2012-2017浙江高考真题数学知识汇编函数
2017年浙江省高考数学试卷(真题详细解析)
2017年浙江省高考数学试卷(真题详细解析)1.已知集合P={x|-1<x<1},Q={x|1<x<2},则P∪Q=(-1,2)。
2.椭圆+1的离心率是1/2.3.几何体的三视图无法确定,无法计算体积。
4.若x、y满足约束条件z=x+2y,则z的取值范围是[4.+∞)。
5.函数f(x)=x^2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M-m与a有关,但与b无关。
6.已知等差数列{an}的公差为d,前n项和为Sn,则d>0是S4+S6>2S5的必要不充分条件。
7.函数y=f(x)的图象可能是B。
8.已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<1,则E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)。
9.正四面体D-ABC,P、Q、R分别为AB、BC、CA上的点,AP=PB=√2,记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为α、β、γ,则α<β<γ。
10.平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=OI2/OC,I2=OI3/OD,I3=OI1/OA,则I3<I1<I2.二、填空题:11.XXX创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位。
割圆术的第一步是计算单位圆内接正六边形的面积S6,S6=3√3/2.12.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab=2.13.已知多项式(x+1)(x+2)=x2+3x+2,则a4=34,a5=123.14.已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是2√3,cos∠BDC=1/2.15.已知向量a、b满足||a||=1,||b||=2,则|a+b|+|a-b|-|a|-|b|的最小值是0,最大值是4.16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有56种不同的选法。
2017年浙江数学高考试题有答案【精编版】
绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数 学一、 选择题:本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}x -1<x Q x =<<<1,=0x 2P ,那么P Q U =A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)2.椭圆x y +=22194的离心率是 A. 133B.5C. 23D. 593.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A.π+12B.π+32 C. π3+12D. π3+32 4.若x,y 满足约束条件x 0x y 30x 2y 0⎧≥⎪≥=+⎨⎪≤⎩+-,则z 2-x y 的取值范围是A.[0,6]B. [0,4]C.[6, +∞)D.[4, +∞) 5.若函数()2f x =++x ax b在区间[0,1]上的最大值是M,最小值是m,则M-mA. 与a 有关,且与b 有关B. 与a 有关,但与b 无关C. 与a 无关,且与b 无关D. 与a 无关,但与b 有关6.已知等差数列{}n a 的公差为d,前n 项和为n S ,则“d>0”是465"+2"S S S >的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件7.函数y (x)y (x)f f ==,的导函数的图像如图所示,则函数y (x)f =的图像可能是8.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r = ,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r =,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3< I 1<I 2D . I 2<I 1<I 3非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2017高考十年高考数学(理科)分项版 专题03 导数与应用(浙江专版)(解析版) 含解析
一.基础题组1。
【2007年.浙江卷。
理8】设'()f x是函数()=和y f xf x的导函数,将()y f x=的图象画在同一个直角坐标系中,不可能正确的是'()二.能力题组1。
【2013年。
浙江卷。
理8】)已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则( ).A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】:C【解析】:当k=1时,f(x)=(e x-1)(x-1),f′(x)=x e x-1,∵f′(1)=e-1≠0,∴f(x)在x=1处不能取到极值;当k=2时,f(x)=(e x-1)(x-1)2,f′(x)=(x-1)(x e x +e x-2),令H(x)=x e x+e x-2,则H′(x)=x e x+2e x>0,x∈(0,+∞).说明H(x)在(0,+∞)上为增函数,且H(1)=2e-2>0,H(0)=-1<0,因此当x0<x<1(x0为H(x)的零点)时,f′(x)<0,f(x)在(x0,1)上为减函数.当x>1时,f′(x)>0,f(x)在(1,+∞)上是增函数.∴x=1是f(x)的极小值点,故选C.2。
【2012年。
浙江卷。
理17】设a∈R,若x>0时均有(a-1)x -1](x2-ax-1)≥0,则a=__________.【答案】32三.拔高题组22.1。
已知函数()).(33R a a x x x f ∈-+=(1)若()x f 在[]1,1-上的最大值和最小值分别记为)(),(a m a M ,求)()(a m a M -;(2)设,R b ∈若()[]42≤+b x f 对[]1,1-∈x 恒成立,求b a +3的取值范围.【答案】(Ⅰ)()()()()338,1134,13132,134,1a a a a M a m a a a a a ≤-⎧⎪⎛⎫⎪--+-<≤ ⎪⎪⎝⎭⎪-=⎨⎛⎫⎪-++<< ⎪⎪⎝⎭⎪≥⎪⎩;(Ⅱ)b a +3的取值范围230a b -≤+≤.于()()1162f f a --=-+,因此,当113a -<≤时,()()334M a m a a a -=--+,当113a <<时,()()332M a m a a a -=-++,(iii )当1a ≥时,有x a ≤,故()333f x xx a =-+,此时()x f 在()1,1-上是减函数,因此()()123M a f a =-=+,()()123m a f a ==-+,故()()()23234M a m a a a -=+-+=,综上()()()()338,1134,13132,134,1a a a a M a m a a a a a ≤-⎧⎪⎛⎫⎪--+-<≤ ⎪⎪⎝⎭⎪-=⎨⎛⎫⎪-++<< ⎪⎪⎝⎭⎪≥⎪⎩;(II )令()()h x f x b =+,则()3333,()33,()x x a b x a h x x x a b x a ⎧+-+≥=⎨-++<⎩,()2233,()'33,()x x a h x x x a ⎧+≥=⎨-<⎩,因为()24f x b +≤⎡⎤⎣⎦,对[]1,1-∈x 恒成立,即()22h x -≤≤对[]1,1-∈x 恒成立,所以由(I )知,2. 【2013年.浙江卷。
浙江省2012年高考数学真题及答案
2012年普通高等学校招生全国统一考试数 学(理科)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
1.设集合{}|14A x x =<<,集合{}2|230B x x x =--≤,则()R A C B ⋂=A .(14),B .(34),C .(13),D .(12)(34)⋃,, 2.已知i 是虚数单位,则31ii+=- A .12i - B .2i - C .2i + D .12i +3.设a R ∈,则“1a =”是“直线1l :210ax y +-=与直线2l :(1)40x a y +++=平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.把函数cos 21y x =+的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是5.设a ,b 是两个非零向量A .若||||||+=-a b a b ,则⊥a bB .若⊥a b ,则||||||+=-a b a bC .若||||||+=-a b a b ,则存在实数λ,使得λ=b aD .若存在实数λ,使得λ=b a ,则||||||+=-a b a b6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种7.设n S 是公差为d (0d ≠)的无穷等差数列{}n a 的前n 项和,则下列命题错误..的是 A .若0d <,则数列{}n S 有最大项 B .若数列{}n S 有最大项,则0d <C .若数列{}n S 是递增数列,则对任意*n N ∈,均有0n S >D .若对任意*n N ∈,均有0n S >,则数列{}n S 是递增数列8.如图,1F ,2F 分别是双曲线C :22221(0)x y a b a b-=>,的左、右两焦点,B 是虚轴的端点,直线1F B 与C 的两条渐近 线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若112||||MF F F =,则C 的离心率是A B C D 9.设0a >,0b >A .若2223a b a b +=+,则a b >B .2223a ba b +=+若,则a b <C .若2223a b a b -=-,则a b >D .若2223a ba b -=-,则a b <10.已知矩形ABCD ,1AB =,BC =ABD ∆沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直 D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
浙江历年高考理科数学试题及答案汇编十二函数和导数
浙江历年高考理科数学试题及答案汇编十二函数和导数试题1、15.(4分)(2008浙江)已知t 为常数,函数y=|x 2﹣2x ﹣t|在区间[0,3]上的最大值为2,则t= . 2、14.(4分)(2009浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该这种计费方式该家庭本月应付的电费为 元(用数字作答) 3、9.(5分)(2010浙江)设函数f (x )=4sin (2x+1)﹣x ,则在下列区间中函数f (x )不存在零点的是( )A .[﹣4,﹣2]B .[﹣2,0]C .[0,2]D .[2,4] 4、10.(5分)(2010浙江)设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数f (x )的图象恰好经过Q 中两个点的函数的个数是( ) A .4 B .6 C .8 D .105、1. (5分)(2011浙江) 设函数2,0,()()4,0.x x f x f x x α-⎧==⎨>⎩若…,则实数α=( )A.-4或-2B.-4或2C.-2或4D.-2或2 6、10. (5分)(2011浙江) 设a ,b ,c 为实数,)1)1()(),)(()(22+++=+++=bx cx ax x g c bx x a x x f (.记集合S =()0,,()0,,x f x x T x g x x =∈==∈R R 若S ,T 分别为集合元素S ,T 的元素个数,则下列结论不可能...的是 ( ) A.S =1且T =0 B.1=1S T =且 C.S =2且T =2 D.S =2且T =37、11. (5分)(2011浙江)若函数2()f x x x a =-+为偶函数,则实数a = . 8、16. (5分)(2011浙江)设,x y 为实数,若2241,x y xy ++=则2x y +的最大值是 . 9、9. (5分)(2012浙江)设0,0a b >>.下面正确的是( )A.若2223a b a b +=+,则a b >B.若2223a ba b +=+,则a b <C.若2223a b a b -=-,则a b >D.若2223a ba b -=-,则a b <10、14.(5分)(2012浙江)若将函数()5fx x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________.11、17.(5分)(2012浙江)设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________.15、7.(5分)(2014浙江)在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x .B.C.D .16、10.(5分)(2014浙江)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k99k98A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I117、15.(4分)(2014浙江)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.A.f(sin2x)=sinx B.f(sin2x)=x+x C.f(x+1)=|x+1| D.f(x+2x)=|x+1| 19、10.(6分)(2015浙江)已知函数f(x)=,则f(f(﹣3))= ,f(x)的最小值是.20、12.(4分)(2015浙江)若a=log43,则2a+2﹣a= .21、14.(4分)(2015浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.22、12.(6分)(2016浙江)已知a>b>1,若log a b+log b a=,a b=b a,则a= ,b= .23、5.(5分)(2017浙江)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关 B.与a有关,但与b无关C.与a无关,且与b无关 D.与a无关,但与b有关24、7.(5分)(2017浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A .B .C .D .25、17.(4分)(2017浙江)已知a ∈R ,函数f (x )=|x+﹣a|+a 在区间[1,4]上的最大值是5,则a 的取值范围是 . 解答题1、21.(15分)(2008浙江)已知a 是实数,函数 (Ⅰ)求函数f (x )的单调区间;(Ⅱ)设g (a )为f (x )在区间[0,2]上的最小值. (i )写出g (a )的表达式;(ii )求a 的取值范围,使得﹣6≤g(a )≤﹣2.2、22.(15分)(2009浙江)已知函数f (x )=x 3﹣(k 2﹣k+1)x 2+5x ﹣2,g (x )=k 2x 2+kx+1,其中k ∈R .(Ⅰ)设函数p (x )=f (x )+g (x ).若p (x )在区间(0,3)上不单调,求k 的取值范围; (Ⅱ)设函数是否存在k ,对任意给定的非零实数x 1,存在惟一的非零实数x 2(x 2≠x 1),使得q′(x 2)=q′(x 1)?若存在,求k 的值;若不存在,请说明理由.3、22.(14分)(2010浙江)已知a 是给定的实常数,设函数f (x )=(x ﹣a )2(x+b )e x,b ∈R ,x=a 是f (x )的一个极大值点, (Ⅰ)求b 的取值范围;(Ⅱ)设x 1,x 2,x 3是f (x )的3个极值点,问是否存在实数b ,可找到x 4∈R ,使得x 1,x 2,x 3,x 4的某种排列x i1,x i2,x i3,x i4(其中{i 1,i 2,i 3,i 4}={1,2,3,4})依次成等差数列?若存在,求所有的b 及相应的x 4;若不存在,说明理由. 4、22.(14分)(2011浙江)设函数()f x =2()ln x a x -,a ∈R .(Ⅰ)若x =e 为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的x ∈(0,3e ],恒有()f x (42)e 成立. 注:e 为自然对数的底数.5、22.(14分) (2012浙江)已知a >0,b ∈R ,函数()342f x ax bx a b =--+.(Ⅰ)证明:当0≤x ≤1时,(ⅰ)函数()f x 的最大值为2a b a -+; (ⅱ) ()f x +2a b a -+≥0;(Ⅱ) 若1-≤()f x ≤1对x ∈[0,1]恒成立,求a +b 的取值范围.6、22.(14分)(2013浙江)已知a ∈R ,函数f (x )=x 3﹣3x 2+3ax ﹣3a+3. (1)求曲线y=f (x )在点(1,f (1))处的切线方程; (2)当x ∈[0,2]时,求|f (x )|的最大值.7、22.(14分)(2014浙江)已知函数f (x )=x 3+3|x ﹣a|(a ∈R ). (Ⅰ)若f (x )在[﹣1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )﹣m (a );(Ⅱ)设b ∈R ,若[f (x )+b]2≤4对x ∈[﹣1,1]恒成立,求3a+b 的取值范围.8、18.(15分)(2015浙江)已知函数f (x )=x 2+ax+b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M (a ,b )≥2;(2)当a ,b 满足M (a ,b )≤2时,求|a|+|b|的最大值.9、18.(15分)(2016浙江)已知a≥3,函数F (x )=min{2|x ﹣1|,x 2﹣2ax+4a ﹣2},其中min (p ,q )=(Ⅰ)求使得等式F (x )=x 2﹣2ax+4a ﹣2成立的x 的取值范围 (Ⅱ)(i )求F (x )的最小值m (a )(ii )求F (x )在[0,6]上的最大值M (a ) 10、20.(15分)(2017浙江)已知函数f (x )=(x ﹣)e ﹣x(x ≥).(1)求f (x )的导函数;(2)求f (x )在区间[,+∞)上的取值范围.答案1、解:记g(x)=x2﹣2x﹣t,x∈[0,3],则y=f(x)=|g(x)|,x∈[0,3]f(x)图象是把函数g(x)图象在x轴下方的部分翻折到x轴上方得到,其对称轴为x=1,则f(x)最大值必定在x=3或x=1处取得(1)当在x=3处取得最大值时f(3)=|32﹣2×3﹣t|=2,解得t=1或5,当t=5时,此时,f(0)=5>2不符条件,当t=1时,此时,f(0)=1,f(1)=2,符合条件.(2)当最大值在x=1处取得时f(1)=|12﹣2×1﹣t|=2,解得t=1或﹣3,当t=﹣3时,f(0)=3>2不符条件,当t=1此时,f(3)=2,f(1)=2,符合条件.综上t=1时故答案为:1.2、解:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1 (元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3 (元),本月的总电费为 118.1+30.3=148.4 (元),故答案为:148.4.3、解:在同一坐标系中画出g(x)=4sin(2x+1)与h(x)=x的图象如下图示:由图可知g(x)=4sin(2x+1)与h(x)=x的图象在区间[﹣4,﹣2]上无交点,由图可知函数f(x)=4sin(2x+1)﹣x在区间[﹣4,﹣2]上没有零点故选A.4、解:将数据代入验证知当a=,b=0;a=,b=1;a=1,b=1a=0,b=0a=0,b=1a=1,b=﹣1 时满足题意, 故选B . 5、答案:B解:当0α…时,()4,4f ααα=-==-; 当0>α时,2()4,2f ααα===. 6、答案:D解:当0===c b a 时,1S =且 0||=T ; 当0a ≠且240b ac -<时,1S =且1T =; 当20,40a b ac ≠->且b a c =+(例如a =1 c =3,b =4)时, 2S =且2T =. 7、答案:0解:∵)(x f 为偶函数,∴)()(x f x f =-,即,||)(||22a x a x a x x a x x -=+⇒+---=+-∴0=a .8、答案:5102 解:∵1422=++xy y x ,∴13)2(2=-+xy y x ,即23(2)212x y xy +-=, ∴2232(2)()122x y x y ++-…,解之得:28(2)5x y +…,即2x y +剟. 9、答案:A解:若2223a ba b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则()2l n 220x f x '=+>恒成立,故有函数()22x f x x =+在0x >上单调递增,即a b >成立.其余选项用同样方法排除,故选A . 10、答案:10解:法一:由等式两边对应项系数相等.即:54554331554431C 010C C 0a a a a a a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.11、答案:32a =解:本题按照一般思路,则可分为以下两种情况:(1)2(1)1010a x x ax ----……⎧⎨⎩, 无解;(2)2(1)1010a x x ax ----……⎧⎨⎩, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间,在各自的区间内恒正或恒负.我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,-1).考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:302a a ==或(舍去),得答案:32a =.12、解:因为a s+t =a s •a t,lg (xy )=lgx+lgy (x ,y 为正实数), 所以2lg (xy )=2lgx+lgy =2lgx •2lgy,满足上述两个公式, 故选D .13、解:当k=1时,函数f (x )=(e x﹣1)(x ﹣1).求导函数可得f'(x )=e x (x ﹣1)+(e x ﹣1)=(xe x﹣1),f'(1)=e ﹣1≠0,f'(2)=2e 2﹣1≠0,则f (x )在在x=1处与在x=2处均取不到极值,当k=2时,函数f (x )=(e x ﹣1)(x ﹣1)2.求导函数可得f'(x )=e x (x ﹣1)2+2(e x ﹣1)(x ﹣1)=(x ﹣1)(xe x +e x﹣2), ∴当x=1,f'(x )=0,且当x >1时,f'(x )>0,当x 0<x <1时(x 0为极大值点),f'(x )<0,故函数f (x )在(1,+∞)上是增函数;在(x 0,1)上是减函数,从而函数f (x )在x=1取得极小值.对照选项. 故选C .14、解:由f (﹣1)=f (﹣2)=f (﹣3)得,解得,f (x )=x 3+6x 2+11x+c ,由0<f (﹣1)≤3,得0<﹣1+6﹣11+c≤3, 即6<c≤9, 故选:C .15、解:当0<a <1时,函数f (x )=x a(x≥0),g (x )=log a x 的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D16、解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.17、解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.由f(x)=﹣2,可得﹣x2=﹣2,即x=,故当f(f(a))≤2时,则实数a的取值范围是a≤,故答案为:(﹣∞,].18、解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.19、解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.20、解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.21、解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.22、解:设t=log b a,由a>b>1知t>1,代入log a b+log b a=得,即2t2﹣5t+2=0,解得t=2或t=(舍去),所以log b a=2,即a=b2,因为a b=b a,所以b2b=b a,则a=2b=b2,解得b=2,a=4,故答案为:4;2.23、解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a|,故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(﹣)=,故M﹣m的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时M﹣m=f(0)﹣f(﹣)=a﹣,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B24、解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D25、解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,).解答题1、解;(Ⅰ)解:函数的定义域为[0,+∞),(x>0).若a≤0,则f'(x)>0,f(x)有单调递增区间[0,+∞).若a>0,令f'(x)=0,得,当时,f'(x)<0,当时,f'(x)>0.f(x)有单调递减区间,单调递增区间.(Ⅱ)解:(i)若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0.若0<a<6,f(x)在上单调递减,在上单调递增,所以.若a≥6,f(x)在[0,2]上单调递减,所以.综上所述,改天(ii)令﹣6≤g(a)≤﹣2.若a≤0,无解.若0<a<6,解得3≤a<6.若a≥6,解得.故a的取值范围为.2、解:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.3、解:(1)f′(x)=e x(x﹣a)[x2+(3﹣a+b)x+2b﹣ab﹣a],令g(x)=x2+(3﹣a+b)x+2b﹣ab﹣a,则△=(3﹣a+b)2﹣4(2b﹣ab﹣a)=(a+b﹣1)2+8>0,于是,假设x1,x2是g(x)=0的两个实根,且x1<x2.①当x1=a或x2=a时,则x=a不是f(x)的极值点,此时不合题意.②当x1≠a且x2≠a时,由于x=a是f(x)的极大值点,故x1<a<x2.即g(a)<0,即a2+(3﹣a+b)a+2b﹣ab﹣a<0,所以b<﹣a,所以b的取值范围是:(﹣∞,﹣a).(2)由(1)可知,假设存在b及x4满足题意,则①当x2﹣a=a﹣x1时,则x4=2x2﹣a或x4=2x1﹣a,于是2a=x1+x2=a﹣b﹣3,即b=﹣a﹣3.此时x4=2x2﹣a=a﹣b﹣3+﹣a=a+2,或x4=2x1﹣a=a﹣b﹣3﹣﹣a=a﹣2,②当x2﹣a≠a﹣x1时,则x2﹣a=2(a﹣x1)或a﹣x1=2(x2﹣a),(ⅰ)若x2﹣a=2(a﹣x4),则x4=,于是3a=2x1+x2=,即=﹣3(a+b+3),于是a+b﹣1=,此时x4===﹣b﹣3=a+.(ⅱ)若a﹣x1=2(x2﹣a),则x4=,于是3a=2x2+x1=,即=3(a+b+3),于是a+b﹣1=.此时x2===﹣b﹣3=a+.综上所述,存在b 满足题意.当b=﹣a ﹣3时,x 4=a±2;当b=﹣a ﹣时,x 4=a+; 当b=﹣a ﹣时,x 4=a+.4、解:(Ⅰ)求导得()f x '=2(x -a )ln x +2()x a x-=(x a -)(2ln x +1-ax ).因为x =e 是()f x 的极值点,所以(e)f '= ()e 30e a a ⎛⎫--= ⎪⎝⎭,解得e a = 或3e a =,经检验,符合题意,所以e a = 或3e a =.(步骤1)(Ⅱ)①当01x <…时,对于任意的实数a ,恒有2()04e f x <…成立, ②当13e x <…,由题意,首先有22(3e)(3e )ln(3e)4e f a =-…,解得3e 3e a由(Ⅰ)知()()(2ln 1)a f x x a x x'=-+-,()2ln 1ah x x x=+-,则(1)10h a =-<,()2ln 0h a a =>,且(3e)2ln(3e)12ln(3e)13eah =+-+-…=2(ln 3e 0>.又()h x 在(0,+∞)内单调递增,所以函数()h x 在(0,+∞)内有唯一零点,记此零点为0x ,则013e x <<,01x a <<.从而,当0(0,)x x ∈时,()0f x '>;当0(,)x x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,即()f x 在0(0,)x 内单调递增,在0,()x a 内单调递减,在(,)a +∞内单调递增.所以要使2()4e f x …对(1,3e]x ∈恒成立,只要2200022()()ln 4e ,(1)(3e)(3e )ln(3e)4e ,(2)f x x a x f a ⎧=-⎨=-⎩……成立.000()2ln 10ah x x x =+-=,知0002ln a x x x =+(3) 将(3)代入(1)得232004ln 4e x x …,又01x >,注意到函数23ln x x 在[1,+∞)内单调递增,故01e x <….再由(3)以及函数2x ln x +x 在(1,+∞)内单调递增,可得13e a <…. 由(2)解得,3e 3ea .所以,3e 3ea ,综上,a 的取值范围为3e 3ea .5、解: (Ⅰ)(ⅰ)()2122f x ax b '=-.当b ≤0时,()2122f x ax b '=->0在0≤x ≤1上恒成立,此时()f x 的最大值为:()1423f a b a b a b =--+=-=2a b a -+;当b>0时,()2122f x ax b '=-在0≤x ≤1上的正负性不能判断, 此时()f x 的最大值为:()max 2max{(0)1}max{()3}32b a b af x f f b a a b a b b a ->⎧==--=⎨-<⎩,,(),(),=2a b a -+;综上所述:函数()f x 在0≤x ≤1上的最大值为2a b a -+;(ⅱ) 要证()f x +2a b a -+≥0,即证()g x =-()f x ≤2a b a -+. 亦即证()g x 在0≤x ≤1上的最大值小于(或等于) 2a b a -+,∵()342g x ax bx a b =-++-,∴令()21220g x ax b x '=-+=⇒= 当b ≤0时,()2122g x ax b '=-+<0在0≤x ≤1上恒成立, 此时()g x 的最大值为:()03g a b a b =-<-=2a b a -+; 当b >0时,()2122g x ax b '=-+在0≤x ≤1上的正负性不能判断,()max max{1}g x g g =,()4max{3}3a b a b =--+,46363b a a b b a a b …⎧-⎪=⎨>⎪-+⎩,,,≤2a b a -+;综上所述:函数()g x 在0≤x ≤1上的最大值小于(或等于) 2a b a -+. 即()f x +2a b a -+≥0在0≤x ≤1上恒成立.(Ⅱ)由(Ⅰ)知:函数()f x 在0≤x ≤1上的最大值为2a b a -+, 且函数()f x 在0≤x ≤1上的最小值比(2)a b a --+要大. ∵-1≤()f x ≤1对x ∈[0,1]恒成立, ∴2a b a -+≤1. 取b 为纵轴,a 为横轴. 则可行域为:21b a b a ⎧⎨-⎩……和231b aa b <⎧⎨-⎩…,目标函数为z a b =+.由图易得:当目标函数为z =a +b 过P (1,2)时,有max 3z =. ∴所求a +b 的取值范围为:(]3,-∞.6、解:(1)因为f (x )=x 3﹣3x 2+3ax ﹣3a+3,所以f′(x )=3x 2﹣6x+3a ,故f′(1)=3a ﹣3,又f (1)=1,所以所求的切线方程为y=(3a ﹣3)x ﹣3a+4;(2)由于f′(x )=3(x ﹣1)2+3(a ﹣1),0≤x≤2.故当a≤0时,有f′(x )≤0,此时f (x )在[0,2]上单调递减,故 |f (x )|max =max{|f (0)|,|f (2)|}=3﹣3a .当a≥1时,有f′(x )≥0,此时f (x )在[0,2]上单调递增,故 |f (x )|max =max{|f (0)|,|f (2)|}=3a ﹣1.当0<a<1时,由3(x﹣1)2+3(a﹣1)=0,得,.所以,当x∈(0,x1)时,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,f′(x)<0,函数f(x)单调递减;当x∈(x2,2)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的极大值,极小值.故f(x1)+f(x2)=2>0,.从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<时,f(0)>|f(2)|.又=故.当时,|f(2)|=f(2),且f(2)≥f(0).又=.所以当时,f(x1)>|f(2)|.故.当时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a﹣1.综上所述|f(x)|max=.7、解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.8、解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥|a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.9、解:(Ⅰ)由a≥3,故x≤1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;当x>1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),则等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围是(2,2a);(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,则f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2.由﹣a2+4a﹣2=0,解得a=2+(负的舍去),由F(x)的定义可得m(a)=min{f(1),g(a)},即m(a)=;(ii)当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2);当2<x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34﹣8a}=max{F(2),F(6)}.则M(a)=.10、解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].21。
说一道2017浙江高考数学函数题
变式与引申 数列型不等式的证明是数列与不等式的 交汇点,也是教学的重难点,其思维跨度大, 构造性强、对学生的思维品质和数学素养提 出了较高的要求,是高考数学的热点和重点, 往往出现在压轴题位置,用来调整试卷的区 分度。该类问题的求解需要深入剖析条件的 特征结构,抓住其规律进行适当地构造。以 下就构造函数利用函数的单调性证明数列型 不等式及其构造特殊数列做如下变式:
变式1:(构造函数利用函数的单调性)
n 1 1 2 bn 满足:a1 a 0, an1 设数列an 、 an , 且bn ln(1 an ) an , n Z * 2n 2 an 2 证明: 1; an 2 bn
变式2:(构造函数利用重要的函数不等式)
--2017浙江高考数学压轴题
宁波神舟学校 赖龙芳
TIANJIANWBNR
TIANJIANWBNR
TIANJIANWBNR
A
出处
TIANJIANWBNR
B
立意
C
解法
TIANJIANWBNR
D
引申
E
链接
TIANJIANWBNR
反思
题目:
xn 满足x1 1, xn xn1 ln(1 xn1 ), 证明当n N *时, 已知数列
1、(2014年全国卷1第21题改编)
x 1 2 e 已知函数f ( x) e x ln x , 证明:f ( x) 1。 x 2、(2017年全国Ⅲ理数21)已知函数 ( 1 )若f ( x) 0, 求a的值;
(2)设m为整数,且对于任意正整数n,
,求m的最小值。
六、反思 (1)重视基础知识、基本方法、通法的理解、 运用及知识点的迁移能力。 (2)加强函数思想意识:能将非函数问题的 条件或结论,通过类比、联想、抽象、概括等方 式构造函数关系,在此基础上利用函数的思想方 法解决原问题,构造时,要深入审题,充分挖掘 题设中因素,促进思维迁移。 (3)多留心以高等数学为背景的高考题,充 分利用高观点解题的优势优化解题思路,注意这 类知识的总结与归类,对于学有余力且想争取数 学高分的学生适当加强这类型题目的训练。
2017年高考真题——数学(浙江卷)解析
2017年高考真题——数学(浙江卷)解析2 绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学【试卷点评】选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =UA .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.椭圆22194xy+=的离心率是 A 13B .5C .23D .59【答案】B【解析】 试题分析:945e -==B .【考点】 椭圆的简单几何性质3【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是(第3题图)A .12π+ B .32π+ C .312π+ D .332π+ 【答案】A【考点】 三视图【名师点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,4其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D【解析】试题分析:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【考点】 简单线性规划【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式++≥转化为y kx bAx By C≥+),“≤”取下方,“≥”≤+(或y kx b取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M–mA.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关B【答案】【考点】二次函数的最值【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在56区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.6.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】试题分析:由46511210212(510)SS S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【考点】 等差数列、充分必要性【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f(x)的图象可能是(第7题图)【答案】D【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x轴的交点为x,且图象在0x两侧附近连续分布于x轴上下方,则x为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数f'x的正负,得出原函数()f x的单调区间.()8.已知随机变量iξ满足P(iξ=1)=p i,P(iξ=0)=1–p i,,则i=1,2.若0<p1<p2<12A.1()Eξ,1()Dξ>2()Eξ<2()DξEξ<2()Eξ,1()Dξ<2()DξB.1()C.1()Eξ,1()Eξ>2()Dξ>2()DξDξ<2()DξD.1()Eξ>2()Eξ,1()【答案】A78【解析】试题分析:∵1122(),()E p E p ξξ==,∴12()()E E ξξ<, ∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A .【考点】 两点分布【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量iξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确. 9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQCR QC RA ==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P的平面角为α,β,γ,则9(第9题图)A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【考点】 空间角(二面角)【名师点睛】立体几何是高中数学中的重要内容,也是高考重点考查的考点与热点.这类问题的设置一般有线面位置关系的证明与角度距离的计算等两类问题.解答第一类问题时一般要借助线面平行与垂直的判定定理进行;解答第二类问题时先建立空间直角坐标系,运用空间向量的坐标形式及数量积公式进行求解.10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC=AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r =,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r =,则(第10题图)A.123<<C.312I I I<<I I II I I<<B.132D.213<<I I IC【答案】【考点】平面向量的数量积运算【名师点睛】平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.本题通过所给条件结合数量积运算,易得90∠=∠>o,AOB COD由AB=BC=AD=2,CD=3,可求得OA OC<,<,OB OD1011进而得到312I I I <<.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
浙江高考数学函数2.5指数与指数函数课件
C
解析
-18答案
考点一
考点二
考点三
指数函数的图象及其应用(考点难度★) 【例2】 (1)定义运算a*b= ������,������ ≤ ������, 则函数f(x)=1*2x的图象是 ������,������ > ������, ( )
关闭
因为当 x≤0 时,2x≤1; 当 x>0 时,2x>1. 2������ , ������ ≤ 0, x 则 f (x)=1*2 = 故选 A. 1, ������ > 0, A
解析
关闭
答案
-12知识梳理 双击自测
5.当a>0,且a≠1时,函数f(x)=ax-2-3的图象必经过定点
.
关闭
令x-2=0得x=2,此时,f(2)=-2. 因此,函数f(x)的图象必经过定点(2,-2). (2,-2)
解析
关闭
答案
-13知识梳理 双击自测
自测点评 1.根式的化简运算中要注意以下两个公式的区别:
( a) =a(n>1,n∈N ),
n
������
* ������
������������
=
������,������为奇数, |������|,������为偶数.
2.指数幂的运算中应注意:(1)运算的先后顺序;(2)化负数指数幂 为正数指数幂;(3)化根式为分数指数幂;(4)化小数为分数. 3.指数函数的单调性是由底数a的大小决定的,因此,应用单调性 解题时,应对底数a分为a>1和0<a<1两种情况进行讨论.
-16-
考点一
考点二
考点三
5 对点训练(1)化简: a2· ������3 ÷
2017高考十年高考数学(理科)分项版 专题02 函数(浙江专版)(解析版) 含解析
一.基础题组1。
【2014年。
浙江卷.理6】已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ()A.3≤c B 。
63≤<c C 。
96≤<c D 。
9>c2。
【2013年。
浙江卷.理3】已知x ,y 为正实数,则( ). A .2lg x +lg y =2lg x +2lg y B .2lg (x +y )=2lg x ·2lg y C .2lg x ·lg y =2lg x +2lg y D .2lg (xy )=2lg x ·2lg y 【答案】:D【解析】:根据指数与对数的运算法则可知,2lg x +lg y =2lg x ·2lg y ,故A 错,B 错,C 错;D 中,2lg (xy )=2lg x +lg y =2lg x ·2lg y ,故选D .3. 【2012年。
浙江卷.理9】设a >0,b >0,( ) A .若2a +2a =2b +3b ,则a >b B .若2a +2a =2b +3b ,则a <b C .若2a -2a =2b -3b ,则a >bD .若2a -2a =2b-3b ,则a <b 【答案】A【解析】考查函数y =2x +2x 为单调递增函数,若2a +2a =2b +2b ,则a =b ,若2a +2a =2b +3b ,则a >b . 4。
【2011年.浙江卷。
理1】设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=(A)—4或—2 (B )—4或2 (C )—2或4 (D )—2或2【答案】 B【解析】:当2042,a aa >=⇒=时,044a a a ≤=⇒=-当时,-,故选B5。
【2011年。
浙江卷.理11】若函数2()f x xx a =-+为偶函数,则实数a =。
2017-2021年浙江省高考数学真题分类汇编:函数(附答案解析)
.
第 4页(共 17页)
2017-2021 年浙江省高考数学真题分类汇编:函数
参考答案与试题解析
一.选择题(共 7 小题) 1.(2021•浙江)已知函数 f(x)=x2+ ,g(x)=sinx,则图象为如图的函数可能是( )
A.y=f(x)+g(x)﹣
B.y=f(x)﹣g(x)﹣
C.y=f(x)g(x)
2017-2021 年浙江省高考数学真题分类汇编:函数
一.选择题(共 7 小题) 1.(2021•浙江)已知函数 f(x)=x2+ ,g(x)=sinx,则图象为如图的函数可能是( )
A.y=f(x)+g(x)﹣
B.y=f(x)﹣g(x)﹣
C.y=f(x)g(x)
D.y=
2.(2020•浙江)函数 y=xcosx+sinx 在区间[﹣π,π]上的图象可能是( )
函数 y=f(x)+g(x)﹣ =x2+sinx 为非奇非偶函数,故选项 A 错误;
函数 y=f(x)﹣g(x)﹣ =x2﹣sinx 为非奇非偶函数,故选项 B 错误;
第 5页(共 17页)
函数 y=f(x)g(x)=(x2+ )sinx,则 y'=2xsinx+(x2+ )cosx>0 对 x∈
D.y=
【考点】函数的图象与图象的变换. 【专题】函数思想;数形结合法;函数的性质及应用;逻辑推理;直观想象. 【分析】可以判断所求函数为奇函数,利用函数的奇偶性可排除选项 A,B;利用函数在
上的单调性可判断选项 C,D.
【解答】解:由图可知,图象关于原点对称,则所求函数为奇函数, 因为 f(x)=x2+ 为偶函数,g(x)=sinx 为奇函数,
新高考高中数学核心知识点全透视:函数(精讲精析篇)(附答案及解析)
专题3.1函数(精讲精析篇)提纲挈领点点突破热门考点01 求函数的定义域1.(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.2.已知函数的具体解析式求定义域的方法(1)若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.3.抽象函数的定义域的求法(1)若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由a≤g(x)≤b求出.(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.【典例1】(2019·江苏高考真题)函数2=+-_____.76y x x【典例2】(2019·邵阳市第十一中学高一期中)已知函数(31)f x -的定义域是[]0,2,则函数()f x 的定义域是( ) A.[]0,2B.1[1]3,C.[-15],D.无法确定【典例3】(2018·上海上外浦东附中高一月考)已知()f x 的定义域为[]3,3-,则()21f x -的定义域为_______________. 【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达.热门考点02 求函数的解析式1. 求函数解析式的四种方法【典例4】(2016·浙江高考真题(文))设函数f(x)=x 3+3x 2+1.已知a≠0,且f(x)–f(a)=(x –b)(x –a)2,x R ∈,则实数a=_____,b=______.【典例5】(2019·邵阳市第十一中学高一期中)若()22144f x x x +=+,则()f x 的解析式为__________.【典例6】(2018·上海市金山中学高一期末)设()f x 是定义在R 上的函数,且满足对任意,x y 等式()()()22343f y x f x y x y -=-+-+恒成立,则()f x 的解析式为_____________.【特别提醒】谨防求函数解析式的两种失误:(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围. (2)利用换元法求解析式时要注意新元的取值范围.如已知f (x )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).热门考点03 分段函数及其应用1.(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.3.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒:当分段函数的自变量范围不确定时,应分类讨论. 【典例7】(山东省2018年普通高校招生(春季))已知函数,则的值等于__________.【典例8】(2018·上海市金山中学高一期末)已知()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象错误的是( )A.(1)f x -的图象B.()f x -的图象C.(||)f x 的图象D.|()|f x 的图象【典例9】(上海高考真题(理))设若,则a 的取值范围为_____________.【典例10】(2018届河北省唐山市三模)设函数则使得成立的得取值范围是__________.【典例11】(2014浙江高考理第15题)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______ 【总结提升】关于分段函数的命题角度主要有:一是分段函数求值,二是分段函数与方程、不等式结合.由于分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值、解方程(不等式)时,一定要注意自变量的值所在子集,再代入相应的解析式求值.热门考点04 函数的单调性与最值(值域)1.增函数、减函数(1)增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.函数的最值(1)最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:①对于任意的x I ∈,都有()f x M ≤; ②存在0x I ∈,使得()0f x M =.那么,我们称M 是函数()y f x =的最大值.(2)最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: ①对于任意的x I ∈,都有()f x m ≥; ②存在0x I ∈,使得()0f x m =.那么,我们称m 是函数()y f x =的最小值.【典例12】函数2()23f x x mx =-+,当[2,)x ∈-+∞时是增函数,当(,2]x ∈-∞-时是减函数,则(1)f 等于( )A .-3B .13 C. 7 D . 5【典例13】(2019·山西省长治市第二中学校高一期中)若函数2()21f x x mx =-+在[2,)+∞上是增函数,则实数m 的取值范围是( ) A.(,1]-∞B.[1,)+∞C.[2,)+∞D.(,2]-∞【典例14】函数()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩的最大值为( )A.1B.2C.12D.13【总结提升】1.利用基本初等函数的单调性与图象:只需作出函数的图象便可判断函数在相应区间上的单调性;2.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反; (3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).3.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).*4.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函数值的大小比较.5.函数单调性的应用(1)比较函数值大小(随着基本初等函数的学习,逐步体会)比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. (2)求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )). (3)利用单调性求参数的范围(或值)的方法①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. 6.函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法. (3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +kx(k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +k x (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx(k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决.*(5)导数法利用导函数求出最值,从而确定值域.热门考点05 函数的奇偶性、周期性与单调性1.判断函数的奇偶性的两种方法 (1)定义法:(2)图象法:2.函数奇偶性的应用 (1)求函数解析式①将所求解析式自变量的范围转化为已知解析式中自变量的范围;②将转化后的自变量代入已知解析式;③利用函数的奇偶性求出解析式. (2)求参数值在定义域关于原点对称的前提下,根据奇函数满足f (-x )=-f (x )或偶函数满足f (-x )=f (x )列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f (0)=0列式求解,若不能确定则不可用此法. *3.函数周期性的判定及应用(1)只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. 【典例15】(2017·全国高考真题(理))函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ).A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【典例16】(2018·全国高考真题(理))已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( ) A.50-B.0C.2D.50【典例17】(2017·山东高考真题(文))已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.【典例18】(2013·上海高考真题(理))设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是 .【总结提升】 拓展:1.函数奇偶性的判断(1)复合函数奇偶性的判断:若复合函数由若干个函数复合而成,则复合函数的奇偶性可根据若干个函数的奇偶性而定,概括为“同奇为奇,一偶则偶”.(2)抽象函数奇偶性的判断:应充分利用定义,巧妙赋值,通过合理、灵活地变形配凑来判断. 2.熟记4种常见抽象函数的周期 (1)若f (x +a )=-f (x ),则T =2|a |; (2)若f (x +a )=1f x,则T =2|a |; (3)若f (x +a )=-1f x,则T =2|a |;(4)若f (x +a )=f (x -a ),则T =2|a |.3.当函数具有两个对称时函数一般也是周期函数.当函数()f x 是奇函数,又有对称轴x m =时,则函数一定是周期函数,且周期为4T m =;若()f x 有两条对称轴x a =和x b =,则函数是周期函数,2b a -是函数的一个周期;同样若()f x 有两个对称中心(,0)a 和(,0)b ,则函数是周期函数,2b a -是函数的一个周期.巩固提升1.有意义的实数x 的取值范围是( )A.{|0x x >或}1x <-B.{|0x x …或}1x -„ C.{}10x x -<<D.{}10x x -剟2.(2019·重庆高一)若()335f x x +=+,则()f x 等于( ). A.32x + B.38x + C.31x -D.34x -3.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关4.(2019·江苏高一月考)函数()()02f x x =-+ ) A.()2,+∞ B.()1,-+∞ C.()()1,22,-+∞UD.R5.(2014·全国高考真题(文))奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .2-B .1-C .0D .16.(2019·山西省长治市第二中学校高一期中)已知函数2()3f x ax bx =++是定义在[3,2]a a -上的偶函数,则+a b 的值是( ) A.1-B.1C.3-D.07.(2019·浙江学军中学高一期中)函数()f x = )A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数8.(2017·全国高考真题(文))已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________.9.(2016·四川高考真题(文))若函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=,则f ()+f (2)= .10.(2019·上海闵行中学高一期中)已知21(1)()(1)(1)x x f x f x x -<⎧=⎨-≥⎩,则(3)f =________11.(2019·上海市第二中学高二期末)若函数()3f x x a =+为奇函数,则()1f =______.12.(2018·上海上外浦东附中高一月考)函数()21y k x b =++在R 上是增函数,则实数k 的取值范围是_________.13.(2018·上海上外浦东附中高一月考)已知函数2y x =,[]0,3x ∈,则函数的值域为__________.14.(2015·浙江高考真题(文))已知函数()2,1{ 66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ , ()f x 的最小值是 .15.(2019·上海市高桥中学高一期末)已知偶函数()f x 在[)0,+∞单调递减,()20f =,若()10f x -<,则x 的取值范围是_________.16.(2018·上海曹杨二中高一期末)设函数()1f x x =-,若0a b <<且()()f a f b =,则ab 的取值范围是_________;专题3.1函数(精讲精析篇)提纲挈领点点突破热门考点01 求函数的定义域1.(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. 2.已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集. (2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 3.抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 【典例1】(2019·江苏高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】由已知得2760x x +-≥,即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例2】(2019·邵阳市第十一中学高一期中)已知函数(31)f x -的定义域是[]0,2,则函数()f x 的定义域是( ) A.[]0,2 B.1[1]3,C.[-15],D.无法确定【答案】C 【解析】由已知02x ≤≤,1315x ∴-≤-≤,即函数()f x 的定义域是[-15],, 故选:C .【典例3】(2018·上海上外浦东附中高一月考)已知()f x 的定义域为[]3,3-,则()21f x -的定义域为_______________.【答案】[]22-,【解析】由于函数()y f x =的定义域为[]3,3-,对于函数()21y f x =-,有2313x -≤-≤,即224x -≤≤,即24x ≤,解得22x -≤≤.因此,函数()21y f x =-的定义域为[]22-,. 故答案为:[]22-,. 【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达.热门考点02 求函数的解析式1. 求函数解析式的四种方法【典例4】(2016·浙江高考真题(文))设函数f(x)=x 3+3x 2+1.已知a≠0,且f(x)–f(a)=(x –b)(x –a)2,x R ∈,则实数a=_____,b=______.【答案】-2,1【解析】()()32323232313133f x f a x x a a x x a a -=++---=+--,()()()()2322222x b x a x a b x a ab x a b --=-+++-,所以223223{20 3a b a ab a b a a --=+=-=--,解得2{ 1a b =-=. 【典例5】(2019·邵阳市第十一中学高一期中)若()22144f x x x +=+,则()f x 的解析式为__________.【答案】2()1f x x =- 【解析】 令21x t +=,12t x -∴=,代入()22144f x x x +=+, ()22114()4122t t f t t --∴=+⋅=-,故答案为:2()1f x x =-.【典例6】(2018·上海市金山中学高一期末)设()f x 是定义在R 上的函数,且满足对任意,x y 等式()()()22343f y x f x y x y -=-+-+恒成立,则()f x 的解析式为_____________.【答案】()()31f x x x =+ 【解析】Q ()f x 是定义在R 上的函数,且对任意,x y ,()()()22343f y x f x y x y -=-+-+恒成立,∴令y x =,得()()()22343f x x f x x x x -=-+-+, 即()()()2333f x f x x x =-++,()()3333f x x x ∴=+, ()()31f x x x ∴=+.故答案为:()()31f x x x =+ 【特别提醒】谨防求函数解析式的两种失误:(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围. (2)利用换元法求解析式时要注意新元的取值范围.如已知f )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).热门考点03 分段函数及其应用1.(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.3.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒:当分段函数的自变量范围不确定时,应分类讨论. 【典例7】(山东省2018年普通高校招生(春季))已知函数,则的值等于__________. 【答案】【解析】 因为,所以.【典例8】(2018·上海市金山中学高一期末)已知()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象错误的是( )A.(1)f x -的图象B.()f x -的图象C.(||)f x 的图象D.|()|f x 的图象【答案】D 【解析】作出()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,如下图(1)f x -的图象,由()f x 的图象向右平移一个单位,故A 正确;()f x -的图象,由()f x 的图象y 轴右侧的翻折到左侧,左侧翻折到右侧,故B 正确; (||)f x 的图象,由()f x 的图象右侧的保留不变,且把右边的翻折到左边,故C 正确;|()|f x 的图象,把x 轴下方的翻折到上方,图象与()f x 一样,故D 错误;故选:D【典例9】(上海高考真题(理))设若,则a 的取值范围为_____________.【答案】(,2]-∞ 【解析】由题意,若2a >,则(2)2f =不合题意,因此2a ≤,此时[,)x a ∈+∞时,2()f x x =,满足(2)4f =.【典例10】(2018届河北省唐山市三模)设函数则使得成立的得取值范围是__________. 【答案】.【解析】 由,得或,得或,即得取值范围是,故答案为.【典例11】(2014浙江高考理第15题)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______【答案】a ≤【解析】由题意()()()202f a f a f a <⎧⎪⎨+≤⎪⎩或()()202f a f a ≥⎧⎪⎨-≤⎪⎩,解得()2f a ≥-,当202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得,0a <或a ≤≤,故a ≤【总结提升】关于分段函数的命题角度主要有:一是分段函数求值,二是分段函数与方程、不等式结合.由于分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值、解方程(不等式)时,一定要注意自变量的值所在子集,再代入相应的解析式求值.热门考点04 函数的单调性与最值(值域)1.增函数、减函数(1)增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.函数的最值(1)最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: ①对于任意的x I ∈,都有()f x M ≤; ②存在0x I ∈,使得()0f x M =.那么,我们称M 是函数()y f x =的最大值.(2)最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: ①对于任意的x I ∈,都有()f x m ≥;②存在0x I ∈,使得()0f x m =.那么,我们称m 是函数()y f x =的最小值.【典例12】函数2()23f x x mx =-+,当[2,)x ∈-+∞时是增函数,当(,2]x ∈-∞-时是减函数,则(1)f 等于( )A .-3B .13 C. 7 D . 5 【答案】B【解析】由题意知函数()f x 的对称轴224b mx a =-==-,所以8m =-,所以(1)28313f =++=,故选B .【典例13】(2019·山西省长治市第二中学校高一期中)若函数2()21f x x mx =-+在[2,)+∞上是增函数,则实数m 的取值范围是( ) A.(,1]-∞ B.[1,)+∞ C.[2,)+∞ D.(,2]-∞【答案】D 【解析】由题意,函数2()21f x x mx =-+,开口向上,其对称轴x m =,∵在[2,)+∞上是增函数,∴2m ≤,即实数m 的取值范围为(,2]-∞, 故选D.【典例14】函数()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩的最大值为( )A.1B.2C.12D.13【答案】B 【解析】当1x ≥时,函数()1f x x=在()1,+∞单调递减,此时()f x 在1x =处取得最大值,最大值为()11f =; 当1x <时,函数()22f x x =-+在0x =处取得最大值,最大值为()02f =. 综上可得,()f x 的最大值为2.故选:B . 【总结提升】1.利用基本初等函数的单调性与图象:只需作出函数的图象便可判断函数在相应区间上的单调性;2.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反; (3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).3.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).*4.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函数值的大小比较.5.函数单调性的应用(1)比较函数值大小(随着基本初等函数的学习,逐步体会)比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. (2)求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )). (3)利用单调性求参数的范围(或值)的方法①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. 6.函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法.(3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +kx(k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +k x (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx(k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决. *(5)导数法利用导函数求出最值,从而确定值域.热门考点05 函数的奇偶性、周期性与单调性1.判断函数的奇偶性的两种方法 (1)定义法:(2)图象法:2.函数奇偶性的应用 (1)求函数解析式①将所求解析式自变量的范围转化为已知解析式中自变量的范围;②将转化后的自变量代入已知解析式;③利用函数的奇偶性求出解析式.(2)求参数值在定义域关于原点对称的前提下,根据奇函数满足f (-x )=-f (x )或偶函数满足f (-x )=f (x )列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f (0)=0列式求解,若不能确定则不可用此法. *3.函数周期性的判定及应用(1)只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. 【典例15】(2017·全国高考真题(理))函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]- B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【典例16】(2018·全国高考真题(理))已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( ) A.50- B.0C.2D.50【答案】C 【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.【典例17】(2017·山东高考真题(文))已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.【答案】6 【解析】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+= ()16f =-=. 【典例18】(2013·上海高考真题(理))设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是 .【答案】87a ≤- 【解析】∵()y f x =是定义在R 上的奇函数,∴当0x >时,2()()97a f x f x x x=--=+-,而229729767a a x x a x x+-≥⋅-=-,当些仅当3x a =时,“=”成立,∴当0x >时,要使()1f x a ≥+恒成立,只需86717a a a -≥+⇒≤-或85a ≥,又∵0x =时,(0)01f a =≥+,∴1a ≤-,综上,故实数a 的取值范围是8(,]7-∞-.【总结提升】 拓展:1.函数奇偶性的判断(1)复合函数奇偶性的判断:若复合函数由若干个函数复合而成,则复合函数的奇偶性可根据若干个函数的奇偶性而定,概括为“同奇为奇,一偶则偶”.(2)抽象函数奇偶性的判断:应充分利用定义,巧妙赋值,通过合理、灵活地变形配凑来判断. 2.熟记4种常见抽象函数的周期 (1)若f (x +a )=-f (x ),则T =2|a |; (2)若f (x +a )=1f x,则T =2|a |; (3)若f (x +a )=-1f x,则T =2|a |;(4)若f (x +a )=f (x -a ),则T =2|a |.3.当函数具有两个对称时函数一般也是周期函数.当函数()f x 是奇函数,又有对称轴x m =时,则函数一定是周期函数,且周期为4T m =;若()f x 有两条对称轴x a =和x b =,则函数是周期函数,2b a -是函数的一个周期;同样若()f x 有两个对称中心(,0)a 和(,0)b ,则函数是周期函数,2b a -是函数的一个周期.巩固提升1.有意义的实数x 的取值范围是( )A.{|0x x >或}1x <-B.{|0x x …或}1x -„ C.{}10x x -<< D.{}10x x -剟【答案】C 【解析】依题有,2x x ⎧--≥⎪≠,解得10x -<<.故选:C .2.(2019·重庆高一)若()335f x x +=+,则()f x 等于( ). A.32x + B.38x + C.31x - D.34x -【答案】D 【解析】令3x t +=,所以3x t =-,所以()()33534f t t t =-+=-,所以()34f x x =-, 故选:D.3.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .4.(2019·江苏高一月考)函数()()02f x x =-+ ) A.()2,+∞ B.()1,-+∞ C.()()1,22,-+∞U D.R【答案】C 【解析】幂函数的零次方底数不为0,即20x -≠ ,2x ≠;偶次方根被开方数大于等于零,分式分母不为零,即10x +>,1x >- 所以()()1,22,x ∈-+∞U . 故选:C5.(2014·全国高考真题(文))奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .2-B .1-C .0D .1【答案】D 【解析】(2)f x +是偶函数,则()f x 的图象关于直线2x =对称,又()f x 是奇函数,则(0)0f =,且()f x 是周期函数,且周期为4,所以(8)(9)(0)(1)1f f f f +=+=.故选D .6.(2019·山西省长治市第二中学校高一期中)已知函数2()3f x ax bx =++是定义在[3,2]a a -上的偶函数,则+a b 的值是( ) A.1- B.1C.3-D.0【答案】B 【解析】∵函数2()3f x ax bx =++是定义在[3,2]a a -的偶函数, ∴320a a -+=,解得1a =,由()()f x f x =-得0b =,即1a b +=, 故选:B.7.(2019·浙江学军中学高一期中)函数()249x x f x x+-=-的奇偶性为( )A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数【答案】B 【解析】 函数()249x x f x x +-=-,所以有290->x ,解得33x -<<, 所以()f x 定义域为()3,3- 此时40x -<恒成立, 所以()2224999x x f x x x x +-===---,()()()2299f x f x xx -===---,所以()f x 是偶函数, 故选:B8.(2017·全国高考真题(文))已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________. 【答案】12 【解析】函数()f x 是定义在上的奇函数,()()f x f x -=-,则()()f x f x =--,()()()()322222212f f ⎡⎤=--=-⨯-+-=⎣⎦.9.(2016·四川高考真题(文))若函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=,则f ()+。
2017年高考浙江数学试题及答案(word解析版)
所以正六边形
ABCDEF
的面积为
S内 =6
1 2
11
sin
60
33 2
.
【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.
( 12)【 2017 年 浙 江 ,12, 6 分 】 已 知 ab R ,(a bi)2 3 4i ( i 是 虚 数 单 位 ) 则 a2 b2
(B)与 a 有关,但与 b 无关
(C)与 a 无关,且与 b 无关
(D)与 a 无关,但与 b 有关
【答案】B
【解析】解法一:因为最值在 f (0) b, f (1) 1 a b, f ( a) b a2 中取,所以最值之差一定与 b 无关,
2
4
故选 B.
解法二:函数 f x x2 ax b 的图象是开口朝上且以直线 x a 为对称轴的抛物线,①当
2
a 1或 a 0 , 即 a 2 ,或 a 0 时 , 函 数 f x 在 区 间 0,1 上 单 调 , 此 时
2
2
M m f 1 f 0 a ,故 M m 的值与 a 有关,与 b 无关;②当 1 a 1,即 2 a 1时,
22
函数
f x 在 区 间
0,
a 2
由已知可得: OE OG OF .∴ cos cos cos ,( ( 为锐角.∴α<γ<β,故选 B.
4
2017 年高考浙江数学试题及答案(word 解析版)(word 版可编辑修改)
【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了
推理能力与计算能力,属于难题.
(10【)2017
年浙江,10,4 分】如图,已知平面四边形
2017高考数学二轮浙江专用课件:2-2二次函数及函数方
二次函数及函数方程
-2热点考题诠释 能力目标解读
1 2 3 4
1 1.(2015 四川,理 9)如果函数 f(x)= (m-2)x2+(n-8)x+1(m≥0,n≥0)在区 2 1 间 ,2 上单调递减,那么 mn 的最大值为( B ) 2
A.16 C.25
B.18 D. 2
81
-3热点考题诠释 能力目标解读
3 3 4 2
B. 3 , 4 1 2 3 D. , ∪
3 3 4
2 3
-6热点考题诠释 能力目标解读
1 2 3 4
0 < ������ < 1, 解析: 由函数 f(x)在 R 上单调递减,可得
1 3 3-4������ 2
≥ 0,
解得
≤a≤ . 当 x≥0 时,由 f(x)=0 得
1 1 1 x0=������-1.
此时 x0+0=2-4a=- <0,符合题意.
2
②方程有一正根 x1 和一负根 x2,
则有 x1· x2=3a-2<0,解得 a<3. 又 a∈
1 3 , 3 4 2
2 3
,所以 a∈
1 2 , 3 3
.
3 4
由(1)(2)可知,a 的取值范围为
∪
2 3
∪
1 2 , 3 3
=
1 2 , 3 3
∪
3 4
1 2 3 4
解析: f'(x)=(m-2)x+(n-8),由于 f(x)在 ,2 上单调递减,所以 f'(x)≤0 在 于是
1 ,2 2
1 2
上恒成立,即(m-2)x+(n-8)≤0 在
2017年高考浙江数学试题及答案(word解析版)
2017年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2017年浙江,1,4分】已知,,则( ){|11}P x x =-<<{20}Q x =-<<P Q = (A ) (B ) (C ) (D )(2,1)-(1,0)-(0,1)(2,1)--【答案】A【解析】取所有元素,得,故选A .,P Q P Q = (2,1)-【点评】本题考查集合的基本运算,并集的求法,考查计算能力.(2)【2017年浙江,2,4分】椭圆的离心率是( )22194x y +=(A (B (C ) (D)2359【答案】B【解析】B .e ==【点评】本题考查椭圆的简单性质的应用,考查计算能力.(3)【2017年浙江,3,4分】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )(A ) (B )(C ) (D )12π+32π+312π+332π+【答案】A【解析】由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为,故选A .2111π3(21)13222V π⨯=⨯⨯+⨯⨯=+【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.(4)【2017年浙江,4,4分】若,满足约束条件,则的取值范围x y 03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩2z x y =+是( )(A )(B )(C )(D )[]0,6[]0,4[]6,+∞[]4,+∞【答案】D【解析】如图,可行域为一开放区域,所以直线过点时取最小值4,无最大值,故选D .()2,1【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.(5)【2017年浙江,5,4分】若函数在区间上的最大值是,最小值是,则(()2f x x ax b =++[]01(M m –M m )(A )与a 有关,且与b 有关 (B )与a 有关,但与b 无关(C )与a 无关,且与b 无关 (D )与a 无关,但与b 有关【答案】B【解析】解法一:因为最值在中取,所以最值之差一定与b无关,故选2(0),(1)1,(24a af b f a b f b==++-=-B.解法二:函数的图象是开口朝上且以直线为对称轴的抛物线,①当或()2f x x ax b=++2ax=-12a->,即,或时,函数在区间上单调,此时,故2a-<2a<-0a>()f x[]0,1()()10M m f f a-=-=的值与有关,与无关;②当,即时,函数在区间上递减,M m-a b1122a≤-≤21a-≤≤-()f x0,2a⎡⎤-⎢⎥⎣⎦在上递增,且,此时,故的值与有关,与无,12a⎡⎤-⎢⎥⎣⎦()()01f f>()224a aM m f f⎛⎫-=--=⎪⎝⎭M m-a b 关;③当,即时,函数在区间上递减,在上递增,且122a≤-<10a-<≤()f x0,2a⎡⎤-⎢⎥⎣⎦,12a⎡⎤-⎢⎥⎣⎦,此时,故的值与有关,与无关.综上可得:()()01f f<()224a aM m f f a⎛⎫-=--=-⎪⎝⎭M m-a b的值与有关,与无关,故选B.M m-a b【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.(6)【2017年浙江,6,4分】已知等差数列的公差为,前项和为,则“”是“”的([]na d nnS0d>4652S S S+>)(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】C【解析】由,可知当时,有,即,()46511210212510S S S a d a d d+-=+-+=0d>46520S S S+->4652S S S+>反之,若,则,所以“”是“”的充要条件,故选C.4652S S S+>0d>0d>4652S S S+>【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题.(7)【2017年浙江,7,4分】函数的导函数的图像如图所示,则函数()y f x=()y f x'=的图像可能是()()y f x=(A)(B)(C)(D)【答案】D【解析】解法一:由当时,函数单调递减,当时,函数单调递增,则由导函数()0f x'<f x((()0f x'>f x((的图象可知:先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,()y f x='()f x且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,,故选D.解法二:原函数先减再增,再减再增,且位于增区间内,故选D.x=【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.(8)【2017年浙江,8,4分】已知随机变量满足,,.若1ξ()11iP pξ==()101iP pξ==-1,2i=,则()1212p p<<<(A),(B),12E()E()ξξ<12D()D()ξξ<12E()E()ξξ<12D()D()ξξ>(C),(D),12E()E()ξξ>12D()D()ξξ<12E()E()ξξ>12D()D()ξξ<【答案】A【解析】,112212(),(),()()E p E p E Eξξξξ==∴<111222()(1),()(1)D p p D p pξξ=-=-,故选A.121212()()()(1)0D D p p p pξξ∴-=---<【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想i象能力,考查数形结合思想、化归与转化思想,是中档题.(9)【2017年浙江,9,4分】如图,已知正四面体(所有棱长均相等的三棱锥),–D ABCPQR分别为,,上的点,,,分别记二面角,AB BC CA AP PB=2BQ CRQC RA==––D PR Q,的平面较为,,,则()––D PQ R––D QR Pαβγ(A)(B)(C)(D)γαβ<<αγβ<<αβγ<<βγα<<【答案】B【解析】解法一:如图所示,建立空间直角坐标系.设底面的中心为.不妨ABC∆O设.则3OP=,,,,,,()0,0,0O()0,3,0P-()0,6,0C-(D)Q()R-,,,,()PR=-(PD=)PQ=()2,0QR=--.设平面的法向量为,则,可得(QD=-PDR(),,n x y z=n PRn PD⎧⋅=⎪⎨⋅=⎪⎩,可得,取平面的法向量.3030yy⎧-+=⎪⎨+=⎪⎩)1n=-ABC()0,0,1m=则.同理可得:.cos,m nm nm n⋅==α=β=.∴.γ=>>αγβ<<解法二:如图所示,连接,过点发布作垂线:,,OD OQ OR((O OE DR⊥OF DQ⊥,垂足分别为,连接.设.则OG QR⊥E F G((PE PF PG((OP h=cos ODRPDRS OES PEα∆∆==c,.=cosOFPFβ==cosOGPGγ==由已知可得:.∴,为锐角.∴α<γ<β,故选B.OE OG OF>>cos cos cosαγβ>>αβγ((【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.(10)【2017年浙江,10,4分】如图,已知平面四边形,ABCD,,,AB BC⊥2AB BC AD(((3CD(与交于点O,记,,,则()AC BD1·I OA OB=2·I OB OC=3·I OC OD=(A)(B)(C)(D)123I I I<<132I I I<<312I I I<<223I I I<<【答案】C【解析】∵,,,∴,∴,AB BC⊥2AB BC AD===3CD=AC=90AOB COD∠=∠>︒由图象知,,∴,,即,故选C.OA OC<OB OD<0OA OB OC OD>⋅>⋅OB OC⋅>312I I I<<【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.第Ⅱ卷(非选择题共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(11)【2017年浙江,11,4分】我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。
2013-2017年浙江高考理科数学历年真题之函数与导数大题 教师版
2013-2017年浙江高考理科数学历年真题之函数与导数大题(教师版)1、(2013年)已知,a R ∈函数32()333 3.f x x x ax a =-+-+(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; ⅠⅠ()当[0,2]x ∈时,求|()|f x 的最大值. (Ⅰ)解:由题意2()363(1)33f x x x a f a ''=--⇒=-因为(1)1,f =故所求切线方程为(33)34y a x a =--+ⅠⅠ()由于2()3(1)3(1),02f x x a x '=-+-≤≤故⑴当0a ≤时,有()0f x '≤,此时()f x 在[0,2]上单调递减,故 max |()|max{|(0)|,|(2)|}33.f x f f a ==-⑵当1,()0,a f x '≥≥时有此时()f x 在[0,2]上单调递增,故 max |()|max{|(0)|,|(2)|}31f x f f a ==-⑶当01a <<时,设1211x x == 121202,()3()().x x f x x x x x '<<<=-- 列表如下:故 1212()()20,()()4(1f x f x f x f x a +=>-=- 从而 12()|()|.f x f x >所以 max 2|()|max{(0),(2),()}.f x f f f x = (i)当203a <<时,(0)|(2)|f f >又 21()(0)2(1(23)0,f x f a a -=--=>故 max 1|()|()12(1f x f x a ==+-(ii)当21,|(2)|(2),(2)(0).3a f f f f ≤<=≥时且 又21()(2)2(1(32)f x f a a -=--=所以①1max 123,()(2),()()12(134a f x f f x f x a ≤<>==+-时故 ②1max 31,()|(2)|,()|(2)|3 1.4a f x f f x f a ≤<≤==-时故 综上所述max 3303|()|12(1043314a a f x a a a a ⎧⎪-≤⎪⎪=+-<<⎨⎪⎪-≥⎪⎩2、(2014年)已知函数()).(33R a a x x x f ∈-+=(Ⅰ)若()x f 在[]1,1-上的最大值和最小值分别记为)(),(a m a M ,求)()(a m a M -;ⅠⅠ()设,R b ∈若()[]42≤+b x f 对[]1,1-∈x 恒成立,求b a +3的取值范围.解析:(I )因为()3333,()33,()x x a x a f x x x a x a ⎧+-≥=⎨-+<⎩,所以()2233,()'33,()x x a f x x x a ⎧+≥=⎨-<⎩,由于11x -≤≤,(i )当1a ≤-时,有x a ≥,故()333f x x x a =+-,此时()x f 在()1,1-上是增函数,因此()()143M a f a ==-,()()143m a f a =-=--,()()()43438M a m a a a -=----=(ii )当11a -<<时,若(),1x a ∈,()333f x x x a =+-,在(),1a 上是增函数,若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,所以()()(){}max 1,1m a f f =-,()()3m a f a a ==,由于()()1162f f a --=-+,因此,当113a -<≤时,()()334M a m a a a -=--+,当113a <<时,()()332M a m a a a -=-++, (iii )当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()x f 在()1,1-上是减函数,因此()()123M a f a =-=+,()()123m a f a ==-+,故()()()23234M a m a a a -=+-+=,综上()()()()338,1134,13132,134,1a a a a M a m a a a a a ≤-⎧⎪⎛⎫⎪--+-<≤ ⎪⎪⎝⎭⎪-=⎨⎛⎫⎪-++<< ⎪⎪⎝⎭⎪≥⎪⎩;(II )令()()h x f x b =+,则()3333,()33,()x x a b x a h x x x a b x a ⎧+-+≥=⎨-++<⎩,()2233,()'33,()x x a h x x x a ⎧+≥=⎨-<⎩,因为()24f x b +≤⎡⎤⎣⎦,对[]1,1-∈x 恒成立,即()22h x -≤≤对[]1,1-∈x 恒成立,所以由(I )知,(i )当1a ≤-时,()h x 在()1,1-上是增函数,()h x 在[]1,1-上的最大值是()143h a b =-+,最小值是()143h a b -=--+,则432a b --+≥-,且432a b -+≤,矛盾;(ii )当113a -<≤时,()h x 在[]1,1-上的最大值是()143h a b =-+,最小值是()3h a a b =+,所以32a b +≥-,432a b -+≤,从而323362a a a b a --+≤+≤-且103a ≤≤,令()323t a a a =--+,则()2'330t a a =->,()t a 在10,3⎛⎫ ⎪⎝⎭上是增函数,故()()02t a t >=-,因此230a b -≤+≤, (iii )当113a <<时,()h x 在[]1,1-上的最大值是()132h ab -=++,最小值是()3h a a b =+,所以32a b +≥-,322a b ++≤,解得283027a b -≤+≤, (iv )当1a ≥时,()h x 在[]1,1-上的最大值是()132h a b -=++,最小值是()123h a b =-++,所以322a b ++≤,232a b -++≥-,解得30a b +=,综上b a +3的取值范围230a b -≤+≤.3、(2015年)已知函数f (x )=x 2+ax +b (a , b ∈R ), 记M (a , b )是|f (x )|在区间[-1,1]上的最大值 (I)证明: 当|a |≥2时, M (a , b )≥2;(II)当a , b 满足M (a , b )≤2, 求|a |+|b |的最大值 解析:(I)∵|a |≥2 ∴|2|a-≥1, 故f (x )在[-1, 1]上为单调函数 ∴M (a , b )=max{|f (-1)|, |f (1)|}=max{|1+b -a |, |1+b +a |}=|1+b |+|a |≥2 (最佳表达式, 重复应用)(II)由(I)知|a |≤2, ∴|2|a -≤1 ∴M (a , b )=max{{|f (-1)|, |f (1)|, f (2a -)} ∴|b |-1+|a |≤|1+b |+|a |=max{|f (-1)|, |f (1)|}≤M (a , b )≤2∴|a |+|b |≤3, 当a = -2, b = -1时, M (a , b )=2, |a |+|b |=3 (每一点的知识都不难, 串起来才难) 因此, |a |+|b |的最大值为3法二: (I)由已知得|f (-1)|≤M (a , b ), |f (1)|≤M (a , b )又f (-1)=1-a +b , f (1)=1+a +b ∴2a =f (1) -f (-1) (隐含着通过函数值反求系数, 常法) ∴4≤2|a |≤|f (1)|+|f (-1)|≤2M (a , b ) ∴M (a , b )≥2 (II)由(I)知a +b =f (1)-1, a -b =1-f (-1)∴|a |+|b |=max{|a +b |, |a -b |}=max{|f (1) -1|, |1- f (-1)|}≤M (a , b )+1≤3当a = -2, b = -1时, f (x )=x 2-2x -1=(x -1)2-2∈[-2, 2], |x |≤1, 此时M (a , b )=2, |a |+|b |=3 因此, |a |+|b |的最大值为34、(2016年)已知3a …,函数{}2()min 21,242F x x x ax a =--+-,其中{}min ,>p,p q,p q q,p q.⎧=⎨⎩…(1)求使得等式2()242F x x ax a =-+-成立的x 的取值范围;(2)(i )求()F x 的最小值()m a ;(ii )求()F x 在区间[]0,6上的最大值()M a . 解析:5、(2017年)已知函数f (x )=(x –2x-1)e -x (x≥12).(1)求f (x )的导函数;(2)求f (x )在区间[12,+∞)上的取值范围.。
2017高考十年高考数学(文科)分项版 专题04 三角函数与三角形(浙江专版)(原卷版) 缺答案
一.基础题组1. 【2014年。
浙江卷.文4】为了得到函数x x y 3cos 3sin +=的图象,可以将函数x y 3cos 2=的图象()A 。
向右平移12π个单位长 B.向右平移4π个单位长 C.向左平移12π个单位长 D 。
向左平移4π个单位长2。
【2013年.浙江卷。
文6】函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是( ).A .π,1B .π,2C .2π,1D .2π,23。
【2012年。
浙江卷.文6】把函数y =cos2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )4. 【2011年。
浙江卷。
文5】在ABC ∆中,角,,A B C 所对的边分,,a b c 。
若cos sin a A b B =,则2sin cos cos A A B +=(A)—12(B)12(C ) -1(D) 15。
【2010年。
浙江卷。
文12】函数2()sin (2)4f x x π=-的最小正周期是 。
6. 【2008年。
浙江卷。
文2】函数2(sin cos )1y x x =++的最小正周期是(A)2π (B )π (C)32π (D)2π7。
【2008年。
浙江卷.文7】在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是 (A)0 (B)1 (C )2 (D )4 8. 【2008年。
浙江卷.文12】若3sin()25πθ+=,则cos 2θ=_________.9。
【2008年。
浙江卷。
文14】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos。
10。
【2007年。
浙江卷。
文2】已知cos 2πϕ⎛⎫+=⎪⎝⎭2πϕ<,则tan ϕ=(A)3-(B )3(C) (D )11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数一、选择题1.(2012文10) 设a >0,b >0,e 是自然对数的底数( )A. 若e a +2a=e b +3b ,则a >bB. 若e a +2a=e b +3b ,则a <bC. 若e a -2a=e b -3b ,则a >bD. 若e a -2a=e b -3b ,则a <b 【答案】A【解析】若23a b e a e b +=+,必有22a b e a e b +>+.构造函数:()2x f x e x =+,则()20x f x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除.【点评】本题主要考查了函数复合单调性的综合应用,通过构造法技巧性方法确定函数的单调性.中等题2.(2012理9)设0a >,0b >( )A .若2223a b a b +=+,则a b >B .2223a b a b +=+若,则a b <C .若2223a b a b -=-,则a b >D .若2223a b a b -=-,则a b < 【答案】A【解析】构造函数:()22x f x x =+,利用函数单调性.,222223,2223,a b,A B 2223,3,22,23,,a b,C a b D.2a b b a b a b a b a b a b b a b a b a b a b a b 时若则故正确,错误;对于若成立则必有故必有既有而不是排除,也不是,排除≤+≤+<++=+>-=-≥≥≥≥><【点评】本题主要考查了函数单调性的综合应用,通过构造法技巧性方法确定函数的单调性.中等题3.(2013浙江,文7)已知a ,b ,c ∈R ,函数f(x)=ax 2+bx +c.若f(0)=f(4)>f(1),则( ). A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0 【答案】A【解析】由f(0)=f(4)知二次函数f(x)=ax2+bx +c 对称轴为x =2,即22ba-=.所以4a +b =0,又f(0)>f(1)且f(0),f(1)在对称轴同侧,故函数f(x)在(-∞,2]上单调递减,则抛物线开口方向朝上,知a >0,故选A.【点评】本题考查二次函数图像特征,中等题4. (2013浙江,理3)已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=⋅C .lg lg lg lg 222x y x y ⋅=+D .lg()lg lg 222xy x y =⋅ 【答案】D【点评】本题考查指数对数运算法则,容易题5.(2014文7理6)已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( )A.3≤cB.63≤<cC. 96≤<cD.9>c 【答案】C 【解析1】试题分析:设k f f f =-=-=-)3()2()1(,则一元二次方程0)(=-k x f 有三个根1-、2-、3-,所以)3)(2(1()(+++=-x x x a k x f , 由于)(x f 的最高次项的系数为1,所以1=a ,所以966≤+=<k c .【解析2】由(1)(2)(3)f f f -=-=-得184212793a b c a b ca b c a b c-+-+=-+-+⎧⎨-+-+=-+-+⎩ 解得611a b =⎧⎨=⎩,所以32()611f x x x x c =+++ ,由0(1)3f <-≤ 得016113c <-+-+≤ ,即69c <≤,故选C【点评】本题考查函数与方程的关系,中等题6.(2014文8理7) 在同一直角坐标系中,函数()(0)af x x x =≥,()log a g x x = 的图像可能是( )【答案】D【解析】函数()(0)af x x x =≥,()log a g x x =分别的幂函数与对数函数答案A 中没有幂函数的图像, 不符合;答案B 中,()(0)af x x x =≥中1a > ,()log a g x x =中01a << ,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)af x x x =≥中01a <<,()log a g x x=中01a <<,符合. 故选D【点评】本题考查幂函数与对数函数的图象判断,容易题.7.(2014理10)设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i a i =,i=0,1,299, ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k = 则 ( )A.123I I I <<B. 213I I I <<C. 132I I I <<D. 321I I I <<【答案】B【解析】由22112199999999i i i --⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭ , 故2111352991199()199999999999999I ⨯-=++++==由2211199(21)22||999999999999i i i i i ----⎛⎫⎛⎫--+=⨯ ⎪ ⎪⎝⎭⎝⎭ 故2150(980)98100221992999999I +=⨯⨯⨯=<⨯ 3110219998(|sin(2)||sin(2)||sin(2)||sin(2)||sin(2)||sin(2)|)3999999999999I ππππππ=-+-++-=12574[2sin(2)2sin(2)]139999ππ-> 故213I I I << ,故选B【解析2】估算法:k I 的几何意义为将区间[0,1] 等分为99个小区间,每个小区间的端点的函数值之差的绝对值之和.如图为将函数21()f x x = 的区间[0,1] 等分为4个小区间的情形,因1()f x 在[0,1]上递增,此时110213243|()()||()()||()()||()()|I f a f a f a f a f a f a f a f a =-+-+-+-=11223344(1)(0)1A H A H A H A H f f +++=-=,同理对题中给出的1I 同样有11I = ; 而2I 略小于1212⨯= ,3I 略小于14433⨯= ,所以估算得213I I I <<【点评】根据题意逐个计算,再拿来和1进行比较,有一定难度8.(2015文5)函数f(x)=(x -1x)cosx(-π≤x≤π且x≠0)的图象可能为( )【答案】D【解析】解:∵cos (﹣x )=cosx ,∴函数y=f (x )是奇函数,即函数的图象关于 (0,0)对称,排除A ,B ;再根据1()0f πππ=-<,排除C ,【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数单调性的性质是解决本题的关键.比较基础.9.(2015文8)设实数a ,b ,t 满足|a+1|=|sinb|=t. ( )A.若t 确定,则b 2唯一确定B. 若t 确定,则a 2+2a 唯一确定C. 若t 确定,则sin 2b 唯一确定D. 若t 确定,则a 2+a 唯一确定【答案】B 【解析】因为,所以,所以,故当确定时,确定,所以唯一确定.故选B.【点评】函数概念 中等题10.(2015理7)存在函数()f x 满足,对任意x ∈R 都有( ) A.()sin 2sin f x x = B.()2sin 2f x x x =+C.()211f x x +=+D.()221f x x x +=+ 【答案】D【解析】A :取0x =,可知()sin0sin0f =,即()00f =,再取π2x =,可知()πsin πsin2f =,即()01f =,矛盾,∴A 错误;同理可知B 错误,C :取1x =,可知()22f =,再取1x =-,可知()20f =,矛盾,∴C 错误,D :令()()()()210101t x t f t t t f x x =+∴-=⇔=+≥,≥ D.【点评】函数概念 中等题11.(2016文3)函数y=sinx2的图象是()A.B.C.D.【答案】D根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.【解析】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.12.(2016文5)已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0【答案】D.【解析】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,【点评】本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础.13.(2016文7)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b【答案】B【解析】A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,【点评】本题主要考查不等式的判断和证明,根据条件,结合不等式的性质是解决本题的关键.综合性较强,有一定的难度.14.(2017浙5)若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M–m( )A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【答案】B【解析】因为最值在2(0),(1)1,()24a af b f a b f b==++-=-中取,所以最值之差一定与b 无关,选B.【点评】本题主要考查二次函数的最值问题,容易题. 二、填空题15.(2012文16) 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则3f 2()=_______________。