计算机图形学_三次参数样条曲线

第五章 参数样条曲线曲面

第五章 参数样条曲线曲面

第一节 C 1 分段三次Hermite插值2009- 08- 29 2

一、参数连续性 1、参数连续性与曲线光滑度 对于显式函数表示的曲线,函数的可微性与曲 线的光滑度是紧密联系的。例如: y ax b =+ 一次函数表示的直线 2 =++ 二次曲线 y ax bx c 32 =+++ 三次曲线 y ax bx cx d 对于显示曲线,函数的C 0 ,C 1 和C 2 连续分别表 示函数的图形、切线方向、以及曲率连续。 2009- 08- 29 3

2009- 08- 29 4 一、参数连续性 但是对于CAGD中大量涉及到的参数曲线,参数 方程的可微性与曲线的光滑性却没有必然的联系。 例如:如图的两条首尾相连的n次Bezier曲线: (1)(1)(2) 10 n n b b b - == r r r 根据Bezier曲线的知识可知,这两条首尾相连的曲 线在连接点是C 1 连续的,但显然该点是个尖点,切线 方向是不连续的。

2009- 08- 29 5 一、参数连续性 同理,如果让首尾相连的两条n次Bezier曲线的最 后三个控制顶点和最前面三个控制顶点重合,即: (1)(1)(1)(2)(2)(2) 21012 n n n b b b b b b -- ===== r r r r r r 根据Bezier曲线的知识可知,这两条首尾相连的曲 线在连接点是C 2 连续的,但显然在该点处曲率是不连 续的。

一、参数连续性 上两个例子说明,曲线的参数连续性并不 能保证曲线的光滑性。反过来,曲线的光滑性 也不一定需要相应的参数连续性。例如曲线的 二阶几何连续可以保证曲线的曲率是连续的, 但这时曲线甚是连C 1 连续也不一定满足。 另外,参数曲线的参数连续性也是与曲线 的参数化有关的,同一条曲线采用不同的参 数,参数的连续性情况可能不同。 2009- 08- 29 6

计算机图形学试题附答案完整版

名词解释 将图形描述转换成用像素矩阵表示的过程称为扫描转换。 1.图形 2.像素图 3.参数图 4.扫描线 5.构造实体几何表示法 6.投影 7.参数向量方程 8.自由曲线 9.曲线拟合 10.曲线插值 11.区域填充 12.扫描转换 三、填空 1.图形软件的建立方法包括提供图形程序包、和采用专用高级语言。 2.直线的属性包括线型、和颜色。 3.颜色通常用红、绿和蓝三原色的含量来表示。对于不具有彩色功能的显示系统,颜色显示为。 4.平面图形在内存中有两种表示方法,即和矢量表示法。 5.字符作为图形有和矢量字符之分。 6.区域的表示有和边界表示两种形式。 7.区域的内点表示法枚举区域内的所有像素,通过来实现内点表示。 8.区域的边界表示法枚举区域边界上的所有像素,通过给赋予同一属性值来实现边界表示。 9.区域填充有和扫描转换填充。 10.区域填充属性包括填充式样、和填充图案。 11.对于图形,通常是以点变换为基础,把图形的一系列顶点作几何变换后,

连接新的顶点序列即可产生新的变换后的图形。 12.裁剪的基本目的是判断图形元素是否部分或全部落在之内。 13.字符裁剪方法包括、单个字符裁剪和字符串裁剪。 14.图形变换是指将图形的几何信息经过产生新的图形。 15.从平面上点的齐次坐标,经齐次坐标变换,最后转换为平面上点的坐标,这一变换过程称为。 16.实体的表面具有、有界性、非自交性和闭合性。 17.集合的内点是集合中的点,在该点的内的所有点都是集合中的元素。 18.空间一点的任意邻域内既有集合中的点,又有集合外的点,则称该点为集合的。 19.内点组成的集合称为集合的。 20.边界点组成的集合称为集合的。 21.任意一个实体可以表示为的并集。 22.集合与它的边界的并集称集合的。 23.取集合的内部,再取内部的闭包,所得的集合称为原集合的。 24.如果曲面上任意一点都存在一个充分小的邻域,该邻域与平面上的(开)圆盘同构,即邻域与圆盘之间存在连续的1-1映射,则称该曲面为。 25.对于一个占据有限空间的正则(点)集,如果其表面是,则该正则集为一个实体(有效物体)。 26.通过实体的边界来表示一个实体的方法称为。 27.表面由平面多边形构成的空间三维体称为。 28.扫描表示法的两个关键要素是和扫描轨迹。 29.标量:一个标量表示。 30.向量:一个向量是由若干个标量组成的,其中每个标量称为向量的一个分量。 四、简答题 1. 什么是图像的分辨率?

三次样条插值作业题

例1 设)(x f 为定义在[0,3]上的函数,有下列函数值表: 且2.0)('0=x f ,1)('3-=x f ,试求区间[0,3]上满足上述条件的三次样条插值函数)(x s 本算法求解出的三次样条插值函数将写成三弯矩方程的形式: ) ()6()() 6()(6)(6)(211123 13 1j j j j j j j j j j j j j j j j x x h h M y x x h h M y x x h M x x h M x s -- + -- + -+ -= +++++其中,方程中的系数 j j h M 6, j j h M 61+,j j j j h h M y )6(2- , j j j j h h M y ) 6(211++- 将由Matlab 代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。 以下为Matlab 代码: %============================= % 本段代码解决作业题的例1 %============================= clear all clc % 自变量x 与因变量y ,两个边界条件的取值 IndVar = [0, 1, 2, 3]; DepVar = [0, 0.5, 2, 1.5]; LeftBoun = 0.2; RightBoun = -1; % 区间长度向量,其各元素为自变量各段的长度 h = zeros(1, length(IndVar) - 1); for i = 1 : length(IndVar) - 1 h(i) = IndVar(i + 1) - IndVar(i); end % 为向量μ赋值

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

样条插值和曲线拟合

第三章 样条插值和曲线拟合 1.x y = 有如下的函数表 8。 解 先作差商表 4 167 1210 13 9 3 42015 11008 16012 4 60 13 1611 1 10 0-?- -- 故:8.2)48(5 1 2)8(1=-+=p 819047619.2) 98)(48(210 1 )48(512)8(2=----+=p 844444.2)98)(48)(18(3 4201) 48)(18(601 )18(311)8(3=---?+----+=p 6222.2)1(4781008 1478601) 18(86 1 )08(10)8(4=-???-??+---?+=p 已知 828427.28=,因此选定 )8(,16,9,42321p x x x ===最接近8。 利用Neville 方法得: xi 8-xi f(xi) 2.8284271 8 0 8 1 7 1 -1.33333333 3.3333333 2.4 4 4 2 2.866666667 2.6222222 2.8 2.8444444 9 -1 3 2.819047619 2.8571429 16 -8 4 f(8)= 2.828427125 xi 8-xi f(xi) 8 0 8 1 7 1 -1 1/3 3 1/3 2 2/5 4 4 2 2 13/15 2 28/45 2 4/5 2 38/45 9 -1 3 2 86/105 2 6/7 16 -8 4 已知 828427.28=,故选定)8(,16,9,42321 p x x x ====2.819047619最接近8.

计算机图形学——绘制Bezier曲线

计算机图形学 实验报告 专业:信息与计算科学 班级: 1002班 学号: 1008060*** 姓名: ****

实验目的: (1)掌握直线的参数表示法。 (2)掌握德卡斯特里奥算法的几何意义。 (3)掌握绘制二维Bezier曲线的方法。 实验要求: (1)使用鼠标左键绘制个数为10以内的任意控制点,使用直线连接构成控制多边形。 (2)使用鼠标右键绘制Bezier曲线。 (3)在状态栏显示鼠标的位置坐标。 (4)B ezier曲线使用德卡斯特里奥算法绘制。 实验算法: Bezier曲线的分割递推德卡斯特里奥算法 给定空间n+1个点P i(i=0,1,2,…,n)及参数t,有 P r i(t)=(1-t)P1-r i(t)+t P1-r1i+(t) 式中,r=1,2,…,n;i=0,1,…,n-r;t∈[0,1]。 且规定当r=0时,P0i(t)=P i, P n0(t)是在曲线上具有参数t的点。 德卡斯特里奥算法的基础就是在矢量? ?→ ? P P10 上选择一个点P,使 得P点划分矢量? ?→ ? P P10为|P P0|:|P P1|=t:1-t,给定点P0、P1 的坐标以及t的值,点P的坐标为P=P0+t(P1-P0)=(1-t)P0+tP1。式中,t∈[0,1]。 定义贝塞尔曲线的控制点编号为P r i,其中,r表示迭代次数。德卡斯特里奥证明了,当r=n时,P n0表示Bezier曲线上的点。

函数功能介绍 1.德卡斯特里奥函数: long CMy12View::DeCasteliau(double t,long *p) { double P[N_MAX_POINT][N_MAX_POINT]; int n=CtrlPNum-1; for(int k=0;k<=n;k++) { P[0][k]=p[k]; } for(int r=1;r<=n;r++) { for(int i=0;i<=n-r;i++) { P[r][i]=(1-t)*P[r-1][i]+t*P[r-1][i+1]; } } return(long(P[n][0])); } 函数功能介绍:此函数为德卡斯特里奥算法函数。在绘制Bezier 曲线时,需调用两次此函数,分别关于x方向和y方向上的调用。由DrawBezier()函数调用。 2. void CMy12View::DrawBezier() 函数功能介绍:此函数为绘制Bezier曲线。绘制二维Bezier曲线,需要对x方向和y方向进行计算。这个函数就是解决这个问题,然后通过OnRButtonDown(UINT nFlags,CPoint point)调用进行绘制。 3 .void CMy12View::DrawCtrPolygon() 函数功能介绍:此函数为绘制控制多边形。定义一个CPen型NewPen,和CPen*型PoldPen,进行绘制多边形,为了突出控制点,使用黑色填充边长为4个像素的正方形块代表控制点。 4. void CMy12View::OnLButtonDown(UINT nFlags,CPoint point) 函数功能介绍:此函数为鼠标左键按下函数。按下鼠标左键,将鼠

计算机图形学基础教程实验报告

湖北民族学院信息工程学院实验报告 (数字媒体技术专业用) 班级:0312413姓名:谌敦斌学号:031241318实验成绩: 实验时间:2013年10 月14 日9、10 节实验地点:数媒实验室课程名称:计算机图形学基础教程实验类型:设计型 实验题目:直线与圆的绘制 一、实验目的 通过本次实验,熟练掌握DDA、中点、Bresenham直线绘制方法和中点、Bresenham圆的画法,能够在vc环境下独立完成实验内容,逐渐熟悉opengl的语法特点,提高程序基本绘图的能力。 二、实验环境(软件、硬件及条件) Microsoft vc++6.0 多媒体计算机 三、实验内容 1.从DDA、中点、Bresenham画线法中任选一种,完成直线的绘制。 2.从中点、Bresenham画圆法中任选一种,完成圆的绘制。 四、实验方法与步骤 打开vc++6.0,新建一个工程,再在工程里面建一个.cpp文件,编辑程序,编译连接后执行即可。

程序如下 bresenham画线法: #include #include int bresenham(int x0,int y0,int x1,int y1,int color) { int x,y,dx,dy,e,i; dx=x1-x0; dy=y1-y0; e=-dx; y=y0; for(x=x0;x<=x1;x++) { putpixel(x,y,color); e+=2*dy; if(e>=0) { y++; e-=2*dx; } } return 0; } int main() { initgraph(640,480); bresenham(0,0,500,200,255); while(!kbhit()) { } closegraph(); return 0; } Bresenham画圆法: #include #include int circlepoints(int x,int y,int color) { putpixel(255+x,255+y,color); putpixel(255+y,255+x,color); putpixel(255-x,255+y,color);

计算机图形学 图形的几何变换的实现算法教程文件

计算机图形学图形的几何变换的实现算 法

实验二 图形的几何变换的实现算法 班级 08信计 学号 59 姓名 分数 一、实验目的和要求: 1、掌握而为图形的基本几何变换,如平移,旋转,缩放,对称,错切变换;。 2、掌握OpenGL 中模型变换函数,实现简单的动画技术。 3、学习使用OpenGL 生成基本图形。 4、巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可由简单图形得到复杂图形。加深对变换矩阵算法的理解。 编制利用旋转变换绘制齿轮的程序。编程实现变换矩阵算法,绘制给出形体的三视图。调试程序及分析运行结果。要求每位学生独立完成该实验,并上传实验报告。 二、实验原理和内容: . 原理: 图像的几何变换包括:图像的空间平移、比例缩放、旋转、仿射变换和图像插值。 图像几何变换的实质:改变像素的空间位置,估算新空间位置上的像素值。 图像几何变换的一般表达式:[,][(,),(,)]u v X x y Y x y = ,其中,[,]u v 为变换后图像像素的笛卡尔坐标, [,]x y 为原始图像中像素的笛卡尔坐标。这样就得到了原始图像与变换后图像的像素的对应关系。 平移变换:若图像像素点 (,)x y 平移到 00(,)x x y y ++,则变换函数为 0(,)u X x y x x ==+, 0(,)v Y x y y y ==+,写成矩阵表达式为: 00x u x y v y ??????=+???????????? 其中,x 0和y 0分别为x 和y 的坐标平移量。 比例缩放:若图像坐标 (,)x y 缩放到( ,x y s s )倍,则变换函数为:

三次样条插值在工程拟合中的应用

三次样条插值在工程拟合中的应用 摘要: 介绍了工程实验、勘测、设计中常见的列表函数之数值插值方法、程序实现及工程应用, 应用此法可方便地将任何列表函数计算到工程设计、施工所需要的精确程度, 给 出了各参数随主要参数变化而变化的光滑曲线, 并将其应用推广到一般情况. 关键词: 列表函数; 数值拟合; 三次样条插值; MA TLAB 程序设计与应用 在实际工程中, 广泛存在这样的问题: 根据设计要求和具体的工程条件, 在初始设计阶段会勘测得到若干组该工程的控制参数, 但这些参数之间彼此离散、不够密集, 利用它们来施工则不能满足施工的精度要求. 为了解决这一问题, 需要对已知的参数数据进行分析处理, 进行必要的插值、拟合, 以达到施工所需要的数据精度.本文以工程实例为基础, 对实际工程中插值方法的选取、插值的实现和插值曲线的拟合加以讨论, 提出能得到较合乎实际的插值方法, 给出一般工程人员就能实现的计算方法以及能得到光滑曲线的拟合方法. 1 工程应用实例 表1 所示的为某双曲拱坝体形原始参数[ 1 对于这一类工程列表参数有一个显著的特点:尽管不同工程的参数多寡不同, 但都是由n 行k 列的离散的列表数据给出, 虽然同一行代表某工程特定位置的几个参数(或高程参数, 或上游 半径参数?) , 但相邻两行由于位置距离太大, 两行各参数之间究竟存在什么数值关系, 对工 程设计、施工有何影响, 这是工程技术人员需要弄清楚的[ 2 ].以双曲拱坝为例, 它沿整个高程的变化是一个连续光滑的空间曲面. 从施工需要来看, 这些数据太稀疏, 难以满足设计、施工放样与钢筋配置等要求, 如果照此施工, 则有可能达不到工程精度、降低工程效率; 从计算机图形模拟来看, 要生成这个曲面仅由这一列表函数是得不到光滑曲面的, 是不可取的. 所以, 为使计算精确, 满足工程施工过程中任何断面位置、任意水平位置、任意高程位置所必需的施工数据与设计图纸, 保证工程施工的高品质,就要求作精确的数据处理.进一步分析可知, 在这 些参数表中, 各行的参数都随某一主要参数的变化而变化, 如上游半径参数随高程的变化而变化?, 它们的这种函数关系,在数值分析中有许多的方法可以求得. 但是哪种方法能更好、更合 乎实际地给出平滑曲线呢? 下面所选的插值方法能够较好地满足这一要求.

贝塞尔曲线和B样条曲线(优质参考)

§4.3 贝塞尔曲线和B 样条曲线 在前面讨论的抛物样条和三次参数样条曲线,他们的共同特点是:生成的曲线通过所有给定的型值点。我们称之为“点点通过”。但在实际工作中,往往给出的型值点并不是十分精确,有的点仅仅是出于外观上的考虑。在这样的前提下,用精确的插值方法去一点点地插值运算就很不合算;另外,局部修改某些型值点,希望涉及到曲线的范围越小越好,这也是评价一种拟合方法好坏的指标之一。 针对以上要求,法国人Bezier 提出了一种参数曲线表示方法,称之为贝塞尔曲线。后来又经Gorgon, Riesenfeld 和Forrest 等人加以发展成为B 样条曲线。 一、 贝塞尔曲线 贝塞尔曲线是通过一组多边折线的各顶点来定义。在各顶点中,曲线经过第一点和最后一点,其余各点则定义曲线的导数、阶次和形状。第一条和最后一条则表示曲线起点和终点的切线方向。 1.数学表达式 n+1个顶点定义一个n 次贝塞尔曲线,其表达式为: )()(0,t B p t p n i n i i ∑== 10≤≤t ),...,2,1,0(n i p i =为各顶点的位置向量,)(,t B n i 为伯恩斯坦基函数 i n i n i t t n i n t B ---= )1()! 1(!! )(, 2.二次贝塞尔曲线 需要3个顶点,即210,,p p p ,将其代入曲线表达式: 2,222,112,00)(B p B p B p t p ++=

220202,021)1() 1()! 02(!0! 2t t t t t B +-=-=--= - 21212,122)1(2)1()! 12(!1! 2t t t t t t B -=-=--= - 22222,2)1()! 22(!2! 2t t t B =--= - 221202)22()21()(p t p t t p t t t p +-++-= [ ] ?? ?? ? ???????????????--=2102 0010221211p p p t t 10≤≤t 2102)21(2)1(2)(tp p t p t t p +-+-=' )(222)0(0110p p p p p -=+-=' 0)0(p p = )(222)1(1221p p p p p -=+-=' 2)1(p p = 当2 1 = t 时: 21021041214141)412212()412121(21p p p p p p p ++=+?-?++?-=?? ? ?? )](2 1 [21201p p p ++= 02210212)2121(2)121(221p p p p p p -=?+?-+-=?? ? ??'

三次样条拟合范例

1设计目的、要求 对龙格函数2 2511 )(x x f += 在区间[-1,1]上取10=n 的等距节点,分别作多项式插值、三次样条插值和三次曲线拟合,画出)(x f 及各逼近函数的图形,比较各结果。 2设计原理 (1) 多项式插值:利用拉格朗日多项式插值的方法,其主要原理是拉格朗日多项 式,即: 01,,...,n x x x 表示待插值函数的1n +个节点, 0()()n n j k k j j k L x y l x y ===∑,其中0,1,...,j n =; 011011()...()()...() ()()...()...()...() k k n k k k k k k k n x x x x x x x x l x x x x x x x x x -+-+----= ---- (2) 三次样条插值:三次样条插值有三种方法,在本例中,我们选择第一边界条 件下的样条插值,即两端一阶导数已知的插值方法: 00'()'S x f = '()'n n S x f = (3)三次曲线拟合:本题中采用最小二乘法的三次多项式拟合。最小二乘拟合是 利用已知的数据得出一条直线或者曲线,使之在坐标系上与已知数据之间的距离的平方和最小。在本题中,n= 10,故有11个点,以这11个点的x 和 y 值为已知数据,进行三次多项式拟合,设该多项式为 23432xi i i i p a a x a x ax =+++,该拟合曲线只需2[]xi i p y -∑的值最小即可。 3采用软件、设备 计算机、matlab 软件

4设计内容 1、多项式插值: 在区间[] -上取10 1,1 n的等距节点,带入拉格朗日插值多项式中,求出各个节点的插值, = 并利用matlab软件建立m函数,画出其图形。 在matlab中建立一个lagrange.m文件,里面代码如下: %lagrange 函数 function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end 建立一个polynomial.m文件,用于多项式插值的实现,代码如下: %lagrange插值 x=[-1:0.2:1]; y=1./(1+25*x.^2); x0=[-1:0.02:1]; y0=lagrange(x,y,x0); y1=1./(1+25*x0.^2); plot(x0,y0,'--r') %插值曲线 hold on %原曲线 plot(x0,y1,'-b') 运行duoxiangshi.m文件,得到如下图形:

关于三次样条插值函数的学习报告(研究生)资料

学习报告—— 三次样条函数插值问题的讨论 班级:数学二班 学号:152111033 姓名:刘楠楠

样条函数: 由一些按照某种光滑条件分段拼接起来的多项式组成的函数;最常用的样条函数为三次样条函数,即由三次多项式组成,满足处处有二阶连续导数。 一、三次样条函数的定义: 对插值区间[,]a b 进行划分,设节点011n n a x x x x b -=<< <<=,若 函数2()[,]s x c a b ∈在每个小区间1[,]i i x x +上是三次多项式,则称其为三次样条函数。如果同时满足()()i i s x f x = (0,1,2)i n =,则称()s x 为()f x 在 [,]a b 上的三次样条函数。 二、三次样条函数的确定: 由定义可设:101212 1(),[,] (),[,]()(),[,] n n n s x x x x s x x x x s x s x x x x -∈??∈?=???∈?其中()k s x 为1[,]k k x x -上的三次 多项式,且满足11(),()k k k k k k s x y s x y --== (1,2,,k n = 由2()[,]s x C a b ∈可得:''''''()(),()(),k k k k s x s x s x s x -+-+== 有''1()(),k k k k s x s x -++= ''''1()(),(1 ,2,,1)k k k k s x s x k n -+ +==-, 已知每个()k s x 均为三次多项式,有四个待定系数,所以共有4n 个待定系数,需要4n 个方程才能求解。前面已经得到22(1)42n n n +-=-个方程,因此要唯一确定三次插值函数,还要附加2个条件,一般上,实际问题通常对样条函数在端点处的状态有要求,即所谓的边界条件。 1、第一类边界条件:给定函数在端点处的一阶导数,即 ''''00(),()n n s x f s x f == 2、第二类边界条件:给定函数在端点处的二阶导数,即

三次样条函数

计算方法实验报告 1、实验题目 三次样条插函数。 2、实验内容 三次样条插值是建立在Hermite 插值的基础上的。Hermite 插值是在一个区间上的插值,而三次样条插则是建立多个区间上插值,构造一个具有二阶光滑度的曲线,在求出给定点上对应的函数。本实验就是建立一个能根据三次样条插值函数求根的程序。 3、算法思想 给定一个区间,并把它分成n 等份,并且给出了每个结点对就的横坐标和纵坐标。利用程序输出给定插值点对应的值。横坐标设为:X 0, X 1, X 2, X 3, …X n 纵坐标为Y 0, Y 1, Y 2, …Y n ,设插点为u 。则令h k =X k+1-X k ,λk =1-+k k k h h h , μk =11--+k k k h h h , g k =3(1 11--+-+-k k k k k k k k h y y h y y λμ), 其中k=1,2,…,n-1 再根据第一类边界条件则可以确定公式6.16,再根据6.17解出方程中的m 向量,最后代入公式6.8求解。 4、源程序清单 #include #define N 21/*最大结点个数减一*/ void sanCi() { /*定义过程数据变量*/ float x[N],y[N],h[N]; /*横纵坐标及区间长度*/ float rr[N],uu[N],gg[N]; /*计算m 用的中间数组rr 、uu 、gg 分别对应:λ、μ、g 数组*/

float aa[N],bb[N],tt[N]; /*矩阵分解时用到的中间变量aa、bb、tt分别对应:α、β数组以及A=LU时中间矩阵*/ float mm[N]; /*最后要用到的系数m*/ int n,k,kv,chose; /* n为实际结点个数,k为下标,kv为最后确定k的值*/ float s,u; /*最后计算u对应的值*/ printf("请输入区间段数:"); scanf("%d",&n); /*输入结点个数*/ /*输入所有横坐标:*/ printf("输入所有横坐标:"); for(k=0; k<=n; k++) scanf("%f",&x[k]); /*输入对应纵坐标:*/ printf("输入对应纵坐标:"); for(k=0; k<=n; k++) scanf("%f",&y[k]); for(k=0; k

计算机图形学教程课后习题参考答案

第一章 1、试述计算机图形学研究的基本内容? 答:见课本P5-6页的1.1.4节。 2、计算机图形学、图形处理与模式识别本质区别是什么?请各举一例说明。 答:计算机图形学是研究根据给定的描述,用计算机生成相应的图形、图像,且所生成的图形、图像可以显示屏幕上、硬拷贝输出或作为数据集存在计算机中的学科。计算机图形学研究的是从数据描述到图形生成的过程。例如计算机动画制作。 图形处理是利用计算机对原来存在物体的映像进行分析处理,然后再现图像。例如工业中的射线探伤。 模式识别是指计算机对图形信息进行识别和分析描述,是从图形(图像)到描述的表达过程。例如邮件分捡设备扫描信件上手写的邮政编码,并将编码用图像复原成数字。 3、计算机图形学与CAD、CAM技术关系如何? 答:见课本P4-5页的1.1.3节。 4、举3个例子说明计算机图形学的应用。 答:①事务管理中的交互绘图 应用图形学最多的领域之一是绘制事务管理中的各种图形。通过从简明的形式呈现出数据的模型和趋势以增加对复杂现象的理解,并促使决策的制定。 ②地理信息系统 地理信息系统是建立在地理图形基础上的信息管理系统。利用计算机图形生成技术可以绘制地理的、地质的以及其它自然现象的高精度勘探、测量图形。 ③计算机动画 用图形学的方法产生动画片,其形象逼真、生动,轻而易举地解决了人工绘图时难以解

5、计算机绘图有哪些特点? 答:见课本P8页的1.3.1节。 6、计算机生成图形的方法有哪些? 答:计算机生成图形的方法有两种:矢量法和描点法。 ①矢量法:在显示屏上先给定一系列坐标点,然后控制电子束在屏幕上按一定的顺序扫描,逐个“点亮”临近两点间的短矢量,从而得到一条近似的曲线。尽管显示器产生的只是一些短直线的线段,但当直线段很短时,连成的曲线看起来还是光滑的。 ②描点法:把显示屏幕分成有限个可发亮的离散点,每个离散点叫做一个像素,屏幕上由像素点组成的阵列称为光栅,曲线的绘制过程就是将该曲线在光栅上经过的那些像素点串接起来,使它们发亮,所显示的每一曲线都是由一定大小的像素点组成的。当像素点具有多种颜色或多种灰度等级时,就可以显示彩色图形或具有不同灰度的图形。 7、当前计算机图形学研究的课题有哪些? 答:见课本P10-11页的1.4节。 8、简述三维图形生成和输出的流水线? 答:见课本P13页1.5.6.节。 9、向量图形和点阵图形之间的区别有哪些? 答:通过矢量法产生的图形称为矢量图形或者向量图形,用描点法产生的图形称为点阵图形。向量图形区别点阵图形的特点在于描述图形几何形状的数学模型及依据此模型生成几何图形的计算机命令。向量图形由各个基本图形构成,这就要求各个基本图形有各自独立的信息。如果用点阵图形来表示一个向量图形,构成向量图形的某个基本图形(如直线段、圆弧等)的所有点应有一个信息。因此,在描述一个基本图形时,同时要描述其相应的信息。向量图形最基本的优点是它本身是由精确的数据给出,所以可以充分利用各种输出图形设备的分辨率尽可能精确地输出图形。也正因为如此,向量图形的尺寸可以任意变化

三次样条差值拟合车门曲线

数学实验(三次样条)

数学实验(三次样条插值) 实验1: 某汽车制造商用三次样条插值设计车门的曲线,其中一段的数据如下: i x 0 1 2 3 4 5 6 7 8 9 10 i y 0.0 0.79 1.53 2.19 2.71 3.03 3.27 2.89 3.06 3.19 3.29 i y 0.8 0.2 用三次样条插值求)(10x S ,用软件绘制)(10x S 的图像,即车门的曲线。 1、计算)(10x S : 程序: // splineaaaa.cpp : 定义控制台应用程序的入口点。 //**三次样条差值** //***第一步,利用差商,代替导数,求差商; //***第二步,利用追赶法求解三对角方程组,得到M[i]; //***第三步,将求得值带入三次样条函数,求得S(x); #include #include #include #define N 10 double x[N + 1], fx[N + 1], h[N ], H[N ], f[N ], a[N + 1], b[N + 1], c[N + 1], M[N + 1], beta[N + 1], y[N + 1],s[N ];//定义变量数组; double tiaojian1, tiaojian2; //边界条件; //求插商; void chashang() { int i; for (i = 0; i <= N - 1; i++) h[i] = x[i + 1] - x[i]; for (i = 0; i <= N - 1; i++) f[i] = (fx[i + 1] - fx[i]) / (x[i + 1] - x[i]); for (i = 1; i <= N - 1; i++) { a[i] = h[i - 1] / (h[i - 1] + h[i]); b[i] = h[i] / (h[i - 1] + h[i]); c[i] = 3 * (a[i] * f[i - 1] + b[i] * f[i]); }

样条函数(三次样条)

样条插值是一种工业设计中常用的、得到平滑曲线的一种插值方法,三次样条又是其中用的较为广泛的一种。 1. 三次样条曲线原理 假设有以下节点 1.1 定义 样条曲线是一个分段定义的公式。给定n+1个数据点,共有n个区间,三次样条方程满足以下条件: a. 在每个分段区间(i = 0, 1, …, n-1,x递增),都是一个三次多项式。 b. 满足(i = 0, 1, …, n ) c. ,导数,二阶导数在[a, b]区间都是连续的,即曲线是光滑的。 所以n个三次多项式分段可以写作: ,i = 0, 1, …, n-1 其中ai, bi, ci, di代表4n个未知系数。 1.2 求解 已知: a. n+1个数据点[xi, yi], i = 0, 1, …, n b. 每一分段都是三次多项式函数曲线 c. 节点达到二阶连续 d. 左右两端点处特性(自然边界,固定边界,非节点边界) 根据定点,求出每段样条曲线方程中的系数,即可得到每段曲线的具体表达式。 插值和连续性: , 其中i = 0, 1, …, n-1 微分连续性:

, 其中i = 0, 1, …, n-2 样条曲线的微分式: 将步长带入样条曲线的条件: a. 由(i = 0, 1, …, n-1)推出 b. 由(i = 0, 1, …, n-1)推出 c. 由(i = 0, 1, …, n-2)推出 由此可得: d. 由(i = 0, 1, …, n-2)推出 设,则 a. 可写为:

,推出 b. 将ci, di带入可得: c. 将bi, ci, di带入(i = 0, 1, …, n-2)可得: 端点条件 由i的取值范围可知,共有n-1个公式,但却有n+1个未知量m 。要想求解该方程组,还需另外两个式子。所以需要对两端点x0和xn的微分加些限制。选择不是唯一的,3种比较常用的限制如下。 a. 自由边界(Natural) 首尾两端没有受到任何让它们弯曲的力,即。具体表示为和 则要求解的方程组可写为: b. 固定边界(Clamped) 首尾两端点的微分值是被指定的,这里分别定为A和B。则可以推出

基于多项式插值与三次样条插值曲线拟合的比较

2015级《数值分析》课外课堂大作业 论文题目:基于多项式插值与三次样条插值曲线拟合的比较姓名:XXX 学号:XXXXXXXXXXX 学院:XXXXXXXXXXXXXXX 专业方向: XXXXXXXXXXXXXXX 联系方式:(QQ号) (手机号) 导师姓名: 完成人(亲笔)签字 二0一五年十二月

基于多项式插值与三次样条插值曲线拟合的比较 摘要:在数值计算中经常要计算函数,当函数只在有限点集上给定函数值要包含改点集的区间上用公式给出函数的简单表达式,这就涉及在已知区间上用简单函数逼近已知复杂函数问题。本文为了解决这类问题就采用多项式插值与三次样条插值两种插值法并利用MATLAB数值分析软件进行编程,实现相应数据的曲线拟合以获得最佳曲线模型与相应数据的曲线拟合,选出最优的插值法以解决所给数据的曲线拟合问题。 关键词:函数;多项式插值;三次样条插值;曲线拟合;MATLAB Abstract:In numerical analysis ,the function value is often calculated .when the function is only given a function point set ,the simple expression of the function is given by the interval .which involves the use of a simple function to approximate the known complex function .in order to solve this problem ,we use polynomial interpolation and cubic spline interpolation tow kind of interpolation method and use MATLAB numerical analysis software to program ,to achieve the curve fitting of the corresponding date to obtain the best cure fitting ,and to choose the best interpolation method to solve the problem of curve fitting to the date. Keyword: Function ; Polynomial interpolation ; Cubic spline interpolation ; Fitting of a curve ; MATLAB

第三章 样条插值和曲线拟合

第三章样条插值与曲线拟合 学习目标:掌握分段线性插值、分段Hermite插值、样条插值 方法以及贝齐尔曲线拟合曲 线的方法。重点是分段线性 插值、分段Hermite插值、样 条插值。

1901年龙格(Runge )给出一个例子: ,定义在区间[-1,1]上,这是一个很光滑的函数,它的任意阶导数都存在,对它在[-1,1]上作等距节点插值时,插值多项式的情况见图1 §1 多项式插值的龙格现象 22511)(x x f +=

俄罗斯数学家伯恩斯坦(C.H.Bernstein )在1916年还给出如下定理。 定理1 函数 在[-1,1]上取n 个等距节点 ,构造n-1次插值多项式 ,当n 增大时,除了-1,0,1三点外,在[-1,1]中任何点处都不收敛于 。 x x f = )(1,11=-=n x x )(1 x P n -x 上述介绍的现象和定理告诉我们用高次插值多项式是不妥当的,从数值计算上来看也是这样,前一章介绍过的差分的误差传播会随阶数的提高越来越严重,因此,实践上作插值时一般只用一次、二次,最多用三次插值多项式。而提高插值精度的方法,可采用分段插值:

譬如在[a,b]上定义的连续函数 ,在[a,b]上取节点 构造一个分段一次多项式 ,即 在 上为 由一次插值的余项知在 上, )(x f b x x x x a n n =<<<<=-121 )(x L )(x L ],[1+i i x x i i i i i i i i x x x x x f x x x x x f --+--++++1111)()() )()(,,()()()(11++--=-=i i i i x x x x x x x f x L x f x R ],[1+i i x x 228 )(h M x R ≤

相关文档
最新文档