九年级数学上册第25章《随机事件的概率》(第2课时)概率及其意义导学案新华东师大版

合集下载

2016年秋九年级数学上册 第25章 随机事件的概率 概率及其意义导学案 (新版)华东师大版

2016年秋九年级数学上册 第25章 随机事件的概率 概率及其意义导学案 (新版)华东师大版

概率及其意义【学习目标】1.理解概率的意义;2.知道稳定时的频率值可以估计为概率值;3.培养动手、动脑的能力及合作交流的意识.【学习重点】理解概率的定义及会用分析法计算简单事件发生的概率.【学习难点】理解概率的定义及其意义.情景导入 生成问题周末市体育场有一场精彩的篮球比赛,我手中有一张球票,小强和小明都是班里的篮球迷,两人都想去,我很为难,真不知道该把球票给谁.请大家想个办法来解决把球票给谁. 学生:抓阄、抽签、猜拳、投硬币等等.我对同学的较好想法给予肯定.如抓阄、投硬币.追问:为什么要用抓阄、投硬币的方法呢?因为这样做公平,能保证小强与小明得到球票的可能性一样大.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还是“反面朝上”,但同学很容易感觉到或猜测到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大. 自学互研 生成能力知识模块 概率的意义阅读教材P 136~141的内容.1.抛掷一枚硬币,出现正面朝上的机会(可能性)有多大?出现反面朝上的可能性有多大?2.投掷一枚骰子,出现“6”朝上的机会是多大?我们知道,抛一枚硬币“出现正面”与“出现反面”的可能性是一样的,可能性均为50%.把表示一个事件发生的可能性大小的这个数叫做概率,如抛掷一枚硬币“出现反面”的概率为12,可记为P(出现反面)=12. 投掷一枚骰子,六个面朝上的机会相同,所以出现“6”朝上的概率为16,记为P(掷得“6”)=16.1.如何求出某个事件发生的机会大小?1它的意思:当实验的次数很大时,平均每抛6次有一次掷得“6”.范例:班里有20位女同学和22位男同学,班上每位同学的名字都被分别写在一张小纸条上,放入一个盒中搅匀,如果老师随机地从盒中取出一张纸条,那么抽到男同学名字的概率大还是抽到女同学名字的概率大? 解:P(抽到男同学的名字)=2220+22=1121,P(抽到女同学的名字)=2020+22=1021.∵1121>1021,∴抽到男同学名字的概率大.仿例1:一个布袋中放着8个红球和16个黑球,这两种球除了颜色以外没有任何其他区别,布袋中的球已经搅匀,从布袋中任取1个球,取出黑球与取出红球的概率分别是多少?解:P(取出黑球)=168+16=23,P(取出红球)=88+16=13.∴取出黑球的概率是23,取出红球的概率是13. 仿例2:甲袋中放着22个红球和8个黑球,乙袋中放着200个红球,80个黑球和10个白球.三种球除了颜色以外没有任何其他区别.两袋中的球都已经各自搅匀,从袋中任取1个球,如果你想取出1个黑球,选哪个袋成功的机会大呢?解:在甲袋中,P(取出黑球)=822+8=415;在乙袋中,P(取出黑球)=80200+80+10=829.∵829>415,∴选乙袋成功的机会大.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块 概率的意义检测反馈 达成目标1.下列说法正确的是( D ) A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有一次出现正面朝上C .“彩票中奖的概率是1%”表示每买100张彩票一定会中奖D .抛一枚正方体骰子,朝上面的数为奇数的概率是0.5,表示如果这个骰子抛很多次,那么平均每2次就有1次出现朝上面的数为奇数2.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率是__12__. 3.有6张规格、质地相同的卡片,它们的背面完全相同,正面分别标有数字-1,π,3.1415926,0.4,16,227,从中任意抽取一张,抽到无理数的概率是__16__. 课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。

九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.4列举所有机会均等的结果导学案

九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.4列举所有机会均等的结果导学案

九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.4 列举所有机会均等的结果导学案(无答案)(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.4 列举所有机会均等的结果导学案(无答案)(新版)华东师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.4 列举所有机会均等的结果导学案(无答案)(新版)华东师大版的全部内容。

25。

2。

4 列举所有机会均等的结果【学习目标】会用树状图或列表法求复杂情况下随机事件是概率【学习重难点】会用树状图或列表法求复杂情况下随机事件是概率【学习过程】一、课前准备1.什么是概率?,就叫这个事件的概率。

2.计算概率关键要注意两点:一是要清楚我们所关注的是哪个或哪些结果(m);二是要清楚所有机会均等的结果(n)。

3.概率的计算方法:P=二、学习新知自主学习:例4、抛掷一枚普通的硬币3次.有人说连续掷出三个正面和先掷出两个正面再掷出一个反面的概率是一样的.你同意吗?在分析这一问题的过程中,我们采用了画图的方法.这幅图好像一棵倒立的树,因此我们常把它称为树状图,也称树形图、树图.它可以帮助我们分析问题,而且可以避免重复和遗漏,既直观又条理分明.思考有的同学认为:抛三枚普通硬币,硬币落地后只可能出现4种情况:(1) 全是正面;(2)两正一反;(3)两反一正;(4) 全是反面.因此这四个事件出现的概率相等.你同意这种说法吗?为什么?问题5、口袋中装有1个红球和2个白球,搅匀后从中摸出1个球,会出现哪些可能的结果?甲说,摸出的不是红球就是白球,因此摸出红球和摸出白球这两个事件是等可能的.乙说,如果给小球编号,就可以说:摸出红球,摸出白1球,摸出白2球,这三个事件是等可能的.你认为哪种说法比较有理呢? ,如果将摸出的第一个球放回搅匀再摸出第二个球,两次都摸到的球有三个结果(1)都是红球(2)都是白球(3)一红一白这三个事件发生的概率相等吗?为什么?问题6掷两枚普通的正六面体骰子,所得点数之积有多少种可能?点数之积为多少的概率最大,其数值是多少?问题7 “石头、剪刀、布”是一个广为流传的游戏,游戏时甲乙双方每次做“石头”、“剪刀"、“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头",同种手势不分胜负须继续比赛.假定甲乙两人每次都是等可能地做这三种手势,那么一次比赛时两人做同种手势(即不分胜负)的概率是多少?实例分析:例4:抛掷一枚普通的硬币3次.有人说连续掷出三个正面和先掷出两个正面再掷出一个反面的概率是一样的.你同意吗?【随堂练习】1。

2024-2025学年华师版初中数学九年级(上)教案第25章随机事件的概率25.2.2频率与概率

2024-2025学年华师版初中数学九年级(上)教案第25章随机事件的概率25.2.2频率与概率

第25章 随机事件的概率25.2 随机事件的概率2 频率与概率教学目标1.知道通过大量重复试验,可以用频率估计概率.2.掌握用列表法、画树状图法求简单事件概率的方法.3.运用频率估计概率解决实际问题.教学重难点重点:掌握用列表法、画树状图法求简单事件概率的方法. 难点:由试验得出的频率与理论分析得出的概率之间的关系.教学过程复习巩固概率:一个事件发生的可能性叫做该事件的概率. ()所有机会均等的结果关注结果发生数事件发生=P .导入新课【问题1】抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:一种是正面朝上,另一种是正面朝下.你认为正面朝上和正面朝下的可能性相同吗? 学生讨论,师归纳总结引出课题:25.2 随机事件的概率2 频率与概率探究新知探究点一 频率与概率的关系 活动1(学生互动,教师点评) 请同学们拿出准备好的硬币:(1)同桌两人做20次掷硬币的游戏,并将数据填在下表中:(2)各组分工合作,分别累计正面朝上的次数到20、40、60、80、100、120、140、160、180、200次,并完成下表:教学反思(3)请同学们根据已填的表格,完成下面的折线统计图(4)观察上面的折线统计图,你发现了什么规律? 结论:(学生回答,老师点评)当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频率的稳定性.【总结】(老师点评总结)1. 对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.在大量重复进行同一试验时,事件A 发生的频率mn 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记做P (A )=mn.一般地,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.2. 频率与概率的关系概率是频率的稳定值,而频率是概率的近似值. 【即学即练】(小组讨论,老师点评)某篮球队教练记录该队一名主力前锋练习罚篮的结果如下: (2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,估计这次他能罚中的概率.【解】(1)表格中从左往右依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802教学反思(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率为0.8.探究点二 列表法或树状图法求概率【问题2】小明、小凡和小颖周末都想去看电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续抛掷两枚均匀的硬币,若两枚硬币都正面朝上,则小明获胜;若都反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?活动2(学生互动,教师点评)让学生每人抛掷硬币(课前准备好)20次,并记录每次的试验结果,通过观察自己的结果说明游戏是否公平.5个学生为一个小组,把5个人的试验结果数据汇总,得到小组试验数据100次,依次累计各组的试验数据,得到试验200次、300次、400次、500次…时的试验结果,全班一起填写上表.通过做试验让学生思考从试验中有哪些发现. (学生总结,教师点评) 从试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上,一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.【合作探究】议一议:在上面抛掷硬币的试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?问题1:上述问题中一次试验涉及几个因素?你是用什么方法不重复、不遗漏地列出所有可能结果的?先让学生讨论,然后找学生代表叙述自己的解答过程,最后教师给出标准答案.总共有 4 种结果,每种结果出现的可能性相同.其中, 小明获胜的结果有 1 种:(正,正).所以小明获胜的概率是14.教学反思小颖获胜的结果有 1 种:(反,反).所以小颖获胜的概率是14.小凡获胜的结果有 2 种:(正,反),(反,正).所以小凡获胜的概率是24=12. 因此,这个游戏对三人是不公平的. 问题2:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便?(学生总结,教师点评)当试验包含两步时,列表和画树状图都可以,当试验包含三步或三步以上时,画树状图比较方便.典例讲解(学生交流,老师点评)例1 如图,甲为三等分数字转盘,乙为四等分数字转盘.同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.【解】列表如下:乙甲 1 2 3 41 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4) 3(3,1) (3,2) (3,3) (3,4)由表格可知,一共有12种等可能的结果.其中两个转盘指针指向的数字均为奇数的有4种,故P (均为奇数)=412=13. 【总结】1.列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.2.当一次试验要涉及两个以上的元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.例2 准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次试验.(1)一次试验中两张牌的牌面数字之和可能有哪些值? (2)两张牌的牌面数字之和等于3的概率是多少?【探索思路】 (引发学生思考)一张牌有几种结果?一次试验涉及几个元素? 【解】通过画树状图的方法表示出所有可能的结果:教学反思(1)由树状图可知,两张牌的牌面数字之和可能是2,3,4. (2)总共有4种等可能的结果,两张牌的牌面数字之和为3的结果有2种,因此P (两张牌的牌面数字之和等于3)=24=12.【题后总结】在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性相等,那么我们可以利用树状图或表格不重复、不遗漏地列出所有可能的结果,从而求出某些事件发生的概率.【即学即练】 【互动】(小组讨论)经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( )A.19B.16C.13D.12由表格知,一共有9种等可能的情况,其中两辆汽车经过这个十字路口全部继续直行的有一种,所以两辆汽车经过这个十字路口全部继续直行的概率是19.【答案】A课堂练习1.“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展抽奖活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:教学反思A.当n很大时,指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2 000次,指针落在“文具盒”区域的次数大约有600次D.如果转动转盘10次,一定有3次获得文具盒2.两个正四面体骰子的各面上分别标有数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A.14B.316C.34D.383.把1枚质地均匀的普通硬币重复掷两次,落地后两次都是正面朝上的概率是( )A.1B.12C.13D.144.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A.0B.13C.23D.15.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其他均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是( )A.12B.13C.14D.16参考答案1.D【解析】A.由题意知A选项不符合题意;由A可知,转动转盘一次,获得铅笔的概率大约是0.70,故B选项不符合题意;C.指针落在“文具盒”区域的概率大约为0.30,转动转盘2 000次,指针落在“文具盒”区域的次数大约有2 000×0.3=600(次),故C选项不符合题意;D.随机事件,结果不确定,故D选项符合题意.2.A【解析】同时投掷两个正四面体骰子,有(1,1) , (1,2) , (1,3) , (1,4) , (2,1) , (2,2) , (2,3) , (2,4) , (3,1) , (3,2) ,(3,3) , (3,4) , (4,1) , (4,2) , (4,3),(4,4)共16种结果,点数之和等于5的有(1,4) , (2,3) , (3,2) , (4,1)共4种情况,所以P(点数之和等于5)=416=14.3.D【解析】画树状图如图所示.∴P(两次都是正面朝上)=1 4 .4.B【解析】随机从1,2,-3中抽取两个数相乘,积的结果共有1×2=2,1×(-3)= -3,2×(-3)=-6三种,所以积为正数的概率是1 3 .5.D【解析】画树状图,如图所示.教学反思由图可知共有6种等可能结果,其中标号相同的只有1种,所以两球标号恰好相同的概率是1 6 .课堂小结(学生总结,老师点评)一、频率与概率的关系概率是频率的稳定值,而频率是概率的近似值.二、用列表法或树状图法求概率(1)列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.(3)当一次试验要涉及两个以上元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.布置作业教材第147页练习题,第153页习题25.2第3,4题.板书设计课题25.2 随机事件的概率2 频率与概率【问题1】一、频率与概率的关系例1【问题2】二、用列表法或树状图法求概率例2教学反思。

九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.2概率及其意义导学案无答案新版华东师大版

九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.2概率及其意义导学案无答案新版华东师大版

25.2.2 概率及其意义【学习目标】1. 理解 P (A )=nm (在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义。

2.应用 P (A )=n m 解决一些实际问题。

【学习重难点】理解 P (A )=nm 并运用它解决实际问题。

【学习过程】一、课前准备(1) 概率是什么?(2) P(A) 的取值范围是什么?(3) A 是必然事件,B 是不可能事件,C 是随机事件,请你画出数轴把三个量表示出来。

二、学习新知自主学习:试验1从分别标有1、2、3、4、5号的5根纸签中随机抽取一根,抽出的签上的号码有( )种可能,即( )由于纸签的形状、大小相同,又是随机抽取的,所以我们认为:每个号码抽到的可能性( )都是( )。

试验2掷一个骰子,向上一面的点数有( )种可能,即( )由于骰子的构造、质地均匀,又是随机掷出的所以我们断言:每种结果的可能性( )都是( )。

观察与思考:以上两个试验有两个共同特点:1.( )2.( )如何分析出此类试验中事件的概率?归纳:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=( )。

且()≤ P(A) ≤()。

实例分析:例1、在我们班里有女同学20人,男同学22人.先让每位同学都在一张小纸条上写上自己的名字,放入一个盒中搅匀.如果老师闭上眼睛从中随便的取出一张纸条,想请被抽到的同学在明天的英语课上作值日生英文报告,那么抽到男同学名字的概率大还是抽到女同学的概率大?解:例2、一个布袋中放着8只红球和16只黑球,这两种球除了颜色以外没有任何区别.布袋中的球都已经搅匀.从布袋中任取1只球,取出黑球和取出红球的概率分别是多少?。

九年级数学上册25.2随机事件的概率2 精品导学案 华东师大版1

九年级数学上册25.2随机事件的概率2 精品导学案  华东师大版1

25.2 随机事件的概率(2)学习目标:学会可能出现的结果数较大时,可以采用列表法来列出各种可能的结果,以避免重复或漏计。

活动过程:活动一列举事件发生的所有可能各同学思考下列问题,小组长组织交流1.同时掷两枚质地均匀的硬币有几种可能的结果?2.同时掷两枚质地均匀的骰子有几种可能的结果?问题2与问题1相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。

怎样避免这个问题呢?带着这个问题阅读课本第135页分析与表25—2活动二运用列表法求概率各同学自主完成例1的解题过程,小组交流、订正,并完成题后小结例1:同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。

解:思考:将题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得的结果有变化吗?(就本例的3个问题而言,“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能的结果,因此作此改动对所得结果没有影响。

)题后小结:当一个事件涉及两个因素且可能出现的结果数目较多时,通常采用法。

其步骤如下:①②③活动三运用树状图法求概率问题:甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;从两个口袋中各随机地取出1个小球。

用列表法写出所有可能的结果如果还有丙口袋中装有2个相同的小球,它们分别写有字母H和I。

从甲、乙、丙三个口袋中各随机地取出1个小球。

你能写出所有可能的结果吗?与你的同伴交流一下。

当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法。

当一次试验涉及三个因素时,列表法就不方便了,那么为不重不漏地列出所有可能的结果,我们该怎么办呢?活动四牛刀小试小组长组织交流,将解答过程展示于小黑板上某联欢会上,组织者为活跃气氛设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上是4,5,7(两个转盘除表面数字不同外,其他完全相同)。

九年级数学上册 第25章 随机事件的概率 25.2 随机事件的概率 25.2.3 频率与概率导学案(无答案)(新版)华

九年级数学上册 第25章 随机事件的概率 25.2 随机事件的概率 25.2.3 频率与概率导学案(无答案)(新版)华

25.2.3 频率与概率【学习目标】1、理解实验次数较大时实验频率趋与稳定这一规律。

2、结合具体情景掌握如何用频率估计概率。

3、通过概率计算进一步比较概率与频率之间的关系。

【学习重难点】 用频率估计概率的意义 【学习过程】 一、课前准备1、估算幼苗的移植成活率,运输中柑橘完好的概率,种子的发芽率等事例中,都利用了( )的方法来计算。

2、在种子发芽率的实验中,科研人员经过大量实验得到不同数量的种子,发芽的频率都约是0.78,则可以估计种子发芽率是 ( ) ,从而可估计200千克的种子约有 ( )千克种子发芽。

3、假设某树林中10×10的面积上有9棵红枫树,整个树林面积市是2300 ,请你估计整个树林中总共有多少棵红枫树?得到红球的概率为21,得到黑球的概率为51,是求这20个球 中黄球共有多少个?二、学习新知 自主学习:问题 :某商场设立了一个可以自由转动的转盘,并归定顾客购物10元以上就能祸得一次转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。

下表是活动进行中的一组统计数据:(图中灰色区域为可乐)(1)计算并完成表格。

(2)请估计当n很大时,频率将会接近多少?(3)假如你转动该转盘一次,你获得该铅笔的概率约是多少?(4)在该转盘中,标有铅笔的区域的扇形的圆心角是多少(精确到1度)?思考:1、在做从复实验时,随着实验次数的增多年,事件发生的概率有什么变化趋势?2、利用频率估计概率的前提条件是什么?3、通过上面问题的解答,你认为频率概率之间有什么关系?实例分析:例1、将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率解:【随堂练习】1、某校招收实验班的学生,从每5个报名的学生中录取3人,如果有100名报名,则有()人可能被录取。

2、一箱灯泡有24个,灯泡的合格率是0.98,则小亮从中任意拿出一只灯炮是次品的概率是()3、某城市有400万人,随机调查了2000人,其中有450人看该城市的“家庭”节目,若在该城市随便问一个人,他看该节目的概率大约是()4、一个数字转盘,上面从1到15共有15个数字,当某人无数次转动转盘时,中间的指针指向数字7的概率是()。

九年级数学上册25.2随机事件的概率(2)教案华东师大版

九年级数学上册25.2随机事件的概率(2)教案华东师大版

25.2随机事件的概率(2)教学任务分析教学流程安排教学过程设计附表一654321(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)123456附图一附表二A A A A A AB B B B B BC CD DE E C C D D E EH I H I H I H I H I H I 附表三6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)第1第2第2123456第1附图二尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

原秋九年级数学上册25随机事件的概率教案(新版)华东师大版【精品教案】

原秋九年级数学上册25随机事件的概率教案(新版)华东师大版【精品教案】

第二十五章随机事件的概率25.1.1什么是概率教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控. 3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入. 提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性, 引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作. 4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P 140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律? 注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动. 想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.n 图25.1-1为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近 .其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P 141表25-3).通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5. 教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小. 那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率n m会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法.2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.教学反思:25.1.2在复杂情况下列举所有机会均等的结果 (第一课时)知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。

九年级数学上册25.2随机事件的概率2 精品导学案 华东师大版51

九年级数学上册25.2随机事件的概率2 精品导学案  华东师大版51

25.2 随机事件的概率(2)学习目标:学会可能出现的结果数较大时,可以采用列表法来列出各种可能的结果,以避免重复或漏计。

活动过程:活动一列举事件发生的所有可能各同学思考下列问题,小组长组织交流1.同时掷两枚质地均匀的硬币有几种可能的结果?2.同时掷两枚质地均匀的骰子有几种可能的结果?问题2与问题1相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。

怎样避免这个问题呢?带着这个问题阅读课本第135页分析与表25—2活动二运用列表法求概率各同学自主完成例1的解题过程,小组交流、订正,并完成题后小结例1:同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。

解:思考:将题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得的结果有变化吗?(就本例的3个问题而言,“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能的结果,因此作此改动对所得结果没有影响。

)题后小结:当一个事件涉及两个因素且可能出现的结果数目较多时,通常采用法。

其步骤如下:①②③活动三运用树状图法求概率问题:甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;从两个口袋中各随机地取出1个小球。

用列表法写出所有可能的结果如果还有丙口袋中装有2个相同的小球,它们分别写有字母H和I。

从甲、乙、丙三个口袋中各随机地取出1个小球。

你能写出所有可能的结果吗?与你的同伴交流一下。

当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法。

当一次试验涉及三个因素时,列表法就不方便了,那么为不重不漏地列出所有可能的结果,我们该怎么办呢?活动四牛刀小试小组长组织交流,将解答过程展示于小黑板上某联欢会上,组织者为活跃气氛设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上是4,5,7(两个转盘除表面数字不同外,其他完全相同)。

华师大版数学九年级上册《25.2 随机事件的概率》教学设计2

华师大版数学九年级上册《25.2 随机事件的概率》教学设计2

华师大版数学九年级上册《25.2 随机事件的概率》教学设计2一. 教材分析《25.2 随机事件的概率》是华师大版数学九年级上册中的一章,主要介绍了随机事件的概率及其计算方法。

本章内容是在学生已经掌握了概率的基本概念和一些基本运算方法的基础上进行讲解的。

本节内容的学习,有助于学生更好地理解概率的内涵,提高解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的概念和基本运算方法已经有了初步的认识。

但是,对于随机事件的概率的理解和计算仍然存在一定的困难。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率模型,培养学生的建模能力。

三. 教学目标1.理解随机事件的概率的含义,掌握计算随机事件概率的基本方法。

2.能够从实际问题中抽象出概率模型,解决实际问题。

3.培养学生的建模能力和逻辑思维能力。

四. 教学重难点1.随机事件的概率的含义和计算方法。

2.从实际问题中抽象出概率模型。

五. 教学方法采用问题驱动的教学方法,引导学生从实际问题中出发,探索随机事件的概率的计算方法,并通过实例讲解,让学生加深对概率的理解。

同时,注重学生的合作交流,培养学生的团队协作能力。

六. 教学准备1.准备相关的实际问题,用于引导学生探索随机事件的概率。

2.准备PPT,用于展示问题和实例讲解。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考随机事件的概率的含义和计算方法。

问题:抛掷一枚硬币,正面朝上的概率是多少?2.呈现(10分钟)呈现PPT,展示各种实际问题,让学生尝试解决。

问题1:从一副扑克牌中随机抽取一张,抽到红桃的概率是多少?问题2:一个袋子里有5个红球,3个蓝球,2个绿球,随机抽取一个球,抽到红球的概率是多少?问题3:一个班级有30名学生,其中有18名女生,12名男生,随机选取一名学生,选到男生的概率是多少?3.操练(10分钟)学生分组讨论,尝试解决以上问题。

华师大版初中数学九年级上册第25章随机事件的概率导学案(全章)

华师大版初中数学九年级上册第25章随机事件的概率导学案(全章)

华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!川底中学问题解决导学案年级:九年级学科:数学课型:新授时间:主备:史靖审定:闫鹤峰课题: 25.1什么是概率教师寄语: 千里之行,始于足下!一、目标导学:(知道学什么)学习目标: 1、感受理论概率的意义,知道获得概率的办法有两种:逻辑分析法和通过多次实验,用频率去估计概率。

2、理解用分析法求概率的两个关键,以及机会均等的事件。

学习重点:要能够看清所有机会均等的结果,并能指出其中你所关注的结果学习难点:要能够看清所有机会均等的结果,并能指出其中你所关注的结果二、自主学习(一)课前热身(新知识,早知道!)1、必然事件发生的可能性是_________________________,不可能事件发生的可能性是_________________________,可能事件发生的可能性是_________________________,2、“守株待兔”是_____________事件,“公鸡下蛋” 是_____________事件3、公平游戏的标准是____________________(二)课堂探究(我自信,我参与,我快乐!)1、从课本中找出概率的定义和获得概率的方法?2、说说概率和频率的联系3、投掷一枚一元硬币,出现“正面朝上”的概率是_________,可记为_______________________。

如果你投掷的是一枚骰子,出现数字为“4”的概率是_________,可记为_______________________。

4、通过学习教材表26.1.1,分析得到概率时,最关键的两点:(1)___________________________________________(2)__________________________________________15、投掷一枚骰子出现数字为“5” 的概率是,它表示什么意思?6三、合作交流(众人拾柴火焰高,小组合作智慧多)四、探究展示(一) 展示讲解(张扬个性,创新学习,让我们一起分享成功的喜悦!)(二)课堂小结(一份耕耘,一份收获,仔细梳理,收获一定不小吧!)五、巩固训练(试一试,你一定行!)1、判断题(1)某种彩票中奖的概率为1,因此买100张该种彩票一定会中奖。

九年级数学上册第25章《随机事件的概率》(第2课时)概率及其意义导学案(无答案)(新版)华东师大版

九年级数学上册第25章《随机事件的概率》(第2课时)概率及其意义导学案(无答案)(新版)华东师大版

九年级数学上册第25章《随机事件的概率》(第2课时)概率及其意义导学案(无答案)(新版)华东师大版一、学习目标1.通过实验,理解事件发生的可能性问题,感受理论概率的意义和表示方法。

2.运用分析法和列表法计算简单事件发生的概率。

二、学习重点运用分析法和列表法计算简单事件发生的概率。

三、自主预习仔细阅读教材136-141,完成下列各题。

1.表示一个事件发生的__________的这个数,叫做该事件的概率。

例如:投掷一枚普通的六面筛子,“出现数字5”的概率为,可记作P(______)=它表示如果做投掷很多很多次的话,那么_____________就有1次掷出5 。

2.要分析出某一事件发生的概率,最关键的要明确两点:(1)___________________________________(2 )_____________________________________例如:投掷两枚硬币,则P(出现一正一反)=______。

(分析:我们要关注的结果是____________;而所有机会均等的结果有__________、_____________、____________、____________;所以P(出现一正一反)=____ 。

3.如果在一次实验中,共有m种机会均等的结果,而事件A包含其中的n种结果,那么P(A) = ______。

四、合作探究有两枚均匀的正四面体的各面依次标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面的数字不同的概率你能求得出来吗?五、巩固反馈(当堂检测)1.教材139,141页课后习题。

2.任意投掷均匀的骰子,4朝上的概率是_______。

3.袋中装有6个红球和7个白球,且除颜色外,这些球都相同,从袋中任意摸出红球的概率是_______。

4.某彩票中奖率是2%,买2张一定不会中奖,买1000张一定会中奖,这种说法是否正确?答______。

5.一副扑克牌(去掉大王和小王),随机抽取一张,抽到红桃的概率是______。

初中数学九年级上册《25.2 概率初步》导学案

初中数学九年级上册《25.2 概率初步》导学案

第二十五章概率初步年级:九年级内容:25.1.1 随机事件(第2课时)课型:新授学习目标:知识技能:通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。

过程和方法:历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。

情感态度和价值观:在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;得出随机事件发生的可能性大小的准确结论。

需经过大量重复的试验,让学生从中体验到科学的探究态度。

学习重点:对随机事件发生的可能性大小的定性分析学习难点:理解大量重复试验的必要性。

学习过程一、学前准备1.自学课本,写下疑惑摘要。

2、摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。

我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,提出问题:(1)事件A和事件B是随机事件吗?(2)哪个事件发生的可能性大?二、自学、合作探究1、把学生分成2人一组,其中一人把球搅均匀,另一人摸球并把结果记录在表1中。

注:结果1指事件A 发生的次数多,结果2指事件B 发生的次数多。

3、提出问题(1)“10次摸球”的试验中,事件A 发生的可能性大的有几组?“20次摸球”的试验中呢?(2)你认为哪种试验更能获得较正确结论呢?(3)为了能够更大可能地获得正确结论,我们应该怎样做?4、进行大量重复试验,验证猜测的正确性。

教师请同学们进行400次重复的“摸球”试验,教师提问:如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?待学生回答后,教师把结果统计在表中。

5、对表中的数据进行分析,得出结论。

提问:通过上述试验,你认为,要判断同一试验中哪个事件发生可能性的较大,必须怎么做?先让学生回答,回答时教师注意纠正学生的不准确的用语,最后由教师总结:要判断随机事件发生的可能性大小,必须经过大量重复试验。

【华东师大版九年级数学上册教案】25.2随机事件的概率第2课时

【华东师大版九年级数学上册教案】25.2随机事件的概率第2课时

25.2随机事件的概率第2课时教课目标1.进一步理解有限等可能事件概率的意义.2.会用树状图或列表法求出一次试验中涉及多个要素时,不重复不遗漏地求出全部可能的结果,从而正确地计算问题的概率.3.理解试验次数较大时试验频率趋于稳固这一规律,能结合详尽情境掌握如何用频率预计概率.教课重难点【教课要点】.用树状图或列表法求出一次试验中涉及多个要素时,不重复不遗漏地求出全部可能的结果【教课难点】结合详尽情境掌握如何用频率预计概率.课前准备无教课过程一、情境导入养鱼专业户为了预计他承包的鱼塘里有多少条鱼( 假设这个鱼塘里养的是同一种鱼) ,先捕上100条做上标志,而后放回塘里,过了一段时间,待带标志的鱼完整和塘里的鱼混杂后,再捕上 100 条,发现此中带标志的鱼有10 条,塘里大体有鱼多少条?二、合作研究研究点一:用树状图或列表法分析随机事件的全部等可能结果【种类一】用树状图求概率2 个,小一个盒子内装有大小、形状同样的四个球,此中红球 1 个、绿球 1 个、白球明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是() 1111A. 2B. 4C. 6D.12( 如图分析:用树状图或列表法列举出全部可能状况,而后由概率公式计算求得.画树状图所示):∴两次都摸到白球的概率是2=1,故 C. 126【型二】用列表法求概率(2014 ·四川甘孜州 ) 从 0, 1, 2 三个数中任取一个数作点P 的横坐,再从剩下的两个数中任取一个数作点P 的坐,点 P 落在抛物 y=- x2+ x+2上的概率________.分析:用列表法列点P坐可能出的全部果数和点P 落在抛物上的果数,而后代入概率算公式算.用列表法表示以下:0120——(0 ,1)(0 ,2)1(1 ,0)——(1 ,2)2(2 ,0)(2 ,1)——共有 6 种等可能果,此中点P 落在抛物上的有(2,0),(0,2),(1,2)三种,故点 P落在抛物上的概率是311=,故答案 .622方法:用列表法求概率,注意利用列表法不重不漏地表示出全部等可能的果.研究点二:用率估概率【型一】用率估概率一枚地均匀的硬10 次,以下法正确的选项是 ()A.可能有 5 次正面向上B.必有 5 次正面向上C. 2 次必有 1 次正面向上D.不行能10 次正面向上分析:一枚地均匀的硬 1 次,出正面或反面向上的概率都是! ,所以,均匀每两次中可能有 1 次正面向上或有 1 次反面向上.B、C、D 不必定正确, A 正确,故A .方法:随机事件的率,指此事件生的次数与次数的比,当次数很多,它拥有必定的定性,即定在某一常数周边,而偏离的它可能性很小.【型二】计算影响率化的要素“六·一”期,小的的玩具店了一箱除色外都同样的散装塑料球共 1000 个,小将箱里面的球匀后,从中随机摸出一个球下其色,把它放回箱中;匀后再随机摸出一个球下其色,把它放回箱中;⋯⋯多次重复上述程后,摸到球的率逐定在0.2 ,由此可以估箱内球的个数是________个.分析:因大批重复摸球后,摸到球的率逐定在0.2 ,明球大占数的0.2 ,所以球的数1000 ×0.2= 200,故答案: 200.方法:解的关是知道在大批重复摸球后,某个事件生的率就凑近于事件生的概率.概率与率的关系是:(1) 次数很大,率定在概率周边; (2) 用率估概率.【型三】率估概率的用了估塘中的条数,养者第一从塘中打30 条做上,而后放塘,一段,等有的完整混杂于群中,再打200 条,此中的有 5 条,塘中估有________条.分析:塘中估有x 条,5∶200=30∶ x,解得: x=1200,故答案:1200.方法:求出的占的百分比,运用了本估体的思想.三、板书设计1.用树状图或列表法分析随机事件的全部等可能结果2. 概率与频率的关系:(1) 试验次数很大时,频率稳固在概率周边;(2) 用频率预计概率.四、教课反思教课过程中,重申频率与概率的联系与差别.会用频率预计概率解决实质问题.。

九年级数学上册第25章随机事件的概率252随机事件的概率2频率与概率学案(新版)华东师大版

九年级数学上册第25章随机事件的概率252随机事件的概率2频率与概率学案(新版)华东师大版

频率与概率
一、学习目标
进一步体会理论分析与重复试验结果的一致性。

二、学习重点
用理论分析的方法预测结果。

三、自主预习
仔细阅读教材141-147,完成下列各题。

题2中树状图是如何画出来的,并“先两个正面,再一个反面”和“两个正面,一个反面”
一样吗?
答142-143页中“问题3”中的“思考”。

3.完成书中问题4。

四、合作探究
实验:两位同学之间进行“石头”、“剪刀”、“布”的游戏,并将实验数据记录下
表中。

(表格可由同学们自行设计)
1 2 3 4 5 6 7 8 9 10 111




胜负√

胜负×
由实验中统计出数据,完成填空:平均______次中有_______次双方不分胜负,经过十
八次实验,估计这个概率是________. 这个估计值与其他小组分析得到的概率值
_________。

结论:
1.通过重复试验用频率估计概率,必须要求:。

2.在相同的条件下,实验次数越多,就越可能,但是不同的小组实验所得的估计值也
不一定相同。

五、巩固反馈(当堂检测)
1.教材147页课后习题。

2.在口袋装有两个不同编号的白球,两个不同编号的黑球(这四球的形状、大小、质量都
相同),从中任取两球,恰好颜色相同,请预测可能会出现的情况。

华师大版初中数学九年级上册第25章随机事件的概率导学案

华师大版初中数学九年级上册第25章随机事件的概率导学案
拓展提高:1、李琳的妈妈在李琳上学时总是叮咛她:“注意,别被来往的车辆 碰着”,但李琳心里很不舒服,“哼,我市有 300 万人口,每天的交通事故只 有几十件,事件发生的可能性太小,概率为 0。”你认为她的想法对不对?
2、甲、乙两人进行掷骰子游戏,甲的骰子六个面有两个面是红色,其余
TB:小初高题库
华师大版初中数学
关注的结果个数 精讲点拨:( 1 ) P(关注的结果)=
所有机会均等的结果的个数 ( 2 ) 实验频率跟理论概率是统一的。 练习达标:(分层练习)
A组 1.掷一枚普通正六面体骰子,求出下列事件出现的概率:
P(掷得点数是 6) =________ ;
TB:小初高题库
华师大版初中数学
P(掷得点数小于 7)= _________ ; P(掷得点数为 5 或 3)= _________ ; P(掷得点数大于 6)= ___________ . 2.甲产品合格率为 98 ,乙产品的合格率为 80 ,你认为买哪一种产品更可 靠? 3.阿强在一次抽奖活动中,只抽了一张,就中了一等奖,能不能说这次抽奖活 动的中奖率为百分之百?为什么? 4.从一副扑克牌(除去大小王)中任抽一张· P(抽到红心) = ________ P(抽到黑桃) = _______ P(抽到红心 3)= ________ P 抽到 5)= __________ 5.有 5 张数字卡片,它们的背面完全相同,正面分别标有 1,2,2,3,4·现 将它们的背面朝上,从中任意摸到一张卡片,则: P(摸到 1 号卡片)= _______ P(摸到 2 号卡片)= ________ P(摸到 3 号卡片)= _______ P(摸到 4 号卡片)= ________ 6. 任意翻一下日历,翻出 1 月 6 日的概率为________.翻出 4 月 31 日的概率为 ________.

九年级数学上册 25.2 随机事件的概率 25.2.3 列举所有机会均等的结果导学案(无答案)(新版)华东师大版

九年级数学上册 25.2 随机事件的概率 25.2.3 列举所有机会均等的结果导学案(无答案)(新版)华东师大版

25.2.3 列举所有机会均等的结果
导学目标
学生探究独立学习与小组合作相结合
,而后思考老师提出的问题.
同学生日相同,那么能说明其相应概率是。

从上到下就有:
,从上到下每一条路径就是一种可能的结果,这里每一种结果发
1
(正正反)=
8
人的生日写在纸条上,从全班的调
个被调查的人,看看他们中有没有2个人的生日相同,将全班同学的调查数据集中起来设计一个方案,估计50
方案.
可以估计的,体会不确定中隐含着确定的因素,同学要学会解决生
A
甲、乙一样大
1粒,从盒中第一次取
( ) A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率及其意义
一、学习目标
1.通过实验,理解事件发生的可能性问题,感受理论概率的意义和表示方法。

2.运用分析法和列表法计算简单事件发生的概率。

二、学习重点
运用分析法和列表法计算简单事件发生的概率。

三、自主预习
仔细阅读教材136-141,完成下列各题。

1.表示一个事件发生的__________的这个数,叫做该事件的概率。

例如:投掷一枚普通的六面筛子,“出现数字5”的概率为,可记作P(______)=
它表示如果做投掷很多很多次的话,那么_____________就有1次掷出5 。

2.要分析出某一事件发生的概率,最关键的要明确两点:
(1)___________________________________
(2 )_____________________________________
例如:投掷两枚硬币,则P(出现一正一反)=______。

(分析:我们要关注的结果是____________;而所有机会均等的结果有__________、
_____________、____________、____________;所以P(出现一正一反)=____ 。

3.如果在一次实验中,共有m种机会均等的结果,而事件A包含其中的n种结果,那么P(A) = ______。

四、合作探究
有两枚均匀的正四面体的各面依次标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面的数字不同的概率你能求得出来吗?
五、巩固反馈(当堂检测)
1.教材139,141页课后习题。

2.任意投掷均匀的骰子,4朝上的概率是_______。

3.袋中装有6个红球和7个白球,且除颜色外,这些球都相同,从袋中任意摸出红球的概率是_______。

4.某彩票中奖率是2%,买2张一定不会中奖,买1000张一定会中奖,这种说法是否正确?答______。

5.一副扑克牌(去掉大王和小王),随机抽取一张,抽到红桃的概率是______。

6.下列说法正确的是()
A.小李喝了冰水才感冒的。

B.投掷一枚均匀的骰子,每个点数出现的频率相同
C.转盘A大,转盘B大,颜色和图案都一样的情况下,用转盘A实验成功的概率大
D.明天一定会下雨
7.袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球:
⑴摸到红球的概率是多少?⑵摸到白球的概率是多少?⑶摸到黄球的概率是多少?
⑷哪一个概率大?。

相关文档
最新文档