ReservoirSimulation
油气藏数值模拟原理
- 时间方程来拟合生产历史数据。
一旦选定了递减模型,历史生产数据就可以通过选择递减参数Di和b来拟合。由 此,就可以使历史生产数据与产量 - 时间方程之间的误差得到最小化。应用适 当的方程将历史数据外推就可以进行油藏动态预测。
递减曲线法
统计法
统计方法使用一些经验关系来预测油藏动态。这些经验关系来自对大量油藏过去生
发中后期剩余油分布和采收率预测、经济效益预测以及对整个
油田开发的重大问题进行决策的一门有效的工具。
类比法 实验方法 数学方法
模 拟 法
传统的模拟方法
在钻井前,当受到某些方面的限制或是不能获取有关
类比法
利用已开发油藏的特
数据时,油藏工程师进行经济预测的唯一方法就是类 比法。在该方法中,处于同一地质盆地或省份,或是 具有相似岩石物理性质的油藏将用来预测目标油藏。 这种方法可以估计开采因素、初始产量、递减率、井 网布置和油藏开采机理。将两个相似油藏进行对比并 采用类似的开发策略就能得到可靠的结果。但是,如 果考虑到不同的开发策略,这种方法将遇到困难,并 且,无法判断敏感性因素。
Numerical Reservoir Simulation
油气藏数值模拟原理
西南石油学院 主讲 张烈辉
第一章 绪
论
开发方式 井网、井数、井距 采油速度 开发方案优选 确定开发方案
油田开发初期
油田开发中后期
确定剩余油、气分布 优选增产措施
确定提高采收率的方法
制定开发调整方案
磨溪气田雷一1气藏中亚段顶面构造图
物 理 模 拟
就是根据同类现象和相似现象的一致性,利用物理模型来
观察和研究其原型或原现象的规律性.
一些国外油藏一体化软件介绍及网址
1.英国Petroleum Experts公司的RESOLVE油藏管理软件/products/?ssi=92. Roxar集团旗下的油气藏生产管理系列软件提供商Reservoir management suite油藏管理软件包/en-US/brands/roxar/reservoirmanagement/Pages/ReservoirManagementSoftware. aspx?gclid=CKDiupW476wCFWNU4godAkF-KAReservoir Simulation Solutions油藏模拟解决方案/en-US/brands/roxar/reservoirmanagement/ReservoirSimulation/Pages/ReservoirSimulation.aspx/Merlin - The Oil & Gas Reservoir SimulatorCamelot - Assisted History Matching4. Intelligent Solutions, Inc. ——小微型数模软件提供商/products.htmIMAGINE——Top-Down,Intelligent Reservoir Modeling快速智能数模软件/PDFs/Brochure-Imagine2010.pdfIMPACT——Surrogate Reservoir Modeling规则井网油藏的实时数模软件/PDFs/Brochure-Impact2010.pdf IMPROVE——Intelligent Production Improvement Through Stimulation & Workover/PDFs/Brochure-Improve2010.pdfImpulse/Impulse.htmImpress/Impress.htm IDEA——Data Driven, Intelligent Modeling/PDFs/Brochure-IDEA2010.pdf 5. Modeling Technologies Center的数模软件http://www.modeltech.ru/products/websim.phpReservoir simulation office软件WebSim网页模拟器——Petroleum Engineering ToolsREPOS——产量优化平台6. 美国德克萨斯州奥斯丁(AUSTIN)大学的石油与地球科学工程研究中心(Center for Petroleum & Geosystems Engineering)/承担RS-JIP项目(Reservoir Simulation Joint Industry Project),获得GPAS、UTCOMP和UT_IRSP三个成果,如下:/rsjip/projects.htmlGPAS——A Fully Implicit, Parallel Compositional SimulatorUTCOMP——An IMPEC Compositional Miscible Gas Flooding SimulatorUT_IRSP——An Integrated Reservoir Simulation System(所以此平台又称IRSS)。
油藏数值模拟精品PPT课件
油藏数值模拟研究内容 油(气)藏:在单一圈闭中具有同一压力系统的基本聚集。 如果圈闭中只聚集了石油,称为油藏,只聚集了天然气,称 为气藏。一般的工业油藏:具有一定的储量;储层温度小于 储层流体的临界温度。一般的工业气藏:具有一定的储量; 储层温度大于储层流体的临界温度。一个油气藏中可以有几 个含油气砂层时,称为多层油气藏。
油藏数值模拟的必要性
一、油藏模拟是现代油藏经营管理的一部分。关于油藏经 营管理,人们常常定义为资源的合理的分配,目的:以最 小的投资和操作提高采收率,获取最大的经济效益。提高 采收率与投入通常是一对矛盾的事物,如果不计较成本, 可能获取最大的油气采收率;同样,如果油藏经营者不愿 意管理有限的资源,成本也可能降到最低。油田管理者研 究的主要目的是从油藏的现状出发,以最小的资金投入获 得最大采收率所需要的最佳条件。而油藏数值模拟是获得 这一目标最高级的方法。
先行课程
数学与计算机、地质、(采油)化学、热工学、油层物理、采油工程、油藏 工程、 渗流力学等。 1、地质模型:建立三维地质模型,涉及构造、储层、沉积相、测井等随机建模。 2、油层物理:油层岩性和物性,油层流体的性质。 3、渗流力学:多相流体在多孔介质中的流动,包括物理化学渗流,温度场、渗流 场,压力场,岩石场之间的耦合的关系。 4、采油工程和油藏工程:解决油气田开发过程中的工程问题。包括井筒和地层。 5、(采油)化学:解决各种化学剂在油藏中的作用,特别是化学剂驱油。 6、热工学:解决注入流体的热量与地层流体和岩石的交换问题,特别是蒸汽吞吐, 火烧油层,注热水和气的采油过程。 7、数学与计算机:特别是计算数学、数值分析和线性代数等。通过计算机编程转 换为计算机语言。没有计算机就没有现代意义的数值模拟。
《油藏数值模拟》第二章解析
( V ) x At ( V ) xx At
Ax t t
~ q V t
30
质量守恒定律
[流入单元内的流体质量]-[流出单元的流体质量 ] =[质量累积变化]
31
质量守恒定律
~ Vx Vxx At Ax t q V t t
油藏数值模拟
Numerical Reservoir Simulation
主讲:
石油与天然气工程学院
1
第二章
数学模型的建立
2
油藏数值模拟的方法原理
单/多相流公式 离散化 线性化
开采 过程
非线性偏 微分方程
非线性 代数方程
②建立数值模型
线性 代数方程
①建立数学模型
A、通过质量/能量守恒方程、状 态方程、运动方程、辅助方程建立 基本方程组。 B、根据所研究的具体问题建立相 应的初始和边界条件。
Swc 0
Sw
Snc 1
12
岩石性质--毛管压力曲线
Imbibition Pc
Drainage Pcb
Swc 0
Sw
Snc 1
13
双重介质
14
双重介质
15
五种不同的油藏流体(黑油)
临界温度高于油藏温度,两相区的压力范围较大 气油比 油密度 R=35-120m3/m3 >0.825
油的体积系数<2.0
渗透率
相对渗透率 毛管压力
(k)
(kro, krg, krw) (Pcow, Pcgo)
6
流体性质--PVT关系(体积系数)
Bo
Bg
{Vo Vdg }RC {Vo }STC
ZT p pSTC T STC
历史拟合相关研究
What do we match in History Matching?
Production Data
Oil, water, gas, steam Fluid components (tracers) Production allocations
Data is inherently uncertain and records are notoriously inaccurate.
The process by which a reservoir simulation model is altered in some way to match the known production history
Barrels per day
Watercut historical model
Advanced Topics in Reservoir Simulation: History Matching
Stanford University November 26th 2002 W.J. Milliken ChevronTexaco EPTC Nhomakorabea1
What is History Matching?
Barrow Island Field -- Windalia Sand
20,000 18,000 16,000 14,000
Barrel s oil per day
Predictive cases, for different total field injection rates
12,000 10,000 8,000 6,000 4,000 2,000 0
– Perm and porosity
GOR
石油工程专业英语翻译
Petroleum engineering is a field of engineering concerned with the activities related to the production of hydrocarbons ([ˌhaɪdrəˈkɑ:bən]), which can be either crude oil or natural gas. Subsurface activities are deemed to fall within the upstream sector of the oil and gas industry, which are the activities of finding and producing hydrocarbons.Refining and distribution to a market are referred to as the downstream sector.Exploration, by earth scientists, and petroleum engineering are the oil and gas industry's two main subsurface disciplines, which focus on maximizing ([ˈmæksəˌmaɪz]) economic recovery of hydrocarbons from subsurface reservoirs ([ˈrezəvwɑ:]). Petroleum geology and geophysics ([ˌdʒi(:)əuˈfiziks]) focus on provision of a static description of the hydrocarbon reservoir rock, while petroleum engineering focuses on estimation of the recoverable volume of this resource using a detailed understanding of the physical behavior of oil, water and gas within porous ([ˈpɔ:rəs]) rock at very high pressure.The combined efforts of geologists and petroleum engineers throughout the life of a hydrocarbon accumulation determine the way in which a reservoir is developed and depleted, andusually they have the highest impact on field economics. Petroleum engineering requires a good knowledge of many other related disciplines, such as geophysics ([ˌdʒi(:)əuˈfiziks]), petroleum geology, formation evaluation (well logging), drilling, economics, reservoir simulation, well engineering, artificial lift systems, and oil and gas facilities engineering.石油工程与碳氢化合物,可以是原油或天然气生产活动有关的工程领域。
reservoir stimulation英文书籍
reservoir stimulation英文书籍Reservoir Stimulation: Enhancing Productivity of Oil and Gas WellsIntroduction:Reservoir stimulation plays a crucial role in enhancing the productivity of oil and gas wells. It involves a set of techniques aimed at increasing the flow of hydrocarbons from the reservoir to the wellbore. This article explores the various methods utilized in reservoir stimulation and their significance in improving well productivity.1. Hydraulic Fracturing:Hydraulic fracturing, also known as fracking, is one of the most widely used reservoir stimulation techniques. It involves injecting fluid at high pressure into the reservoir, creating fractures in the rock formations. These fractures serve as pathways for the hydrocarbons to flow more easily into the wellbore. The success of hydraulic fracturing lies in optimizing fluid composition, injection rate, and proppant selection, leading to increased reservoir contact and enhanced productivity.2. Acid Stimulation:Acid stimulation involves injecting acids, such as hydrochloric acid, into the reservoir to dissolve or etch the rock formations. This technique is particularly beneficial for carbonate reservoirs, where acid reacts with the rock mineralogy, enlarging existing pores and fractures. Acid stimulation helps to increase permeability and porosity, enabling better fluid flow and consequently enhancing the productivity of the well.3. Matrix Acidizing:Matrix acidizing is a form of acid stimulation that targets the well matrix rather than creating fractures. It aims at dissolving or removing damaging materials, such as scale and formation damage, from the reservoir rock. Matrix acidizing improves the reservoir's permeability by removing the obstructing substances, thus allowing efficient flow of hydrocarbons to the wellbore.4. Proppant Placement:Proppant placement is a technique associated with hydraulic fracturing. It involves choosing and positioning proppants, such as sand or ceramic particles, within the created fractures. Proppants keep the fractures open, preventing them from closing under pressure, and ensuring the flow of hydrocarbons. Optimizing proppant size and concentration is crucial for achieving efficient proppant placement and maximizing the effectiveness of hydraulic fracturing.5. Chemical EOR (Enhanced Oil Recovery):Chemical enhanced oil recovery (EOR) techniques represent an important aspect of reservoir stimulation. These techniques include polymer flooding, surfactant flooding, and alkaline flooding. Polymer flooding involves injecting polymers into the reservoir to increase the viscosity of injected water, enabling better sweep efficiency. Surfactant flooding focuses on reducing interfacial tension between oil and water, enhancing oil recovery. Alkaline flooding adjusts the pH of injected water, altering the wettability of the reservoir rock and improving oil displacement. Thesechemical EOR methods significantly contribute to reservoir stimulation and maximize oil recovery.6. Thermal Stimulation:Thermal stimulation methods, such as steam injection and in-situ combustion, are widely employed in reservoir stimulation, particularly for heavy oil reservoirs. Steam injection heats the reservoir, reducing the oil's viscosity and improving its mobility. In-situ combustion involves burning a portion of the reservoir's oil, which generates heat, expands gas, and creates pressure, enhancing oil displacement and flow. Thermal stimulation techniques enable the extraction of heavy oil resources, thereby enhancing reservoir productivity.Conclusion:Reservoir stimulation is an essential aspect of the oil and gas industry. Techniques such as hydraulic fracturing, acid stimulation, proppant placement, chemical EOR, and thermal stimulation significantly contribute to increasing well productivity. Understanding and optimizing these methods play a crucial role in maximizing hydrocarbon recovery and ensuring the efficient utilization of reservoir resources. Continual advancements in reservoir stimulation techniques continue to shape the industry, enabling the extraction of valuable oil and gas resources.。
油藏数值模拟
油藏数值模拟的发展概况和发展方向
向量化
70年代 标量计算,又称串行运算,即一个时刻内只进行一对 数据计算。
80年代 可以用向量计算机进行向量计算,即一个时刻内可使两 个数组内各因素同时进行计算,也可以是一个数和一个数组内的各因素 同时计算。
工作站前后处理
前处理:井点静态参数输入; 网格自动剖分、增减; 网格数据自动形成; 等值图件绘制。
• 油田开发前期 作规划方案 • 油田开发初期 作初步方案 • 油田开发中期 作调整方案 • 油田开发后期 作IOR、EOR方案
第二节
油藏数值模拟的 主要内容和步骤
• 油藏数值模拟的主要内容 •油藏数值模拟的步骤
油藏数值模拟的主要内容和步骤
一、主要内容
• 数学模型(Mathematical Model) • 数值模型(Numerical Model) • 计算机模型(Computer Model)
前后处理
动态存储分配
多模型一体化
二.八十年代油藏数值模拟进展
八十年代,油藏数值模拟已经进入工业化应用阶段,随着工业化进程, 即应用的拓宽和计算机的发展,则必然在模型、解法及前后处理等方面有较 大的发展。归纳起来有十个方面进展。
●模型方面
状态方程的组分模型 该模型涉及到: 组分模型:组分的质量守恒方程。 状态方程:不同压力、温度下的相态. 数值模拟将烃类组分的相态与地下的渗流力学问题有机地结合起来。 该模型可用于模拟: 凝析气田开发; 凝析气田的循环注气; 回收气藏中的自凝析油; 高收缩挥发性原油的开采; 注co2 或者N2的非混相驱或近混相驱
油藏数值模拟的基本概念
模拟:描述或实现油藏开发的动态变化过程(仿真)。
物理模拟:采油物理实体的办法 岩心试验、单管模型、平板模型试验等 数学模拟:采用数学描述的方法 数学模型、模型求解
reservoir stimulation英文书籍
Reservoir Stimulation英文书籍1. 简介《Reservoir Stimulation》是一本深入探讨油气田压裂技术的英文书籍,由Michael J. Economides、Kenneth G. Nolte和Larry W. Lake合作撰写。
本书结合了作者多年的研究和实践经验,系统地介绍了油气田压裂技术的理论基础、工程设计、地质应用以及最新的技术发展。
该书被广泛认为是压裂技术领域的权威之作,对于油气田开发工程师、地质学家和研究人员来说具有重要的参考价值。
2. 内容概要《Reservoir Stimulation》一书深入探讨了油气田压裂技术的各个方面,内容涵盖了压裂基础知识、压裂流体、压裂技术在地质条件下的应用、工程设计和施工、压裂效果评估以及新兴技术的应用等多个方面。
读者可以从中获得关于压裂技术的全面知识,并了解到最新的技术发展趋势。
3. 专业性和权威性本书的作者团队包括多名在油气田开发领域具有丰富经验和专业知识的专家,他们在该领域的研究和实践成果广泛认可。
《Reservoir Stimulation》一书具有较高的专业性和权威性,对于从事油气田开发相关工作的专业人士来说具有较高的参考价值。
4. 实用性和应用性除了理论知识外,本书还对压裂技术在实际工程中的应用进行了深入的讨论,为读者提供了丰富的案例分析和实用经验。
读者可以通过学习本书中的内容,对油气田压裂技术在实际工程中的应用有更深入的了解,并可以将相关知识应用到自己的工作实践中。
5. 结语《Reservoir Stimulation》一书是一本在油气田压裂技术领域具有重要地位的英文专业著作,其内容全面、权威,具有较高的专业性和实用性。
本书适用于从事油气田开发工作的工程师、地质学家和研究人员,是一部不可多得的参考读物。
通过学习本书,读者可以掌握最新的压裂技术知识,提高工作水平和业务能力。
以上就是对《Reservoir Stimulation》一书的简要介绍,希望对您有所帮助。
油藏数值模拟原理
Inflow - Outflow = Accumulation Flow Rate=Transmissibility (Driving Force)
Data from all sources
Pore Volume = Fluid Volume
-7-
2.单相渗流基本微分方程
根据物质守恒原理,在单位时间内 流入单元内的流体质量-流出单元的流体质量 =单元内流体质量的变化 取渗流场中一个微小六面体体积单元来研究
相对渗透率、毛管力是饱和度函数,而粘度、体积系数 孔隙度与密度均是压力的函数 - 17 -
3. 三维三相渗流基本微分方程
令
Tw T
o o
K K rw
w
w
o o
K K ro
o
T
g o
K K ro
o
og g
Tg
K K rg
g
- 18 -
1. 黑油模型的基本假设 2. 单相渗流黑油模型基本微分方程 3. 三维三相黑油模型基本微分方程 4. 初边值条件 5. 网格系统 6. 黑油模型的差分方程 7. 差分方程的线性化 8. 线性代数方程组的求解 9. 黑油模型的主要数据流
-3-
1 、黑油模型基本假设
(1) 油藏中的渗流是等温渗流。 (2) 油藏中最多只有油、气、水三相,每一相均遵守达 西定律。 (3)油藏烃类只含有油、气两个组分。在油藏状态下, 油气两组分可能形成油气两相,油组分完全存在于油 相内,气组分则可以以自由气的方式存在于气相中, 也可以以溶解气的方式存在于油相中,所以地层内油 相为油组分和气组分的某种组合。在常规油田中,一 般不考虑油组分向气组分挥发的现象。 (4)油藏中气体的溶解和逸出是瞬间完成的,即认为油 藏中油气两相瞬时达到相平衡状态。 (5)油水之间不互溶;天然气也假定不溶于水。
《油气藏数值模拟应用技术规范》
油藏模型信息按照油藏数值模拟的数据管理方式实现集成。
6 模拟研究的资料处理
(二)资料评价处理
• 根据研究目标收集、评价和处理资料。 • 主要内容包括:分析所采集数据的来源渠道、数据的质量、 数据的有效性及数据的齐全程度。 • 对于被证实可靠的数据,必要时进行适当处理,以确保他 们在技术上适合油藏模拟软件的需求。
(2)油气藏数值模拟技术是油气藏工程研究中重要的技术方 法之一,具有考虑因素多、应用范围广、计算精确、快速、方 便、经济等特点。
2总 则
(3)油气藏数值模拟作为油气藏预测工具,具有比其它技术 方法更多的数据量需求,其预测精度受到数据质量及数量的制 约,同时也存在多解性和风险性。因此,对于油气藏数值模拟 的研究精度要求,要立足于资料的完备性及准确性评价,对于 模拟预测的结果,要尽可能地辅助其它的油藏工程计算方法综 合论证。
油藏数值模拟是以渗流力学、数学物理方程和计算方法为 理论基础,集石油地质、油气储层、油层物理、油藏工程、计 算机软件等多学科于一体的综合性工程应用学科。多年的应用 证明,油藏数值模拟技术是一项将油田开发重大决策纳入严格
科学管理轨道的关键性技术,在开发机理研究,优化开发方案 及调整方案,地下剩余油分布研究和提高采收率方法研究方面
发挥了重要作用,是一项少投入,多产出,可获的巨大经济效 益的新技术。
目录
前言 1 适用范围 2 总则 3 术语和定义 4 油气藏数值模拟
应用步骤 5 研究目标确定 6 资料处理
7 模型的建立 8 历史拟合 9 动态预测 10 模拟研究成果 11 模拟研究文档内容
及要求
1 适用范围
本标准规定了常规砂岩黑油模型的数值模拟应 用技术规范。本标准适用于常规砂岩黑油模型的数 值模拟应用研究,其它类型油气藏可参考使用。本 标准的应用范围广泛,内容全面。本标准的制定和 贯彻实施,可规范油气藏数值模拟应用流程和方法, 提高数值模拟研究的准确性和适用性,进一步推动 油田开发项目研究的科学化、规范化。
1.欢迎词及CMG下一代模拟器开发介绍
Welcome and IntroductionWhat We Do•Reservoir Simulation SoftwareDevelopment•Reservoir Simulation Software Licensing •Specialized Consulting Services •Customized Training •Collaborative ResearchCyclic Steam Stimulation (CSS) modelWhat’s New at CMG?Dr. Long Nghiem -Sept 1, 1977Ken Dedeluk CEODr. Long NghiemVice President R&D(Employee #1) Dr. Khalid AzizFounder & DeanEmeritus StanfordWhat’s New at CMG?Deep Bench of Intellectual Capital More than HALF of our 207 employees are dedicated to R&DTechnical StrengthAs of June 30, 2017Calgary, AlbertaHouston, TexasBogota, ColombiaRio de Janeiro, BrazilDubai, UAELondon, UKKuala Lumpur,MalaysiaBeijing, ChinaNew Delhi, IndiaAbu Dhabi, UAEKhartoum, SudanLagos, NigeriaMoscow,Russian FederationJakarta, IndonesiaMexico City, MexicoCairo, EgyptGlobal Reach59Countries90%Top-25 Public Oil Companies, by ProductionNearing 25 Years of PartnershipCNPC & PetroChina -RIPED(1988)-Xinjiang (1996) -Yumen(1996)-Liaohe(1999)-Huabei(2000)-Changqing(2001) -Tuha(2001)-Daqing(2002)-Great Wall(2009) -Jilin (2011)-Jidong(2014)Sinopec-Henan(1996)-Jiangsu (1998)-Shengli(1998)-Zhongyuan(2000)-Jianghan(2010)-PEPRIS(2014)-Northwest (2014)CNOOC-COSL (2005)-RC (2009)-Tianjin (2011)-ETSL (2012)Sinochem(2012)Tianshi(2014)BPShellUniversitiesSWPI (1998)UOG (2011)NEPU (2013)CUP (2013)XJTU(2015)COFLOWWhat is CoFlow?Integrated Reservoir, Production System and Geomechanics Modelling Environment Better engineering for high-stakes offshore plays•Offshore: capital intensive•Difficult to make changes after deploymentReduce the cycle time from concept to field•Foster collaboration amongst team members, disciplines •Guided task workflows with ability to customizeMinimize deferred productionHistoryTypical Challenges in Current IPSM Workflows Conventional Modelling Process:•Inherently sequentialLacks timely feedback•Highly distributed inefficient−Maintain many tools, manyfiles−Large number of files andfolder management required−Inconsistencies anddiscontinuities at every step•Significant staffing and trainingchallenges•Tedious to incorporate uncertaintyand optimizationCoFlow: Key Differentiators•Multi-Reservoir−Different reservoirs producing to a single platform−Preserve dynamic rock and fluid behaviour of each reservoir•Multi-Disciplinary−Reservoir, Production and Geomechanics collaboration−“Closing-the-loop” with continuous feedback between disciplines•Multi-Fidelity−Fit-for-purpose fidelity models for each discipline−Combine into a single high-fidelity model•Multi-User−First application where 3 different disciplines can truly collaborate on the same platform •Integrated Uncertainty and Optimization Framework−End-to-end integrated History Matching (HM), Optimization & Uncertainty Assessment−Enables best-in-class HM and lifecycle optimizations workflowsMulti-Fidelity ExamplesReservoir Recovery Optimization+All within the same tool!Subsidence Estimates+Short-Term Forecast &Network Optimization+Production EngineerHi-Fi GeomechCompaction tablesReservoir EngineerHi-Fi ReservoirDecline CurvesQPGeomechanics EngineerHi-Fi FacilityLift TablesHigh FidelityLow FidelityTeam MemberPNAgenda•CoFlow’s Approach to IPSM−Typical challenges in current IPSM workflows −Benefits of CoFlow •System Selection Case Study−Reservoir engineering−Production engineering−IPSM modelling−Geomechanics−Integrated optimization •ConclusionsNew Synthetic Case Study Synthetic development asset case study:•Contrived, but realistic Brazil pre-salt scenario •Large development area; supports staged production systems•Used for field-scale demonstrations and training:−Large scale, heterogeneous reservoirs with EoS fluids;fluid blends; history matching; forecasting−Production system selection and design optionassessments (E.g. subsea processing, smart wells)•Test reservoir to indicate deployment readiness −S imilar properties to partners’ areas of interestGibbs, P.B et al., 2003Ref: Internal CoFlow Report, Vasilisa Nekhorosheva et.al.Solving A Real Problem•Multi-reservoir, ultra-deepwater asset(2500 m)−Different properties, fluids andcharacteristics in each reservoir•Combined production using FPSO(limit 23850 m3/d or 150,000 bbl/d)•Analyzed EOR schemes and operatingstrategies•Performed well design, artificial liftanalysis, facility design•Designed optimum gas-reinjection schemeReservoir & Geomechanics Properties*Carbonate:–201.5 k active cells–10 wells planned–High level of Heterogeneity–Multiple faciesSandstone–101.2 k active cells–7 wells planned–Low level of HeterogeneityGeomechanics Fidelity Levels:–Single compressibility–Compaction tables–One-way and two-way coupling* SPE181427 SPE Annual Technical Conference and Exhibition, 2016Fluid PropertiesProperty Carbonate Sandstone Initial reservoir pressure (kPa)5244057690 Initial reservoir (°C)95 (368 K)115 (388 K) Bubble point pressure (kPa)2648540174 Solution GOR (m3/m3)93200 Oil API Gravity35.928.2CoFlow users can easily see theproperties and behaviour of variousfluid models and blends Sandstone EOS FluidBlended EOS FluidCarbonate EOS FluidFluid Blending and Multi-Fidelity•Universal Black Oil (UBO)•K-value•Equation of StateFreedom to use different fidelities in different sectionsCoFlow allows users to tailor the rigor of fluids calculations to theplace where it is neededReservoir Model and Multi-Fidelity•Refined discretized reservoir model (High Fidelity)•Upscaled discretized reservoir model (Medium)•Decline curve model (Low)•Use different fidelity for different objectivesNot Recommended Use with CautionRecommendedWell Modelling, RE-PE Collaboration & Multi-FidelityFidelity levels:•High fidelity •Medium fidelity •Low fidelity•Lift tablesWell design:•Well locations (RE)•Reservoir results (RE)•Optimum completions (PE)•Collaborative work on single toolTypical Carbonate WellTypical Sandstone WellIdentify impact of:•Tubing size•Artificial lift in wellsNodal analysis performed at different states of reservoir (every 5 years); More collaboration•Insulation quality•Wellhead pressureWell Design ConsiderationsTubing Size SensitivityThermal Sensitivity52% gainCoFlow’s nodal analysis capability brings an interactive flexibility to welldesign sensitivity studiesProduction Facility Model Fidelity levels:•High fidelity•Medium fidelity•Low fidelity•Group controls •Lift tables Facility design:•FPSO location •Pipe design •Artificial lift considerations CatenaryriserLazy-wave riserCoFlow supports collaboration using highly coupled simulations, even in a rapidly changing system selection anddesign studyFacility Design Considerations:RE-PE Collaboration Again •Carbonate reservoir undergoing significant pressure depletion−A/L options: Gas-lift or ESP−G/L found to be unsuitable because of low reservoir pressure−ESP found unsuitable because of low rate•Decision 1:Subsea manifold approach for Carbonate wells, individual pipes for Sandstone wells•Decision 2:Produced gas compression and re-injection to maintain reservoir pressure−Triggers to choke back producers to prevent excess gas breakthrough−Reduced degree of gas compression with timeCarbonate FacilitySandstone FacilityIntegratedFacilityResults: Production and Gas RecyclingR a t e s m 3/dFPSO liquid rate limit 23850 m 3/d (150,000 bpd)Successfulimplementation of gas separation,compression, re-injectionRates m 3/dHuge pressure depletion with primary productionLiquid productionconstraint reachedResults: Integrated Uncertainty AssessmentCarb. Cum. Oil ProductionUncertainty Sand. Cum. Oil ProductionUncertaintyUncertainty parameters:•Fluid contacts •Rel-perms •Rock compressibility •Perm. Anisotropy For both reservoirsP50: 29 Mm3 P50: 143 Mm3Workflow SummaryParameterize anything, at any step, achieveend-to-end uncertainty assessment andoptimizationConclusions•Seamless integration of various discipline instead of maintaining different tools, files, projects, etc. was achieved using CoFlow. True collaboration withcontinuous feedback between different disciplines•Multi-discipline, multi-reservoir, multi-fidelity tool approach to perform IPSMmodelling for an ultra deepwater asset (and onshore).•Complex fluid blending modelled in the surface facility.•Extensive analysis done to select well design and facility configuration.•Easily integrate subsurface uncertainty into selection and design decisions.•Extensible to include custom IP and workflows.•Fully coupled, implicit solution; consistent and reliable short and long-termforecastsUsing CoFlow, achieve a significant reduction inengineering costs due to shorter cycle times, bettercollaboration and more workflow automationIn Closing,1.Thank you for support of Beijing Union Science and Technology and CMG. Your success is our success.2.Recognize and commend Beijing UNIONST for their outstanding work and excellent support of our mutual customers and partners in China.3.Welcome. May you find value and learnings from this week’s Technical Workshop.谢谢CMG’s VisionTo be the leading developer and supplier of dynamic reservoir technologies in the WORLD。
油藏数值模拟
• 80年代 工业性应用, 年代 工业性应用,向综合性多功能模型发展 • 90年代 年代 工作站数值模拟 • 90年代末至今 微机数值模拟 年代末至今 2) SPE 七次考核文章 1. A.S.Odeh,et “ Comparison of Solution to a 3-D Black Oil Reservoir Simulation Problem ”JPT 1981, Jan. JPT 1981, Jan. 2. H.G.Weinstein J.E. Chappelear et “ Second Comparative Project: ,Mar. Solution Project: A 3-P Coning Study ”JPT 1986 ,Mar. JPT Kenyon,et. Project: 3. D.E.Kenyon,et.“ Third Comparative Solution Project: Gas 1987,Aug ,Aug. Cycling of Retrograde Condensate Reservoirs ” JPT 1987,Aug. Aziz,et“ Project: 4. K.Aziz,et Fouth SPE Comparative Solution Project: A Comparison Simulators” Dec. of Steam Injection Simulators JPT 1987 Dec. “ 5. J. E. Killlough et Fifth Comparative Solution Project :Evalution of Missible Flood Simulators ” SPE 16000,1987. 16000,1987. 6. A.Firoozabadi ,et “ Sixth SPE Comparative Solution Project : DualJune. Dual-Porosity Simulators ”JPT 1990 June. JPT Project: 7. L.Nghiem ,et “ Seventh SPE Comparative Solution Project: Simulation” 1991. Modeling Horizontal Wells Reservoir Simulation SPE 21221 ,1991.
《油藏数值模拟》教学大纲(已修改)
《油藏数值模拟》教学大纲一、课程基本信息1、课程英文名称:Reservoir Simulation2、课程类别:专业模块课程3、课程学时:总学时32,实验学时 24、学分:25、先修课程:开发地质学,油层物理,渗流力学,试井分析6、适用专业:石油工程7、大纲执笔:开发研究所,郭肖8、大纲审批:石油工程学院学术委员会9、制定(修订)时间:2006.11二、课程性质、目的与任务油藏数值模拟技术是迄今为止定量描述在非均质地层中多相流体流动规律的唯一方法,它作为油气田开发研究的一项重要手段,占有举足轻重的地位。
在理论上用于探索多孔介质中各种复杂渗流问题的规律,在工程上作为开发方案设计、动态监测、开发调整、反求参数、提高采收率的有效手段,能为油气田开发中各种技术措施的制定提供理论依据。
该课程是以流体在储层中的渗流为基础,是地质、油藏描述、渗流、油藏工程、试井、计算数学、计算机等学科的交叉学科。
本课程主要讲授油藏数值模拟的基本方法、理论和基本原理,以及如何应用油藏数值模拟技术分析现场问题和解决实际问题,使学生掌握油藏数值模拟的基本过程和步骤以及油藏数值模拟的基本原理、方法及其简单应用,毕业后能够适应科学研究和现场生产的需要。
三、课程的基本要求通过学习《油藏数值模拟》课程,要求学生重点掌握油藏数值模拟的基本概念、基本内容、基本步骤以及基本原理,并结合教学实验以及课堂实例演示和分析,初步做到如何应用所学知识对一个简单的具体油藏进行实际模拟分析。
四、教学内容、要求及学时分配:第一章 绪论(3学时)主要内容:油藏模拟的概念、内容、步骤;为什么做油藏模拟;油藏模拟发展概况。
重 点:油藏模拟的内容和步骤难 点:油藏模拟的本质特征以及与其它研究方法的异同第二章 基本流动方程的建立(4学时)主要内容:岩石和流体的性质、数学模型的分类、数学模型的建立步骤;单相和多相流的达西定律;单相和多相流的连续性方程和渗流方程的建立;定解条件。
5 国内外油藏数值模拟软件
13
SimTech成立于1982年,1996年5月16日被Intera收购。Intera为
Duke工程服务公司的子公司,主要做环境及水资源评价。
14
数值模拟研究公司(RSRC)成立于1982年,1996年被Smedvig
收购。 1999年Smedvig技术公司与多流体ASA合并组成新的Roxar公司. 模拟软件为MORE, MORE为Modular Oil Reservoir Evaluation的缩写 . Hot (Heinemann Oil Technology and Engineering)公司1986年成立 于奥地利Leoben,其模拟软件为SURE,其主要特色是采用PEBI网 SURE 格.
VIP系列
GrandTM
3DSL
1.油藏数值模拟技术整体概要介绍
1.3油藏数值模拟的分类、现状和未来发展
1.3.3高级油藏数值模拟技术的发展方向:
多功能集成
在一个模拟器中整合黑油,组分, 热采 模型;整合全隐式,压力隐 式和自适应隐式等不同格式;整合 结构化和非结构化网格统;整合传 统井模型和智能井模型。
油藏岩石流体模型:
① 初始 条件
通过测试手段了解油 水气界面信息; 通过流体采样,实验 室分析了解组分信息等; 通过岩心取样,实验 室分析了解岩石信息等。
1.油藏数值模拟技术整体概要介绍
1.2油藏数值模拟的初始条件,边界条件和运动规律
1.2.1运用模型模拟现实的三大要素 :
地质模型边界: 井:
封闭边界:
发展方向
1.油藏数值模拟技术整体概要介绍
1.3油藏数值模拟的分类、现状和未来发展
1.3.4参考文献:
1 2 3
Reservoir Simulation
专利名称:Reservoir Simulation发明人:Hugh Hales,Daniel Weber,Ben Hardy,BradBundy,Larry Baxter申请号:US11570218申请日:20050604公开号:US20080167849A1公开日:20080710专利内容由知识产权出版社提供专利附图:摘要:Disclosed are methods for simulating pressures and saturations of oil, gas, and water in an oil reservoir with production and injection wells, which include (1) using of new approximating linear algebraic (finite difference) equations that more accuratelyrepresent actual pressures by basing the equations on new functional forms: ln(r) or 1/r, (2) solve the set equations using by defining a coarse grid array and a fine grid array nested in the fine grid array, and solving the coarse grid array and using the resulting solution to fix points in the fine grid array before it is solved, and (3) defining and solving a dynamic grid array based upon constant saturation contours.申请人:Hugh Hales,Daniel Weber,Ben Hardy,Brad Bundy,Larry Baxter地址:West Valley UT US,Provo UT US,Calgary CA,Mountain View CA US,Orem UT US 国籍:US,US,CA,US,US更多信息请下载全文后查看。
PETROLEUM RESERVOIR SIMULATION AND CHARACTERIZATIO
专利名称:PETROLEUM RESERVOIR SIMULATION AND CHARACTERIZATION SYSTEM ANDMETHOD发明人:Anderson, Roger mont-Doherty Earth Obser.,He, WeiLamont-Doherty EarthObservatory,Xu, LiquingLamont-DohertyEarth Observatory,Boulanger,AlbertLamont-Doherty EarthObservatory,Winston, JodyLamont-DohertyEarth Observatory,Mello, Ulisses,Wiggins,Wendell申请号:EP00970940.3申请日:20001013公开号:EP1247238A1公开日:20021009专利内容由知识产权出版社提供摘要:A method and system for providing, in a single intranet, internet, or World Wide Web-accessible interface, initiation of, interactive adjustments to, and access to the outputs of, an integrated workflow for a plurality of analytical computer applications for characterization and analysis of the traits and optimal management of the extraction of oil, gas, and water from a subsurface petroleum reservoir. By wrapping a number of disparate analytical application tools in a seamless, and remotely accessible, package reduces incompatibiity problems caused by the disparate nature of petroleum analysis methods and the data used therein.申请人:THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK 地址:West 116th Street and Broadway New York,New York 10027 US国籍:US代理机构:Lucas, Brian Ronald更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Current State
• With available technology it is possible to perform multimillion gridblock simulations on field scale • It can however be a very slow process and need for such detailed simulations is not established • What is our vision for the future?
200.0 180.0
Fitness - NPV, MM$
160.0 140.0 120.0 100.0 80.0
Best
60.0 0 10 20 Generation # 30
Average
40
24
Number, Location and Type of Wells
• To maximize net present value (NPV) by determining the optimum number of producers (up to 3 wells) and whether to deploy a water injector or not on a hypothetical fluvial reservoir (oil-water, no gas)
10
Parallels Between RS and Other Technologies
Life and Times of Technology+
Degree of Diffusion
Development Phase
Deployment Phase
Turning Point
Time
+See
The Economist, 8 May 2003 (After Carlota Perez, 2002)
18
Traditional Well Models
• Isolated vertical well • Pressure drop due to friction ignored • Horizontal wells:
Reserห้องสมุดไป่ตู้oir Pressure
Flow
19
Advanced Wells
Alsos et al., Oilfield Review (Schlumberger) Summer 2002, p48
16
Upscaling
• Optimum level of and techniques for upscaling to minimize errors • Gridding and upscaling are interconnected
17
• Fully integrated models of
1
compose population
0101011101010111 1101001001111100 0010110111100010 1101011100111101
2
evaluate fitness
y1 y2
reservoir simulator
x1
x2
x3
x4
x5
x6
ANN
6
skin transformer
Some Examples Follow
15
Grid Complexity
• Flexible grids have advantages but difficult to use • Is gridless simulation (or automatic grid generation) possible?
Gradient Based Algorithms
Jansen, Delft
22
Optimum Well Type
• Parallel computations • Solution techniques • Proxies – ANN – ED (Response Surface) – coarse Models – sector models – coarse physics (pseudo components) – Rank preserving
⎛ Y ⎜ 1 f (NPV) = ∑ ⎜ n n =1 ⎜ (1 + i ) ⎜ ⎝ ⎡ Qo ⎤ ⎡ Co ⎤ ⎞ ⎢ ⎥ ⎢ ⎥⎟ ⎢Qw ⎥ ⋅ ⎢Cw ⎥ ⎟ − Cwell ⎢Qg ⎥ ⎢C g ⎥ ⎟ ⎣ ⎦n ⎣ ⎦ ⎟ ⎠
T
25
Optimum Number and Location
SPE DISTINGUISHED LECTURER SERIES
is funded principally through a grant of the
SPE FOUNDATION
The Society gratefully acknowledges those companies that support the program by allowing their professionals to participate as Lecturers. And special thanks to The American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) for their contribution to the program.
()
21
Well Optimization
• Number of wells • Well type Genetic Algorithm (GA)
• Operation • Use of “smart” completions (with probability of failure) • Geological uncertainty
5
Reservoir Simulation I
• Mimics the behavior of a real system through a model (physical, analog, electrical or numerical) based on realistic assumptions • Simulation can be close to reality but it is never the reality (should approach reality with time)
form children
3
perform a local search
Yeten 2003
hill climber
4
rank based selection reproduction
23
5
Single Well Optimization Example
Maximizes NPV, subject to GOR, WOR constraints
13
Significant Challenges and Recent Results
Key: Understanding and Handling Complexity
Prevost 2003
Where are the challenges?
1. Simulation Technology 2. Integration with other Technologies 3. Use (Workflow)
600.0
500.0 Fitness - NPV, MM$
400.0
300.0
200.0
Best
Average
100.0 0 5 10 15 20 Generation #
25
26
Generation 6
Injector
Fitness - NPV, MM$
600.0
500.0
400.0
300.0
200.0
Reservoir Simulation Technology: Accomplishments and Challenges
Khalid Aziz Stanford University
Acknowledgements
• My students, who have taught me far more than what I have contributed to their education • My colleagues, both in industry and academia, who have provided the necessary motivation • SPE for creating and nurturing a global community of petroleum engineers • NSERC, DOE and Industry for funding my research
3
Questions
• What is the state of reservoir simulation technology? • Is this technology making an impact? • What kind of advancements can we expect over the next few years? • How will the use of simulation technology change?
20
Intelligent Completions
• Downhole Chokes – Control inflow from multiple inflow zones • Improved reservoir management – Shut off problematic zones – More uniform inflow profile – Delayed breakthrough of water/gas