纯弯曲梁的正应力实验
梁的纯弯曲正应力实验报告
梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告一、实验目的本实验旨在通过对实验材料进行纯弯曲加载,测量其正应力和弯曲角度,从而掌握材料在纯弯曲状态下的应力特性,并探究材料性能的影响因素。
二、实验原理当梁在纯弯曲时,受到的载荷可以分解为一个弯矩和一个剪力。
由于实验中去除了外部作用力,剪力为零,因此我们只需要考虑弯矩作用下的应力情况。
在梁的截面上,由于受到弯曲,不同位置的应变不同,因此会形成不同大小的应力。
在正常情况下,当梁未发生破坏时,梁的内部应力呈线性分布,即受到的弯矩越大,所受到的应力也会相应增大。
三、实验设备本实验所使用的设备包括:1.纯弯曲实验台2.测力仪3.梁材料(一定长度的圆形钢管或方管)四、实验步骤1. 选择一段合适材质的梁进行实验。
2. 将梁固定在纯弯曲实验台上。
3. 在梁的一端加上一定荷载。
4. 通过测力仪测量在梁部位不同位置受到的正应力。
5. 在梁的另一端加上一定数量的荷载,并重复步骤4,记录正应力。
6. 重复以上操作,直到梁发生破坏。
五、实验结果在实验过程中,我们记录了梁不同位置受到的正应力,并根据实验数据分析了不同弯矩下的应力分布曲线。
实验结果表明,在纯弯曲状态下,梁的内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。
六、实验分析根据实验结果,我们可以发现梁的性能会受到材料的影响。
不同的材料具有不同的弯曲特性,不同的性能和抗断性能。
而在实验中,我们也可以通过调整材料的材质和长度来控制弯曲的程度,从而控制梁的应力分布和破坏点位置。
七、实验结论本实验通过纯弯曲实验台对梁进行弯曲测试,得到了不同弯矩下的应力分布曲线。
实验结论表明,梁在纯弯曲状态下,其内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。
同时,不同材质和长度的材料在弯曲状态下具有不同的弯曲特性和抗断性能。
纯弯曲梁正应力实验报告数据
纯弯曲梁正应力实验报告数据通过实验,测量纯弯曲梁上不同位置的正应力分布情况,验证弯曲梁的拉应力和压应力分布的理论公式。
实验原理:当梁在弯曲作用下,不同位置存在拉应力和压应力,根据亥姆霍兹方程可得到弯曲梁在不同位置的正应力分布情况,即压应力M/z和拉应力M/z,其中M为弯矩,z为梁纵向距离。
实验中通常采用张力应变计和屈服应变计来测量梁上不同位置的正应力。
实验设备和材料:1. 弯曲梁样品:选取一根长度较长、宽度和厚度相对较小的金属样品;2. 悬挂装置:用于悬挂样品并施加弯矩;3. 应变计:用于测量样品上不同位置的应变。
实验步骤:1. 将弯曲梁样品固定在悬挂装置上,并调整悬挂装置,使得梁样品呈现凸起形状;2. 使用应变计测量梁上不同位置的应变,记录下对应的位置和应变数值;3. 变动悬挂装置的位置,重复步骤2,记录更多位置的应变数值;4. 将测得的应变数值转化为正应力数值,并绘制应力-位置曲线。
实验数据:测量位置(mm)应变10 15020 32030 48040 60050 700数据处理与分析:根据所测得的应变数据,可以求得相应的正应力数值,采用伸长应变公式ε= ε0 + εz ,其中ε为应变数值,ε0为起始应变(对应位置为0时的应变),z为梁上某一位置的纵向距离。
根据实验数据,计算得到的正应力数据如下:测量位置(mm)正应力(MPa)10 150020 160030 160040 150050 1400根据正应力-位置数据,绘制正应力-位置曲线,并进行拟合分析,可得出弯曲梁上的正应力分布规律。
实验结果与讨论:通过实验测量,我们得到了纯弯曲梁上不同位置的正应力分布情况。
根据实验数据,我们可以看出,纯弯曲梁上的正应力是不均匀的,最大值出现在梁的上表面,呈拉应力,最小值出现在梁的下表面,呈压应力。
这符合我们的理论预期。
在实验过程中,可能存在一些误差。
一方面,样品的准备和测量过程中可能存在一些不均匀性,导致测得的应变和正应力数值存在一定的误差。
纯弯曲梁的正应力实验
纯弯 曲梁 的正 应力 实验
(1)梁的基本参数。 (2)实验记录表格。 (3)将各点的σ实和σ理描绘在同一个σOy 坐标系中,分别作出σ实-y和σ理-y分布曲线, 以便进行比较,从而检验梁的弯曲正应力理论公 式的正确性。
15.4 材料 剪切 弹性 模量G 的测
定
实验用到的仪器包括WSG-80型纯弯曲正应力试 验台、静
实验梁为低碳钢制成的矩形截面梁,根据实验装置 图、实验受力图可知,施加的砝码重量通过杠杆以一定 的比例作用于副梁的中央并通过两个挂杆作用于实验梁 C,D处,其荷载各为F/2。CD段处于纯弯曲状态。
(1)测定矩形截面梁的宽度b和高度h,荷载作用点 至梁支座距离a,并测量各应变片距中性层的距离y。
(2)正确地将各测点应变片和温度补偿片分别接到 电阻应变仪的相应接线柱上。
(3)接通应变仪的电源,完成预热工作后,设置应 变仪的灵敏系数,并将各窗口读数清零。
(4)加载。首先挂上砝码托作为初荷载,记录各测 点的应变值εi。采用增量法逐级加载,分四次加载,每加 载一次记录一次应变值,直至加载完毕。
在梁中CD段任选一截面,距中性层不同高度处,等 距离地粘贴五片电阻应变片,每片相距h/4,此外还布 设一个温度补偿片。试验中,采用半桥接线法将各测点 的工作应变片和温度补偿片连接在应变电桥的相邻桥臂 上,按照电阻应变仪的操作规程将电桥预调平衡,加载 后即可从应变仪上读出各测点的应变值ε实。
纯弯 曲梁 的正 应力 实验
1.1实验目的及仪器设备
纯弯曲梁的正 应力实验
1.2实验原理 1.3实验步骤
1.4实验数据处理
理论分析可知,梁发生纯弯曲变形时,横截面 上只有正应力,以中性轴为界,一侧为拉应力,一 侧为压应力,且正应力的大小与点到中性轴的距离 成正比。本节用实验测定矩形截面简支梁承受纯弯 曲时横截面上正应力的大小及其分布规律,并与理 论值进行比较,以验证弯曲正应力公式,并初步掌 握电测法原理和静态电阻应变仪的使用方法。
梁的纯弯曲正应力实验
梁的纯弯曲正应力实验
工作片
R1
B
A
R2 温度补偿片 C 固定电阻
相同应变片R1.R2,R1贴 在构件受力处,R2贴在附 近不受力处,环境温度对 R1.R2引起的阻值变化相 同,为DRT,则
R4
R3
D
梁的纯弯曲正应力实验
五、实验数据的记录与计算
梁的纯弯曲正应力实验
六、注意事项
1.加载时要缓慢, 防止冲击。 2.读取应变值时, 应保持载荷稳定。 3.各引线的接线柱必须拧紧, 测量过程中不要触动引线, 以 免引起测量误差。
梁的纯弯曲正应力实验
一、实验目的
1.测定纯弯曲下矩形截面梁横截面上正应力的 分布规律,并与理论值比较;
2.熟悉电测法基本原理和电阻应变仪的使用。 二、实验仪器 1.纯弯曲试验装置;
2.YD-15型静态数字电阻应变仪。
梁的纯弯曲正应力实验
三、试验原理
1. 结构示意图及理论值计算
b hz
y
F/2 a
F/2
DR1 R1
-
DR2 R2
DR3 R3
-
DR4 R4
)
E 4
K
(
1
-
2
3
-
4
)
梁的纯弯曲正应力实验
4.电桥接法及温度补偿 1.电桥接法: 全桥接法(四个电阻均为应变片);
半桥接法(R1、R2为应变片, R3.R4为固定电阻)
两种接法中的应变片型号、阻值尽可能相同 或接近, 固定电阻与应变片阻值也应接近。
F F/2
ma m
FQ +
纯弯曲梁的正应力测定的实验报告
贴片位置
b
8
y3
0
h
16
y2(y4)
a
200
y1(y5)
3应变读数记录
读数A
应变片号
载荷
1
2
3
4
A
0
120
567
168
637
92
4500
0
7449
91
4
522
606
4500
7481
8
120
461
184
576
92
4500
0
7510
89
12
399
545
4500
7540
16
120
338
185
514
92
4500
0
7570
91
20
276
484
4500
7601
平均
179
92
0
0
4计算结果及误差
应变片号
1
2
3
4
0
18MPa
0
误差(%)
%
%
0
%
计算过程:
1计算梁的弯矩:
2计算不同应变片的应力
应变片1
应变片2
应变片4
2:学习电测法。
主要实验仪器:1:弯曲试验装置。
2:电阻应变仪和预调平衡箱。
主要实验步骤:
一:取一矩形截面的等截面剪支梁AB,其上作用两个对称的集中力P/2,未加载前,在中间CD段表面画些平行于梁轴线的纵向线和垂直于梁轴线的横向线。加载后在梁的AC和DB两段内,各横截面上有不同的剪力和弯矩M。
纯-弯曲梁的正应力实验
纯-弯曲梁的正应力实验本实验旨在研究弯曲梁在受力时的正应力分布情况,通过实验数据的测量及分析,探讨影响梁正应力分布的因素,并对梁的强度进行评估。
1. 实验原理1.1 弯曲梁正应力分析弯曲梁是一种常用的结构元件,例如桥梁、楼层结构等,她受到外力的作用会发生弯曲形变,产生正应力和剪应力。
弯曲梁的正应力是沿着截面法向的应力,在梁的顶部为拉应力,底部为压应力。
正应力的计算公式如下:$$\sigma = \frac{My}{I}$$其中,$\sigma$为正应力,$M$为弯矩,$y$为受力点到截面重心的距离,$I$为截面惯性矩。
弯曲梁正应力的分布情况受到多种因素的影响,主要包括:① 梁材料的弹性模量:弹性模量越大,弯曲梁的刚度越大,相同外力作用下,梁的形变和正应力都会相应减小。
② 梁截面形状和尺寸:梁截面的惯性矩影响正应力的大小和分布情况。
截面抗弯性能越强,正应力越小。
③ 受力位置和方向:受力位置和作用方向是影响正应力大小和分布情况的重要因素。
不同位置和方向的外力作用会导致不同的正应力分布规律。
2. 实验设备和方法本实验采用的主要设备有:弯曲梁试验机、电子天平、千分尺等。
2.2 实验步骤1. 准备弯曲梁样品,将其加工成常用的矩形截面和半圆形截面,分别测量其截面形状和尺寸。
2. 调整弯曲梁试验机,设置好取样位置和取样方式。
3. 将弯曲梁放入试验机,设置试验参数,包括荷重大小、位移速率等。
4. 开始试验,记录每个荷载下的跨中挠度和荷载大小,并计算出弯矩大小。
5. 在试验过程中,用电子天平测量梁的重量,并用千分尺对梁的跨中直径和截面高度进行测量,计算出截面惯性矩。
6. 根据测量数据,计算出每个荷载下的正应力,并绘制出正应力分布图。
3. 结果分析3.1 实验数据记录本实验用常见的矩形和半圆形弯曲梁进行了试验,记录了不同工况下的荷载和跨中挠度等数据。
根据数据计算得出弯矩以及正应力等数据,具体数据结果如下表:1. 矩形截面弯曲梁(1)弯曲梁在起始荷载下出现了微小的振动,但并未发生失稳。
实验六纯弯曲梁正应力的测定一、实验目的二、实验仪器
实验六 纯弯曲梁正应力的测定一、实验目的1. 初步掌握电测法的基本原理和方法。
2. 测定梁在纯弯曲时横截面上正应力大小和分布规律;验证纯弯曲梁的正应力计算公式。
二、实验仪器、设备和工具1、组合实验台纯弯曲梁实验装置。
2、静态电阻应变仪。
3、游标卡尺、钢板尺。
三、实验原理梁受纯弯曲时,纯弯曲正应力计算公式为:ZI My=σ式中:M-弯矩-横截面对中性轴的惯矩Z I y-所求应力点到中性轴的距离由上述可知,梁在纯弯曲时,各点处的正应力沿横截面高度按直线规律分布。
如将电阻应变计粘贴在距中性层不等的位置上(见图),测得纯弯曲时沿横截面高度各点的纵向应变ε。
根据理论推导可知,各纵向纤维层只受简单拉伸或压缩,由单向应力状态的虎克定律εσE =,可求出各点处的实验应力实σ。
要测纯弯曲梁沿截面高度各点的应变值,可采用温补半桥组桥方法,见电阻应变片各种接桥方法(1)。
加载采用增量法,即每增加等量的载荷,测出各点的应变增量P ΔεΔ,然后分别取各点应变增量的平均值i εΔ,记录应变仪读数并填入表中,依次求出各点的应变增量实i εΔ.实实i E εσΔ=将实测应力值实σ与理论应力值理σ进行比较,以验证弯曲正应力公式。
四、实验步骤(一)、实验准备1、 按规定位置粘贴电阻应变计,焊线、防护(己由生产厂家准备好)。
2、 制定加载方案,四级加载:20Kg、40Kg、60Kg、80Kg。
3、 接通传感器和负荷显示器及电阻应变仪,预热10分钟。
4、 记录梁的截面尺寸,载荷作用点到支点距离及各应变计的位置。
见附表15、 加初载荷0P (一般取0P =10%max P 左右)估算max P ,记下初读数。
(二)、进行实验1、 均匀缓慢加载到初载荷0P ,记下各点应变的初始读数:后分级等量加载,每增加一级载荷,依次记录各点电阻应变片的应变值仪i ε,直到最终载荷。
实验至少重复两次。
见附表2 2、 按力值对照表分四级加载。
3、 做完实验后,卸掉载荷,仪器复原。
梁纯弯曲正应力测定实验(最全)word资料
梁纯弯曲正应力测定实验(一)实验目的*在承受纯弯曲的钢梁上,测取其横截面上各点的正应力,验证梁的正应力公式和观察应力的分布规律;*熟悉电测初步知识和测量方法。
(二)实验原理*试件、尺寸、设备——见系网页中“教学资源栏目”之“实验指导” *操作步骤、仪器使用(同上) (三)数据处理 *测量过程记录表*注:应力平均值(增量)计算:=E 理论值计算:zM yI σ∆⋅∆=,对应载荷增量∆F 所产生的弯矩:∆M=0.5∆F .a (四)思考题*弯曲正应力的大小与材料的弹性模量E 是否有关?*分析理论值计算与实验值产生的误差原因。
(列出可能的几种) *若在实验中出现与中性层对应的点的数值为“非零”,是什么原因?临床实验室定量测定室内质量控制一术语和定义1偏倚 bias试验结果偏离可接受参考值的系统偏离(带有正负号)。
2不精密度 imprecision一组重复测定结果的随机离散,其值由统计量定量表示为标准差或变异系数。
3质量控制quality control质量管理的一部分,致力于满足质量要求。
[GB/T 19000-2000,]4 质量控制策略 quality control strategy质控品种类、每种检测频次、放置的位置,以及用于质控数据解释和确定分析批是在控还是失控的规则。
5 随机误差 random error测量结果与在重复性条件下对同一被测量进行无限多次测量所得结果的平均值之差。
6 系统误差 systematic error在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。
7 可报告范围 reportable range在仪器、试剂盒或系统的测定响应之间的关系,显示是有效的期间内试验值范围。
8 标准差 standard deviation观察值或测定结果中不精密度的统计度量。
变异性/离散的度量是总体方差的正平方根。
二质量控制的目的质量控制方法是用来监测检验方法的分析性能,警告检验人员存在的问题。
弯曲应力—纯弯曲时的正应力(材料力学)
§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z
纯弯曲梁正应力实验
将所用仪器设备复原,数据经指导教师检查签字。
实验表格
数据 项目 梁的几何 尺寸
纯弯曲梁正应力实验数据表
结果
数据 结果
项目
宽度 b=20mm 高度 h=40mm 跨距 a=160mm
层的距离 y。 3.拟定加载方案。先选取适当的初载 P。,估算最大载荷 Pmax(σmax≤0。7σs),分 4~6
级加载。 4.根据加载方案,调整好实验加载装置。 5.按实验要求接线。调整好电阻应变仪,检查整个测试系统是否处于正常工作状态。 6 加载。用均匀慢速加载至初载荷 P。,记下各点电阻应变仪的初读数。然后逐级加载,
实验原理
实验可采用半桥单臂、公共补偿、多点测量方法。加载采用增量法。即每增加等量的载 荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε,依次求出各点 的应力增量
△σ实 i=E△ε实 i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
实验步骤
1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度 b 和高度 h、载荷作用点到梁支点距离 a 及各应变片到中性
一点的正应力计算公式为
s = My Iz
式中 M 为弯矩; Iz 为横截面对中性轴的惯性矩; y 为所求应力点至中性轴的距离。由 上式可知,在弹性范围内,沿横截面高度正应力按线性规律变化,其最大应力产生在上、下 边缘,为
s弯截面模量。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁的侧面不同 高度,平行于轴线贴有 7 片电阻应变片,如图所示。其中 3# 片位于中性层处, 2# 、 4# 片分 别距中性层上、下 h/ 4 处。 1# 、 1‘#、 5# 、 5‘#片分别位于上下表面。此外,在梁的上表面 沿横向粘贴 0# 应变片。
纯弯曲梁的正应力实验报告
纯弯曲梁的正应力实验报告纯弯曲梁的正应力实验报告引言:纯弯曲梁是一种常见的结构形式,它在工程中广泛应用于桥梁、建筑物以及机械设备等领域。
了解纯弯曲梁的正应力分布规律对于工程设计和结构安全至关重要。
本实验旨在通过实验方法测量纯弯曲梁的正应力分布,并对实验结果进行分析和讨论。
实验原理:纯弯曲梁在受力时,其截面上的纵向纤维会发生伸长或压缩,从而产生正应力和剪应力。
根据弯曲梁的理论,当弯矩作用于梁上时,梁截面上的正应力与截面距离中性轴的距离成正比。
实验步骤:1. 实验准备:选择一根长度适中的纯弯曲梁,清理梁的表面,并使用卡尺测量梁的几何参数,如宽度、高度和长度等。
2. 悬挂梁:在实验装置上悬挂梁,并调整悬挂点的位置,使梁能够自由弯曲。
3. 施加载荷:逐渐施加外力,使梁发生弯曲,同时记录外力大小和梁的挠度。
4. 测量应变:在梁的表面粘贴应变片,并使用应变仪测量不同位置的应变值。
5. 计算正应力:根据应变与正应力之间的线性关系,使用应变-应力关系计算不同位置的正应力。
6. 绘制应力分布曲线:将测得的正应力数据绘制成应力分布曲线,并进行分析和讨论。
实验结果与分析:通过实验测量和计算,得到了纯弯曲梁不同位置的正应力值,并绘制了应力分布曲线。
实验结果显示,在纯弯曲梁的中性轴附近,正应力较小;而在梁的顶部和底部,正应力较大。
这符合弯曲梁的理论,即正应力与截面距离中性轴的距离成正比。
进一步分析发现,纯弯曲梁的正应力分布呈现出一种对称性,即梁的上下两侧的正应力大小相等。
这是由于梁在弯曲过程中,上下两侧受到的外力大小和方向相反,从而使得正应力分布对称。
此外,实验结果还显示,纯弯曲梁的正应力在梁的中心位置达到最小值,这是由于中性轴处的纤维受力最小,所以正应力最小。
结论:通过本实验,我们成功测量和分析了纯弯曲梁的正应力分布规律。
实验结果表明,纯弯曲梁的正应力与截面距离中性轴的距离成正比,且呈现对称分布。
这对于工程设计和结构安全具有重要意义,能够帮助工程师更好地预测和评估梁的受力情况。
实验四 纯弯曲梁正应力实验参考资料
74实验四 纯弯曲梁正应力实验一、实验目的1、测定矩形截面梁在纯弯曲时的正应力分布规律,并验证弯曲正应力公式的正确性;2、学习多点静态应变测量方法。
二、仪器设备1、纯弯曲梁实验装置;2、YD-88型数字式电阻应变仪;3、游标卡尺。
三、试件制备与实验装置1、试件制备本实验采用金属材料矩形截面梁为实验对象。
为了测量梁横截面上正应力的大小和它沿梁高度的分布规律,在梁的纯弯段某一截面处,中性轴和以其为对称轴的上下1/4点、梁顶、梁底等5个测点沿高度方向均匀粘贴了五片轴向的应变计(如图4-4-1),梁弯曲后,其纵向应变可通过应变仪测定。
图4-4-12、实验装置如图4-4-2和图4-4-3所示,将矩形截面梁安装在纯弯曲梁实验装置上,逆时针转动实验装置前端的加载手轮,梁即产生弯曲变形。
从梁的内力图可以发现:梁的CD 段承受的剪力为0,弯矩为一常数,处于“纯弯曲”状态,且弯矩值M=21P •a ,弯曲正应力公式 σ=z yI ⋅M可变换为σ=y az⋅P ⋅I 2图4-4-2图4-4-37576四、实验原理实验时,通过转动手轮给梁施加载荷,各测点的应变值可由数字式电阻应变仪测量。
根据单向胡克定律即可求得σi 实=E ·εi 实(i=1,2,3,6,7)为了验证弯曲正应力公式σ=z y I ⋅M 或σ=y az⋅P ⋅I 2的正确性,首先要验证两个线性关系,即σ∝y 和σ∝P 是否成立:1、检查每级载荷下实测的应力分布曲线,如果正应力沿梁截面高度的分布是呈直线的,则说明σ∝y 成立;2、由于实验采用增量法加载,且载荷按等量逐级增加。
因此,每增加一级载荷,测量各测点相应的应变一次,并计算其应变增量,如果各测点的应变增量也大致相等,则说明σ∝P 成立。
最后,将实测值与理论值相比较,进一步可验证公式的正确性。
五、实验步骤1、试件准备用游标卡尺测量梁的截面尺寸(一般由实验室老师预先完成),记录其数值大小;将梁正确地放置在实验架上,保证其受力仅发生平面弯曲,注意将传感器下部的加力压杆对准加力点的缺口,然后打开实验架上测力仪背面的电源开关;2、应变仪的准备 a.测量电桥连接:图4-4-4如图4-4-4,为了简化测量电桥的连接,将梁上5个测点的应变计引出导线各取出其中一根并联成一根总的引出导线,并以不同于其他引出导线的颜色区别,所以,测量导线由原来的10根缩减为6根,连接测量电桥时,将颜色相同的具有编号1、2、3、6、7的五根线分别连接在仪器后面板上五个不同通道的A号接线孔内,并将具有特殊颜色的总引出导线连接在仪器后面板上的“公共补偿片BC”位置的B号接线孔内。
纯弯曲正应力实验报告
纯弯曲正应力实验报告一、实验目的1. 掌握纯弯曲正应力的基本原理和实验方法;2. 通过实验数据分析,了解梁在不同弯曲程度下的正应力分布情况;3. 培养实验操作能力,提高数据处理和分析水平。
二、实验原理纯弯曲正应力是指在受力构件的横截面上只有弯矩作用而无轴向力作用的情况下的正应力。
根据材料力学的基本理论,纯弯曲正应力可以用以下公式表示:σ=My/I其中,σ为正应力,M为弯矩,y为截面点到弯曲中心的距离,I为截面对弯曲中心的惯性矩。
三、实验步骤1. 准备实验器材:梁、砝码、测力计、测量尺、支撑架等;2. 将梁放在支撑架上,调整梁的位置,使其一端固定,另一端自由;3. 在梁上放置砝码,施加弯矩;4. 使用测力计测量梁上的作用力,记录数据;5. 使用测量尺测量梁的弯曲程度,记录数据;6. 改变砝码的数量和位置,重复步骤4和5,获取多组数据;7. 将实验数据整理成表格。
四、实验数据分析与结论通过实验数据,我们可以计算出梁在不同弯曲程度下的正应力值。
根据计算结果,我们可以得出以下结论:1. 随着弯矩的增大,梁的正应力值逐渐增大;2. 随着梁的弯曲程度的增加,正应力分布不均匀程度逐渐增大;3. 在实验条件下,纯弯曲正应力的计算公式适用。
五、实验总结与建议通过本次实验,我们掌握了纯弯曲正应力的基本原理和实验方法,了解了梁在不同弯曲程度下的正应力分布情况。
在实验过程中,我们需要注意以下几点:1. 确保梁的放置位置正确,避免支撑架的移动或倾斜对实验结果的影响;2. 在测量梁的弯曲程度时,要选择合适的测量点,避免误差的产生;3. 在计算正应力时,要确保数据的准确性和可靠性。
实验五纯弯曲梁正应力实验
实验五纯弯曲梁正应⼒实验实验五纯弯曲梁正应⼒实验⼀、试验⽬的1、熟悉电测法的基本原理。
2、进⼀步学会静态电阻应变仪的使⽤。
3、⽤电测法测定钢梁纯弯曲时危险截⾯沿⾼度分布各点的应⼒值。
⼆、试验装置1、材料⼒学多功能实验装置2、CM-1C 型静态数字应变仪三、试验原理本试验装置采⽤低碳钢矩形截⾯梁,为防⽌⽣锈将钢梁进⾏电镀。
矩形截⾯钢梁架在两⽀座上,加载荷时,钢梁中段产⽣纯弯曲变形最⼤,是此钢梁最危险的截⾯。
为了解中段危险截⾯纯弯曲梁应⼒沿⾼度⽅向分布情况,采⽤电测法测出加载时钢梁表⾯沿⾼度⽅向的应变情况,再由σ实=E ε实得到应⼒的⼤⼩。
试验前在钢梁上粘贴5⽚应变⽚见图5—1,各应变⽚的间距为4h,即把钢梁4等分。
在钢梁最外侧不受⼒处粘贴⼀⽚R 6作为温度补偿⽚。
图5—1 试验装置⽰意图对于纯弯曲梁,假设纵向纤维仅受单向拉伸或压缩,因此在起正应⼒不超过⽐例极限时,可根据虎克定律进⾏计算:σ实=E ε实E 为刚梁的弹性模量,ε实是通过电测法⽤电阻应变仪测得的应变值。
四、电测法基本原理1、电阻应变法⼯作原理电测法即电阻应变测试⽅法是根据应变应⼒关系,确定构件表⾯应⼒状态的⼀种实验应⼒分析法。
将应变⽚紧紧粘贴在被测构件上,连接导线接到电桥接线端⼦上当构件受⼒构件产⽣应变应变⽚电阻值随之变化应变仪内部的惠斯登电桥将电阻值的变化转变成正⽐的电压信号电阻应变仪内部的放⼤、相敏、检波电路转换显⽰器读出应变量。
2、电阻应变⽚1)电阻应变⽚的组成由敏感栅、引线、基底、盖层和粘结剂组成,其构造简图如图5—2所⽰。
敏感栅能把构件表⾯的应变转换为电阻相对变化。
由于它⾮常敏感,故称为敏感栅。
它⽤厚度为0.002~0.005mm的铜合⾦或铬合⾦的⾦属箔,采⽤刻图、制版、光刻及腐蚀等⼯艺过程制成,简称箔式应变。
它粘贴牢固、散热性能好、疲劳寿命长,并能较好的反映构件表⾯的变形,使测量精度较⾼。
在各测量领域得到⼴泛的应⽤。
图5—2 电阻应变⽚构造简图2)电阻应变⽚种类电阻应变⽚按敏感栅的结构形状可分为:单轴应变⽚:单轴应变⽚⼀般是指具有⼀个敏感栅的应变⽚。
纯弯曲梁的正应力实验报告
姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。
采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。
四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。
3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。
按清零键,使测力计显示零。
4.应变仪调零。
按下“自动平衡”键,使应变仪显示为零。
5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。
用应变仪右下角的通道切换键来显示第5测点的读数。
以后,加力每次500N,到3000N 为止。
6.读完3000N应变读数后,卸下载荷,关闭电源。
六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。
纯弯曲梁正应力实验报告
纯弯曲梁正应力实验报告纯弯曲梁正应力实验报告引言:纯弯曲梁正应力实验是结构力学实验中的一项重要内容,通过对纯弯曲梁的加载和变形进行观察和测量,可以研究梁的正应力分布规律,探索材料的力学性质以及结构的强度和稳定性。
本实验旨在通过实际操作和数据分析,深入了解纯弯曲梁的正应力分布特点,并对实验结果进行讨论和总结。
实验目的:1. 了解纯弯曲梁的正应力分布规律;2. 掌握测量和计算纯弯曲梁的正应力的方法;3. 分析实验结果,验证理论计算和实验测量的一致性。
实验原理:纯弯曲梁在受到外力作用时,梁的上表面受到拉应力,下表面受到压应力,而中性轴上则不受应力。
根据梁的几何形状和材料特性,可以通过理论计算得到梁上各点的正应力大小。
实验装置:1. 纯弯曲梁实验台:用于支撑和加载梁;2. 弯曲梁加载装置:用于施加力矩,产生弯曲变形;3. 应变计:用于测量梁上各点的应变;4. 数据采集系统:用于记录和分析实验数据。
实验步骤:1. 将纯弯曲梁固定在实验台上,并调整加载装置,使其施加合适的力矩;2. 在梁上选择若干个测量点,安装应变计,并进行校准;3. 施加力矩后,使用数据采集系统实时记录梁上各点的应变数据;4. 停止加载后,记录应变计的读数,并进行数据处理和分析。
实验结果:通过实验测量和数据处理,得到了纯弯曲梁上各点的应变数据。
根据应变-应力关系,可以计算出相应点的正应力大小。
通过对实验结果的分析,可以得到纯弯曲梁的正应力分布规律,验证理论计算和实验测量的一致性。
讨论与分析:1. 实验结果与理论计算相比,是否存在较大的误差?如果有,可能的原因是什么?2. 实验中是否存在其他因素对结果产生影响?如温度变化、材料非均匀性等。
3. 在实际工程中,纯弯曲梁的正应力分布特点对结构设计和施工有何重要意义?结论:通过纯弯曲梁正应力实验,我们深入了解了纯弯曲梁的正应力分布规律,并通过实验结果的分析和讨论,对实验的准确性和可靠性进行了评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯弯曲梁的正应力实验
一、实验目的:
1.测定梁在纯弯曲时横截面上正应力大小和分布规律
2.验证纯弯曲梁的正应力公式
二、实验设备及工具:
1.材料力学多功能试验台中的纯弯曲梁实验装置
2.数字测力仪、电阻应变仪
三、实验原理及方法:
在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:z
M y
I σ⋅=
为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。
采用增量法加载,每增加等量荷载△P (500N )测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i ,从而求出应力增量:
σ实i =E △ε实i
将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。
四、原始数据:
五、实验步骤:
1. 打开应变仪、测力仪电源开关
2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。
3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。
按清零键,使测力计显示零。
4.应变仪调零。
按下“自动平衡”键,使应变仪显示为零。
5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。
用应变仪右下角的通道切换键来显示第5测点的读数。
以后,加力每次500N,到3000N为止。
6.读完3000N应变读数后,卸下载荷,关闭电源。
六、实验结果及处理:
1.各点实验应力值计算
根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:
σ实i=E△εPi×10-6
2.各点理论应力值计算
载荷增量△P = 500N
弯矩增量△M = △P/2×L P
应力理论值计算(验证的就是它)
3.绘出实验应力值和理论应力值的分布图
以横坐标表示各测点的应力σ
实和σ
理
,以纵坐标表示各测点距梁中性层的位置。
将各点用直线连接,实测用实线,理论用虚线。
σ
y
4.实验值与理论值比较,验证纯弯曲梁的正应力公式。