28.2解直角三角形(第1课时)
28.2解直角三角形(第1课时)-教学设计
![28.2解直角三角形(第1课时)-教学设计](https://img.taocdn.com/s3/m/4f07c2e14afe04a1b071de5c.png)
28.2解直角三角形教学设计第1课时一、教学任务分析二、教学流程安排三、教学过程设计教学程序及教学内容师生行为设计意图 活动一:复习引入1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系a bA b aA c bA c a A ====cot ;tan ;cos ;sin b aB abB c aB c b B ====cot ;tan ;cos ;sin(2)三边之间关系a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.3.通过课本中“比萨斜塔”倾斜的问题,引出结直角三角形。
教师引导学生进行锐角三角形相关知识回顾与复习。
要求学生了解解直角三角形的依据,通过复习,使学生便于应用。
活动二:探究新知通过课本中“比萨斜塔”倾斜的问题,引出结直角三角形,详见书本P85页. 进行探究1:(1)在直角三角形中,除直角外的5个元素之间有哪些关系?(2)知道5个元素中的几个,就可以求其余元素?思考与提问:我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?例题1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b=2, a=6,解这个三角形. 解 ∵tanA=a b =62=3 ∴ 60B ∠=∴ 9030A B ∠=-∠=∴C=2b=22详见P86-88页,例2,例3,例4;教师提问,学生互动; (1)三边之间关系a 2 +b 2 =c 2 (勾股定理)(2)锐角之间关系∠A+∠B=90°. (3)边角之间的关系如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.引导学生思考分析完成后,让学生独立完成教师组织学生比较各种方法中哪些较好,选一种板演。
28.2.1解直角三角形 (第一课时)课件
![28.2.1解直角三角形 (第一课时)课件](https://img.taocdn.com/s3/m/257ace2b336c1eb91a375d77.png)
(三)自主学习 认识新知
在直角三角形中,由已知元素求未知元素的过程, 叫解直角三角形
解直角三角形的依据
(1)三边之间的关系: a2+b2=c2(勾股定理);
B
(2)锐角之间的关系: ∠ A+ ∠ B= 90º;
(3)边角之间的关系: a
sinA= c
cosA=
b c
tanA=
a b
(4)面积公式:S▲ABC
学验证一下,看是否能求出其它元素?
你从同学编的题中能发现什么问题?你能尝 试解决这些问题吗?
让学生猜想归纳、总结解直角三角形的类型。
已知一 两边 边一一 两角斜 直一 一边 角锐 锐、 边角 角一、 、直一 一角斜 直边边 角边
(六)归纳小结 反思提高
请你谈谈对本节学习内容的体会和感受。
A
2 m
30
B°
图(1)
C
请同学们总结上述计算方法中,都用到了哪些数学知识?
填一填 记一记
角α
三角函数
sinα cosα
tanα
30°
1 2
3 2
3
3
45°
2
2
2
2
1
60°
3 2
1 2
3
(二)探究学习 解决问题
问题: 要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所 成的角a一般要满足50°≤a≤75°.现有一个长6m的梯子,问: (1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)? (2)当梯子底端距离墙面2.4m时,梯子与地面所成的角a等于多少(精 确到1°)?这时人是否能够安全使用这个梯子?
问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的 距离是使用这个梯子所能攀到的最大高度.
课件:28.2.1 解直角三角形
![课件:28.2.1 解直角三角形](https://img.taocdn.com/s3/m/123e038ba45177232f60a2f2.png)
1 在Rt△ABC中,∠C=90°,根据下列条件解直角 三角形:c=30,b=20;
解:∵c=30,b=20, ∴ a= c2-b2= 302-202=10 5. ∵tan A= a =10 5 = 5 ,
b 20 2
∴∠A≈48°. ∴∠B=90°-∠A≈90°-48°=42°.
2 在Rt△ABC中,∠C=90°,AB=2 5 ,AC= 15 ,
3
A. 3 B. 3 C.6
3
D. 2
4 【2017·益阳】如图,电线杆CD的高度为h,两 根拉线AC与BC相互垂直,∠CAB=α,则拉线 BC的长度为(A,D,B在同一条直线上)( B )
A. h
sin
B. h
cos
C. h
tan
D.h·cos α
5 【2017·滨州】如图,在△ABC中,AC⊥BC, ∠ABC=30°,点D是CB延长线上的一点,且 BD=BA,则tan∠DAC的值为( A ) A.2+ 3 B.2 3 C.3+ 3 D.3 3
已知两直角边:
应用勾股定理求斜边, 应用角的正切值求出 一锐角,再利用直角 三角形的两锐角互余,求 出另一锐角.一般不用正 弦或余弦值求锐角,因为 斜边是一个中间量,如果 是近似值,会影响结果的 精确度.
已知斜边和直角边:
已知斜边和直角边:先利 用勾股定理求出另一直角 边,再求一锐角的正弦和 余弦值,即可求出一锐角, 再利用直角三角形的两锐 角互余,求出另一锐角.
Ca B
在直角三角形中,由已知元素求未知元素的过程,
叫做解直角三角形.
知识点 1 已知两边解直角三角形
探究: (1)在直角三角形中,除直角外的五个元素之间有哪些关系? (2)知道五个元素中的几个,就可以求其余元素?
28.2_解直角三角形_第1课时
![28.2_解直角三角形_第1课时](https://img.taocdn.com/s3/m/4a1e9f3b0912a21614792985.png)
1、解直角三角形的关键是找到与已知和未知相关联的直 角三角形,当图形中没有直角三角形时, 角三角形,当图形中没有直角三角形时,要通过作辅助 线构造直角三角形(作某边上的高是常用的辅助线); 线构造直角三角形(作某边上的高是常用的辅助线); 2、一些解直角三角形的问题往往与其他知识联系,所以 一些解直角三角形的问题往往与其他知识联系, 在复习时要形成知识结构, 在复习时要形成知识结构,要把解直角三角形作为一种 工具,能在解决各种数学问题时合理运用. 工具,能在解决各种数学问题时合理运用.
3
2010·重庆中考 已知: 如图, Rt△ABC中 重庆中考) 4. ( 2010 重庆中考 ) 已知 : 如图 , 在 Rt△ABC 中 , ∠ C 90° AC= = 90° , AC3 = BC边上一点 边上一点, BD= AD, . 点 D 为 BC 边上一点 , 且 BD = 2AD ,
b QtanB= a
A c B 35° ° a b= 20 C
∴a =
b 20 = ≈286 . tan tan ° B 35
B = b c
Q sin
你还有其他方 法求出c吗 法求出 吗?
∴c =
b 20 = ≈ 34.9. sinB sin35°
1、在下列直角三角形中不能求解的是( D ) 在下列直角三角形中不能求解的是( (A)已知一直角边一锐角 (A)已知一直角边一锐角 (B)已知一斜边一锐角 (B)已知一斜边一锐角 (C)已知两边 (C)已知两边 (D)已知两角 (D)已知两角
A c
(3)Байду номын сангаас角之间的关系 )
∠A的对边 a sinA= = 斜边 c
∠A的邻边 b cos A = = 斜边 c
人教版九年级数学下册第二十八章《28.2解直角三角形》优课件(共17张PPT)
![人教版九年级数学下册第二十八章《28.2解直角三角形》优课件(共17张PPT)](https://img.taocdn.com/s3/m/1ccd001dfe00bed5b9f3f90f76c66137ee064f4c.png)
(2)根据AC=2 ,BC= 6,你能求出这三角形
两边
的其他元素吗?∠(A∠ , B,A) B (能)
(3)根据∠A=60°,∠B=30°,你能 两 角 求出这个三角形的其他元素吗?
A
A
60 ?
30
?
2
?
(不能)
C
? ?B
(1)
C
(2) 6
?B
你发现
由以上的三个问题, 现了什
么?
在直角三角形的六个元素中,除直角外, 如果知道两个元素 (其中至少有一个是 边),就可以求出这个直角三角形其余的 三个元素。
面积.
A
2、如图,在Rt△ABC中,
4cm
zxxkw
2
∠C=90 ,sinA= 5
, D为
B 450
?
300 C
AC上的一点,∠BDC=45 , DC=6cm, 求AB的长。
B
?
A
4情,但是非常忠实。2022年2月12日星期六2022/2/122022/2/122022/2/12 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/122022/2/122022/2/122/12/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/122022/2/12February 12, 2022 •4、享受阅读快乐,提高生活质量。2022/2/122022/2/122022/2/122022/2/12
谢谢观赏
You made my day!
解直角三角形省名师优质课赛课获奖课件市赛课一等奖课件
![解直角三角形省名师优质课赛课获奖课件市赛课一等奖课件](https://img.taocdn.com/s3/m/209ea1b56394dd88d0d233d4b14e852458fb39fa.png)
6
B
∴ B 90 A 90 60 30
∴ AB 2AC 2 2
例2 如图,在Rt△ABC中,∠B=35°,b=20,解这个直角三角形 (精确到0.1)
解:在RtABC中
∠A=90°-∠B=90°-35°=55°
∵ tan B b ∴tan 35°= 20
a
a
∴a= 20 。≈28.6 tan 35
28.2解直角三角形(1)
知 识回 顾
一种直角三角形有几种元素?它们之间有何关系?
有三条边和三个角,其中有一种角为直角
(1)三边之间旳关系: a2+b2=c2(勾股定理);
(2)锐角之间旳关系: ∠ A+ ∠ B= 90º;
B
(3)边角之间旳关系:
sinA=
A= b c
∵AB>0
2
C
6
B
∴AB= 2 2
∵ tan A BC 6 3 AC 2
A 60
,∠A为锐角
∴∠B=90°-∠A= 30°
例1 如图,在Rt△ABC中,∠C=90°, AC 2, BC 6
解这个直角三角形
解: 在RtABC中
A
∵
tan A BC AC
6 2
3
,∠A为锐角
2
C
A 60
a c
sin
B
B的对边 斜边
b c
cos
A
A的邻边 斜边
b c
cos
B
B的邻边 斜边
a c
tan
A
A的对边 A的邻边
a b
tan
B
B的对边 B的邻边
b a
• 作业:顶尖28.2解直角三角形
人教版数学九年级下册28 解直角三角形及其应用教案与反思
![人教版数学九年级下册28 解直角三角形及其应用教案与反思](https://img.taocdn.com/s3/m/ab27d722b5daa58da0116c175f0e7cd184251840.png)
28.2 解直角三角形及其应用人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》原创不容易,【关注】店铺,不迷路!28.2.1 解直角三角形(第1课时)教学目标一、基本目标【知识与技能】1.了解什么叫解直角三角形.2.掌握解直角三角形的根据.3.能由已知条件解直角三角形.【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想.【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标【教学重点】解直角三角形的方法.【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P72~P73的内容,完成下面练习.【3min反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c.(1)两锐角互余,即∠A+∠B=90°;(2)三边满足勾股定理,即a2+b2=c2;(3)边与角关系sin A=cos B=ac,cos A=sin B=bc,tan A=ab,tan B=ba.3.Rt△ABC中,若∠C=90°,sin A=45,AB=10,那么BC=8,tan B=34.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2 巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是( A )A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为4 3.3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3 拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°∴MD=BMtan 60°=43,∴CD=CM-MD=12-4(3).【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P74~P75的内容,完成下面练习.【3min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tanα米.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2 巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约是多少?(精确到0.1m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°.∵在Rt△ACD中,CD=21m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3m.活动3 拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D 两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)【互动探索】要求AB,先求出AE与BE→解直角三角形:Rt△ADE、Rt△BCE.【解答】在Rt△ADE中,∵∠ADE=65°,DE=15米,∴tan∠ADE=AE DE,即tan65°=AE15≈2.1,解得AE≈31.5米.在Rt△BCE中,∵∠BCE=42°,CE=CD+DE=6+15=21(米),∴tan∠BCE=BE CE,即tan42°=BE21≈0.9,解得BE≈18.9米.∴AB=AE-BE=31.5-18.9≈13(米).即旗杆AB的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt△ADE、Rt△BCE,利用AB=AE-BE即可求出答案.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!第3课时利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i=坡面的铅直高度坡面的水平宽度=坡角的正切值.【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P76~P77的内容,完成下面练习.【3min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m 的形式.坡面与水平面的夹角叫做坡角,记作α,有i =h l=tan α. 2.一斜坡的坡角为30°,则它的坡度为1∶ 3.(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2 合作探究,解决问题活动1 小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD的长并与10海里比较→得出结论.【解答】如题图,过点A作AD⊥BC交BC的延长线于点D.在Rt△ABD中,∵tan∠BAD=BD AD ,∴BD=AD·tan55°.在Rt△ACD中,∵tan∠CAD=CD AD ,∴CD=AD·tan25°.∵BD=BC+CD,∴AD·tan55°=20+AD·tan25°,∴AD=20tan 55°-tan 25°≈20.79(海里).而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A距BC的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD,AD∥BC,路基顶宽BC=9.8m,路基高BE=5.8m,斜坡AB的坡度i=1∶1.6,斜坡CD的坡度i′=1∶2.5,求铁路路基下底宽AD的值(精确到0.1m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8m,i=1∶1.6,i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tanα=i=1∶1.6,tanβ=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2 巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为65米.2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C村村民欲修建一条水泥公路,将C村与区级公路相连.在公路A处测得C村在北偏东60°方向,沿区级公路前进500m,在B处测得C村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C作CD⊥AB,垂足落在AB的延长线上,CD即为所修公路,CD的长度即为公路长度.在Rt△ACD中,根据题意,有∠CAD=30°.∵tan∠CAD=CD AD,∴AD=CDtan 30°=3C D.在Rt△CBD中,根据题意,有∠CBD=60°.∵tan∠CBD=CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500m,∴3CD-33CD=500,解得CD≈433m.活动3 拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶3,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠CED=60°.∵AB的坡比为1∶3,∴∠ABE=30°,∴∠BAE =90°.∵AB =3米,∴AE =AB tan ∠ABE =3×33=3(米), ∴BE =2AE =23米.∵∠C =∠CED =60°,∴△CDE 是等边三角形.∵AC =6米,∴DE =CE =AC +AE =(6+3)米,∴BD =DE -BE =6+3-23=(6-3)(米).即浮漂D 与河堤下端B 之间的距离为(6-3)米.【互动总结】(学生总结,老师点评)本题既考查了解直角三角形,也考查了等边三角形的性质,根据已知条件构造出直角三角形及等边三角形是关键.环节3 课堂小结,当堂达标(学生总结,老师点评)⎩⎪⎨⎪⎧ 坡度与坡角⎩⎨⎧ 坡度的概念→通常写成比的形式坡角的概念→坡度越大,坡面就越陡方向角:指正北、正南方向线与目标方向线所形 成的角练习设计请完成本课时对应练习!【素材积累】 海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。
《解直角三角形(第一课时)》教学PPT课件【初中数学】公开课
![《解直角三角形(第一课时)》教学PPT课件【初中数学】公开课](https://img.taocdn.com/s3/m/c023115c03d8ce2f0166230d.png)
活动五
2..直角三角形中一共有六个元素,即三条边和三个角,除直 角外,另外的五个元素中,只要已知一条边和一个角或两条 边,就可以求出其余的所有未知元素.
3.求未知元素时,有时可选择的关系式不止一 种,应考虑计算的方便,先求角后求边。
4.计算时要尽量利用原始数据,以防误差扩大。
教学活动6、课堂练习:
斜边,一锐角(如c,∠A) 一直角边,一锐角(如a,∠A)
1)∠B=90°-∠A; (2)由sin A=,得a=c·sin A; (3)由cos A=,得b=c·cos A
(1)∠B=90°-∠A;
(2) 由tan A= a ,得b a
b
tan A
(3) 由sinA= a ,得c a
c
sin A
或者AB=2AC=4
BC 42 22 2 3
活动四
2.在RtΔABC中,∠C=90°,若AC=2,AB=4,求∠A,∠B的度数和 BC的长.
解:∵ AC 2BC2 AB2
BC 42 22 2 3
sin B AC 1 AB 2
∴∠B=30° ∴∠A=90°-30°=60°
复习回顾
2. 特殊角的三角函数
1
2
3
sin30°= 2 ,sin45°= 2 ,sin60°= 2 ;
3
2
1
cos30°= 2 ,cos45°= 2 ,cos60°= 2 ;
3 tan30°= 3 ,tan45°= 1 ,tan60°= 3 .
活动一
如图所示,轮船在A处时,灯塔B位于它的北偏东35°的方 向上,轮船向东航行5 km,到达C处时,轮船位于灯塔的 正南方,此时轮船距灯塔多少千米? (tan55°≈1.4281,结果保留两位小数)
人教版数学九年级下册-28.2.1 解直角三角形-教案
![人教版数学九年级下册-28.2.1 解直角三角形-教案](https://img.taocdn.com/s3/m/3209b82c941ea76e59fa04c1.png)
28.2.1解直角三角形(第1课时)教学设计一、教材分析本节课内容是新人教版教材九年级下册,第二十八章《锐角三角函数》的第二节《解直角三角形》第一课时,是在学习了勾股定理、锐角三角函数的基础上进行的。
本节课既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识。
教材首先从实际生活比萨斜塔入手,创设问题情境,抽象出数学问题,从而引出解直角三角形的概念,归纳解直角三角形的一般方法。
本节课的学习还蕴涵着深刻的数学思想方法:数学建模和转化化归,在本节教学中有针对性的对学生进行这方面的能力培养。
通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解直角三角形的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系。
二、教学目标(一)知识与技能1.理解直角三角形中五个元素的关系,什么是解直角三角形;2.运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法目标通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”和“转化”思想。
(三)情感、态度和价值观通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识能应用于社会实践。
并让学生体验到学习是需要付出努力和劳动的。
三、学情分析九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都有待提高,因此要在本节课进行有意识的培养。
四、教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形五、教法与学法1、教学方法:利用多媒体辅助教学,通过观察,引导学生思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。
2、学习方法:观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。
28.2.1 解直角三角形 课件 2024-2025学年数学九年级下册人教版
![28.2.1 解直角三角形 课件 2024-2025学年数学九年级下册人教版](https://img.taocdn.com/s3/m/6e472d464a35eefdc8d376eeaeaad1f3469311a8.png)
知1-讲
图示
感悟新知
知1-练
例 1 根据下列所给条件解直角三角形,不能求解的是( )
①已知一直角边及其对角;②已知两锐角;③已知两
直角边;④已知斜边和一锐角;⑤已知一直角边和
斜边.
A. ②③
B. ②④
C. 只有②
D. ②④⑤
感悟新知
知1-练
解题秘方:紧扣解直角三角形中“知二求三”的特征进行 解答. 解:①③④⑤能够求解,②不能求解. 答案:C
知2-练
解:在 Rt△ ABC 中,∠C=90°,AC=2 3,BC=6, ∴AB= AC2+BC2=4 3, tan B=ABCC=263= 33, ∴∠B=30°.∴∠A=90°-30°=60°.
感悟新知
例 3 根据下列条件,解直角三角形:
知2-练
(1)在Rt△ABC中,∠C=90 °,∠A,∠B,∠C所对的边
对乘正切.
“有斜求对乘正弦”的意思是:在一个直角三角形中,
对一个锐角而言,如果已知斜边长,要求该锐角的对边长,
那么就用斜边长乘该锐角的正弦值,其他的意思可类推.
感悟新知
例 2 根据下列条件,解直角三角形:
知2-练
(1)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边
分别为a,b,c,a=20,c=20 2;
续表 图形
Rt△ABC
知2-讲
已知条件
解法
一 边 和 一
一直 角边 和一 锐角
一锐角与邻边 (如∠A,b)
一锐角与对边 (如∠A,a)
∠ B = 90° - ∠ A ; a =
b·tan A;c=cosb A
∠ B = 90° - ∠ A ; b =
28.2.1解直角三角形课件第一课时
![28.2.1解直角三角形课件第一课时](https://img.taocdn.com/s3/m/cd108cf551e79b89680226d7.png)
(地球半径约为6 400km,π取3.142,结果保留整数) 分如析图:,⊙从O飞表船示地上球能,最点F是
远飞船直的接位看置到,的FQ地是⊙球O上的的切线,
F
点切点,Q应是是从飞视船线观与测地地球球相时的最 切远Q两点时点,的间弧切的P距Q点的离.长,就为是计地算面弧上PPQ、
的长需先求出∠POQ(即a)
当飞船在P点正上方时,从飞船观测地球时的 最远点距离P点约2071km.
仰角和俯角
在视线与水平线所成的角中, 视线在水平线上方的是仰角;视线在水平线下方的是俯角.
视线
铅
仰角
直
线
俯角
水平线
视线
例1:热气球的探测器 显示,从热气球看一栋 高楼顶部的仰角为 30°,看这栋高楼底部 的俯角为60°,热气球 与高楼的水平距离为 120m,这栋高楼有多 高?
P
C
30° A
45°
200米
O
B
合作与探究
例2:如图,直升飞机在高为200米的大楼AB上 方P点处,从大楼的顶部和底部测得飞机的仰 角为30°和45°,求飞机的高度PO .
P
答案: (100 3 300 ) 米
O
30° A
45°
200米
B
C
方位角
• 指南或指北的方向线与目标方向线构成小于 900的角,叫做方位角.
a
b
a
20
20
28.6
tan B tan 35 0.70
B
35°
20 C
sin B = b
c
c b 20 20 35.1
sin B sin 35 0.57
在Rt△ABC中,∠C=90°,根据下列条件 解直角三角形.
28.2第1课时解直角三角形-公开课
![28.2第1课时解直角三角形-公开课](https://img.taocdn.com/s3/m/2149a01f52d380eb62946d34.png)
b 14
c=14
b
B
60°
a C
∴b=14×sin 60°= 7 3
a a ∴cos60°= ∵ cos B 14 c ∴a=14× cos60°= 7
这堂课你有 什么疑惑?
?
你还能提 出什么问 题呢?
提出问题: 在锐角 △ABC中,已知AC=6,BC= 3 6 如图, ∠B=45°,求∠A,∠C及AB的长。 A D
B
(1)使用这个梯子最高可以安全攀上 多高的平房?(精确到0.1m) 角α越大,攀上的高度就越高. 这个问题归结为:
在Rt△ABC中,已知∠A= 75°,斜边 AB=6,求BC的长
A
C
要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所 成的角α一般要满足50°≤ α ≤75°.现有一个长6m的梯子.问:
28.2 解直角三角形
第1课时 解直角三角形
台风是一种空气旋涡,是破坏力很强的自然灾害。 2006年5月18日2时15分,台风“珍珠”在广东汕头澄 海和饶平之间登陆,一棵百年大树被吹断折倒在地上, 你知道这棵大树在折断之前有多高吗?
如何知道这棵大树在折断之前有多高? A A
情景分析
A
B
C
B
C
B
?
2 b
C
?
6
a
例2 在Rt△ABC中,∠C=90°, ∠B=30°, b=20 , 解这个直角三角形 .
A
c B
?
? 20
b=20 C
30°
a
?
在Rt△ABC中,∠C=90°,根据下列条件解直角三 角形; B
(1) a = 30 , b = 20
A
c
28.2解直角三角形(一)
![28.2解直角三角形(一)](https://img.taocdn.com/s3/m/e861053b5a8102d276a22f15.png)
28.2解直角三角形(一)知识点总结:知识点1.解直角三角形的概念:一般地,直角三角形中,除直角外,共有5个元素,即3条边和2个锐角,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。
知识点2.解直角三角形的理论依据:(1)在ABC t R ∆中,∠C=90°ACBcb a(1)两锐角互余:∠A+∠B=90°(2)三边关系——勾股定理:222c b a =+,变式⎪⎩⎪⎨⎧-=+=2222bc a ba c (3)边、角关系——锐角三角函数:a sin =c A =对边斜边 b cos ==c A 邻边斜边 at a n ==b A 对边邻边 b sin ==c B 对边邻边 a cos ==c B 邻边斜边 b tan ==a B 对边斜边(4)直角三角形中的有关定理:①直角三角形中,斜边上的中线等于斜边的一半。
②直角三角中,300角所对的直角边等于斜边的一半。
③直角三角形中,若有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于300.④直角三角形中,斜边上的高是这条高分斜边所得两条线段的比例中项。
⑤面积公式:ab ch s==22。
知识点3.解决直角三角形的基本类型以及其解法: 解直角三角形有四种类型:(1)已知斜边和一个直角边;(2)已知两条直角边(3)已知斜边和一个锐角(4)已知一个直角边和一个锐角应注意以下原则:(1)“先求角后求边,宁乘不除”的原则 (2)有“斜”选“弦”,无“斜”选“切”。
(3)尽量使未知元素在分子的位置上,以便利用乘法运算求未知元素。
(4)尽量使用原始数据:以减少误差的积累,也可避免由于中间数据有错而产生新的误差。
知识点4.直角三角形中有斜边高线:在ABC t R ∆中,∠C=90°,AB CD ⊥,则∠1=∠B ,∠2=∠A 。
ACD t R ∆∽CBD Rt ∆∽ABC Rt ∆。
CA D B1 2由相似得对应边成比例,可得到:.AB BD BC ;AB AD AC ;DB AD CD 222⋅=⋅=⋅=由面积公式,得AB CD BC AC ⋅=⋅知识点5. 等腰三角形、斜三角形、梯形等可化为直角三角形的图形。
解直角三角形教学设计
![解直角三角形教学设计](https://img.taocdn.com/s3/m/68f506f6a5e9856a5712609e.png)
教学设计(修改稿)时间:年月日星期课题:28.2.解直角三角形(一)第课时一.教学目标1.使学生理解解直角三角形中五个元素的关系,什么是解直角三角形。
2.会运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形。
3.通过综合运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题,解决问题的能力。
二.教学重点:理解并掌握直角三角形边角之间的关系。
三.教学难点:从条件出发,正确选用适当的边角关系解题。
四.教学方法:引导探究,讨论交流五.教学准备:六.教学过程:教学步骤师生活动设计意图一、复习引入教师提出问题,引起学生思考,然后小组内讨论,回答。
在直角三角形中,共有三条边、三个角(六个元素),你能根据所学的知识谈谈它们之间的关系吗?回顾复习直角三角形中边与边、角与角、边与角之间的关系二、回顾汇总1、在一个三角形中,共有几条边?几个角?(引出“元素”这个词语)2、在RtΔABC中,∠C=90°。
a、b、c、∠A、∠B这些元素间有哪些等量关系呢?教师提出问题,引导提示学生思考总结(引问:边与边、角与角、边与角之间的关系)教师根据学生的回答归纳。
在直角三角形中:1.三边之间关系:a2+b2=c2(勾股定理)2.锐角之间关系:∠A+∠B=90°3.边角之间关系:正弦函数:sinA= cosB=a/c余弦函数:cosA= sinB=b/c回顾复习汇总,为解直角三角形打下基础正切函数:tanA= a/btanB= b/a三、新知探索探究:在RT△ABC中,∠ C=90°(1)若∠A=35°,AB=10,你能求出这个直角三角形中的其他元素吗?(2)若AB=10,BC=5,你能求出这个直角三角形中的其他元素吗?(3)若∠A=35°∠B=55°,你能求出这个直角三角形中的其他元素吗?(4)在直角三角形中知道几个元素就可以求出其他元素?(只讨论方法,不解出结果)1.教师提出问题,引导学生思考分析,并简要讲评。
28.2.1 解直角三角形 第1课时 解直角三角形
![28.2.1 解直角三角形 第1课时 解直角三角形](https://img.taocdn.com/s3/m/60b182c570fe910ef12d2af90242a8956aecaa70.png)
28.2.1 解直角三角形第1课时解直角三角形
二、合作探究
在上述问题中,我们已知直角三角形的一条直角边和斜边,利用锐角三角函数
可求出它的锐角的度数,事实上,我们还可以借助直角三角形中两锐角互余,求出另一个锐角度数,也可以利用勾股定理得到另一条直角边.
一般地,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三形
思考(1)直角三角形中,除直角外的5个元素之间有哪些关系?
(2)知道5个元素中的几个,就可以求出其余元素?
如图,在Rt△ABC 中,∠
C=90°,∠A,∠B,∠C的对边分别为a,b,c,那么除直角C 外的5个元素之间有如下关系:
三边之间的关系:a2+b2=c2
两锐角之间的关系:∠A+∠
B=90°;
边角之间的关系:
通过它们之间的关系,可以发现,知道其中的2个元素(至少有一条是边),就可以求出其他所有元素.
三、巩固提升
例1 如图,在 Rt△ABC 中,∠A、∠B、∠C所对的边分别为
a、b、c,且,解这个直角三角形.
例2 如图,在 Rt△ABC中,∠C=90°,∠B=40°,且b=20,解这个直角三角形(结果保留一
解直角三角形.
(1)三边之间的关系:a2+b2=c2
(2)两锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
bC
解直角三角形的原则:
(1)有角先求角,无角先求边
(2)有斜用弦, 无斜用切;
尽量选择
(3)宁乘毋除, 取原避中。
原始数据, 避免累积
例1:在Rt▲ABC中,∠C=900,AC= 错2 误,
BC= 6 ,解这个直角三角形。
例2:在Rt▲ABC中, ∠C=900, ∠ B=350, b=20,解这个直角三角形。(结果保留小数点后 一位)
地面
D
动动脑
如图在△ABC中,∠C=90度,
, sA i n 2 ,D 为 A 上 C 的 B一 D 4 ,D 5 C 点 6 C .求 A 的 B 5
动动脑 (4)在Rt△ABC中,∠C为直角,AC=6,
BA 的平C 分线AD=4 3 ,解此直角三角形。
A
6
43
C
D
B
动动脑
在四边形ABCD中,∠ A= 60°,AB⊥BC,AD⊥DC,
AB=20cm,CD=10cm,求AD,BC的长(保留根 号)?
A
60°
20
B
D 10 C
30° E
A 20
B
D 10 C
今天你有什么收获?
请你谈谈对本节学习内容的 体会和感受。
在遇到解直角三形的问题时,最好先画一个直角三角形 的草图,按题意标明哪些元素是已知的,哪些元素是未 知的。以得于分析解决问题 选取关系式时要尽量利用原始数据,以防止“累积错误” 解直角三角形的方法遵循“有斜用弦,无斜用切; 宁乘勿除,取原避中”
填一填 记一记
角α
三角函数
sinα
cosα
tanα
30°
1 2
3 2
3
3
45°
2
2
2
2
1
60°3 21 23对于sinα与tanα,角度越大,函数值也越大;( α 为锐角) 对于cosα,角度越大,函数值越小。
想一想
在Rt△ABC中,
一角一边
A
(1)根据∠A= 60°,斜边AB=30,
你能求出这个三角形的其他元素吗?
参考值 tan35≈0.70 sin35 ≈0.57 Cos35≈0.82
轻松一下
在下列直角三角形中,不能求解 的是( D)
A、已知一直角边一锐角
B、已知一斜边一锐角
C、已知两边
D、已知两角
巩固练习:
1.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形
(1)a4 5,b4 15
(2) A300,c10
例3. 如图所示,一棵大树在一次强烈的地震中于 离地面10米处折断倒下,树顶落在离树根24米处.大树 在折断之前高多少?
解 利用勾股定理可以求
出折断倒下部分的长度为:
102+242 = 26
26+10=36(米). 答:大树在折断之前高为36 米.
考一考
在Rt△ABC中,∠C=90度,a,b,c分别是∠A,∠B,∠C的 对边.
2
C
6
∠B
AC
BC
两边
(2)根据AC=
B
2 ,BC=
6
你能求出这个三角形的其他元素吗?
你发现了 什么?
∠A
∠B
AB
两角
(3)根∠A=60°,∠B=30°,
你能求出这个三角形的其他元
素吗? 不能
在直角三角形的六个元素中,除直角外, 如果知道两个元素(,其中至少有一个是边),
就可以求出其余三个元素.
新知识
(1)已知 B45,c 6 解这个直角三角形
(2)已知 B300,b2 解这个直角三角形
B
c 45°
6
a
B
c 30° a
A
bC
A
bC
例4: 如图,太阳光与地面成60度角,一棵倾斜的大树 AB与地面成30度角,这时测得大树在地面上的影长 为10m,请你求出大树的高.
AB的长
太阳光线
A
30°
60°
B 10 C
在直角三角形中,由已知元素求未知 元素的过程,叫 解直角三角形
解直角三角形的依据
(1)三边之间的关系:
a2+b2=c2(勾股定理);
B
(2)锐角之间的关系: ∠ A+ ∠ B= 90º;
c
(3)边角之间的关系:
a
a sinA= c
cosA=
b c
tanA=
a b
(4)面积公式:
S▲ ABC 1 2a•b1 2c•h
结束寄语
下课了!
• 悟性的高低取决于有无悟“心”,其 实,人与人的差别就在于你是否去思
考,去发现.去总结
知 识回 顾
一个直角三角形有几个元素?它们之间有何关系?
有三条边和三个角,其中有一个角为直角
(1)三边之间的关系: a2+b2=c2(勾股定理);
(2)锐角之间的关系: ∠ A+ ∠ B= 90º;
B
(3)边角之间的关系: 锐角三角函数
sinA=
a c
tanA= a b
cosA= b c
c a
A
bC