信息论第二章答案(南邮研究生作业)

合集下载

《信息论与编码》习题解答-第二章

《信息论与编码》习题解答-第二章

《信息论与编码》习题解答第二章 信源熵-习题答案2-1解:转移概率矩阵为:P(j/i)=,状态图为:⎪⎩⎪⎨⎧==∑∑j jj ij ii W W P W 1,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=+=++=1323221313121321233123211W W W W W W W W W W W W 解方程组求得W=2-2求平稳概率符号条件概率状态转移概率解方程组得到 W=2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解: (1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bitx p x I x p i i i 170.5361log )(log )(3616161)(=-=-==⨯=(3)共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P Xii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2-4(4)2.5 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

信息论第二章答案

信息论第二章答案

信息论第二章答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍 解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

一副充分洗乱了的牌(含52张牌),试问 (1) 任一特定排列所给出的信息量是多少(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量 解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x p bit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:(a)p(x i )=52/52 * 48/51 * 44/50 * 40/49 * 36/48 * 32/47 * 28/46 * 24/45 * 20/44 * 16/43 * 12/42 * 8/41 * 4/40=(b)总样本:C 1352, 其中13点数不同的数量为4*4*4*…*4=413。

所以,抽取13张点数不同的牌的概率:bit C x p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

信息论第二、三章习题解答

信息论第二、三章习题解答

信息论(I )第二、三章 习题解答4.1 同时掷两个正常的骰子,也就是各面呈现的概率是61,求: (1)“3和5同时出现”这一事件的自信息量。

(2)“两个1同时出现”这一事件的自信息量。

(3)两个点数的各种组合(无序对)的熵或平均信息量。

(4)两个点数之和(即2,3…12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

4.2 消息符号集的概率分布和二进制代码如下表(1)求消息的符号熵。

(2)每个消息符号所需要的平均二进制码的个数或平均代码长度。

进而用这个结果求码序列中的一个二进制码的熵。

(3)当消息是由符号序列组成时,各符号之间若相互独立,求其对应的二进制码序列中出现0和1的无条件概率0p 和1p ,求相邻码间的条件概率10110100,,,P P P P 。

解答见第三章课件!4.3 某一无记忆信源的符号集为{0,1},已知0p =14,1p =34(1)求符号的平均信息熵。

(2)由100个符号构成的序列,求某一特定序列{例如有m 个“0”和(m -10)个“1”}的自信息量的表达式。

(3)计算(2)中的序列的熵。

解:(1)()()0113014408113,;;log ..i i ix p p bitH x p p symb ∈==∴=-=∑(2)这是一个求由一百个二进制符号构成的序列中的某一特定(如有m 个“0”和100-m 个“1” )序列的自信息,问题是要求某一特定序列而不是某一类序列(如含有m 个“0”的序列)(){}[]()()()()1001001001001344m 0100-m 110013100441341515844;!!!log log ..m mm m m m mmm m m m m m m mP x where x A x P A C P x m m bit I x P x m x ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭=∈⎛⎫⎛⎫∴==⎪ ⎪-⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫∴=-=-=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦其中含有个“”和个“”(3)这里有两种解法,因为是无记忆信源序列,所以单符号熵转序列熵很容易!()()()121001008113.m bit H X H x x x H x x∴==⨯=另一种解法是利用二项式定理来解。

信息论与编码第二章答案

信息论与编码第二章答案

第二章信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。

2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。

2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:kk k xi q xi q X H i log 1log 1)(log )()(2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。

答:)|;();();(Y Z X I Y X I YZ X I 2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量)()|(log );(xi q yj xi Q y x I ,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告知的是xi 出现的可能性更小了。

从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。

2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。

答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201s x p s x p s x p s x p s x p s x p 即:43)|(0)|(41)|(31)|(32)|(0)|(0)|(41)|(43)|(222120121110020100s s p s s p s s p s s p s s p s s p s s p s s p s s p 可得:1)()()()(43)(31)()(31)(41)()(41)(43)(210212101200s p s p s p s p s p s p s p s p s p s p s p s p得:114)(113)(114)(210s p s p s p )]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 0.25(bit/符号)2.8一个马尔可夫信源,已知:0)2|2(,1)2|1(,31)1|2(,32)1|1(x x p x x p x x p x x p 试画出它的香农线图,并求出信源熵。

信息论第2章作业(DOC)

信息论第2章作业(DOC)

2.居住在某地区的女孩中有25%是大学生,在大学生中有75%是身高1.6以上的,而女孩中身高1.6米以上的占总数一半.假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?
解:
信息量:比特
有一信源输出X∈{0,1,2},其概率为p0=1/4,p1=1/4,p2=1/2。

设计两个独立实验去观察它,其结果为Y1∈{0,1}和Y2∈{0,1}。

已知条件概率为
P(Y1|X) 0 1 P(Y2|X) 0 1
0 1 0 0 1 0
1 0 1 1 1 0
2 1/2 1/2 2 0 1 求:
1)I(X;Y1)和I(X;Y2),并判断哪一个实验好些。

2)I(X;Y1,Y2),并计算做Y1和Y2两个实验比做Y1或Y2中的一个实验各可多得多少关
于X的信息。

3)I(X;Y1/Y2)和I(X;Y2/Y1),并解释它们的含义。

H(X)=
.若有二个串接的离散信道,它们的信道矩阵都是
00
10001⎡⎤⎢⎥
11.有一个一阶平稳马尔可夫链X1,X2,……X r……,各X r取值于集合A={a1,a2,a3}。

已知起始概率p(X r)为p1=1/2,p2=p3=1/4,转移概率如下。

j
1 2 3
21.0585
.1251
.11100=-=-
=∞H H R。

(信息论)第二、三章习题参考答案

(信息论)第二、三章习题参考答案

第二章习题参考答案2-1解:同时掷两个正常的骰子,这两个事件是相互独立的,所以两骰子面朝上点数的状态共有6×6=36种,其中任一状态的分布都是等概的,出现的概率为1/36。

(1)设“3和5同时出现”为事件A ,则A 的发生有两种情况:甲3乙5,甲5乙3。

因此事件A 发生的概率为p(A)=(1/36)*2=1/18 故事件A 的自信息量为I(A)=-log 2p(A)=log 218=4.17 bit(2)设“两个1同时出现”为事件B ,则B 的发生只有一种情况:甲1乙1。

因此事件B 发生的概率为p(B)=1/36 故事件B 的自信息量为I(B)=-log 2p(B)=log 236=5.17 bit (3) 两个点数的排列如下:因为各种组合无序,所以共有21种组合: 其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)“两个点数中至少有一个是1”的组合数共有11种。

bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-2解:(1)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡2121)(21x x x p X i 比特 12log *21*2)(log )()(2212==-=∑=i i i x p x p X H(2)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡100110099)(21x x x p X i 比特 08.0100log *100199100log *10099)(log )()(22212=+=-=∑=i i i x p x p X H (3)四种球的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡41414141)(4321x x x x x p X i ,42211()()log ()4**log 4 2 4i i i H X p x p x ==-==∑比特2-5解:骰子一共有六面,某一骰子扔得某一点数面朝上的概率是相等的,均为1/6。

信息论第二章答案(南邮研究生作业).doc

信息论第二章答案(南邮研究生作业).doc

2-1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求:(1)“3和5同时出现”这事件的自信息量。

(2)“两个1同时出现”这事件的自信息量。

(3)两个点数的各种组合(无序对)的熵或平均信息量。

(4)两个点数之和(即2,3,…,12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-2 设有一离散无记忆信源,其概率空间为[]⎥⎦⎤⎢⎣⎡=====8/14/14/18/332104321x x x x P X(1) 求每个符号的自信息量;(2) 若信源发出一消息符号序列为(202 120 130 213 001 203 210 110 321 010 021 032 011 223 210),求该消息序列的自信息量及平均每个符号携带的信息量。

信息论与编码第二章答案解析

信息论与编码第二章答案解析

2-1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。

画出状态图并求出各符号稳态概率。

解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P(0|00)=0.8,P(0|11)=0.2,P(1|00)=0.2,P(1|11)=0.8,P(0|01)=0.5,p(0|10)=0.5,p(1|01)=0.5,p(1|10)=0.5画出状态图,并计算各符号稳态概率。

解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2-1-17)可得方程组。

0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2-3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量; (2)、“两个1同时出现”事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵;(5)、两个点数中至少有一个是1的自信息量。

信息论第二章课后习题解答

信息论第二章课后习题解答
这样,平均每个像素携带的信息量为:
每帧图像含有的信息量为:
按每秒传输30帧计算,每秒需要传输的比特数,即信息传输率 为:
(2)需30个不同的色彩度,设每个色彩度等概率出现,则其概 率空间为:
由于电平与色彩是互相独立的,因此有
这样,彩色电视系统的信息率与黑白电视系统信息率的比值为
【2.13】每帧电视图像可以认为是由3×105个像素组成,所以 像素均是独立变化,且每一像素又取128个不同的亮度电平,并 设亮度电平等概率出现。问每帧图像含有多少信息量? 若现有一广播员在约 10000 个汉字的字汇中选 1000 个来口述 此电视图像,试问广播员描述此图像所广播的信息量是多少 (假设汉字是等概率分布,并且彼此无依赖)?若要恰当地描 述此图像,广播员在口述中至少需用多少汉字?
解: 信源为一阶马尔克夫信源,其状态转换图如下所示。
根据上述c) ,
【2.20】黑白气象传真图的消息只有黑色和白色两种,即信源, X={白 黑} ,设黑色出现的概率为 P(黑) =0.3 ,白色出现的 概率为P(白)=0.7。 (1) 假设图上黑白消息出现前后没有关联,求熵H(X) ; (2) 假设消息前后有关联,其依赖关系为P(白|白)=0.9 , P(白|黑)=0.2 ,P(黑|白)=0.1 ,P(黑|黑)=0.8 ,求此一阶马 尔克夫信源的熵H2 。 (3) 分别求上述两种信源的冗余度,并比较H(X)和H2的大小, 并说明其物理意义。
解:(1)如果出现黑白消息前后没有关联,信息熵为:
(2)当消息前后有关联时,首先画出其状态转移图,如下所 示:
设黑白两个状态的极限概率为Q(黑) 和Q (白) ,
解得:
此信源的信息熵为: (3)两信源的冗余度分别为:
结果表明:当信源的消息之间有依赖时,信源输出消息的不确 定性减弱。有依赖时前面已是白色消息,后面绝大多数可能 是出现白色消息;前面是黑色消息,后面基本可猜测是黑色 消息。这时信源的平均不确定性减弱,所以信源消息之间有 依赖时信源熵小于信源消息之间无依赖时的信源熵,这表明 信源熵正是反映信源的平均不确定的大小。而信源剩余度正 是反映信源消息依赖关系的强弱,剩余度越大,信源消息之 间的依赖关系就越大。

2012.信息论.第2章.习题答案

2012.信息论.第2章.习题答案

解: 设随机变量X代表女孩子学历
X P(X)
x1(是大学生)
0.25
x2(不是大学生)
0.75
设随机变量Y代表女孩子身高
Y y1(身高>160cm) y2(身高<160cm)
P(Y)
0.5
0.5
已知:在女大学生中有75%是身高160厘米以上的
即:p(y1/ x1) = 0.75
解: 设随机变量X代表女孩子学历
(1)红色球和白色球各50只;
(2)红色球99只,白色球1只;
(3)红、黄、蓝、白色各25只;
求从布袋中随意取出一只球时,猜测其颜色所需要的信息量。
(1) p(R) p(W ) 50 /100 1/ 2 I (R) I (W ) log 2 1(bit) (2) p(R) 99 /100 0.99 p(W ) 1/100 0.01 I (R) log100 / 99 0.0145(bit) I (W ) log100 6.644(bit) (3) p(R) p(Y ) p(B) p(W ) 25/100 1/ 4 I (R) I (W ) I (W ) I (W ) log 4 2(bit)
X P(X)
x1(是大学生)
0.25
x2(不是大学生)
0.75
设随机变量Y代表女孩子身高
Y y1(身高>160cm) y2(身高<160cm)
P(Y)
0.5
0.5
已知:在女大学生中有75%是身高160厘米以上的
即:p(y1/ x1) = 0.75
求:身高160厘米以上的某女孩是大学生的信息量,即:
I
信息 代码 组
P(ui)
01234567 000 001 010 011 100 101 110 111 x0y0z0x0y0z1x0y1z0x0y1z1x1y0z0x1y0z1x1y1z0x1y1z1 1/4 1/4 1/8 1/8 1/16 1/16 1/16 1/16

信息论第二章答案汇总

信息论第二章答案汇总

2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解: (1)bit x p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2-42.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少? 解:1)因圆点之和为3的概率1()(1,2)(2,1)18p x p p =+=该消息自信息量()log ()log18 4.170I x p x bit =-== 2)因圆点之和为7的概率1()(1,6)(6,1)(2,5)(5,2)(3,4)(4,3)6p x p p p p p p =+++++=该消息自信息量()log ()log6 2.585I x p x bit =-==2.7 设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()log log 1.415()3I x bit p x === 同理可以求得233()2,()2,()3I x bit I x bit I x bit ===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++= 平均每个符号携带的信息量为87.811.9545=bit/符号 2-9 “-” 用三个脉冲 “●”用一个脉冲(1) I(●)=Log 4()2= I(-)=Log 43⎛ ⎝⎫⎪⎭0.415=(2) H= 14Log 4()34Log 43⎛⎝⎫⎪⎭+0.811=2-10(2) P(黑/黑)= P(白/黑)=H(Y/黑)=(3) P(黑/白)= P(白/白)=H(Y/白)=(4) P(黑)= P(白)=H(Y)=2.11 有一个可以旋转的圆盘,盘面上被均匀的分成38份,用1,…,38的数字标示,其中有两份涂绿色,18份涂红色,18份涂黑色,圆盘停转后,盘面上的指针指向某一数字和颜色。

信息论第二章课件及习题答案

信息论第二章课件及习题答案

2013-8-1
2
§2.1 离散型随机变量的非平 均信息量(事件的信息量)
(本章将给出各种信息量的定义和 它们的性质。)
I ( xk ; y j )
loga rkj qk w j
定义2.1.1(非平均互信息量) 给定 一个二维离散型随机变量 {(X, Y), (xk, yj), rkj, k=1~K; j=1~J} (因此就给定了两个离散型随机 变量 {X, xk, qk, k=1~K}和{Y, yj, wj, j=1~J})。 事件xk∈X与事件yj∈Y的互信息 量定义为I(xk; yj)
2013-8-1
3
§2.1 离散型随机变量的非平 均信息量(事件的信息量)
(本章将给出各种信息量的定义和 它们的性质。)
I ( xk ; y j )
loga loga rkj qk w j P(( X , Y ) ( xk , y j )) P( X xk ) P(Y y j )
2013-8-1 17
图2.2.1
H(X) 1.0
0.5
0
2013-8-1
0.5
1
P
18
§2.2 离散型随机变量的平均 自信息量(熵)
定义2.2.2(条件熵) 给定一个二维离散型 随机变量 {(X, Y), (xk, yj), rkj, k=1~K; j=1~J}。
称如下定义的H(X|Y) 为X相对于Y的条件 熵。
2013-8-1 13
§2.1 离散型随机变量的非平 均信息量(事件的信息量)
小结 非平均互信息量I(xk; yj)。 非平均自信息量h(xk),h(yj)。 条件的非平均自信息量h(xk|yj), h(yj|xk)。 联合的非平均自信息量h(xk, yj)。 相互关系: I(xk; yj)≤min{h(xk),h(yj)}。 h(xk|yj)=h(xk)-I(xk; yj) 。 h(xk, yj)=h(yj)+h(xk|yj)=h(xk)+h(yj|xk)。 h(xk, yj)=h(xk)+h(yj)-I(xk; yj)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求:(1)“3和5同时出现”这事件的自信息量。

(2)“两个1同时出现”这事件的自信息量。

(3)两个点数的各种组合(无序对)的熵或平均信息量。

(4)两个点数之和(即2,3,…,12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-2 设有一离散无记忆信源,其概率空间为[]⎥⎦⎤⎢⎣⎡=====8/14/14/18/332104321x x x x P X(1) 求每个符号的自信息量;(2) 若信源发出一消息符号序列为(202 120 130 213 001 203 210 110 321 010 021 032 011 223 210),求该消息序列的自信息量及平均每个符号携带的信息量。

解:122118()log log 1.415()3I x bit p x === 同理可以求得233()2,()2,()3I x bit I x bit I x bit ===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++= 平均每个符号携带的信息量为87.811.9545=bit/符号2-3 有一个可旋转的圆盘,盘面上被均匀地分成38份,用1,2,…,38数字标示,其中有2份涂绿色,18份涂红色,18份涂黑色,圆盘停转后,盘面上指针指向某一数字和颜色。

(1) 若仅对颜色感兴趣,计算平均不确定度; (2) 若仅对颜色和数字都感兴趣,计算平均不确定度; (3) 如果颜色已知时,计算条件熵。

解:令X 表示指针指向某一数字,则X={1,2, (38)Y 表示指针指向某一种颜色,则Y={l 绿色,红色,黑色} Y 是X 的函数,由题意可知()()i j i p x y p x =(1)3112381838()()loglog 2log 1.24()3823818j j j H Y p y p y ===+⨯=∑bit/符号 (2)2(,)()log 38 5.25H X Y H X ===bit/符号(3)(|)(,)()()() 5.25 1.24 4.01H X Y H X Y H Y H X H Y =-=-=-=bit/符号2-4 有两个二元随机变量X 和Y ,它们的联合概率如表所示。

并定义另一随机变量Z =XY (一般乘积)。

试计算:(1)H (X )、H (Y )、H (Z)、H (X Z)、H (Y Z)和H (XY Z)。

(2)H (X /Y )、H (Y /X )、H (X /Z)、H (Z/X )、H (Y /Z)、H (Z/Y )、H (X /Y Z)、H (Y /X Z)和H (Z/XY )。

(3)I(X ;Y )、I(X ;Z)、I(Y ;Z)、I(X ;Y /Z)、I(Y ;Z/X )和I(X ;Z/Y )。

解: (1)symbolbit y p y p Y H y x p y x p y p y x p y x p y p symbolbit x p x p X H y x p y x p x p y x p y x p x p jj j ii i / 1)(log )()(218183)()()(218381)()()(/ 1)(log )()(218183)()()(218381)()()(22212121112212221111=-==+=+==+=+==-==+=+==+=+=∑∑Z = XY 的概率分布如下:symbolbit z p Z H z z Z P Z kk / 544.081log 8187log 87)()(818710)(221=⎪⎭⎫ ⎝⎛+-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧===⎥⎦⎤⎢⎣⎡∑symbolbit z x p z x p XZ H z p z x p z x p z x p z p z x p z p z x p z x p z x p z p x p z x p z x p z x p z x p x p i kk i k i / 406.181log 8183log 8321log 21)(log )()(81)()()()()(835.087)()()()()()(5.0)()(0)()()()(2222221211112121111112121111=⎪⎭⎫ ⎝⎛++-=-===+==-=-=+====+=∑∑symbolbit z y p z y p YZ H z p z y p z y p z y p z p z y p z p z y p z y p z y p z p y p z y p z y p z y p z y p y p j kk j k j / 406.181log 8183log 8321log 21)(log )()(81)()()()()(835.087)()()()()()(5.0)()(0)()()()(2222221211112121111112121111=⎪⎭⎫ ⎝⎛++-=-===+==-=-=+====+=∑∑symbolbit z y x p z y x p XYZ H y x p z y x p y x p z y x p z y x p z y x p y x p z y x p y x p z y x p z y x p z y x p z x p z y x p z x p z y x p z y x p y x p z y x p y x p z y x p z y x p z y x p z y x p z y x p ijkk j i k j i / 811.181log 8183log 8383log 8381log 81)(log )()(81)()()()()(0)(83)()()()()(838121)()()()()()(8/1)()()()()(0)(0)(0)(22222222222122122121121221211211111121111111211111111211111212221211=⎪⎭⎫ ⎝⎛+++-=-====+====+=-=-==+===+===∑∑∑(2)symbolbit XY H XYZ H XY Z H symbol bit XZ H XYZ H XZ Y H symbol bit YZ H XYZ H YZ X H symbolbit Y H YZ H Y Z H symbol bit Z H YZ H Z Y H symbol bit X H XZ H X Z H symbol bit Z H XZ H Z X H symbol bit X H XY H X Y H symbol bit Y H XY H Y X H symbolbit y x p y x p XY H i jj i j i / 0811.1811.1)()()/(/ 405.0406.1811.1)()()/(/ 405.0406.1811.1)()()/(/ 406.01406.1)()()/(/ 862.0544.0406.1)()()/(/ 406.01406.1)()()/(/ 862.0544.0406.1)()()/(/ 811.01811.1)()()/(/ 811.01811.1)()()/(/ 811.181log 8183log 8383log 8381log 81)(log )()(2=-=-==-=-==-=-==-=-==-=-==-=-==-=-==-=-==-=-==⎪⎭⎫ ⎝⎛+++-==-=∑∑ (3)symbolbit YZ X H Y X H Y Z X I symbol bit XZ Y H X Y H X Z Y I symbol bit YZ X H Z X H Z Y X I symbolbit Z Y H Y H Z Y I symbol bit Z X H X H Z X I symbol bit Y X H X H Y X I / 406.0405.0811.0)/()/()/;(/ 457.0405.0862.0)/()/()/;(/ 457.0405.0862.0)/()/()/;(/ 138.0862.01)/()();(/ 138.0862.01)/()();(/ 189.0811.01)/()();(=-=-==-=-==-=-==-=-==-=-==-=-=2-5 由符号集{0,1}组成的二阶马氏链,转移概率为:p(0/00)=0.8,p(0/11)=0.2,p(1/00)=0.2,p(1/11)=0.8,p(0/01)=0.5,p(0/10)=0.5,p(1/01)=0.5,p(1/10)=0.5。

画出状态图,并计算各状态的稳态概率。

2-6 有一个一阶平稳马尔可夫链X 1,X 2,…X r ,…,各X r 取值于集A ={a 1,a 2,a 3}。

相关文档
最新文档