (1)A21 A22 (2)... ... ... ...An1 An2 ... Anm]其中,A11、A12、...、A1m是行向量组成的矩阵;A21、A22、...、A2m是行向量组成的矩阵;...;An1、An2、...、Anm是行向量组成的矩阵。

每一个Aij 都表示一个分块矩阵,大小及形状可以不同。

分块矩阵的应用非常广泛,主要体现在以下几个方面:1. 线性方程组求解:分块矩阵可以用于解决大规模线性方程组的求解问题。

通过将系数矩阵分块,可以降低计算复杂度,并且可以通过并行计算来提高求解效率。

2. 矩阵乘法加速:分块矩阵可以用于加速矩阵乘法运算。

将矩阵分块后,可以利用并行计算的优势,同时进行多个小矩阵的乘法运算,从而提高运算效率。

3. 特征值计算:分块矩阵可以用于求解大型矩阵的特征值和特征向量。

通过分块矩阵的分解,可以降低计算复杂度,并且可以采用迭代方法进行求解,从而提高求解效率。

4. 矩阵的逆和广义逆:分块矩阵可以用于求解矩阵的逆和广义逆。

通过分块矩阵的分解,可以减小计算量,并且可以采用迭代方法进行求解,从而提高求解效率。

5. 随机矩阵的分析:分块矩阵可以用于随机矩阵的分析。

通过分块矩阵的分解,可以对矩阵的结构和随机性进行分析,从而研究矩阵的统计特性和性质。

除了上述应用之外,分块矩阵还可以用于矩阵的分解、正交化、正则化等问题的求解。

分块矩阵的应用不仅仅局限于数学领域,也被广泛应用于工程、物理、计算机科学等领域。

总之,分块矩阵是将大型矩阵拆分为多个小矩阵,通过分块的方式来简化复杂的计算问题。

它在线性方程组求解、矩阵乘法加速、特征值计算、矩阵逆和广义逆求解、随机矩阵分析等方面有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分块矩阵的作用
• 分块矩阵已成为数学中一种非常有用的工具,创造了一种 思路清晰、容易理解、易形式化的解题方式,使解题过程 更加简明。分块矩阵的在学习和研究中占有越来越重要的 地位。
• 分块矩阵解决问题具有可行性、简洁性和灵活性,特别是
对于较复杂的问题,分块矩阵的优势更能凸显出来。
第三章 利用分块矩阵求解方程
3.1利用分块矩阵求解非齐次线性方程组 3.2利用分块矩阵求解矩阵方程 3.2.1 解矩阵方程的原理 3.2.2 求解矩阵方程
• • • •
第四章 分块矩阵在其他方面的应用
• 4.1利用分块矩阵求矩阵的行列式的值
• 4.2利用分块矩阵求矩阵的逆
分块矩阵的作用
• 应用分块矩阵能使阶数比较高的矩阵、看起来复杂的矩阵 以及抽象矩阵的结构变得清晰,使问题更简洁,令解题 过程变得简明,内容更容易理解。 • 在应用分块矩阵过程中,能够总结出较统一的形式化方法, 便于记忆。
第一章 预备知识
• • • • •
1.1分块矩阵的概念 1.2分块矩阵的运算法则 1.2.1分块矩阵的加法和数乘 1.2.2分块矩阵的乘法 1.2.3分块矩阵的转置
第矩阵乘积的秩的定理 • 2.2 证明有关矩阵秩的等式及不等式 • 2.3分块矩阵证明Sylvester不等式
分块矩阵的若干应用
数学10-1 杨小柳 10051129
目录
• 第一章 预备知识 • 第二章 分块矩阵证明有关矩阵的秩 • 第三章 利用分块矩阵求解方程 • 第四章 分块矩阵在其他方面的应用
内容
• 文简单叙述了分块矩阵的概念,总结了分块矩阵的运算法 则,并重点举例说明和分析了用分块矩阵来证明有关矩阵 秩的问题,其中包括证明有关矩阵秩的乘积的定理,证明 有关矩阵秩的等式和不等式,这都是分块矩阵在证明矩阵 秩方面的应用。在其他方面,利用分块矩阵求解方程也是 分块矩阵的一大应用,本文中包括利用分块矩阵求解非其 次线性方程组和利用分块矩阵求解矩阵方程。
分块矩阵意义
• 分块矩阵作为一种解题工具,在高等代数中占有举足轻重 的地位,矩阵分块这种算法是矩阵运算的重要方式之一。 矩阵理论在部分领域有着广泛的应用,分块矩阵的引入使
有关问题的解决更加快速有效。
• 应用分块矩阵解题开拓了思维,培养了科学创新能力,所 以,熟练的应用分块矩阵并学会巧妙的利用分块矩阵意义 重大。
相关文档
最新文档