在坐标系中构造平行四边形(完整版).doc

合集下载

坐标系中的平行四边形

坐标系中的平行四边形

坐标系中的一些常见结论一、知识点梳理1、坐标系中的平行四边形 写出下列各图中的点的坐标标出各图中点的坐标,并找出规律总结:两组对角上的点,从数值上满足以下关系:对角上点的坐标的和,等于另外一组对角上点的坐标的和。

从这个结论我们可以得出以下结论:如果一个平行四边形,三个顶点分别为112233(,),(,),(,)a b a b a b ,那么第四点坐标44(,)a b 有: 41234123,a a a a b b b b =+-=+-或41324132,a a a a b b b b =+-=+-或42314231,a a a a b b b b =+-=+-比如,一个平行四边形的三个顶点为(1,2),(3,4),(5,6),那么第四个顶点坐标可能有三个: (135,246)+-+-或(153,264)+-+-或(351,462)+-+-即第四个顶点坐标可能为(1,0)-或(3,4)或(7,8)这个结论在之后的很多动点问题中都有涉及,请大家理解,并且记住。

2、坐标系中,中点的表示在坐标系中标出以下各点,并观察,写出它们中点的坐标。

(1,2),(5,4) (1,3),(5,1)-你能得出什么结论?结论:坐标系中,两点坐标为1122(,),(,)a b a b ,那么它们的中点坐标为:1212(,)22a ab b ++3、坐标系中,两条平行线的表达式之间的关系请参照第一页,算出每个平行四边形对边所在直线对应的一次函数,比较它们的k 的关系。

结论:在同一个坐标系中,平行的两条直线,它们的k 相等。

特殊情况:如果两个直线k 都不存在,那么它们也是平行的。

4、坐标系中,知道两点求过这两点的直线的表达式如果一条直线经过点(,),(,)a b c d ,那么这个直线的表达式为:()() d b y x a b c a c a-=-+≠-5、坐标系中,两点之间距离的表示:如果一线段端点为(,),(,)a b c d,那么这条线段长度为:6、坐标系中,两直线垂直,那么这两直线所对应的一次函数表达式的k关系为:121k k=-或者12,k k一个为0,另一个不存在。

坐标系中的平行四边形图

坐标系中的平行四边形图

坐标系中的平行四边形图
在数学中,平行四边形是一种特殊的四边形,其相对边是平行的。

在坐标系中,我们可以通过坐标点来确定一个平行四边形的形状和位置。

假设我们有一个平行四边形,其中一个顶点坐标为A(x1, y1),另一个顶点坐标
为B(x2, y2),以及通过向量a = (a1, a2) 和 b = (b1, b2) 可以得出平行四边形的另外
两个顶点坐标C和D。

基于以上信息,我们可以推导出平行四边形的性质和特征。

首先,通过向量a
和b,我们可以求出两条对角线的长度和角度。

根据平行四边形的性质,对角线相
互平分,可以得到对角线相等且垂直的结论。

其次,我们可以计算平行四边形的周长和面积。

周长可以通过各边的长度相加
得出,而面积可以通过向量积来计算。

要注意,在坐标系中,通过向量积可以得到平行四边形的有向面积,需注意方向。

最后,通过坐标系中平行四边形的图示,我们可以直观地理解平行四边形的形
状和特征。

在绘制平行四边形图时,我们可以利用数学软件或手动绘图工具,根据各点坐标和线段关系构建平行四边形的图形。

对于不同的坐标点和向量组合,我们可以得到形状各异的平行四边形图。

综上所述,坐标系中的平行四边形图不仅是数学中基础的图形概念,更是帮助
我们理解向量、几何关系和面积计算的重要工具。

通过深入研究平行四边形的性质和特征,我们可以更好地理解数学中的基本原理和概念。

平面直角坐标系中的平行四边形

平面直角坐标系中的平行四边形
(1)试求b、c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:
①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?
五、中考课堂议练(超越中考p68,2,3)
六、课堂小结作业:超越中考自主训练p70,5
教学章节
第16课平面直角坐标系中四边形
教学内容
平面直角坐标系中四边形
教学年级
9年级
教学课时
1课时
教学目标
1.在掌握平行四边形的判定方法的基础上,能够根据题目的具体情况选择不同的判定方法,解决平面直角坐标系中的四边形存在性问题.
2.经历例题探究过程,初步理解求解平面直角坐标系中四边形存在性问题的一般思路.
设计意图






一、聚集考点
如图,在平行四边形ABCD中,已知A(0,0) B(1,3),D(5,0),(1)你能得出点C的坐标吗?
二、考点互动讲练
1、考点母题
如图,在平行四边形ABCD中,A(x1,y1)B(x2,y2)C(x3,y3)D(x4,y4),AC与BD交于点E,点E的坐标(x,y),说说这些点的坐标有哪些关系。
三、变式训练
如图,抛物线y=14x2-32x-4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A、B、C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.

直角坐标系中平行四边形对角线法则

直角坐标系中平行四边形对角线法则

直角坐标系中平行四边形对角线法则【直角坐标系中平行四边形对角线法则】一、引言在数学中,直角坐标系是一种常见的坐标系统,用于描述平面上的点和图形。

平行四边形是一个重要的几何形状,在直角坐标系中,我们可以利用平行四边形对角线法则来计算其对角线的长度和方向。

本文将深入探讨直角坐标系中平行四边形对角线法则的原理和应用,以帮助读者更好地理解和运用这一概念。

二、基础知识回顾在讨论平行四边形对角线法则之前,我们先回顾一下直角坐标系的基础知识。

在直角坐标系中,平面上的任意一点可以用一对有序实数来表示,通常表示为(x, y),其中x表示点在x轴上的位置,y表示点在y 轴上的位置。

直角坐标系中有两条互相垂直的直线,称为坐标轴,用来确定平面上点的位置。

三、平行四边形对角线法则的原理平行四边形是一个有四个边和四个角的四边形,其中相对的两边是平行的。

平行四边形的对角线是连接相对顶点的线段。

平行四边形对角线法则是指,平行四边形的对角线互相平分,并且对角线的和向量等于零向量。

四、平行四边形对角线法则的应用1. 平行四边形对角线长度的计算根据平行四边形对角线法则,平行四边形的对角线互相平分,所以对角线长度相等。

给定平行四边形的两条边的坐标,可以使用直线的长度公式来计算对角线的长度。

对于平行四边形ABCD,已知A(x1, y1),B(x2, y2),C(x3, y3),D(x4, y4),则对角线AC的长度为√((x1-x3)^2 + (y1-y3)^2)。

2. 平行四边形对角线方向的计算根据平行四边形对角线法则,对角线的和向量等于零向量。

给定平行四边形的两条边的坐标,可以使用向量的加法和等于零向量的性质来求解对角线的方向。

在平行四边形ABCD中,向量AB + 向量CD =零向量。

可以利用这一关系来计算对角线的方向。

五、个人观点与总结直角坐标系中平行四边形对角线法则是解决平行四边形相关问题的重要工具。

通过理解和应用这一法则,我们可以准确计算平行四边形的对角线长度和方向。

坐标系中的平行四边形的知识

坐标系中的平行四边形的知识

坐标系中的平行四边形的知识平行四边形是几何学中一个常见的形状,它具有独特的性质和特点。

在坐标系中,平行四边形的性质可以通过坐标的运算和几何知识来得到详细描述。

平行四边形的定义平行四边形是一个具有两对边平行的四边形。

在坐标系中,平行四边形可以通过坐标点表示,其中相邻的两个点构成一条边,而相对的两个点之间的线段是平行的。

平行四边形的性质包括对角线互相平分、相对边平行等。

平行四边形的判定在坐标系中,可以通过坐标点的斜率来判定平行四边形。

如果四个点的斜率相等,则这四个点构成的四边形是平行四边形。

斜率的计算方法为两点之间纵坐标的差值除以横坐标的差值。

平行四边形的性质1.对角线互相平分:平行四边形的对角线互相平分,并且中点连线是平行四边形的对边之一。

2.相邻角互补:平行四边形的相邻内角互补,也就是说相邻角的和为180度。

3.临角相等:平行四边形的临角相等,也就是相对边之间的角相等。

4.相对边平行:平行四边形的相对边是平行的。

5.对角线长:对角线长相等。

平行四边形的性质应用平行四边形的性质在几何推导和解题中有着广泛的应用。

通过利用平行四边形的性质,可以简化几何问题的计算和分析。

在坐标系中,通过有效地利用平行四边形的知识,可以更快速地解决复杂的几何问题。

总结在坐标系中,平行四边形是一个重要的几何形状,具有多种性质和特点。

通过对平行四边形的定义、判定和性质进行深入了解,可以更好地应用几何知识解决问题。

平行四边形的知识不仅在数学领域有着重要意义,也可以延伸到其他学科和实际生活中,为我们提供更多的思维方式和解决问题的途径。

在坐标系中平行四边形的四个顶点之间的关系

在坐标系中平行四边形的四个顶点之间的关系

在坐标系中平行四边形的四个顶点之间的关系在数学中,平行四边形是一种具有特定性质的四边形,它具有两对平行的边。

在坐标系中,我们可以通过坐标点来描述平行四边形的特性及其四个顶点之间的关系。

假设我们有一个平行四边形,其四个顶点分别为A(x1, y1),B(x2, y2),C(x3,y3),D(x4, y4)。

基于坐标系中的直角坐标系,我们可以通过这四个顶点的坐标来讨论它们之间的关系。

首先,我们知道平行四边形的对边是平行的,这意味着向量AB和向量CD是平行的,向量BC和向量DA是平行的。

这可以通过向量的斜率来判断。

其次,平行四边形的对角线相互平分,并且长度相等。

也就是说,线段AC和线段BD相互平分,且它们的长度相等。

可以通过距离公式计算这两条对角线的长度,从而验证这一性质。

另外,平行四边形的对边长度相等。

这意味着线段AB和线段CD的长度相等,线段BC和线段DA的长度也相等。

我们可以计算这些线段的长度,并进行比较,以验证平行四边形的这一性质。

最后,平行四边形的相邻边互相垂直。

也就是说,线段AB垂直于线段BC,线段BC垂直于线段CD,线段CD垂直于线段DA,线段DA垂直于线段AB。

我们可以通过计算斜率来验证这一性质。

通过以上讨论,我们了解到在坐标系中描述平行四边形的四个顶点之间的关系,包括对边平行、对角线相互平分且长度相等、对边长度相等以及邻边互相垂直。

这些性质可以帮助我们更好地理解和分析平行四边形在坐标系中的几何特征。

以上是关于在坐标系中平行四边形的四个顶点之间关系的讨论,通过数学原理和几何特性的分析,我们可以更深入地理解这一概念。

平面直角坐标系中平行四边形存在性的探究

平面直角坐标系中平行四边形存在性的探究
操作.


/ / 7
/ / c 。
图2
为平行 四边 形 .
关键 词 :分 类讨 论 ;平行 四 边形 ;存 在 性 ;直 角
坐 标 系
如何较快地求 出点 。 的坐
标 呢 ?在 教 学 过程 中 ,笔 者 发 现 学 生 最初 在 思 考这 一 问题 时 ,有
可 以把 点 A也 视 为 一 个 定 点 .根 据类 型 1中 “ 已知 三 个 定 点 ” 的分 析 方 法 ,可 知 其对 应 的点 共 有 三 个 , 并 可 以 用 平 移 法 写 出 它 们 的 坐 标 ,为 M ( t 一4 ,2 ) ,
M( 4一t ,2 ) ,M( t +4 ,一 2 ) .
)| ~
类型 1 :已知三个定点 。求第 四个点
情形 2 :若 以 A B, B C为 边


( 如 图 3 ), 可 得
平 面 内有点 A( 4 ,4 ) , ( 一 2 ,2 ) , C ( 3 ,一 1 ) ,试 在此 平 面 中找 出另

( 9 ,1 ) .

C M ,其 中点 A( 4 ,4 ) 到点 C ( 3 ,一 1 ) 是 向左 平 移 1 个单 位 , 向下 平 移 5个 单 位 ,故 也 将 点 B( 一 2 ,2 ) 如 此 平 移 ,即得 点 。 ( 一 3 ,一 3 )( 也 可 以看 成是 将 线段 Ac平
移到 B M ) . 例 1 如图 l ,在 直 角 坐 标
点 的运 动路线一定 是在过点 c ( 或 点 C关于直线
A B 的对 称 点 C ) 且 平行 于 A B的 这两 条直 线 上 .这 时

平行四边形,矩形,菱形的存在性问题(有答案)

平行四边形,矩形,菱形的存在性问题(有答案)

平行四边形,矩形,菱形的存在性问题一、平行四边形存在性问题1.在平面直角坐标系中,点A,B,C的坐标分别是A(﹣1,3),B(﹣5,﹣3),C(1,﹣3),在平面内找一点D,使四边形ABCD是平行四边形,则点D的坐标是.2.已知平行四边形ABCD的两条对角线相交于平面直角坐标系中的原点O,点A(﹣1,3),B(1,2),则点C,D的坐标分别为.3.在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M在x轴上,点N 在y轴上.如果以点A、B、M、N为顶点的四边形是平行四边形,那么符合条件的点M 有个.4.如图,在平面直角坐标系中,AD∥BC,AD=5,B(﹣3,0),C(9,0),E是BC的中点,P是线段BC上一动点,当PB=时,以点P、A、D、E为顶点的四边形是平行四边形.第4题第5题第6题5.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y 的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.6.如图,已知A(1,0)、C(0,1)、B(m,0)且m>1,在平面内求一点P,使得以A、B、C、P为顶点的四边形是平行四边形,则点P的坐标为.7.已知点A(4,0),B(0,﹣2),C(a,a)及点D是一个平行四边形的四个顶点,则线段CD长的最小值为.8.(1)在图1,2,3中,给出平行四边形ABCD的顶点A,B,D的坐标(如图),图1,2,3中的顶点C的坐标分别是,,;(2)在图4中,若平行四边形ABCD的顶点A,B,D的坐标分别为(4,1)、(3,4)、(6,4),则顶点C的坐标为;(3)在图4中,平行四边形ABCD顶点坐标分别为A(a,b)、B(c,d)、C(m,n)、D(e,f),则其横坐标a,c,m,e之间的等量关系为;纵坐标b,d,n,f之间的等量关系为.9.如图,矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是(6,8),将矩形OABC沿直线BD折叠,使得点C恰好落在对角线OB上的点E处,折痕所在直线与y 轴、x轴分别交于点D、F.(1)请直接写出线段BO的长;(2)求折痕所在直线BD的解析式;(3)若点M在直线y=﹣x上,则在直线BD上是否存在点P,使以C、D、M、P为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点P的坐标;否则,请说明理由.二、矩形存在性问题10.在平面直角坐标系中,已知点A(0,0),B(2,﹣2),C(4,0),D(2,2),则以这四个点为顶点的四边形ABCD是()A.矩形B.菱形C.梯形D.正方形11.如图1,在四边形ABCD中,AB∥CD,∥BCD=90°,AB=AD=10cm,BC=8cm.点P 从点A出发,以每秒3cm的速度沿线段AB方向向B运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时出发,当点P运动到点B 时,P、Q同时运动停止,设运动时间为t秒.(1)求CD的长;(2)当t为何值时,四边形PBQD为平行四边形?(3)在运动过程中,是否存在四边形BCQP是矩形?若存在,请求出t的值;若不存在,请说明理由.12.平行四边形AOBC在平面直角坐标系中的位置如图(1).(1)写出点C的坐标;(2)在图(1)中,连接AB,OC得到图(2),求AB与OC的交点M点的坐标;(3)将图(2)中的线段BC向两方延长得到图(3),若点D,E为直线BC上不与B,C重合的动点,是否存在这样的D,E点,使得四边形OADE为矩形?若存在,请在图中画出矩形,并求出矩形OADE的面积和点D,E的坐标,若不存在,请说明理由.三、菱形存在性问题13.在直角坐标系中,A,B,C,D四个点的坐标依次为(﹣1,0),(x,y),(﹣1,5),(﹣5,z),若这四个点构成的四边形是菱形,则满足条件的z的值有()A.1个B.3个C.4个D.5个14.如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.(1)求A,B两点的坐标;(2)求∥BOC的面积;(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO 方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.∥当OA=3MN时,求t的值;∥试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.参考答案1.根据题意得:D点的纵坐标一定是3;又由C点相对于B点横坐标移动了1﹣(﹣5)=6,故可得点D横坐标为﹣1+6=5,即顶点D的坐标为(5,3).2.由题意知:点A与点C、点B与点D关于原点对称,∥点A,B的坐标分别为(﹣1,3),(1,2),∥点C,D的坐标分别是(1,﹣3),(﹣1,﹣2),3.有3个点.4.解:∥B(﹣3,0),C(9,0),∥OB=3,OC=9,∥BC=OB+OC=12,∥E是BC的中点,∥BE=CE=BC=6,分为两种情况:∥当P在E的左边时,∥AD=PE=5,CE=6,∥BP=12﹣6﹣5=1;∥当P在E的右边时,∥AD=EP=5,∥BP=BE+EP=6+5=11;即当BP为1或11时,以点P、A、D、E为顶点的四边形为平行四边形;故答案为:1或11.5.如图,∥当BC为对角线时,易求M1(3,2);∥当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);∥当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).6.根据题意得:OA=OC=1,OB=m,∥AB=m﹣1,分三种情况:如图所示,∥以BC为对角线时,点P的坐标为(m﹣1,1);∥以AC为对角线时,点P的坐标为(1﹣m,1);∥以AB为对角线时,点P的坐标为(m+1,1);综上所述:点P的坐标为(m﹣1,1)或(1﹣m,1)或(m+1,﹣1);故答案为:(m﹣1,1)或(1﹣m,1)或(m+1,﹣1).7.如图,由题意得:点C在直线y=x上,∥如果AB、CD为对角线,AB与CD交于点F,当FC∥直线y=x时,CD最小,易知直线AB为y=x﹣2,∥AF=FB,∥点F坐标为(2,﹣1),∥CF∥直线y=x,设直线CF为y=﹣x+b′,F(2,﹣1)代入得b′=1,∥直线CF为y=﹣x+1,由,解得:,∥点C坐标(,).∥CD=2CF=2×=3.∥如果CD是平行四边形的边,则CD=AB==2>3,∥CD的最小值为3.故答案为:3.8.(1)利用平行四边形的性质:对边平行且相等,得出图1,2,3中顶点C的坐标分别是:(5,2)、(e+c,d),(c+e﹣a,d).故答案为:(5,2)(e+c,d),(c+e﹣a,d).(2)若平行四边形ABCD的顶点A,B,D的坐标分别为(4,1)、(3,4)、(6,4),则顶点C的坐标为(5,7);故答案为:(5,7);(3)如图4中,分别过点A,B,C,D作x轴的垂线,垂足分别为A1,B1,C1,D1,分别过A,D作AE∥BB1于E,DF∥CC1于点F.在平行四边形ABCD中,CD=BA,又∥BB1∥CC1,∥∥EBA+∥ABC+∥BCF=∥ABC+∥BCF+∥FCD=180°.∥∥EBA=∥FCD.在∥BEA∥∥CFD中,,∥∥BEA∥∥CFD(AAS),∥AE=DF=a﹣c,BE=CF=d﹣b.设C(x,y).由e﹣x=a﹣c,得x=e+c﹣a.由y﹣f=d﹣b,得y=f+d﹣b.∥C(e+c﹣a,f+d﹣b),∥m=e+c﹣a,n=f+d﹣b,∥m+a=e+c,n+b=d+f.故答案为:m+a=e+c,n+b=d+f.9.解:(1)∥矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是(6,8),∥OA=6,AB=8,∥OAB=90°,∥OB==10,即线段BO的长是10;(2)设点D的坐标为(0,d),则OD=d,CD=8﹣d,∥BC=6,CD=DE,OB=10,,∥,得d=5,即点D的坐标为(0,5),设折痕所在直线BD的解析式为y=kx+b,∥点D(0,5),点B(6,8)在直线BD上,∥,得,即折痕所在直线BD的解析式是y=0.5x+5;(3)在直线BD上存在点P,使以C、D、M、P为顶点的四边形是平行四边形,点P的坐标为(﹣2,4)或(﹣8,1);理由:∥点C(0,8),点D(0,5),∥OC=8,OD=5,∥CD=3,∥以C、D、M、P为顶点的四边形是平行四边形,点M在直线y=﹣x上,点P在直线BD上,∥CD=MP,CD∥MP,或CD为平行四边形的对角线,当CD=MP,CD∥MP时,设点M的坐标为(m,﹣0.5m),则P的坐标为(m,0.5m+5),则|(0.5m+5)﹣(﹣0.5m)|=3,解得,m1=﹣2,m2=﹣8,当m=﹣2时,点P的坐标为(﹣2,4),当m=﹣8时,点P的坐标为(﹣8,1),当CD为平行四边形的对角线时,则点C和点D中点的坐标为(0,6.5),设点M的坐标为(m,﹣0.5m),则点P的坐标为(﹣m,13+0.5m),∥点P在直线BD上,直线BD的解析式是y=0.5x+5,∥13+0.5m=﹣0.5m+5,得m=﹣8,∥点P的坐标为(8,9),由上可得,点P的坐标为(﹣2,4)、(﹣8,1)或(8,9).10.D11.解:(1)过点A作AM∥CD于M,根据勾股定理,AD=10,AM=BC=8,∥DM==6,∥CD=16;(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图1,由题知:BP=10﹣3t,DQ=2t ∥10﹣3t=2t,解得t=2;(3)在运动过程中,不存在四边形BCQP是矩形,理由如下:∥AB∥CD,∥BCD=90°,∥∥C=90°,若要四边形BCQP是矩形,则当PB=CQ时即10﹣3t=16﹣2t,解得:t=﹣6<0,∥不存在.12.解:(1)∥四边形OACB是平行四边形,∥AC=OB,∥A(1,3)、B(4,0),∥C(5,3);(2)如图(2),设AB所在的直线的解析式为y=kx+b,∥直线AB经过点A(1,3)、B(4,0),∥,∥AB所在直线的解析式为y=﹣4x+4,由于OC所在直线的表达式为y=x,联立方程解得:即M的坐标是(2.5,1.5);(3)存在这样的D、E,使得四边形AOED是矩形.分别过点A、O作AD∥BC于点D,OE∥BC于点E,过E、D分别作x轴的垂线,垂足分别为F、G,∥四边形AOBC是平行四边形,∥AO∥BC,∥AD∥AO,∥四边形AOED是矩形,且与平行四边形AOBC面积相等,∥平行四边形AOBC的面积为12,∥矩形AOED的面积为12,由勾股定理知AO=,∥OE=,EB=,∥EF===1.2,OF===3.6,∥点E的坐标为(3.6,﹣1.2),∥点D的坐标为(4.6,1.8).13.如图,∥A(﹣1,0),C(﹣1,5),∥AC∥x轴,且AC=5﹣0=5,过点D(﹣5,z)作作x轴的垂线,则z的数值就在直线x=﹣5上,;∥A、B、C、D四个点构成的四边形是菱形,∥当DC=DA,z有1个值,当DC=AC,则42+(5﹣z)2=52,z有两个值,当AD=AC,则42+z2=52,则z有两个值,综上所知,符合条件的z的值有5个.故选:D.14.解:(1)对于直线y=﹣x+3,令x=0得到y=3,令y=0,得到x=6,A(6,0)B(0,3).(2)由,解得,∥C(2,2),∥S∥OBC=×3×2=3(3)∥∥M(6﹣t,﹣(6﹣t)+3),N(6﹣t,6﹣t),∥MN=|﹣(6﹣t)+3﹣(6﹣t)|=|t﹣6|,∥OA=3MN,∥6=3|t﹣6|,解得t=或∥如图3中,由题意OC=2,当OC为菱形的边时,可得Q1(﹣2,0),Q2(2,0),Q4(4,0);当OC为菱形的对角线时,Q3(2,0),∥t=(6+2)s或(6﹣2)s或2s或4s时,以O、Q、C、P为顶点的四边形构成菱形.。

第6章平行四边形 题型解读7 直角坐标系中的平行四边形-2020-2021学年北师大版八年级数学下册

第6章平行四边形 题型解读7 直角坐标系中的平行四边形-2020-2021学年北师大版八年级数学下册

《平行四边形》题型解读7 直角坐标系中的平行四边形【知识梳理】: 1.总体解题分析思路线:2.常见添辅助线方法:①过平行四边形顶点作坐标轴的垂线段,把点的坐标转化成线段长; ②连接对角线,利用中点坐标公式求解点的坐标;【典型例题】例1.已知如图,平行四边形ABCD 的边AB 在轴上,顶点D 在轴上,AD=4,AB=5,点A 的坐标为(-2,0),则 点B 的坐标为____________, 点C 的坐标为____________, 点D 的坐标为____________ 【解题过程】作CE ⊥x 轴,∵点A 的坐标为(-2,0),∴OA=2,∵四边形ABCD 是平行四边形,∴AD=BC=4,AB=CD=5,∴OB=3,∴BE=2,在Rt △OAD 中,由勾股定理可得OD=2√3,∵∠DAO=∠CBE,OA=BE=2,∠AOD=∠CEB=90º,∴△AOD ≌△BEC,∴CE=OB=2√3,∴B(3,0)、D(0,2√3)、C(5,2√3).例2.如图,在平面直角坐标系中,AB//OC ,A (0,12),B (a,12),C (b,0),且满足b =√a −21+√21−a +16. 动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒). (1)求B ,C 两点的坐标;(2)当t 为何值时,四边形PQCB 是平行四边形?请求出此时P ,Q 两点的坐标; (3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标.【解题过程】(1)∵b =√a −21+√21−a +16,∴√a −21≥0,√21−a ≥0,∴a=21,∴b=16,∴B(21,12)、C(16,0); (2)如图1,由题可知:AP=2t,PB=21-2t ,OQ=t,QC=16-t ,∵当四边形PQCB 是平行四边形时,∴PB=QC ,即21-2t=16-t ,解得t=5,此时AP=10,OQ=5,∵AB//OC ,∴点B 、P 的纵坐标相同,∴P(10,12)、Q(5,0)。

平面直角坐标系中求平行四边形点的坐标的公式

平面直角坐标系中求平行四边形点的坐标的公式

平面直角坐标系中求平行四边形点的坐标的公式在平面直角坐标系里,我们常常会遇到平行四边形的问题。

这可是个让人挠头但又充满乐趣的挑战呢!想想看,一个平行四边形就像是一对亲密无间的朋友,永远是两两相对,形影不离。

搞清楚这些点的坐标,并不需要太高深的数学技能,反而有点像跟朋友一起出去玩,简单又有趣。

咱们得明白,平行四边形的对边是平行的,这点可不是说说而已。

比如,你在坐标系中有两个点A(x1, y1)和B(x2, y2),这时候想要找出平行四边形的另外两个点C 和D,那就得聪明一点了。

说到这里,大家是不是有点儿兴奋了?找点的过程就像探险一样,充满惊喜。

要想清楚C和D的坐标,首先要找到平行四边形的“位置”。

有了A 和B,我们就可以简单地用公式来找到C和D。

好吧,接下来就是核心步骤了。

我们来设C点的坐标为(x3, y3),D点的坐标为(x4, y4)。

C点其实可以用A点和B点来“算”出来。

这样一来,C的坐标就可以表示为C(x1 + k, y1 + m),而D的坐标可以写成D(x2 + k, y2 + m)。

这里的k和m可大可小,想象一下就像加了点糖的茶,喝起来特别好!这样一来,平行四边形的四个点就全部搞定了,真是太简单了。

在这个过程中,记得保持心情愉快哦。

数学不再是枯燥的符号和公式,它就像一场游戏。

想象一下,坐在公园的长椅上,和朋友聊着天,偶尔抬头看看天上的云朵,或许它们的形状就像一个个平行四边形。

只要你用心观察,总能发现生活中的数学。

搞定了坐标的计算,你就是这个领域的小专家。

大家可能会问,这样的公式怎么会有用呢?说实话,平行四边形不仅在课本上出现,在生活中也是无处不在。

你去超市的时候,购物车的形状其实就像一个平行四边形!在家里,桌子、椅子也大多是这类形状。

生活就像一个大拼图,平行四边形就是其中重要的一部分。

每个坐标点就像拼图上的每个小块,缺一不可。

所以,别觉得数学难,实际上它就像一个朋友,静静地待在你身边,随时等着你去发现它的美。

(完整版)二次函数,矩形的存在性问题,含答案.doc

(完整版)二次函数,矩形的存在性问题,含答案.doc

二次函数中矩形的存在性问题1. (2015 黑龙江省龙东地区) 如图,四边形OABC是矩形,点 A、 C在坐标轴上,△ ODE是△ OCB绕点 O 顺时针旋转90°得到的,点 D在 x 轴上,直线BD交 y 轴于点 F,交 OE于点 H,线段 BC、 OC的长是方程 x2 ﹣6x+8=0 的两个根,且 OC>BC.( 1)求直线 BD的解析式;( 2)求△ OFH的面积;( 3)点 M在坐标轴上,平面内是否存在点 N,使以点 D、F、 M、 N为顶点的四边形是矩形?若存在,请直接写出点 N的坐标;若不存在,请说明理由.12. (2015重庆市綦江县)如图,抛物线y x22x 3 与x轴交与A,B两点(点A在点B的左侧),与y 轴交于点 C.点D和点C关于抛物线的对称轴对称,直线AD与 y 轴相交于点E.(1)求直线AD的解析式;(2)如图 1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△ FGH的周长的最大值;( 3)点M是抛物线的顶点,点P 是 y 轴上一点,点Q是坐标平面内一点,以A, M,P, Q为顶点的四边形是 AM为边的矩形,若点T 和点 Q关于 AM所在直线对称,求点T 的坐标.y yM yMCDC CFHE GA B A A BO x O x O x 26题图 126题备用图 126题备用图 223. (2016山东省东营市)】.】.在平面直角坐标系中,平行四边形ABOC如图放置,点A、 C的坐标分别是( 0, 4)、(﹣ 1, 0),将此平行四边形绕点 O顺时针旋转 90°,得到平行四边形 A′B′OC′.( 1)若抛物线经过点 C、 A、A′,求此抛物线的解析式;( 2)点 M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;( 3)若 P 为抛物线上一动点,N 为 x 轴上的一动点,点Q坐标为( 1,0),当 P、 N、 B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N 的坐标.3二次函数中矩形的存在性问题4. (2016 贵州省毕节地区 ) 如图,已知抛物线 y=x 2+bx 与直线 y=2x+4 交于 A( a, 8)、 B 两点,点 P 是抛物线上A、B 之间的一个动点,过点 P 分别作 x 轴、 y 轴的平行线与直线 AB交于点 C和点 E.(1)求抛物线的解析式;(2)若 C为 AB 中点,求 PC的长;(3)如图,以 PC,PE为边构造矩形 PCDE,设点 D 的坐标为( m, n),请求出 m, n 之间的关系式.4二次函数中矩形的存在性问题5. (2013 湖南省常德市 ) 如图,已知二次函数的图象过点(0 ,- 3) ,( 3,3 ),对称轴为直线 x1 ,2点 P 是抛物线上的一动点,过点P 分别作 PM ⊥ x 轴于点 M , PN ⊥ y 轴于点 N ,在四边形 PMON 上分别截取PC1MP , MD1OM ,OE1ON , NF1NP.3 3 3 3( 1)求此二次函数的解析式;( 2)求证:以 C , D , E , F 为顶点的四边形 CDEF 是平行四边形;( 3)在抛物线上是否存在这样的点 P ,使四边形 CDEF 为矩形?若存在,请求出所有符合条件的 P 点坐标;若不存在,请说明理由.56.如图所示,抛物线y=ax 2+bx﹣ 3 与 x 轴交于 A(﹣ 1, 0),B( 3, 0)两点,与y 轴交于点C.( 1)求抛物线的解析式;( 2)如图所示,直线BC下方的抛物线上有一点P,过点 P 作 PE⊥ BC于点 E,作 PF 平行于 x 轴交直线BC 于点 F,求△ PEF周长的最大值;( 3)已知点M是抛物线的顶点,点N 是 y 轴上一点,点Q是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、 Q为顶点且以PM为边的正方形?若存在,直接写出点P 的横坐标;若不存在,说明理由.6参考答案1. (2015 黑龙江省龙东地区 ) 如图,四边形OABC是矩形,点 A、 C在坐标轴上,△ ODE是△ OCB绕点 O 顺时针旋转90°得到的,点 D在 x 轴上,直线BD交 y 轴于点 F,交 OE于点 H,线段 BC、 OC的长是方程 x2 ﹣6x+8=0 的两个根,且 OC>BC.( 1)求直线 BD的解析式;( 2)求△ OFH的面积;( 3)点 M在坐标轴上,平面内是否存在点N,使以点D、 F、 M、N 为顶点的四边形是矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.1.分析:( 1)解方程可求得 OC、 BC的长,可求得 B、 D 的坐标,利用待定系数法可求得直线BD的解析式;( 2)可求得 E 点坐标,求出直线 OE的解析式,联立直线 BD、OE解析式可求得 H点的横坐标,可求得△ OFH的面积;( 3)当△ MFD为直角三角形时,可找到满足条件的点N,分∠ MFD=90°、∠ MDF=90°和∠ FMD=90°三种情况,分别求得M点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N 点坐标.解答:解:(1)解方程x2﹣ 6x+8=0 可得 x=2 或 x=4,∵ BC、 OC的长是方程x2﹣ 6x+8=0 的两个根,且OC> BC,∴BC=2, OC=4,∴ B(﹣ 2,4),∵△ ODE是△ OCB绕点 O顺时针旋转 90°得到的,∴OD=OC=4, DE=BC=2,∴ D( 4, 0),设直线 BD解析式为 y=kx+b ,把 B、 D坐标代入可得,解得,∴直线BD的解析式为y= ﹣x+;( 2)由( 1)可知E( 4, 2),设直线 OE解析式为y=mx,把 E 点坐标代入可求得m= ,∴直线 OE解析式为y= x ,令﹣x+ =x ,解得 x=,∴ H点到y轴的距离为,又由( 1)可得F( 0,),∴ OF=,∴ S△OFH=××=;(3)∵以点 D、 F、 M、 N 为顶点的四边形是矩形,∴△ DFM为直角三角形,①当∠ MFD=90°时,则 M只能在 x 轴上,连接 FN交 MD于点 G,如图 1,由( 2)可知OF= ,OD=4,则有△ MOF∽△ FOD,∴=,即=,解得OM=,∴ M(﹣,0),且D(4,0),∴ G(,0),设 N 点坐标为( x , y),则=,=0,解得 x=,y=﹣,此时N点坐标为(,﹣);②当∠ MDF=90°时,则M只能在 y 轴上,连接DN交 MF于点 G,如图 2,7则有△ FOD ∽△ DOM ,∴= ,即 =,解得 OM=6,∴ M ( 0,﹣ 6),且 F ( 0,),∴ MG= MF= ,则 OG=OM ﹣ MG=6﹣ =,∴ G ( 0,﹣),设 N 点坐标为( x , y ),则=0, =﹣ ,解得 x=﹣ 4, y=﹣,此时 N (﹣ 4,﹣);③当∠ FMD=90°时,则可知 M 点为 O 点,如图 3, ∵四边形 MFND 为矩形,∴ NF=OD=4, ND=OF= ,可求得 N ( 4, );综上可知存在满足条件的N 点,其坐标为( ,﹣ )或(﹣ 4,﹣ )或( 4,).2. (2015 重庆市綦江县 ) 如图,抛物线 yx 2 2x 3 与 x 轴交与 A , B 两点(点 A 在点 B 的左侧),与y 轴交于点 C . 点 D 和点 C 关于抛物线的对称轴对称,直线AD 与 y 轴相交于点 E .( 1)求直线 AD 的解析式;( 2)如图 1,直线 AD 上方的抛物线上有一点 F ,过点 F 作 FG ⊥ AD 于点 G ,作 FH 平行于 x 轴交直线 AD 于点H ,求△ FGH 的周长的最大值;( 3)点 M 是抛物线的顶点,点 P 是 y 轴上一点,点 Q 是坐标平面内一点,以 A , M ,P , Q 为顶点的四边形 是 AM 为边的矩形,若点 T 和点 Q 关于 AM 所在直线对称,求点 T 的坐标 .yy M y M CDCCFHEGABAABOxOxOx26题图 1 26题备用图 1 26题备用图 2答案解:⑴ AD : y x 1⑵过点 F 作 x 轴的垂线,交直线AD 于点 ,易证△ ≌△M FGH FGM故C△ FGHC △ FGM设 F (m, m 2 2m 3)则 FM = m 2 2m 3 (m 1) m 2m 2则 C=FM2 FM(1 2) FM(1 2)( m1 )2 9 9 22 24故最大周长为9+9 248二次函数中矩形的存在性问题⑶①若 AP 为对角线如图,由△ PMS∽△ MAR可得P(0, 9 1AM的对称点 T 为(0,1 ) 由点的平移可知Q( 2, ) 故Q点关于直线)2 2 2②若 AQ为对角线如图,同理可知 P 1 7 ) 故 Q点关于直线AM的对称点 T为92 223. (2016 山东省东营市 ) 】.】.在平面直角坐标系中,平行四边形ABOC如图放置,点A、 C的坐标分别是( 0, 4)、(﹣ 1, 0),将此平行四边形绕点O顺时针旋转 90°,得到平行四边形A′B′ OC′.( 1)若抛物线经过点C、 A、A′,求此抛物线的解析式;( 2)点 M时第一象限内抛物线上的一动点,问:当点M在何处时,△ AMA′的面积最大?最大面积是多少?并求出此时M的坐标;( 3)若 P 为抛物线上一动点, N 为 x 轴上的一动点,点 Q坐标为(1, 0),当 P、 N、B、 Q构成平行四边形时,求点 P 的坐标,当这个平行四边形为矩形时,求点N 的坐标.分析( 1)由平行四边形ABOC绕点 O 顺时针旋转90°,得到平行四边形A′ B′ OC′,且点A 的坐标是(0, 4),可求得点A′的坐标,然后利用待定系数法即可求得经过点 C、 A、 A′的抛物线的解析式;( 2)首先连接AA′,设直线AA′的解析式为:y=kx+b ,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:( x ,﹣ x2+3x+4),继而可得△AMA′的面积,继而求得答案;( 3)分别从BQ为边与BQ为对角线去分析求解即可求得答案.解答解:( 1)∵平行四边形ABOC绕点 O顺时针旋转90°,得到平行四边形A′ B′ OC′,且点A 的坐标是( 0,4),∴点 A′的坐标为:( 4, 0),∵点 A、 C 的坐标分别是(0, 4)、(﹣ 1, 0),抛物线经过点C、 A、 A′,设抛物线的解析式为:y=ax 2+bx+c ,∴,解得:,∴此抛物线的解析式为:y=﹣ x2+3x+4 ;( 2)连接AA′,设直线AA′的解析式为:y=kx+b ,∴,解得:,∴直线AA′的解析式为:y= ﹣ x+4,设点 M的坐标为:( x,﹣ x2 +3x+4),则S△AMA′= × 4× [ ﹣ x2+3x+4 ﹣(﹣ x+4 ) ]= ﹣ 2x2 +8x=﹣ 2(x ﹣ 2)2+8,∴当 x=2 时,△ AMA′的面积最大,最大值S△AMA′ =8,9∴ M的坐标为:( 2, 6);(3)设点 P 的坐标为( x,﹣ x2 +3x+4),当 P, N,B, Q构成平行四边形时,∵平行四边形 ABOC中,点 A、 C 的坐标分别是( 0, 4)、(﹣ 1, 0),∴点 B的坐标为( 1, 4),∵点 Q坐标为( 1, 0), P 为抛物线上一动点, N 为 x 轴上的一动点,①当BQ为边时, PN∥ BQ, PN=BQ,∵ BQ=4,∴﹣ x2+3x+4= ± 4,当﹣ x2+3x+4=4 时,解得: x1=0, x 2=3,∴ P1( 0,4), P2(3, 4);当﹣ x2 +3x+4=﹣ 4 时,解得: x3=,x2=,∴ P3(,﹣4),P4(,﹣4);②当 PQ为对角线时,BP∥ QN, BP=QN,此时 P 与 P1, P2重合;综上可得:点P 的坐标为:P1( 0, 4), P2(3, 4), P3(,﹣4),P4(,﹣4);如图 2,当这个平行四边形为矩形时,点N 的坐标为:( 0, 0)或( 3, 0).4. (2016 贵州省毕节地区 ) 如图,已知抛物线 y=x 2+bx 与直线 y=2x+4 交于 A( a, 8)、 B 两点,点 P 是抛物线上A、B 之间的一个动点,过点 P 分别作 x 轴、 y 轴的平行线与直线 AB交于点 C和点 E.(1)求抛物线的解析式;(2)若 C为 AB 中点,求 PC的长;(3)如图,以 PC,PE为边构造矩形 PCDE,设点 D 的坐标为( m, n),请求出m,n 之间的关系式.分析( 1)把 A 点坐标代入直线方程可求得 a 的值,再代入抛物线可求得 b 的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B 点坐标,过 A 作 AQ⊥ x 轴,交 x 轴于点 Q,可知 OC= AQ=4,可求得 C点坐标,结合条件可知P 点纵坐标,代入抛物线解析式可求得 P 点坐标,从而可求得PC的长;( 3)根据矩形的性质可分别用m、n 表示出C、P 的坐标,根据DE=CP,可得到m、n的关系式.解:( 1)∵ A( a, 8)是抛物线和直线的交点,∴ A 点在直线上,∴8=2a+4 ,解得 a=2,∴ A 点坐标为( 2, 8),又 A 点在抛物线上,∴8=22 +2b,解得 b=2,∴抛物线解析式为 y=x 2 +2x;( 2)联立抛物线和直线解析式可得,10解得, ,∴ B 点坐标为(﹣ 2, 0),如图,过 A 作 AQ ⊥ x 轴,交 x 轴于点 Q ,则 AQ=8, OQ=OB=2,即 O 为 BQ 的中点,当 C 为 AB 中点时,则 OC 为△ ABQ 的中位线,即 C 点在 y 轴上, ∴ OC= AQ=4,∴ C 点坐标为( 0, 4),又 PC ∥ x 轴,∴ P 点纵坐标为 4, ∵ P 点在抛物线线上, ∴ 4=x 2 +2x ,解得 x=﹣ 1﹣或 x=﹣ 1,∵ P 点在 A 、 B 之间的抛物线上, ∴ x= ﹣1﹣ 不合题意,舍去,∴ P 点坐标为( ﹣ 1, 4),∴ PC=﹣ 1﹣ 0= ﹣ 1;( 3)∵ D ( m , n ),且四边形 PCDE 为矩形, ∴ C 点横坐标为 m , E 点纵坐标为 n ,∵ C 、 E 都在直线 y=2x+4 上,∴ C ( m , 2m+4), E (, n ),∵ PC ∥x 轴,∴ P 点纵坐标为 2m+4, ∵ P 点在抛物线上,22﹣ 1 或 x=﹣﹣ 1(舍去),∴ 2m+4=x +2x ,整理可得 2m+5=( x+1 ) ,解得 x= ∴ P 点坐标为( ﹣ 1, 2m+4),∴ DE=﹣ m , CP=﹣ 1﹣ m ,∵四边形 PCDE 为矩形,∴ DE=CP ,即﹣ m=﹣ 1﹣ m ,2整理可得 n ﹣ 4n ﹣ 8m ﹣ 16=0,即 m 、 n 之间的关系式为 n 2﹣ 4n ﹣ 8m ﹣ 16=0.5. (2013 湖南省常德市 ) 如图,已知二次函数的图象过点 A (0 ,- 3) ,B ( 3,3 ),对称轴为直线 x1,点 P 是抛物线上的一动点,2P过点 分别作⊥ 轴于点 , ⊥ 轴于点 ,PM xM PN y N在四边形 PMON 上分别截取 PC1MP , MD1OM ,OE1ON , NF1NP.33 3 3( 1)求此二次函数的解析式;( 2)求证:以 C , D , E , F 为顶点的四边形 CDEF 是平行四边形;( 3)在抛物线上是否存在这样的点P ,使四边形 CDEF 为矩形?若存在,请求出所有符合条件的P 点坐标;若不存在,请说明理由 .11解:( 1)设二次函数的解析式为23, 3 )、对称轴方程分别代入可得:y ax bx c ,将点 A 0-3)、B (( ,3 c,a 1,3 3a 3b c ,解得 a 1, ∴此二次函数的解析式为 y x 2x 3 .b1 . b3.2a2( 2)证明:如图连接 CD , DE , EF , FC.∵PM ⊥ x 轴, PN ⊥y轴,∴四边形 OMPN 是矩形 . ∴ MP =ON , OM =PN.又 PC1 1 11 MP , MD OM ,OE ON , NFNP,3 3 33∴ DMFN , MC NE ∴△ CMD △ENF, 同理△ ODE △ FPC(SAS),∴ CF =ED , CD =EF., ∴四边形 CDEF 是平行四边形 .( 3)如图,作 CQ ⊥ y 轴于点 Q ,设 P 点坐标为 x, x 2 x 3 ,则QNPC OE 1 MP . ∴ EQ1 x 2x 3 . ∴在 Rt △ ECQ33CE 2EQ 2 CQ 2中,1 x2x2x2.39Q DE 2 OD 2OE 22 x 212x 2 x 34 3 13222x9 x x3 ,9当⊥ 时,CD 2DM 2 CM 2CD DE1 x 242x 2 x 3,9 9CE 2 DE 2 CD 2x 31 x2 4 x 2 x 34 x 21 x 22299 x 2 x995 x 253 .2991 x 2x 3 2x 25x 25x 2x 32当x 2 x3 x 时 , x 13,x 2 3,999, 此时, y 13,y 23 ;4 x 2 4x 2 2 当x 2x3x 时, x 13, x 2 1,x 3 ,9 9此时, y 1 3, y 2 1.x2x3x.综上可知符合条件的 点有四个, P 分别是 , 3 , ,- 3 ,- 3 , 3 , ,-1 .3 3 1 本题用相似更简单!126.如图所示,抛物线y=ax 2+bx﹣ 3 与 x 轴交于 A(﹣ 1, 0),B( 3, 0)两点,与y 轴交于点C.( 1)求抛物线的解析式;( 2)如图所示,直线BC下方的抛物线上有一点P,过点 P 作 PE⊥ BC于点 E,作 PF 平行于 x 轴交直线BC 于点 F,求△ PEF周长的最大值;( 3)已知点M是抛物线的顶点,点N 是 y 轴上一点,点Q是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、 Q为顶点且以PM为边的正方形?若存在,直接写出点P 的横坐标;若不存在,说明理由.【解答】解:( 1)把 A(﹣ 1, 0), B( 3, 0)两点坐标代入抛物线y=ax2+bx﹣ 3,得到,解得,∴抛物线的解析式为y=x 2﹣ 2x ﹣3.(2)如图 1 中,连接 PB、 PC.设 P( m, m2﹣ 2m﹣3),∵ B( 3, 0), C( 0,﹣ 3),∴OB=OC,∴∠OBC=45°,∵PF∥ OB,∴∠ PFE=∠OBC=45°,∵PE⊥ BC,∴∠ PEF=90°,∴△ PEF是等腰直角三角形,∴ PE最大时,△ PEF的面积中点,此时△PBC的面积最大,则有 S△PBC=S△POB+S△POC﹣ S△BOC= ?3?(﹣ m2+2m+3) + ?3?m﹣ =﹣(m﹣)2+,∴m= 时,△ PBC的面积最大,此时△ PEF的面积也最大,此时 P(,﹣),13∵直线 BC的解析式为y=x ﹣3,∴ F(﹣,﹣),∴ PF=,∵△ PEF是等腰直角三角形,∴ EF=EP=,∴ C△PEF最大值 = +.( 3)①如图 2 中,当 N 与 C 重合时,点N 关于对称轴的对称点P,此时思想MNQP是正方形,易知P( 2,﹣ 3).点 P 横坐标为 2,②如图 3 中,当四边形PMQN是正方形时,作PF⊥ y 轴于 N, ME∥ x 轴, PE∥y 轴.易知△ PFN≌△ PEM,2∴ PF=PE,设 P( m,m﹣ 2m﹣ 3),∵ M( 1,﹣ 4),2∴ m=m﹣ 2m﹣3﹣(﹣ 4),∴ m=或(舍弃),∴ P 点横坐标为所以满足条件的点P 的横坐标为 2 或.14。

平面直角坐标系中的平行四边形

平面直角坐标系中的平行四边形

平面直角坐标系中的平行四边形1.如图,直线y =-34x 经过抛物线y =ax2+8ax -3的顶点M ,点P 是抛物线上的动点,点Q 是抛物线对称轴上的动点. (1)求抛物线的解析式;(2)当PQ ∥OM 时,设点P 的横坐标为x ,线段PQ 的长为d ,求d 关于x 的函数关系式; (3)当以P 、Q 、O 、M 四点为顶点的四边形是平行四边形时,求P 、Q 两点的坐标.2.如图,在平面直角坐标系中,抛物线y =x2+mx +n 经过A (3,0)、B (0,-3)两点,点P 是直线AB 上一动点,过点P 作x 轴的垂线交抛物线于点M .(1)若点P 在第四象限,连接AM 、BM ,当△ABM 的面积最大时,求△ABM 的AB 边上的高;(2)若四边形PMBO 为等腰梯形,求点P 的坐标(3)是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图,抛物线y =x2+bx +c 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-3),顶点为D (-1,-4),连接AC 、CD . (1)求抛物线的解析式;(2)试在x 轴上找一点E ,使∠CED 最大,求点E 的坐标;(3)点Q 是抛物线上的动点,在x 轴上是否存在点P ,使以A 、C 、P 、Q 四点为顶点的四边形为平行四边形?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.4.如图,抛物线y =x2+bx +c 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-3),顶点为D (-1,-4),连接AC 、CD . (1)求抛物线的解析式;(2)试在x 轴上找一点E ,使∠CED 最大,求点E 的坐标;(3)点Q 是抛物线上的动点,在x 轴上是否存在点P ,使以A 、C 、P 、Q 四点为顶点的四边形为平行四边形?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.5.已知抛物线y =16(x -2)(x -2t -3)(t >0)与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴交于点C ,且△ABC 的面积为212. (1)求抛物线的解析式;(2)设l 为过点B 且经过第一、二、四象限的一条直线,过原点O 的直线与l 交于点E ,与以AC 为直径的圆交于点D ,若△OAD ∽△OEB ,求直线l 的解析式;(3)在(2)的条件下,若点Q 为直线l 上的动点,在坐标平面内是否存在点P ,使得以P 、Q 、A 、C 四点为顶点的四边形为菱形?若存在,直接写出点P 的坐标;若不存在,请说明理由.6.已知抛物线y =12x2-mx +2m -7 2. (1)试说明:无论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)如图,当该抛物线的对称轴为直线x =3时,抛物线的顶点为点C ,直线y =x -1与抛物线交于A 、B 两点,并与它的对称轴交于点D . ①抛物线上是否存在一点P 使得四边形ACPD 是正方形?若存在,求出点P 的坐标;若不存在,说明理由; ②平移直线CD ,交直线AB 于点M ,交抛物线于点N ,通过怎样的平移能使得C 、D 、M 、N 为顶点的四边形是平行四边形.7.如图,直线y =3x +3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0),顶点为D .(1)求抛物线的解析式;(2)若点E 的坐标为(1,-2),点M 是抛物线上一点(D 点除外),且△MOE 的面积与△DOE 的面积相等,求M 点坐标; (3)若点P 是抛物线的对称轴上的动点,在坐标平面内是否存在点Q ,使以点P 、Q 、A 、B 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.8.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1<x 2,与y 轴交于点C (0,-4),其中x 1,x 2是方程x2-4x -12=0的两个根.(1)求抛物线的解析式;(2)点M 是线段AB 上的一个动点,过点M 作MN ∥BC ,交AC 于点N ,连接CM ,当△CMN 的面积最大时,求点M 的坐标;(3)点D (4,k )在(1)中抛物线上,点E 为抛物线上一动点,在x 轴上是否存在点F ,使以A 、D 、E 、F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标,若不存在,请说明理由.9.如图,抛物线y =ax2+bx +c 交x 轴于点A (-3,0),点B (1,0),交y 轴于点E (0,-3).点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直线l 过点F 且与y 轴平行.直线y =-x +m 过点C ,交y 轴于D 点.(1)求抛物线的函数表达式;(2)点K 为线段AB 上一动点,过点K 作x 轴的垂线与直线CD 交于点H ,与抛物线交于点G ,求线段HG 长度的最大值;(3)在直线l 上取点M ,在抛物线上取点N ,使以点A ,C ,M ,N 为顶点的四边形是平行四边形,求点N 的坐标.备用图10.在平面直角坐标系xO y 中,关于y 轴对称的抛物线y =-m -1 3x2+(m -2)x +4m -7与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,P 是抛物线上的一点(点P 不(Ⅰ)求实数m 的取值范围;(Ⅱ)是否存在实数m ,使得以P 、A 、B 、Q 四点为顶点的四边形为平行四边形?若存在,求出m 的值;若不存在,请说明理由.12.(12分)在平面直角坐标系中,O 为原点,点A (2,m )在直线y =2x 上,在x 轴上有点B (10,0)连接AB ,直线AB 交y 轴于点C . (1)求直线AB 解析式,并求出C 点坐标;(2)若点M 是在x 轴上方,问是否在点M ,使0,B ,M ,A 为顶点的四边形是平行四边形.若是,求出点M 坐标,若不是,试说明理由.(3)若点P 是直线AB 上一个动点,平面内存在点N ,使以O ,C ,N ,P 为顶点的四边形是菱形,请写出点N 的坐标(直接写出结果,不需要过程).。

平面直角坐标系下平行四边形存在性问题

平面直角坐标系下平行四边形存在性问题

平面直角坐标系下平行四边形存在性问题1、如图,将矩形OABC放置在平面直角坐标系中,OA=8,OC=12,直线与x轴交于点D,与y轴交于点E,把矩形沿直线DE翻折,点O恰好落在AB边上的点F处,M是直线DE上的一个动点,直线DF上是否存在点N,使以点C,D,M,N为顶点的四边形是平行四边形?求符合题意的点N的坐标。

2、如图,在平面直角坐标系中,直线与交于点A,与x轴分别交于点B和点C,D 是直线AC上一动点,E是直线AB上一动点.若以O,D,A,E为顶点的四边形是平行四边形,求符合题意的点E的坐标。

3、如图,直线与x轴、y轴分别交于A,B两点,直线BC与x轴交于点C,且∠ABC=60°,若点D在直线AB上运动,点E在直线BC上运动,且以O,B,D,E为顶点的四边形是平行四边形,求符合题意的点D的坐标。

4、如图,在平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30°,把矩形沿直线DE翻折,使点C落在点A处,DE与AC相交于点F,若点M是直线DE上一动点,点N是直线AC上一动点,且以O,F,M,N为顶点的四边形是平行四边形,求符合题意的点N的坐标。

5、如图,直线分别交x轴、y轴于A,B两点,线段AB的垂直平分线交x轴于点C,交AB于点D.若在平面内存在点E,使得以点A,C,D,E为顶点的四边形是平行四边形,求符合题意的点E的坐标。

6、如图,在平面直角坐标系中,直线y=-x+4与x轴、y轴分别交于A,B两点,点P是直线AB上一动点,则在坐标平面内是否存在点Q,使得以O,A,P,Q为顶点的四边形是菱形?(1)处理这样的问题,我们一般是转化为等腰三角形的存在性问题,那么此题我们转化为哪个等腰三角形的存在性问题?( );符合题意的点P有( )个;符合题意的点Q的坐标为( )。

7、如图,在平面直角坐标系中,直线与x轴、y轴分别交于A,B两点,点P是y轴上一动点,则在坐标平面内是否存在点Q,使得以A,B,P,Q为顶点的四边形是菱形?(1)处理这样的问题,我们一般是转化为等腰三角形的存在性问题,那么此题我们转化为哪个等腰三角形的存在性问题?( )A.△ABQ B.△ABP C.△APQ D.△BPQ符合题意的点P有( )个;符合题意的点Q的坐标为( )。

坐标轴求平行四边形点坐标

坐标轴求平行四边形点坐标

坐标轴求平行四边形点坐标平行四边形是几何中常见的图形之一,它具有两对平行边,对角线互相平分且长度相等的特点。

在平面直角坐标系中,要确定平行四边形的顶点坐标,可以通过已知条件和坐标系的性质进行计算。

假设我们已知平行四边形的某一对相对顶点的坐标为A(x1, y1)和B(x2, y2),现在的任务是求出另外两个顶点C和D的坐标。

首先,我们需要根据平行四边形的性质推导出解题的方法。

1.平行四边形的性质–平行四边形的对角线互相平分,因此对角线的中点坐标可通过已知顶点的坐标求得。

–对角线的斜率相等或互为相反数。

2.求解过程–首先确定对角线AC和BD的中点坐标M和N。

•对角线AC的中点M坐标为:(x1 + x2)/2, (y1 + y2)/2•对角线BD的中点N坐标为:(x2 + x1)/2, (y2 + y1)/2 –求解对角线AC的斜率k1和对角线BD的斜率k2。

•对角线AC的斜率k1为:(y2 - y1)/(x2 - x1)•对角线BD的斜率k2为:(y1 - y2)/(x2 - x1)–确定顶点C和D的坐标。

•已知AC的中点M和斜率k1,通过已知点和斜率的点斜式方程确定C的坐标。

•已知BD的中点N和斜率k2,通过已知点和斜率的点斜式方程确定D的坐标。

3.实际计算–假设A(2, 3)和B(7, 5)为平行四边形的两对相对顶点坐标。

–计算AC和BD的中点:M((2+7)/2, (3+5)/2) = (4.5, 4) 和N((7+2)/2, (5+3)/2) = (4.5, 4)–计算斜率:•AC的斜率k1 = (5-3)/(7-2) = 0.4•BD的斜率k2 = (3-5)/(7-2) = -0.4–根据点斜式计算C和D的坐标:•已知M(4.5, 4)和k1=0.4,得到AC的方程为 y-4=0.4(x-4.5),解得C(7,5.8)•已知N(4.5, 4)和k2=-0.4,得到BD的方程为 y-4=-0.4(x-4.5),解得D(2, 2.2)通过以上过程,我们成功求得了以A(2, 3)和B(7, 5)为顶点的平行四边形的另外两个顶点C(7, 5.8)和D(2, 2.2)的坐标。

坐标轴中的平行四边形

坐标轴中的平行四边形

坐标轴中的平行四边形在数学中,平行四边形是一种具有两对平行边的四边形。

当我们谈论坐标轴中的平行四边形时,我们通常是指在平面直角坐标系中的平行四边形。

在这种情况下,平行四边形可以用坐标轴上的点来描述,并且可以通过各种方法进行研究和分析。

定义坐标轴中的平行四边形是由四个点组成的图形,这四个点可以通过它们在坐标轴上的位置来表示。

具体来说,如果一个平行四边形的对角线平行于坐标轴,那么这个平行四边形的顶点可以表示为四个有序对(x1, y1), (x2, y2), (x3, y3), (x4, y4),其中x1、x2、x3、x4表示这四个顶点在x轴上的位置,y1、y2、y3、y4表示这四个顶点在y轴上的位置。

性质在坐标轴中,平行四边形具有许多有趣的性质。

一些常见的性质包括:1.对角线长度相等:如果一个平行四边形的对角线长度相等,那么它一定是一个菱形。

2.对角线互相平分:平行四边形的对角线会将其互相平分,即对角线的交点将其分成两个面积相等的三角形。

3.对边平行且对边相等:平行四边形的对边是平行且相等的。

4.相邻角补角相等:平行四边形的相邻内角是补角,它们的度数之和为180度。

应用坐标轴中的平行四边形在几何学、工程学和计算机图形学中都有广泛的应用。

在几何学中,我们可以通过计算坐标点的位置来研究平行四边形的性质,如面积、周长等。

在工程学中,平行四边形的概念可以应用于建筑结构设计、工艺优化等领域。

在计算机图形学中,平行四边形常用于描述和绘制各种形状的图形。

总的来说,坐标轴中的平行四边形是一个重要而有趣的数学概念,它不仅有着丰富的性质和特点,而且在各个领域都有着广泛的应用前景。

通过深入学习和理解平行四边形的性质,我们可以更好地利用这一概念解决现实生活和工作中的问题,同时也能够增强数学素养和分析能力。

平行四边形4个顶点坐标关系

平行四边形4个顶点坐标关系

平行四边形4个顶点坐标关系全文共四篇示例,供读者参考第一篇示例:平行四边形是几何学中常见的一种图形,具有独特的特点和性质。

平行四边形的四个顶点坐标关系是非常重要的一部分。

了解平行四边形四个顶点的坐标关系,可以帮助我们更深入地理解这种图形的结构和性质。

下面将详细介绍平行四边形四个顶点的坐标关系。

让我们来看看平行四边形的定义。

平行四边形是一个具有两对平行边的四边形。

这意味着平行四边形的相对边是平行的,而且相对边的长度相等。

在平行四边形中,四个顶点分别连接了相邻的两条边,形成了独特的结构。

在平行四边形中,四个顶点的坐标关系可以用直角坐标系来表示。

设平行四边形的四个顶点分别为A、B、C、D,那么可以用坐标点(Ax, Ay),(Bx, By),(Cx, Cy),(Dx, Dy)来表示这四个顶点的位置。

在直角坐标系中,横坐标表示点在x轴上的位置,纵坐标表示点在y轴上的位置。

下面我们以一个具体的例子来说明平行四边形四个顶点的坐标关系。

假设平行四边形的两对顶点分别为A(2,3),B(6,3),C(4,1),D(0,1)。

我们可以通过计算这四个点之间的距离来验证这个平行四边形是否符合定义。

我们计算AB和CD两条边的长度。

根据两点间距离公式d = sqrt((x2-x1)^2 + (y2-y1)^2),我们可以计算得到AB边的长度为4,CD边的长度为4。

因为AB和CD两条边的长度相等,所以这个平行四边形符合定义。

只要知道平行四边形的两个相对角度,我们就可以进一步确定平行四边形四个顶点的坐标关系。

根据平行四边形的性质,在平行四边形中相邻两边的夹角互补,因此相对角度可以通过一些简单的几何运算得到。

第二篇示例:平行四边形是几何学中的一种特殊形状,它具有特定的性质和特征。

在平行四边形中,四条边两两平行,并且对边相等,对角线相交于一点,且相互平分。

接下来,我们将讨论平行四边形的4个顶点坐标关系。

在二维坐标系中,我们可以用(x, y)来表示一个点的坐标,其中x 表示该点在横坐标上的位置,y表示该点在纵坐标上的位置。

坐标系中的平行四边形洋葱数学

坐标系中的平行四边形洋葱数学

坐标系中的平行四边形洋葱数学平行四边形洋葱数学,是一种流行的数学学科,其基础是在坐标系中研究平行四边形。

在研究过程中,我们会发现这些平行四边形之间存在着一些规律,让人惊叹不已。

首先,我们来回忆一下,什么是平行四边形。

平行四边形的定义是:有一组平行的对边,同时对边长度相等的四边形。

我们可以在坐标系中画出平行四边形的图形,并用坐标表示它们。

假设在坐标系中,有一个平行四边形ABCD,其中AB平行于CD,BC平行于AD。

假设以A点为原点,我们可以把平行四边形的对角线BD 和AC的坐标表示为(x1,y1)和(x2,y2)。

那么,平行四边形的面积S如何计算呢?我们可以通过向量积来计算平行四边形的面积:S = |(x1,y1) × (x2,y2)|,其中“×”是向量积运算符号。

接下来,让我们来看看,对于两个平行四边形,它们的面积之和为何等于另外一个平行四边形的面积。

假设在坐标系中,有两个平行四边形ABCD和EFGH,其中AB平行于CD,BC平行于AD,EF平行于GH,FG平行于EH。

我们可以把这两个平行四边形拆开成如下图所示的四个小三角形:那么,这四个小三角形的面积之和为:|AD|×|EF|/2 +|AB|×|EF|/2 + |AD|×|FG|/2 + |AB|×|FG|/2。

对它们合并起来,可以得到:(|AD|+|AB|)×|EF|/2 + (|AD|+|AB|) ×|FG|/2 =(|AD|+|AB|)×(|EF|+|FG|)/2。

可见,这就是另一个平行四边形的面积。

接下来,让我们来看看,如果把平行四边形ABCD看成一个向量,那么对角线BD和AC分别是什么?我们可以得出:BD = AB + BC,AC = AD + CD。

根据向量积的性质,平行四边形的面积也可以写为|AB × AC|。

下面,我们来看看一个具体的例子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在坐标系中构造平行四边形
一.知识复习:
(一)平行四边形的定义 (二)平行四边形的性质 (三)平行四边形的判定:
二.在坐标系中构造平行四边形 (一).三个定点,一个动点
1. 已知A 、B ,在坐标平面内确定一个点P ,使得以O 、A 、B 、P 为顶点的四边形是平行四边

(1)A (2,0),B (0,1) (2)A (2,0),B (1,1)
2. 已知A (2,-1)、B (1,1),C (3,3),
在坐标平面内确定一个点P ,使得以A 、B 、
C 、P 为顶点的四边形是平行四边形
(二).两个定点,两个动点(对动点的位置有要求) 1. 两个动点均在直线上
(1)已知:点B (2,0)和直线3y x =-+,点C 在y 轴上,点P 在直线3y x =-+上,若以O 、B 、C 、P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标。

(2) 已知:点A (2,0)、B (0,1)和直线3y x =-+,点C 在坐标轴上,点P 在直线3y x =-+上,若以O 、B 、C 、P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标。

2. 一个动点在直线上,另一个动点在抛物线上
(1) 已知:抛物线232y x x =-+与x 轴交于A 、B 两点(
点在B P 、P 为顶点的四P 的坐标。

(2)已知:抛物线243y x x =-+与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点D ,点C 在抛物线的对称轴上,点P 在抛物线上,若以D 、B 、C 、P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标。

(3)已知:抛物线245y x x =--与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于
点D ,点C 在y 轴上,点P 在抛物线上,若以B 、D 、C 、P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标。

(4) 已知:抛物线245y x x =--与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点D ,点C 在x 轴上,点P 在抛物线上,若以B 、D 、C 、P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标。

三.课后练习:
1.已知抛物线21y x 14
=+(如图所示).
(1)填空:抛物线的顶点坐标是( , ),对称轴是 ; (2)已知y 轴上一点A (0,2),点P 在抛物线上,过点P 作PB ⊥x 轴,垂足为B .若△PAB 是等边三角形,求点P 的坐标;
(3)在(2)的条件下,点M 在直线AP 上.在平面内是否存在点N ,使四边形OAMN 为菱形?若存在,直接写出所有满足条件的点N 的坐标;若不存在,请说明理由.
x
y D B O x y D B O
2. 如图,在矩形OABC 中,AO=10,AB=8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA
边上的点E 处.分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线y=ax 2
+bx+c 经过O ,D ,C 三点.
(1)求AD 的长及抛物线的解析式;
(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,以P 、Q 、C 为顶点的三角形与△ADE 相似?
(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.
3. 如图甲,在平面直角坐标系中,A 、B 的坐标分别为(4,0)、(0,3),抛物线23y x bx c 4
=++
经过点B ,且对称轴是直线5x 2
=-.
(1)求抛物线对应的函数解析式;
(2)将图甲中△ABO 沿x 轴向左平移到△DCE (如图乙),当四边形ABCD 是菱形时,请说明点C 和点D 都在该抛物线上;
(3)在(2)中,若点M 是抛物线上的一个动点(点M 不与点C 、D 重合),经过点M 作MN ∥y 轴交直线CD 于N ,设点M 的横坐标为t ,MN 的长度为l ,求l 与t 之间的函数解析式,并求当t 为何值时,以M 、N 、C 、E 为顶点的四边形是平行四边形
4.已知,在Rt △OAB 中,∠OAB =90°,∠BOA =30°,AB =2.若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内.将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处. (1)点C 的坐标为_____________;
(2)若抛物线y =ax 2
+bx 经过C 、A 两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB 交于点D ,点P 为直线OB 上一点,过P 作y 轴的平行线,交抛物线于点M .问:是否存在这样的点P ,使得以C 、D 、M 、P 为顶点的四边形为平行四边形?若存在,求出此时点P 的坐标;若不存在,请说明理由. 、
5.(2012陕西中考) 如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;
(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;
(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.
M C B A O x
y
6.(2010陕西中考) 如图,在平面直角坐标系中,抛物线A (-1,0),B (3,0)C (0,-1)三点。

(1)求该抛物线的表达式;
(2)点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形求所有满足条件点P 的坐标。

7.(河南2010 )在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点. (1)求抛物线的解析式;
(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.
(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.
8.(2011年凉山州)如图,抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,其中12x x ,是方程24120x x --=的两个根。

(1)求抛物线的解析式;
(2)点M 是线段AB 上的一个动点,过点M 作MN ∥BC ,交AC 于点N ,连接CM ,当
CMN △的面积最大时,求点M 的坐标;
(3)点()4,D k 在(1)中抛物线上,点E 为抛物线上一动点,在x 轴上是否存在点F ,使以
A D E F 、、、为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F 的坐标,
若不存在,请说明理由。

相关文档
最新文档