(完整)锐角三角函数知识点考点总结,推荐文档
最全锐角三角函数概念超经典讲义完整版.doc
锐角三角函数知识点一:锐角三角函数1、锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。
2、锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin 。
3、锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos 。
4、锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即的邻边的对边A A A ∠∠=tan 。
sin α,cos α,tan α都是一个完整的符号,单独的 “sin”没有意义,其中α前面的“∠”一般省略不写;但当用三个大写字母表示一个角时,“∠”的符号就不能省略。
考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cosα=35,sinα=_______,tanα=_______。
3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。
4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。
5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1n cosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形例1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。
(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。
6、如图,在△ABC 中,∠A=60°,∠B=45°,AB=8,求△ABC 面积(结果可保留根号)。
7、如图(1),∠α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一个点P (3,4),则sin α=______ 8、如图(2)所示,在正方形网格中,sin ∠AOB 等于( ) A 5B 25C 、12D 、2注意:正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。
(完整)锐角三角函数题型分类总结,推荐文档
锐角二角函数•知识点一:钦角三角国数的龙* 一、 锐角三角函数定义:在 RiAABC 中,ZC=90°, ZA 、ZB 、ZC 的对边分别为 a 、b 、c, 则ZA 的正弦可表示为;5imX= _________ ,ZA 的余弦可表示为cosA= __________厶的正切:曲心 __________ ,它们弦称为ZA 的锐角三角函数2、取値范围— <^sinA< co ______________ tanA> _______ 1例如图所示,在RiAlSC 中〉乙C=9Q° .例2.锐角三角函数束值;在Rt2k45C 中,ZC=90',若 a=9, i=l2,则 c= _______________sinJ — ____ , coSu-f — ____ 9 taivl — ____ , 5in^= _____ ; cos5= ______ ; tan^= _____ .例3.已知;如图,RiATL'Af 中,Zni\r =90o …⑷丄ZV 于出点,yy=4, HV=3・ 求:sinZZW?、cosZrW?、tanZniK.典型m :类型一:直角三角形求值3第1题團 ① sin J ( ) 软边 an 5 旳对边( )1 .已知中丿ZC = 90°: tanJ= .5C-12,求・4C\ 和uo£・2. 如朗 0O 的半径OA = 16cm, OC 丄貝B 于C 点,an ^AOC =-.求肋及OC 的长.3・已知:0。
中,OC 丄朋于C 点;16cm ; dnZAOC (1) 求OQ 的半径0A 的长及弦心距 (2) 求 cos/JOC 及 tan^AOC.g4.已知是锐角,sin 」』=一;求cosA tan J 的值17对应ill 练二1. 在 RtA^C 中 7 ZC=90C 7 若BCf A£=应,则 tanJ 的值为5B.巫5C.丄 2D. 22.在t^ABC 中,ZC=90°, 52)I A=- >那么tanA 的值等于().53c 4 小 3 c 4 A.-5 B.— 5 C.- 4 D. 一3类型二利用角度转化求值,2. 如團,直径为10的CU 经过点C(Q ・5)和点O(QO);与轴的正半釉交于点D, $是》轴右侧圆弧上一点〉则代乙OBC 的值为〈)1.已知;如图,C.-3. 如图,角a 的顶点为0,它的一边在工轴的正半轴上,另一边0』上有一点P0 4),则丄如5.如國06>AC =1,则sin5的7\c.£ 知/£=卩 BC=10,A.- C.-57.如图7,在等腰直角三角形43C 中'ZC=90° , JC = 6, Z >为AC ±—点,若 tanZDA.l = -,则的长为()5求Z5的度数B.边BC. AB 的长.类型三 化斜三角形为直角三角形 例 1 如图,在△ABC 中,ZA=30c, ZB=45% AC=2\/3 、求 AB 的长.例2.已知:如團,在AABC 中,ZA4C= 120 °,肿=10,/C=5・对应岷1.如图,在RIA.ABC 中,ZBAC=90=,点D 在BC 边上,且A.4BD 是等边三甬形.若.43=2, 求A.ABC 的周长.〈结果保留根号)2. 已知:如虱 AABC 中「3=9, 3C=6,厶皿?的面枳尊于9丿求血^3. ABC 中,乙4=60 ° , .4-5=6 cm …404 cm,则44BC 的面积是类型四;利用构造直角三角形对应练习:1. ________________________________________________ 如图,4ABC 的顶点都在方格纸的格点上,则sinA= _____________ .2・如團八4、B. C 三点在正方形网络线的交点处,若将\A£C 绕着D. 1.4 羽 cm*D.L2cm :例1如图所示,AABC 的顶点杲正方形网格的格点,则sinA 的值为<10D.3.正方形网格中, 如團放乱则t^ZAOB 的值是(R求:sin 厶3C 的值.点厘逆吋针旋转得到AC8,则tanF 的值为I特殊角的三角函数值锐角a30s45°60。
(完整版)初三锐角三角函数知识点与典型例题(可编辑修改word版)
锐角三角函数:知识点一:锐角三角函数的定义:一、锐角三角函数定义:在Rt△ABC 中,∠C=900, ∠A、∠B、∠C 的对边分别为a、b、c,则∠A 的正弦可表示为:sinA= ,∠A 的余弦可表示为cosA=∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数【特别提醒:1、sinA、∠cosA、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】例1.如图所示,在Rt△ABC 中,∠C=90°.①sin A =(②cos A =()=,对对)=,对对第 1 题图sin B =(cos B =()=;对对)=;对对③tan A =( )=,∠A对对对例2. 锐角三角函数求值:tan B =∠B对对对=.( )在Rt△ABC 中,∠C=90°,若a=9,b=12,则c=,sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.例3.已知:如图,Rt△TNM 中,∠TMN=90°,MR⊥TN 于R 点,TN=4,MN=3.求:sin∠TMR、cos∠TMR、tan∠TMR.典型例题:类型一:直角三角形求值5 1. 已知 Rt △ABC 中, ∠C = 90︒, tan A = 3, BC = 12, 4求AC 、AB 和 cos B .2. 已知:如图,⊙O 的半径 OA =16cm ,OC ⊥AB 于 C 点, sin ∠AOC = 3⋅4求:AB 及 OC 的长.3. 已知:⊙O 中,OC ⊥AB 于 C 点,AB =16cm , sin ∠AOC = 3⋅5(1) 求⊙O 的半径 OA 的长及弦心距 OC ; (2) 求 cos ∠AOC 及 tan ∠AOC .4. 已知∠A 是锐角, sin A = 8 17,求cos A , tan A 的值对应训练:(西城北)3.在 Rt △ABC 中,∠ C =90°,若 BC =1,AB = ,则 tan A 的值为A.55B. 2 55C.12D .2(房ft )5.在△ABC 中,∠C =90°,sin A= 3,那么 tan A 的值等于().5A. 3 5B. 4 5C. 3 4D.4 3类型二. 利用角度转化求值:1. 已知:如图,Rt △ABC 中,∠C =90°.D 是 AC 边上一点,DE ⊥AB 于 E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .32.如图,直径为10的⊙A 经过点C(0对5) 和点O(0对0) ,与x 轴的正半轴交于点D,B 是y 轴右侧圆弧上一点,则cos∠OBC 的值为()1 3A.B.2 2C.3D.45 5yCAO D xB图 8图图3.(2009·孝感中考)如图,角的顶点为O,它的一边在x 轴的正半轴上,另一边OA 上有一点P(3,4),则sin=.4.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm,DE⊥AB,sin A =,则这个菱形5 的面积= cm2.5.(2009·齐齐哈尔中考)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的3半径为2,AC = 2 ,则sin B 的值是()2 3 3 4A.B.C.D.3 24 3F2 3 6. 如图 4,沿 AE 折叠矩形纸片 ABCD ,使点 D 落在 BC 边的点 F 处.已知 AB = 8 , BC = 10 ,AB=8,则 tan ∠EFC 的值为 ( )ADE 3 4 34 BCA.B.C.D.43557. 如图 6,在等腰直角三角形∆ABC 中, ∠C = 90︒ , AC = 6 , D 为 AC 上一点,若tan ∠DBA = 15,则 AD 的长为()A.B . 2C.1 D . 28. 如图 6,在 Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线 AD = 1633求 ∠B 的度数及边 BC 、AB 的长.ACDB图 6类型三. 化斜三角形为直角三角形例 1 (2012•安徽)如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 ,求 AB 的长.例 2.已知:如图,△ABC 中,AC =12cm ,AB =16cm , sin A = 1⋅3(1)求 AB 边上的高 CD ; (2)求△ABC 的面积 S ; (3)求 tan B .23 33例3.已知:如图,在△ABC 中,∠BAC=120°,AB=10,AC=5.求:sin∠ABC 的值.对应训练1.(2012•重庆)如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB=9,BC=6,△ABC 的面积等于9,求sin B.3.ABC 中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC 的面积是A.2 cm2B.4 cm2C.6 cm2D.12 cm2类型四:利用网格构造直角三角形例1 (2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为()1 5A.B.2 5C.1010D.2 55对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A = .CA B2.如图,A、B、C 三点在正方形网络线的交点处,若将∆ABC 绕着点A 逆时针旋转得到∆AC' B',则tan B' 的值为1 1 1A. B. C.4 3 2D. 13.正方形网格中,∠AOB 如图放置,则tan∠AOB 的值是()A.52B.51C. D. 22特殊角的三角函数值锐角30°45°60°sincostan当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.(昌平)1).计算:2 cos 30︒+ 2 sin 45︒- tan 60︒.(朝阳)2)计算:tan 60︒+ sin2 45︒- 2 cos 30︒.(2009·黄石中考)计算:3-1+(2π-1)0-3tan30°-tan45°3AO B33(石景ft)4.计算:⎛+ 2 cos 60︒+ sin 45︒-⎝⎫0tan 30︒⎪.2 ⎭tan 45︒+ sin 30︒ (通县)5.计算:;1- cos 60︒例2.求适合下列条件的锐角.(1)cos=12 (2)tan=3(3) s in 2=22(4) 6 cos(- 16 ) = 3(5)已知为锐角,且tan(+300)=,求tan的值(6)在∆ABC 中,若cos A -+(sin B -2)2= 0 ,∠A,∠B 都是锐角,求∠C 的度数.2例3. 三角函数的增减性1.已知∠A 为锐角,且sin A < 1,那么∠A 的取值范围是2A. 0°< A < 30°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°2.已知A 为锐角,且cos A < sin 300,则()A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE⊥AB 于E,BE=16cm,sin A =12⋅ 13123123求此菱形的周长.2. 已知:如图,Rt △ABC 中,∠C =90°, AC = BC=于 D 点,求:(1) ∠BAD ;(2) sin ∠BAD 、cos ∠BAD 和 tan ∠BAD .,作∠DAC =30°,AD 交 CB3. 已知:如图△ABC 中,D 为 BC 中点,且∠BAD =90°, tan ∠B =CAD 、tan ∠CAD .1 ,求:sin ∠CAD 、cos ∠34. 如图,在 Rt △ABC 中,∠C=90°, sin B = 3,点 D 在 BC 边上,DC= AC = 6,求 tan ∠BAD5的值.ABDC5.(本小题5 分)如图,△ABC 中,∠A=30°, tan B =2C, AC = 4 .求 AB 的长.AB解直角三角形:3 333 1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在 Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系: . ②两锐角之间的关系: .③边与角之间的关系:sin A = cos B =; cos A = sin B = ; tan A =1 =tan B1;tan A= tan B =.④直角三角形中成比例的线段(如图所示). 在 Rt △ABC 中,∠C =90°,CD ⊥AB 于 D . CD 2= ;AC 2= ; BC 2= ;AC ·BC = .类型一例 1.在 Rt △ABC 中,∠C =90°.(1)已知:a =35, c = 35 ,求∠A 、∠B ,b ;(2)已知: a = 2 , b = 2 ,求∠A 、∠B ,c ;(3)已知: sin A =2 , c = 6 ,求 a 、b ;3(4)已知: tan B = 3, b = 9, 2求 a 、c ;(5)已知:∠A =60°,△ABC 的面积 S = 12 3, 求 a 、b 、c 及∠B .2例2.已知:如图,△ABC 中,∠A=30°,∠B=60°,AC=10cm.求AB 及BC 的长.例3.已知:如图,Rt△ABC 中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm.求AD 的长.例4.已知:如图,△ABC 中,∠A=30°,∠B=135°,AC=10cm.求AB 及BC 的长.类型二:解直角三角形的实际应用仰角与俯角:例1.(2012•福州)如图,从热气球C 处测得地面A、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100 米,点A、D、B 在同一直线上,则AB 两点的距离是()A.200 米B.200 米C.220 米D.100()米例2.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45 °.点D 到地面的垂直距离DE 3 2m ,求点 B 到地面的垂直距离BC.例3(昌平)19.如图,一风力发电装置竖立在小ft顶上,小ft的高BD=30m.从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA=60°,测得ft顶B 的仰角∠DCB=30°,求风力发电装置的高AB 的长.ADB E例4 .如图,小聪用一块有一个锐角为30 的直角三角板测量树C高,已知小聪和树都与地面垂直,且相距3AB 为1.7 米,求这棵树的高度.米,小聪身高例5.已知:如图,河旁有一座小ft,从ft顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m.现需从ft顶A 到河对岸点C 拉一条笔直的缆绳AC,求ft的高度及缆绳AC 的长(答案可带根号).例5.(2012•泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20 米,到达点C,再次测得点A 的仰角为60°,则物体AB 的高度为()C.20 米D.米例6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC)为30 米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8 秒,∠BAC=75°.(1)求B、C 两点的距离;(2)请判断此车是否超过了益阳大道60 千米/小时的限制速度?(计算时距离精确到1 米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,≈1.732,60 千米/小时≈16.7 米/秒)3A.10 米B.10 米33 3 3类型四. 坡度与坡角例.(2012•广安)如图,某水库堤坝横断面迎水坡 AB 的坡比是 1: ,堤坝高 BC=50m ,则应水坡面 AB 的长度是( ) A .100mB .100 mC .150mD .50 m类型五. 方位角1. 已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔 M 在北偏西 30°,货轮以每小时 20 海里的速度航行,1 小时后到达 B 处,测得灯塔 M 在北偏西 45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少?(精确到 0.1 海里,1.732 )2.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退2012 年 5 月 18 日,某国 3 艘炮艇追袭 5 条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政 310” 船人船未歇立即追往北纬 11 度 22 分、东经 110 度 45 分附近海域护渔,保护 100 多名中国 渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图 1)324解决问题如图 2,已知“中国渔政 310”船(A )接到陆地指挥中心(B )命令时,渔船(C )位于陆地指挥中心正南方向,位于“中国渔政 310”船西南方向,“中国渔政 310”船位于陆地指挥中心南偏东 60°方向,AB=海里,“中国渔政 310”船最大航速 20 海里/时.根据以上信息,请你求出“中国渔政 310”船赶往出事地点需要多少时间.综合题:三角函数与四边形:(西城二模)1.如图,四边形 ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,6tan ∠BDC= 3.(1) 求 BD 的长; (2) 求 AD 的长.(2011 东一)18.如图,在平行四边形 ABCD 中,过点 A 分别作 AE ⊥BC 于点 E ,AF ⊥CD 于点 F .(1) 求证: ∠BAE =∠DAF ;(2) 若 AE =4,AF =,s in ∠BAE = 53 ,求 CF 的长.5三角函数与圆:1. 如图,直径为 10 的⊙A 经过点C (0对5) 和点O (0对0) ,与 x 轴的正半轴交于点 D ,B 是 y轴右侧圆弧上一点,则 cos ∠OBC 的值为()1 3 A.B .22C .3D . 45 5yC AOD xB图 8图图5 DO4(延庆)19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接 AC 与⊙O 交于点 D, (1) 求证:∠AOD=2∠CC4 (2) 若 AD=8,tanC= ,求⊙O 的半径。
(word完整版)三角函数最全知识点总结,推荐文档
三角函数、解三角形一、任意角和弧度制及任意角的三角函数1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按__逆时针__方向旋转形成的角.②负角:按__顺时针__方向旋转形成的角.③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}.(3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限.象限角轴线角2.弧度制(1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__.(2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__.(3)角度与弧度的换算:360°=__2π__rad,1°=__π180=(__180π__)≈57°18′.(4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__,面积S=__12|α|r2__=__12lr__.3.任意角的三角函数定义(1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sinα=__yr__,cosα=__xr__,tanα=__yx__.(2)三角函数在各象限的符号是:(3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线.4.终边相同的角的三角函数sin(α+k·2π)=__sinα__,cos(α+k·2π)=__cosα__,tan(α+k·2π)=__tanα__(其中k∈Z),即终边相同的角的同一三角函数的值相等.重要结论1.终边相同的角不一定相等,相等角的终边一定相同,在书写与角α终边相同的角时,单位必须一致.2.确定αk(k∈N*)的终边位置的方法(1)讨论法:①用终边相同角的形式表示出角α的范围.②写出αk的范围.③根据k的可能取值讨论确定αk的终边所在位置.(2)等分象限角的方法:已知角α是第m(m=1,2,3,4)象限角,求αk是第几象限角.①等分:将每个象限分成k等份.②标注:从x轴正半轴开始,按照逆时针方向顺次循环标上1,2,3,4,直至回到x轴正半轴.③选答:出现数字m的区域,即为αk所在的象限.如α2判断象限问题可采用等分象限法.二、同角三角函数的基本关系式与诱导公式1.同角三角函数的基本关系式(1)平方关系:__sin 2x +cos 2x =1__. (2)商数关系:__sin xcos x =tan x __.2.三角函数的诱导公式1.同角三角函数基本关系式的变形应用:如sin x =tan x ·cos x ,tan 2x +1=1cos 2x ,(sin x +cos x )2=1+2sin x cos x 等. 2.特殊角的三角函数值表“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.4.sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系为(sin x +cos x )2=1+2sin x cos x ,(sin x -cos x )2=1-2sin x cos x ,(sin x +cos x )2+(sin x -cos x )2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.三、两角和与差的三角函数 二倍角公式1.两角和与差的正弦、余弦和正切公式2.二倍角的正弦、余弦、正切公式 (1)sin2α=__2sin αcos α__;(2)cos2α=__cos 2α-sin 2α__=__2cos 2α__-1=1-__2sin 2α__; (3)tan2α=__2tan α1-tan 2α__(α≠k π2+π4且α≠k π+π2,k ∈Z ). 3.半角公式(不要求记忆) (1)sin α2=±1-cos α2; (2)cos α2=±1+cos α2;(3)tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.重要结论1.降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2. 2.升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α. 3.公式变形:tan α±tan β=tan(α±β)(1∓tan α·tan β). 1-tan α1+tan α=tan(π4-α);1+tan α1-tan α=tan(π4+α)cos α=sin2α2sin α,sin2α=2tan α1+tan 2α,cos2α=1-tan 2α1+tan 2α,1±sin2α=(sin α±cos x )2.4.辅助角(“二合一”)公式: a sin α+b cos α=a 2+b 2sin(α+φ), 其中cos φ=,sin φ= 5.三角形中的三角函数问题在三角形中,常用的角的变形结论有:A +B =π-C ;2A +2B +2C =2π;A2+B 2+C 2=π2.三角函数的结论有:sin(A +B )=sin C ,cos(A +B )=-cos C ,tan(A +B )=-tan C ,sin A +B 2=cos C 2,cos A +B 2=sin C 2.A >B ⇔sin A >sin B ⇔cos A <cos B .四、三角函数的图象与性质1.周期函数的定义及周期的概念(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做__周期函数__.非零常数T叫做这个函数的__周期__.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小__正周期__.(2)正弦函数、余弦函数都是周期函数,__2kπ(k∈Z,k≠0)__都是它们的周期,最小正周期是__2π__.2.正弦、余弦、正切函数的图象与性质π重要结论1.函数y =sin x ,x ∈[0,2π]的五点作图法的五个关键点是__(0,0)__、__(π2,1)__、__(π,0)__、__(3π2,-1)__、__(2π,0)__.函数y =cos x ,x ∈[0,2π]的五点作图法的五个关健点是__(0,1)__、__(π2,0)__、__(π,-1)__、__(3π2,0)__、__(2π,1)__.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为T =2π|ω|,函数y =tan(ωx +φ)的最小正周期为T =π|ω|.3.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.而正切曲线相邻两对称中心之间的距离是半周期.4.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.五、函数y =A sin(ωx +φ)的图象及应用1.五点法画函数y =A sin(ωx +φ)(A >0)的图象(1)列表:(2)描点:__(-φω,0)__,__(π2ω-φω,A )__,(πω-φω,0),(3π2ω-φω,-A )__,(2πω-φω,0)__.(3)连线:把这5个点用光滑曲线顺次连接,就得到y =A sin(ωx +φ)在区间长度为一个周期内的图象.(4)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象2.由函数y =sin x 的图象变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤3.函数y =A sin(ωx +φ)(A >0,ω>0,x ∈[0,+∞)的物理意义 (1)振幅为A . (2)周期T =__2πω__.(3)频率f =__1T __=__ω2π__. (4)相位是__ωx +φ__. (5)初相是φ.重要结论1.函数y =A sin(ωx +φ)的单调区间的“长度 ”为T2.2.“五点法”作图中的五个点:①y =A sin(ωx +φ),两个最值点,三个零点;②y =A cos(ωx +φ),两个零点,三个最值点.3.正弦曲线y =sin x 向左平移π2个单位即得余弦曲线y =cos x .六、正弦定理、余弦定理1.正弦定理和余弦定理 ①a =__2R sin A __,b =__2R sin B __,c =__2R sin C __;②sin A =__a 2R __,sin B =__b2R__,sin C=__c2R __;③ab c =__sin Asin B sin C __④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Aa <b sin A a =b sin A b sin A < a <b a ≥b a >b a ≤b (1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A .(3)S =12r (a +b +c )(r 为内切圆半径).重要结论在△ABC 中,常有以下结论 1.∠A +∠B +∠C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2. 5.tan A +tan B +tan C =tan A ·tan B ·tan C .6.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .7.三角形式的余弦定理sin 2A =sin 2B +sin 2C -2sin B sin C cos A ,sin 2B =sin 2A +sin 2C -2sin A sin C cos B ,sin 2C =sin 2A +sin 2B -2sin A sin B cos C .8.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3. 9.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等. (2)利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.(3)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.。
锐角三角函数--讲义资料
锐角三角函数 讲义一、基础知识点: 1.定义:如图在△ABC 中,∠C 为直角,我们把锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sin A ;ca A =sin 把锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ;cb A =cos 把锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tan A ;ba A =tan 2、三角函数值(1)特殊角的三角函数值角度 三角函数 0° 30° 45° 60° 90° s inA 0 12 22 321cosA 1 32 22 12 0tanA313不存在(2)锐角三角函数值的变化:(1)当α为锐角时,各三角函数值均为正数,且0<s inα<1,0<c os α<1,当0°≤α≤45°时,sin α,tan α随角度的增大而_______,co sα随角度的增大而_______.(3)当0°<α<45°时,sin α_____c os α;当45°<α<90°时,sin α______c os α.3、 同角、互余角的三角函数关系:(1)同角三角函数关系:1cos sin 22=+A A .; AA A cos sin tan =;(2)互余锐角的三角函数关系:)90cos(cos sin A B A -︒==,)90sin(sin cos A B A -︒==。
1、 解直角三角形:由直角三角形中除直角以外的两个已知元素(其中至少有一条边),求出所有未知元素的过程,叫做解直角三角形。
直角三角形的可解条件及解直角三角形的基本类型如下表: 已知条件 解法 一条边和一个锐角 斜边c和 锐角A290,sin ,cos ,sin cos B A a c A b c A S c A A ο=-===直角边a 和锐角A 90,,,tan sin a aB A b c A Aο=-==两条边两条直角 边a 和b 22c a b =+,1,90,2A B A S ab ο=-=直角边a和 斜边c22,sin ,,90ab c a A A B A cο=-==-备注:a 、b、c 为三角形的三边;A 、B 、C 为三角形的三个内角、S 为三角形的面积 三、典型例题:1. 锐角三角函数的相关概念例1、如图1,在RT △A BC中,∠C=90°,si nA =53,则tanB 的值为(ﻩ)A .34ﻩ B.54 ﻩC .45 ﻩﻩD .43例5例2、如图,⊙O 是△A BC 的外接圆,A D是⊙O的直径,若⊙O 的半径是23,AC=2,则sinB 的值是( )A.32ﻩﻩ B.23ﻩﻩﻩC .43 ﻩﻩD .34ﻩ例3:已知在Rt ABC △中,∠C 为直角,A C = 4cm ,BC = 3cm ,sin ∠A = . 例4:在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .例5:如图,在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A的值是( ) A.错误! B.错误! C.错误! D .错误!A CB图1A BCDO例2ACB ACBDBACDE 例6:如图2,在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则B C的长为 ___c m. 例6例7:正方形网格中,AOB ∠如图3放置,则cos AOB ∠的值为( )A.55ﻩ B.255ﻩ C.12ﻩﻩD.2 典型例题题型一:求锐角三角函数的值例1 在Rt △ABC 中,∠C =90°,sin B=35,点D 在BC边上,且∠ADC=45°,DC=6,求∠BAD 的正切值.变式训练1 如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( ) A.2 B .2C .6ﻩD .3变式训练2如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC 的面积为( )A.83B.15ﻩC.3D.3题型三:化简计算例1(1))计算:20113015(1)()(cos68)338sin 602π---+++-.ABO例7变式1图 变式2图变式:已知α是锐角,且s in(α+15°)=32。
第28章+锐角三角函数知识点总结及思维导图+2023—2024学年人教版数学九年级下册
第28章锐角三角函数【思维导图】28.1锐角三角函数【知识点】1.Rt△ABC中,∠C=90°.(1)∠A的对边与斜边比,叫做∠A的正弦,记为sinA,即sinA=∠A的对边斜边=aa(2)∠A的邻边与斜边比,叫做∠A的余弦,记为cosA,即cosA=∠A的邻边斜边=aa(3)∠A的对边与邻边比,叫做∠A的正切,记为tanA,即tanA=∠A的对边∠A的邻边=aa∠A的正弦、余弦、正切统称为∠A的锐角三角函数.提示:sin A 不是sin与A的乘积,而是一个整体,cosA和tanA同理;锐角三角函数的三种表示方法:sin A,sin 56°,sin∠DEF.2.一个锐角的三角函数值是一个比值,它与三角形的大小无关,它没有单位.在Rt△ABC中,当锐角A的度数一定时,无论这个直角三角形大小如何,∠A的锐角三角函数值为定值.锐角三角函数锐角α30°45°60°sin α12√22√32cos α√32√2212tan α√331√3(1)正弦值、正切值随角度的增大而增大,余弦值随角度的增大而减小.(2)sin α=cos(90°-α)cos α=sin(90°-α)tan α·tan(90°-α)=1(3)锐角A 的正弦、余弦的取值范围分别为:0<sin A<1,0<cos A<1, (4)cos 2A+sin 2A=1 sin 2A+sin 2(90°-α)=1(5)tan A=sin A cos A4.锐角三角函数值是个常数值,它只与角的度数有关,将来离开了直角三角形也存在.5.若α=45°,则sin α=cos α; 若α<45°,则sin α<cos α; 若α>45°,则sin α>cos α;28.2解直角三角形及其应用 28.2.1 解直角三角形【知识点】1.在直角三角形中,由已知元素求出其余未知元素的过程就是解直角三角形.2.在直角三角形中,三边之间的关系是a 2+b 2=c 2(勾股定理); 两锐角之间的关系是∠A+∠B=90° 边角之间的关系有sinA=∠A 的对边斜边,cosA=∠A 的邻边斜边,tanA=∠A 的对边∠A 的邻边3.在直角三角形的六个元素中,除直角外的五个元素只要知道其中的两个元素,就可以求出其余三个元素,其中至少有一个是边.4.在Rt △ABC 中,∠C=90°,若已知∠A=α,AB=c ,较简便的方法是用正弦求出BC ,用余弦求出AC ,也可用勾股定理求出AC ,根据直角三角形的两锐角互余求出∠B.单元练习一、选择题1.已知∠α为锐角,且sin a=12,则∠α=( )A.30°B.45°C.60°D.90°2.sin 60°的相反数是( )A.-12B.−√33C.−√32D.−√223.如图,在∠ABC中,∠B=90°,BC=2AB,则cosA的值为( )A.52B.12C.255D.554.如图,在4×5 的正方形网格中,每个小正方形的边长都是1,∠ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB 的值为( )A.3√55B.√175C. 35D. 455.在∠ABC中,∠A,∠B均为锐角,且|2sin A-1|与(cos a-√22)2互为相反数,则∠C的度数是( )A.45°B.75°C.105°D.120°6.如图,在∠ABC中,∠C=90°,AB=15,sinB=35,则AC的长为( )A.3 B.9 C.4 D.127.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪的高A D为1.5米,则铁塔的高BC为( )A.(1.5+150tanα)米a.(1.5+150tan a)米C.(1.5+150sinα)米a.(1.5+150sin a)米8.在Rt∠ABC 中,∠C=90°,AB=2BC,则cos A 的值为 ( ) A.√32 B .12 C .√33 D .√229.如图,在∠ABC 中,CA =CB =4,cosC =14 ,则sinB 的值为( )A.102 B .153 C .64 D .10410.如图,电线杆CD 的高度为h ,两根拉线 AC 与BC 相互垂直,∠CAB=α,则拉线 BC 的长度为(点 A,D,B 在同一条直线上)( ) a .asin a a .acos a a .atan a D. h·cosα11.定义一种运算:cos(α+β)=cos αcos β-sin αsin β,cos(α-β)=cos αcos β+sin αsin β.例如:当α=60°,β=45°时,cos(60°-45°)=12×√22+√32×√22=√2+√64,则cos 75°的值为 ( )A.√6+√24 B .√6-√24C.√6-√22 D .√6+√2212.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos∠ADC 的值为( )A .21313B .31313C .23D .53 二、填空题,则cos B=_______.13.在∠ABC中, aa=90°,tan a=√3314.已知α为锐角,当无意义时,cos α的值是_______.√3tan a-115.如图,在Rt∠ABC中,∠ACB=90°,CD∠AB,垂足为D,若AC= 5 ,BC =2,则sin∠ACD的值为_________.16.某物体沿着坡比为4:3的坡面上升了8米,那么在坡面上移动了_______米.17.如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点,正方形ABCD的边长为8,则BH的长为_______.H,tan∠ABG=1218.如图,在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是_________.三、解答题19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50 cm,∠AB C=47°.(1)求车位锁的底盒BC的长;(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位? (参考数据:aaa47°≈0.73,aaa47°≈0.68,aaa47°≈1.07)20.某景区为给游客提供更好的游览体验,拟在如图∠所示的景区内修建观光索道.其设计示意图如图∠所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC,BC长为50 m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A、B两处的水平距离AE为576 m,DF∠AF,垂足为点F.(图∠中所有点都在同一平面内,点A、E、F 在同一水平线上)(1)求索道AB的长(结果精确到1 m);(2)求AF的长(结果精确到1 m).(参考数据:sin 15°≈0.25,cos 15°≈0.96,tan 15°≈0.26,√2≈1.41)21.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上,求菜园与果园之间的距离.(结果保留整数.参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)。
完整版)锐角三角函数超经典讲义
完整版)锐角三角函数超经典讲义锐角三角函数锐角三角函数是三角函数的一种,包括正弦、余弦和正切。
在一个锐角三角形中,锐角的对边、邻边和斜边之间的比例就是锐角三角函数。
具体来说,对于锐角A,其正弦、余弦和正切分别表示为sinA、cosA和XXX。
其中,XXX表示A的对边与斜边的比,cosA表示A的邻边与斜边的比,XXX表示A的对边与邻边的比。
这些符号都是完整的,单独的“sin”没有意义。
在用大写字母表示角度时,一般省略“∠”符号。
在求解锐角三角函数时,关键在于构造以此锐角所在的直角三角形。
例如,在一个直角三角形ABC中,如果已知∠C=90°,cosB=4/5,则AC:BC:AB=3:4:5.另外,需要注意的是,正弦、余弦和正切是实数,没有单位,它们的大小只与角的大小有关,而与所在直角三角形无关。
例1:在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE。
证明△ABE≌△DFA,并求sin∠EDF的值。
解:首先,连接AC,易得△ABC为等腰直角三角形,∠BAC=45°。
又因为AE=BC,所以△ABE和△ACD相似,即∠ABE=∠ACD,∠XXX∠ADC。
又因为∠ADC=90°,所以∠AEB=90°。
因此,△ABE和△DFA是全等三角形。
接下来,求sin∠EDF的值。
由于∠BAC=45°,所以∠AED=45°。
由于△ABE和△DFA全等,所以∠XXX∠BAE=45°。
因此,sin∠EDF=sin45°=1/√2.例2:在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC面积(结果可保留根号)。
解:由于∠A=60°,∠B=45°,所以∠C=75°。
根据三角函数的定义,可以得到:sin75°=cos15°=(sin60°cos45°+cos60°sin45°)/2=√6+√2/4cos75°=sin15°=(sin60°cos45°-cos60°sin45°)/2=√6-√2/4因此,△ABC面积为S=(1/2)AB·BC·sin75°=4(√6+√2)。
锐角三角函数知识点考点总结
锐角三角函数知识点考点总结一、正弦函数(sin)1. 正弦函数的定义:对于任意角θ(其中0<θ<π/2),其正弦函数的值可以定义为θ的对边与斜边的比值,即sinθ=对边/斜边。
2.正弦函数的性质:(1)范围限制:正弦函数的值域范围是[-1, 1],即-1 ≤ sinθ ≤ 1;(2)周期性:正弦函数的周期是2π,即sin(θ+2π) = sinθ;(3)奇偶性:正弦函数是奇函数,即sin(-θ) = -sinθ;(4)特殊值:sin(0) = 0,sin(π/6) = 1/2,sin(π/4) = √2/2,sin(π/3) = √3/2,sin(π/2) = 1;(5)图像特点:正弦函数在0到π/2区间上单调递增,在π/2到π区间上单调递减。
二、余弦函数(cos)1. 余弦函数的定义:对于任意角θ(其中0<θ<π/2),其余弦函数的值可以定义为θ的邻边与斜边的比值,即cosθ=邻边/斜边。
2.余弦函数的性质:(1)范围限制:余弦函数的值域范围是[-1, 1],即-1 ≤ cosθ ≤ 1;(2)周期性:余弦函数的周期是2π,即cos(θ+2π) = cosθ;(3)奇偶性:余弦函数是偶函数,即cos(-θ) = cosθ;(4)特殊值:cos(0) = 1,cos(π/6) = √3/2,cos(π/4) =√2/2,cos(π/3) = 1/2,cos(π/2) = 0;(5)图像特点:余弦函数在0到π/2区间上单调递减,在π/2到π区间上单调递增。
三、正切函数(tan)1. 正切函数的定义:对于任意角θ(其中0<θ<π/2),其正切函数的值可以定义为θ的对边与邻边的比值,即tanθ=对边/邻边。
2.正切函数的性质:(1)定义域限制:正切函数的定义域是除去tan(π/2)的所有实数;(2)奇偶性:正切函数是奇函数,即tan(-θ) = -tanθ;(3)周期性:正切函数的周期是π,即tan(θ+π) = tanθ;(4)特殊值:tan(0) = 0,tan(π/6) = 1/√3,tan(π/4) = 1,tan(π/3) = √3;(5)图像特点:正切函数在0到π/4区间上单调递增,在π/4到π/2区间上单调递减,其图像有无穷多个垂直渐近线。
(完整版)锐角三角函数超经典学习资料
(完整版)锐角三角函数超经典学习资料锐角三角函数是数学中重要的概念之一,它们在几何、物理和工程等领域都有广泛的应用。
通过研究锐角三角函数,我们可以更好地理解和解决各种相关问题。
一、正弦函数正弦函数是锐角三角函数中最基本的函数之一,在数学中常记作sin。
正弦函数的定义如下:$$ \sin(\theta) = \frac{opposite}{hypotenuse} $$其中,$\theta$ 表示角度,$opposite$ 表示对边的长度,$hypotenuse$ 表示斜边的长度。
正弦函数有许多重要的性质和关系,比如:- 正弦函数的取值范围是[-1, 1]:即对于任意角度 $\theta$,$-1 \leq \sin(\theta) \leq 1$。
- 正弦函数是一个周期函数:即 $\sin(\theta)$ 的周期是 $2\pi$,即在每个 $2\pi$ 的区间内,$\sin(\theta)$ 的值重复。
二、余弦函数余弦函数也是锐角三角函数中的一种重要函数,在数学中常记作cos。
余弦函数的定义如下:$$ \cos(\theta) = \frac{adjacent}{hypotenuse} $$其中,$\theta$ 表示角度,$adjacent$ 表示邻边的长度,$hypotenuse$ 表示斜边的长度。
余弦函数同样有许多重要的性质和关系,比如:- 余弦函数的取值范围是[-1, 1]:即对于任意角度 $\theta$,$-1 \leq \cos(\theta) \leq 1$。
- 余弦函数也是一个周期函数:即 $\cos(\theta)$ 的周期是$2\pi$,即在每个 $2\pi$ 的区间内,$\cos(\theta)$ 的值重复。
三、正切函数正切函数是锐角三角函数中的另一种常见函数,它经常用于计算角度的斜率。
正切函数的定义如下:$$ \tan(\theta) = \frac{opposite}{adjacent} $$其中,$\theta$ 表示角度,$opposite$ 表示对边的长度,$adjacent$ 表示邻边的长度。
锐角三角函数知识点总结
锐角三角函数知识点总结一、引言锐角三角函数是数学中的基础知识点,它在解决与直角三角形相关的问题中扮演着重要角色。
本文将总结锐角三角函数的基本概念、性质和公式,以及它们在实际问题中的应用。
二、基本概念1. 锐角:角度小于90度的角。
2. 直角三角形:一个角为90度的三角形。
3. 边的命名:- 对边(Opposite side):锐角所对的边。
- 邻边(Adjacent side):锐角旁边的边,但不包括斜边。
- 斜边(Hypotenuse):直角三角形中最长的边,对直角的两边进行闭合。
4. 锐角三角函数:- 正弦(Sine, sin):锐角的对边与斜边的比值。
- 余弦(Cosine, cos):锐角的邻边与斜边的比值。
- 正切(Tangent, tan):锐角的对边与邻边的比值。
三、基本公式1. 定义公式:- sin(θ) = 对边 / 斜边- cos(θ) = 邻边 / 斜边- tan(θ) = 对边 / 邻边2. 互余关系:- sin(90° - θ) = cos(θ)- cos(90° - θ) = sin(θ)- tan(90° - θ) = cot(θ)3. 基本恒等式:- sin²(θ) + cos²(θ) = 1- 1 + tan²(θ) = sec²(θ)- 1 + cot²(θ) = csc²(θ)4. 特殊角的三角函数值:- sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = √3/3 - sin(45°) = √2/2, cos(45°) = √2/2, tan(45°) = 1- sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √3四、应用1. 解直角三角形问题:- 利用三角函数求解边长。
(完整版)锐角三角函数知识点考点总结
e an dAl l th a re go 1 锐角三角函数定义锐角角A 的正弦(sin ),余弦(cos )和正切(tan )叫做角A 的锐角三角函数。
正弦(sin )等于对边比斜边;sinA=a/c 余弦(cos )等于邻边比斜边;cosA=b/c 正切(tan )等于对边比邻边;tanA=a/b锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。
1)锐角三角函数值都是正值。
2)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小);4同角三角函数基本关系式aa a tan cos sin ⋅=5互为余角的三角函数间的关系aa cos )90sin(=-aa sin )90cos(=- 6 解直角三角形的基础知识在Rt 中,,,,所对的边分别为,,ABC ∆ 90=∠C A ∠B ∠C ∠a b c (1)三边之间的关系:222c b a =+(2)锐角之间的关系:+==A ∠B ∠C ∠ 90(3)边角之间的关系:;;;c a A =sin c b A =cos ba A =tan ;;c a B =cos c b B =sin abB =tan (4)面积公式:(为斜边上的高)ch ab S 2121==∆h 7 (正切),宁乘勿除,取原避中”。
其含义是当已知或求解中有斜边时,可用正弦或余弦;无斜边时,就用正切;当所求元素既可用乘法又可用除法时,则通常用乘法,不用除法;既可用已知数据又可用中间数据求解时,则取已知数据,忌用中间数据。
8 解直角三角形应用题中的常见概念(1)坡角:坡面与水平面的夹角,用字母表示。
α坡度(坡比):坡面的铅直高度和水平宽度的比,用字母表示,则h l i αtan ==lhi(2)方向角:指北或指南方向线与目标方向所成的小于90°的角叫做方向角。
(完整)锐角三角函数题型分类总结,推荐文档
锐角=角函数∙知识点一:钦角三角国数的≡x≡ 一、 锐角三角函数定义:在 RiAABC 中,ZC=9O 0, ZAS ZBX ZC 的对边分别为 a 、b 、c, 则ZA 的正弦可表示为;S ilLX= _________ JZA 的余弦可表示为CoSA= _________厶的正切:Tan-A= ________ ,它们弦称为ZA 的锐角三角函数2、取値范围—<¾inA< Co i⅛< __________ tanA>______1例如图所示,在RlA^C 中〉乙C=9Q° .例2.锐角三角函数束值;在 RtΔ,45C 中,ZC= 90° ,若 σ=9, B= 12,则 C= ___________SilL a l — _______ , COSU I f- __________ 9 taiL -l — __________ SSin^= _____ ; CQ ∖B= ____ ; tan.例3∙已知;如图,RI0∙∖M r 中,Z∏I ∖r =90o …⑷丄ZV 于出点,Zy=4, Hv=3• 求:SinZ732KxCOSZrVC?、tanZ∏IK .典型m :类型一:直角三角形求值31 .已知 RtQUBC 中丿 ZC≡90Q 5 taπJ= ,5C≡1⅞ 求.4C ∖∙3 和 8田・② CoSJ = ® tan.4∙=第1题團① sin J( ) 软边 an 5【an 方=ZB 旳对边( )2. 如朗 OO 的半径θA = 16cm, OC 丄貝B 于C 点,an ΛAOC =-.求肋及OC 的长•3. 已知:0。
中,OC 丄朋于 C 点;J5= 16cm ; dnZA0C (1) 求OQ 的半径OA 的长及弦心距& (2) 求 COSz4 OC 及 ta∏ZJθC∙g4. 已知ZJ 是锐角,SitIW=—;求COSA > tan J 的值17对应ill 练二1. 在RtA^C 中7 ZC=90C 7 若5C=1, .15-√5 ;则Ianj 的值为5B.巫5C.丄 2D. 22.在ABC 中,ZC=90o ,S inA=- >那么tanA 的值等于( ).53G 4 C 3 c 4 A.-5 B.— 5 C. 一4D. 一 3类型二利用角度转化求值,2. 如團,直径为10的CU 经过点C(Oo)和点O(Qo);与X 轴的正半釉交于点D, B 是》轴右侧圆弧上一点〉则C O SZ^C 的值为〈)C.-D-I1.已知;如图,RtZUBC 中,ZC= 90o ∙ Q 是Je 边上一点'DE 丄曲于E 点.^≡s⅛E3.如图,角α的顶点为0,它的一边在工轴的正半轴上J另一边Od上有一点Pd 4),则3丄如團,菱形九5CD的边长为IQCm,DE1AB, SinJ =-,则遗个菱形的面积二.5.如國06>是^iBC的外接圆,AD杲©O的直径,AC = I,则sin5的值是(7 \A. -B.-3 26.如图6,沿川E折蠡矩形纸片曲CQ ,c.£⅞□-4B=8, BC =10, AB=⅛ 则tan NEFC 的值为(A.- C.-57.如图7,在等腰直角三角形C中'ZC =90o , JC = 6, Z)为AC±—点,若tan ZDA.! = -,则-Q 的长为()5A・近B・2 C・1 D・2√21 ^rIS.如图S,在RtA-LffC 中,Z090°,AOS, Ad的平分线/D=」一求ZB的度数及边BC. AB的长.类型三化斜三角形为直角三角形例1 如图,在A ABC中,Z A=30C,Z B=45% AC=2√3、求AB 的长.Cn T •353.正方形网格中, ZHoB 如團放乱则tanZJ (95的值是(√L例 2∙已知:如團,在 AABC 中,ZBAC=I 20° , ∠S=10, AC=5 .对应岷1.如图,在RlAABC 中,ZBAC=90=,点D 在BC 边上,且AABD 是等边三甬形.若.43=2, 求AABC 的周长•〈结果保留根号)2. 已知:如虱 AABC 中「3=9, BC=G,厶4恥的面枳尊于9丿求血^3. ABC 中,乙4=60° …4方=6 Cm , AC=4 Clrb 则A-45C 的面积是求:siik^ABC 的值..4 羽 CnrDllcm 2类型四;利用 构造直角三角形例1如图所示,AABC 的顶点杲正方形网格的格点,则SinA 的值为<对应练习:1. ________________________________________________ 如图,AABC 的顶点都在方格纸的格点上,则Sir I A= ____________ .点厘逆吋针旋转得到AC8,则tanF 的值为D∙ 110D.IR特殊角的三角函数值锐角C30s45060。
(完整版)锐角三角函数超经典学习指南
(完整版)锐角三角函数超经典学习指南锐角三角函数超经典研究指南
锐角三角函数是数学中的重要概念,掌握好这一部分知识对于研究数学和物理非常有帮助。
本文档将为您提供一份超经典的锐角三角函数研究指南,帮助您加深对这一主题的理解。
1. 引言
锐角三角函数包括正弦函数、余弦函数和正切函数,它们和直角三角函数有着密切的关系。
通过研究锐角三角函数,您将能够解决各种实际问题,如测量高度、计算力的分解以及分析波动等。
2. 正弦函数
正弦函数是锐角三角函数中最基本的一种。
它表示一个角的对边与斜边之比。
本节将介绍正弦函数的定义、性质和图像,以及如何在实际问题中应用正弦函数。
3. 余弦函数
余弦函数是正弦函数的补函数,它表示一个角的邻边与斜边之比。
本节将介绍余弦函数的定义、性质和图像,并给出一些实际问题中使用余弦函数的例子。
4. 正切函数
正切函数是锐角三角函数中最有趣的一种。
它表示一个角的对边与邻边之比。
本节将介绍正切函数的定义、性质和图像,并讲解如何应用正切函数解决实际问题。
5. 应用举例
本节将通过一些具体的例子展示如何在实际问题中灵活运用锐角三角函数。
通过这些应用举例,您将能够更好地理解锐角三角函数的实际意义和应用价值。
6. 总结
本文档回顾了锐角三角函数的基本概念、性质和图像,并给出了一些实际应用的例子。
希望这份超经典的研究指南能够帮助您更好地理解和应用锐角三角函数。
在学习锐角三角函数时,最重要的是多做练习和实践,加深对概念和公式的理解,并将其应用到实际问题中。
祝您在学习锐角三角函数的过程中取得良好的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做 仰角,在水平线下方的角叫做俯角.
角度
30°
45°
60°
正弦(sin)
1/2
√2/2
√3/2
余弦(cos)
√3/2
√2/2
1/2
正切(tan)
√3/3
1
√3
(注 θ 是锐角:0<sinθ<1 0<cosθ<1 tanθ>0)
3 锐角三角函数值的符号及其变化规律 1)锐角三角函数值都是正值。 2)当角度在 0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小); 余弦值随着角度的增大(或减小)而减小(或增大); 正切值随着角度的增大(或减小)而增大(或减小);
坡度(坡比):坡面的铅直高度 h 和水平宽度 l 的比,用字母 i 表示,则 i h tan
l
(2)方向角:指北或指南方向线与目标方向所成的小于 90°的角叫做方向角。
目标方向线 OA,OB,OC 分别表示北偏东 60°,南偏东 30°,北偏西 70°.特别地,若目标方向线与指北或指南的方向线成 45°的角,如图 28.21 的目标方向线 OD 与正南方向成 45°角,通常称为西南方向. (3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角。
1 锐角三角函数定义 锐角角 A 的正弦(sin),余弦(cos)和正切(tan)叫做角 A 的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b 锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角 的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角 三角形中。 2 特殊角的三角函数值
b=c·cosA
解直角三角形的思路可概括为“有斜(斜边)用弦(正弦、余弦),无斜用切 (正切),宁乘勿除,取原避中”。其含义是当已知或求解中有斜边时,可用正 弦或余弦;无斜边时,就用正切;当所求元素既可用乘法又可用除法时,则通 常用乘法,不用除法;既可用已知数据又可用中间数据求解时,则取已知数据, 忌用中间数据。 8 解直角三角形应用题中的常见概念 (1)坡角:坡面与水平面的夹角,用字母 表示。
类型
已知条件
解法
两边 一边一锐角
两直角边 a、b 一直角边 a,斜边 c 一直角边 a,锐角 A
c= a2 b2 ,tanA= a ,∠B=90°-∠A b
b= c2 a2 ,sinA= a ,∠B=90°-∠A c
a
a
∠B=90°-∠A,b=
ቤተ መጻሕፍቲ ባይዱ
,c=
tan A sin A
斜边 c,锐角 A
∠B=90°-∠A,a=c·sinA,
4 同角三角函数基本关系式
sin a cos a tan a
5 互为余角的三角函数间的关系 sin(90 a) cos a
cos(90 a) sin a 6 解直角三角形的基础知识 在 Rt ABC 中, C 90 , A , B , C 所对的边分别为 a , b , c
(1) 三边之间的关系: a 2 b2 c 2
(2) 锐角之间的关系: A + B = C = 90
(3) 边角之间的关系: sin A a ; cos A b ; tan A a ;
c
c
b
cos B a ; sin B b ; tan B b
c
c
a
(4)
面积公式: S
1 ab 1 ch ( h 为斜边上的高) 22
7 解直角三角形的基本类型及其解法如下表: