正交试验设计(方差分析)

合集下载

实验设计的方差分析与正交试验

实验设计的方差分析与正交试验

实验设计的方差分析与正交试验一、实验设计中的方差分析方差分析(analysis of variance,ANOVA)是一种统计方法,用于比较不同组之间的均值差异是否具有统计学上的显著性。

在实验设计中,方差分析主要被用来分析因变量(dependent variable)在不同水平的自变量(independent variable)中的变化情况。

通过比较不同组之间的方差,判断是否存在显著差异,并进一步分析差异的原因。

1. 单因素方差分析单因素方差分析是最简单的方差分析方法,适用于只有一个自变量的实验设计。

该方法通过比较不同组之间的方差来判断各组均值是否有差异。

步骤如下:(1)确定研究目的,选择合适的因变量和自变量。

(2)设计实验,确定各组的样本个数。

(3)进行实验,并收集数据。

(4)计算各组的平均值和总平均值。

(5)计算组内方差和组间方差。

(6)计算F值,通过计算F值来判断各组均值是否有显著差异。

2. 多因素方差分析多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量的情况下进行的。

这种方法可以用来分析多个因素对因变量的影响,并判断各因素的主效应和交互效应。

步骤如下:(1)确定研究目的,选择合适的因变量和多个自变量。

(2)设计实验,确定各组的样本个数。

(3)进行实验,并收集数据。

(4)计算各组的平均值和总平均值。

(5)计算组内方差、组间方差和交互方差。

(6)计算F值,通过计算F值来判断各组均值是否有显著差异。

二、正交试验设计正交试验设计是一种设计高效实验的方法,可以同时考虑多个因素和各个因素之间的交互作用,并通过较少的试验次数得到较准确的结果。

1. 正交表的基本原理正交表的设计是基于正交原理,即每个因素和其他所有因素的交互效应都是独立的。

通过正交表设计实验,可以确保各因素和交互作用在样本中能够均匀地出现,从而减少误差来源,提高实验结果的可靠性。

2. 正交试验设计的步骤(1)确定要研究的因素和水平。

(实验设计与数据处理08.正交实验设计的方差分析(上)

(实验设计与数据处理08.正交实验设计的方差分析(上)

第8章正交试验设计的方差分析前面我们讨论了如何安排正交试验以及用极差分析法(即直观分析法)对试验结果进行计算分析.极差分析法简单明了,通俗易懂,计算工作量少,便于普及推广.但这种方法不能把试验中由于试验条件的改变引起的数据波动,同试验误差引起的数据波动区分开来.也就是说,不能区分因素各水平对应的试验结果间的差异,究竟是由于因素水平不同引起的,还是由于试验误差引起的,即不知道试验的精度.同时,对影响试验结果的各个因素的重要程度,既不能给出精确的定量估计,也不能提供一个标准,用来判断所考察的因素的作用是否显著.为了弥补极差分析法的不足,对试验结果的分析可采用方差分析法.8.1 正交试验方差分析的基本步骤在第2章中我们已经介绍过,方差分析的基本思想是将数据的总偏差平方和(S T)分解为因素的偏差平方和(S A、S B)和误差的偏差平方和(S e),然后将偏差平方和除以相对应的自由度(f)得到方差(V A、V B),最后利用因素方差与误差方差之比(V A/V e,V B/V e),作F检验,即可判断因素的作用是否显著.正交试验设计的方差分析也是按这样的步骤进行的,所不同的是这是考虑的是多因素试验的方差分析,而第2章中只考虑单因素和双因素试验的方差分析.一、计算1.偏差平方和与自由度的计算方差分析的关键是偏差平方和的分解,现在以最简单的L 4(23)正交表上安排的试验为例来说明(见表8-1,板书).不考虑哪些因素安排在哪些列上(即表头设计时),设试验结果为x 1、x 2、x 3和x 4. 总的偏差平方和:4)(241221212_T x n T x x x S i i ni ini i T -=-=-=∑∑∑=== T=∑=ni i x 1=(x 21+x 22+x 23+x 24)-41(x 4321x x x +++)2 整理后可得 43=(24232221x x x x +++) 21- (434232413121x x x x x x x x x x x x +++++) 第1列各水平偏差平方和为S 1=22_21_2_11_)(2)(x K x K -+-=2[221211)42()42(TK T K -+-] =2[T K T K T K T K 2111222122114141164164--+++] =222121141)(21T K K -+ )(211141K K x T i i +==∑= =24321243221)(41])()[(21x x x x x x x x +++-+++=)(21)(4143214232413124232221x x x x x x x x x x x x x x x x --+++-+++表8-1 L 4(23)正交表及计算表注: K ij 表示第j 列第i 水平的指标值之和;ij K __表示第j 列第i 水平的平均指标值;T 表示指标值总和;__x 表示平均指标值. 同理,第2、3列各水平的偏差平方和S 2、S 3为)(21)(4141)(21)()(23241434231212423222122232132__23__2__13__3x x x x x x x x x x x x x x x x T K K x K x K S --+++-+++=-+=-+-= 由此可得S T =S 1+S 2+S 3 (8-1)式(8-1)是正交表L 4(23)的总偏差平方和的分解公式,即L 4(23)的总偏差平方和等于各列偏差平方和之和.若在L 4(23)正交表的第1列和第2列分别安排二水平因素A 、B ,在不考虑A 、B 因素间交互作用的情况下,则第3列(空列)是误差列.)(21)(4141)(21)(2)(24231433241212423222122222122__22__2__12__2x x x x x x x x x x x x x x x x T K K x K x K S --+++-+++=-+=-+-=同样也可以证明S T =S A +S B +S e (8-2)上式也是总偏差平方和的分解公式,即总偏差平方和等于各列因素的偏差平方和与误差的偏差平方和之和.我们可以把上例推广到一般情况:用饱和正交表L n (m k )安排试验(见表8-2,p160),总的试验次数为n ,每个因素的水平数为m ,则每个水平作r 次试验,r=mn. 试验结果为x 1,x 2,x 3,…,x n .令∑∑∑=======ni i T ni i ni i x Q x n x nT CT x T 121__21,1,,则总偏差平方和为CT Q n T x x x S T ni ini i T -=-=-=∑∑==21212__)( (8-3)列偏差平方和为),,2,1(1)(21212__k i CT Q n T K r x K r S j m i ij mi ij j =-=-=-=∑∑== (8-4) 其中∑==m i ij j K r Q 121特别地, 当m=2(即二水平)时, 式(8-4)可表示成:2212212221221222122221)(1)(1)(2)(1)()(1j j j j j j j j jj j j j K K nK K n K K n K K n K K n m n T K K r S -=+-+=+-+=-+= (8-5) 列偏差平方和S j 是第j 列中各水平对应的试验数据平均值与总平均值的偏差平方和,它反映了该列水平变动所引起的试验数据的波动.若该列安排的是因素,就称S j 为该因素的偏差平方和;若该列安排的是交互作用,就称S j 为该交互作用的偏差平方和;若该列为空列,则S j 表示由于试验误差和未被考察的某些交互作用或某些条件因素所引起的波动.在正交试验设计中,通常把空列的偏差平方和作为试验误差的偏差平方和,虽然它属于模型误差,一般比试验误差大(当作安全系数考虑),但用它作为试验误差进行显著性检验,可使检验结果更可靠些。

正交试验方差分析(通俗易懂)

正交试验方差分析(通俗易懂)

第十一章正交设计试验资料的方差分析在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。

正交设计是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。

第一节、正交设计原理和方法(一) 正交设计的基本概念正交设计是利用正交表来安排多因素试验、分析试验结果的一种设计方法。

它从多因素试验的全部水平组合中挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析了解全面试验的情况,找出最优水平组合。

例如,研究氮、磷、钾肥施用量对某小麦品种产量的影响:A因素是氮肥施用量,设A1、A2、A3 3个水平;B因素是磷肥施用量,设B1、B2、B3 3个水平;C因素是钾肥施用量,设C1、C2、C3 3个水平。

这是一个3因素每个因素3水平的试验,各因素的水平之间全部可能的组合有27种。

如果进行全面试验,可以分析各因素的效应,交互作用,也可选出最优水平组合。

但全面试验包含的水平组合数较多,工作量大,由于受试验场地、经费等限制而难于实施。

如果试验的主要目的是寻求最优水平组合,则可利用正交设计来安排试验。

正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。

正交试验是用部分试验来代替全面试验,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。

如对于上述3因素每个因素3水平试验,若不考虑交互作用,可利用正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件。

一、正交设计的基本原理表11-1 33试验的全面试验方案正交设计就是从全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。

图1中标有‘9 ’个试验点,就是利用正交表L9(34)从27个试验点中挑选出来的9个试验点。

即:(1)A1B1C1(2)A1B2C2(3)A1B3C3(4)A2B1C2(5)A2B2C3 (6)A2B3C1(7)A3B1C3(8)A3B2C1(9)A3B3C2上述选择,保证了A因素的每个水平与B因素、C 因素的各个水平在试验中各搭配一次。

5-2正交试验设计(方差分析)

5-2正交试验设计(方差分析)
衡量试验条件好坏的特性(可以是质量特性 也 可以是产量特性或其它)称为指标,用 y表示。 由于y是一个随机变量,因此可以假定它 有如下的结构式:y=μ+ε 其中μ是一个依赖于试验条件的常量,随 试验条件的变化而改变,ε是一个随机变量, 常假定它服从正态分布N(0,σ2)。
正交表
选择部分条件进行试验,再通过数据分析来 寻找好的条件,这便是试验设计问题。通过 少量的试验获得较多的信息,达到试验的目 的:发现那些因子对试验结果确有影响,因 子的什么水平组合是最好的。
第五章 正交试验设计
一、试验设计的基本概念与正交表
多因素试验遇到的最大困难是试验次数太 多,若十个因素对产品质量有影响,每个因素 取两个不同状态进行比较,有210=1024、 如 果每个因素取三个不同状态310=59049个不同 的试验条件
在多因素试验中,有人采用“单因素轮换 法”,但是这种方法不一定能找到好的条件 譬如:考察两个因子,先固定A在A1,发 现B3好,再固定B3,发现A1好,但是实际上好 的条件是A2B2。 B1 B2 B3 A1 50 56 62 A2 56 70 60 A3 54 60 58
利用正交表进行试验设计的方法就是正交试 验设计。
表 4 .1 试验号 1 2 3 4 5 6 7 8 9 列号 1 1 1 1 2 2 2 3 3 3
L 9 (3 ) 2 1 2 3 1 2 3 1 2 3 3 1 2 3 2 3 1 3 1 2 4 1 2 3 3 1 2 2 3 1
4
“L”表示正交表,“9”是行数,在试验中表示试 验的条件数,“4”是列数,在试验中表示可以安排 的因子的最多个数,“3”是表的主体只有三个不同 数字,在试验中表示每一因子可以取的水平数。
二、无交互作用的正交设计与数据分析

第4讲5(2) 正交试验设计(方差分析)

第4讲5(2) 正交试验设计(方差分析)

2
1 1 2 2 1 10.12 10.09 0.03
2
1 2 1 1 2 10.19 10.02 0.17
2.66
2.58 2.36 2.4 2.79 2.76
0.0055 0.0078 0.0091 0.0001 0.0036
返回15
链接
(2)显著性检验
变异来源 A 平方和 自由度 0.0210 1
0.575
1.845 0.11 12.745
1
1 2 7
0.575
1.845 0.055
10.455
33.545 *
根据F值的大小排出因子的主次: 主 次
A×B、A、B×C、B、(A×C、 C)
A×B的重要性排在A、B的前面,挑选A、B的最优水平时 要从A×B的最优搭配来考虑,同理C的最优水平也应以B×C为 主. A×B的最优搭配的选取是通过A、B搭配效果表决定的。 A、B搭配效果表
B与C的最优搭配:B1C2 从A×B和B×C的最优搭配中,B因素的最优水平矛盾, 但是A×B的重要性排在B×C的前面,所以,从A×B来考选B2, 当B因素选B2时,由B×C的搭配表C选C1,综合考虑其最优工 艺为:A2B2C1. 因为,本例三个因素的所有搭配就是正交表中的8次试 验,从表中试验数据也可以看到,A2B2C1是第7号试验,不匀率 为3.17是8次试验中最小的,即为最优组合(最优工艺)。
它用多水平正交表安排水平数较少的因素的一种方法
例:在高效液相色谱法测定食品中胡萝卜素 的研究中,欲通过正交试验选择柱层析法净 化条件,试验指标为胡萝卜素回收率,不考 虑交互作用,试验因素水平表见表4-35。
表4-35 因素水平表
1
活化温度 ℃ A 100

第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析

第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析
e e B
σ = ˆ
t 0 .975
132 / 4 = 5.74 , 。 ( 4 ) = 2 . 7764
μ 3⋅2
的0.95的置信区间是:
68 ± 2.7764 × 5.74 / 1.8 = 68 ± 11.9 = (56.1,79.9)
贡献率分析
当试验指标不服从正态分布时, 进行方差分析的依据就不充分,此 时可以通过比较个因素的“贡献率” 衡量因素作用的大小。
μ 3.2 的 1 − α 置信区间为: μ 3.2± t1−α / 2 ( f e′)σ / ne ˆ ˆ
′ ˆ 这里 σ = S e / f e′ , ′ S e = S e + 不显著因子的平方和, f e′ = f e + 不显著因子的自由度,
ne = 试验次数 1 + 显著因子自由度之和
n e = 9 /( 1 + f A + f C ) = 9 / 5 = 1 . 8 , ′ S e = S e + S B=132 , f ′ = f + f =4 ,
ˆ ˆ μ = y = 50 , a3 = T13 − y = 61 − 50 = 11 ,
ˆ c 2 = T32 − y = 57 − 50 = 7 ,
•A3C2 水平组合下指标均值的无偏估计可以取为: ˆ ˆ ˆ ˆ μ 3⋅2 = μ + a3 + c 2 = 50+11+7=68。
区间估计
… Continue
因子水平表 因子 A:反应温度(℃) B:反应时间(分) C:加碱量(%) 水平 一 80 90 5 二 85 120 6 三 90 150 7
试验计划与试验结果
试验号 1 2 3 4 5 6 7 8 9 因子 反应温度 ℃ (1)80 (1)80 (1)80 (2)85 (2)85 (2)85 (3)90 (3)90 (3)90 反应时间 分 (1) 90 (2)120 (3)150 (1) 90 (2)120 (3)150 (1) 90 (2)120 (3)150 加碱量 试验结果 y % 转化率(%) (1)5 31 (2)6 54 (3)7 38 (2)6 53 (3)7 49 (1)5 42 (3)7 57 (1)5 62 (2)6 64

正交试验设计2正交试验数据方差分析和贡献率分析

正交试验设计2正交试验数据方差分析和贡献率分析

正交试验设计2正交试验数据方差分析和贡献率分析正交试验设计是一种实验设计方法,通过选择适当的试验水平组合和设置统计模型,以减少试验阶段的试验次数和工作量,提高试验的效率和准确性。

正交设计通过对变量进行排列组合,使各变量的效应独立出现并减少副效应的影响,从而使实验结果更加可靠。

正交设计数据分析方法方差分析(ANOVA)是一种统计方法,用于测试在不同因素水平下的平均值是否相等。

在正交试验中,方差分析可以用于测试各个因子对试验结果的影响是否显著。

方差分析通常包括总体均值检验、各因子的效应检验以及误差项的检验。

通过方差分析可以确定哪些因子对试验结果的影响是显著的,进而确定最佳的试验条件。

贡献率分析是一种用于确定各个因子对试验结果的贡献程度的方法。

贡献率分析可以通过计算各个因子的均方根(RMS)值来确定各个因子的贡献程度。

贡献率可以用来排除一些不显著的因子,从而进一步优化试验条件。

1.节省试验次数和工作量:由于正交设计能够减少变量之间的相关性,可以通过较少的试验次数得到可靠的结果。

2.减少误差项:正交设计通过考虑副效应的影响,减少了试验误差的可能性,提高了数据的可靠性。

3.确定关键因素:正交设计通过方差分析和贡献率分析,可以确定对试验结果有着显著影响的关键因素,从而进行进一步优化。

4.灵活性:正交设计可以根据实验需求进行灵活的调整和改变,以适应多样的试验条件和目标。

总结正交试验设计是一种有效的实验设计方法,可用于减少试验次数和工作量,提高试验效率和准确性。

方差分析和贡献率分析是对正交设计数据进行进一步分析和总结的重要工具,可以帮助确定关键因素和优化试验条件。

正交试验设计能够在实验设计的早期阶段对各个因子进行全面考虑,从而为实验结果的有效性和可靠性打下基础。

正交试验设计中的方差分析

正交试验设计中的方差分析
方差分析(ANOVA)是一种统计技术, 用于比较三个或更多组数据的平均值 是否存在显著差异。
目的
通过方差分析,可以确定不同组之间 的平均值差异是否由随机误差引起, 还是由处理因素或自变量引起。
方差分析的数学模型
数学模型
方差分析使用数学模型来描述数据之间的关系,特别是不同组之间的平均值差异。模型通常包括组间差异和组内 差异两部分。
医学研究
通过正交试验设计中的方差分析,研究不同治疗方案、药物剂量等因素对疾病治疗效果的影响,为临床 治疗提供科学依据。
方差分析的局限性
04
方差分析对数据的要求
独立性
数据必须是相互独立的,不存 在相互关联或依赖关系。
正态性
数据应符合正态分布,才能保 证统计推断的准确性。
同方差性
各组数据的方差应相等,否则 可能导致误判。
制定试验方案
根据正交表设计试验方案,确定每个因素的每个 水平。
实施试验
按照试验方案进行试验,记录每个试验的结果。
方差分析
利用方差分析法对试验结果进行分析,确定各因 素对试验结果的影响程度和显著性。
优化方案
根据方差分析结果,优化试验方案,进行下一步试验。
方差分析的基本原理
02
方差分析的定义与目的
定义
拉丁方设计方差分

适用于需要控制试验条件的试验, 通过拉丁方设计平衡试验条件和 试验误差。
正交试验设计中的方差分析步骤
确定试验因素和水平
根据研究目的和实际情况确定试验因 素和水平。
制定正交表
根据试验因素和水平选择合适的正交 表。
安排试验
按照正交表进行试验,记录试验数据。
方差分析
对试验数据进行方差分析,包括自由 度、离均平方和、均方、F值等计算。

正交试验方差分析(通俗易懂)

正交试验方差分析(通俗易懂)

第十一章正交设计试验资料的方差分析在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。

正交设计是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。

第一节、正交设计原理和方法(一)正交设计的基本概念正交设计是利用正交表来安排多因素试验、分析试验结果的一种设计方法。

它从多因素试验的全部水平组合中挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析了解全面试验的情况,找出最优水平组合。

例如,研究氮、磷、钾肥施用量对某小麦品种产量的影响:A因素是氮肥施用量,设A1、A2、A33个水平;B因素是磷肥施用量,设B1、B2、B33个水平;C因素是钾肥施用量,设C1、C2、C33个水平。

这是一个3因素每个因素3水平的试验,各因素的水平之间全部可能的组合有27种。

如果进行全面试验,可以分析各因素的效应,交互作用,也可选出最优水平组合。

但全面试验包含的水平组合数较多,工作量大,由于受试验场地、经费等限制而难于实施。

如果试验的主要目的是寻求最优水平组合,则可利用正交设计来安排试验。

正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。

正交试验是用部分试验来代替全面试验,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。

4)安排,试如对于上述3因素每个因素3水平试验,若不考虑交互作用,可利用正交表L9(3 验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件。

一、正交设计的基本原理表11-133试验的全面试验方案正交设计就是从全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)4)从27个试验点中挑选出来的来进行试验。

图1中标有‘9’个试验点,就是利用正交表L9(3 9个试验点。

即:(1)A1B1C1(2)A1B2C2(3)A1B3C3(4)A2B1C2(5)A2B2C3(6)A2B3C1(7)A3B1C3(8)A3B2C1(9)A3B3C2上述选择,保证了A因素的每个水平与B因素、C因素的各个水平在试验中各搭配一次。

正交试验设计中的方差分析

正交试验设计中的方差分析
个水平,每个水平做p次试验,则n=mp。
那么正交试验的方差分析可以从以下几步进行:
1.计算差方和(离差平方和): 包括以下几部分:
1)各因素差方和:
正交试验都是多因素多水平的试验,因此有必要对各因素的 差方和进行计算。 各因素差方和等于它的各水平均值k1A,k2A,…,kmA之间偏差平 方和。 以因素A为例,它在正交表中的某列,用xij表示A在第i个水 平的第j次试验结果,则;
即:fA×B=fA×fB 试验误差的自由度fe=fT-f因 。
3.计算平均差方和(均方): 在计算各因素的差方和时,按照前面的讲述,它是各水平的 偏差方的和,其大小与水平数有关,故此还不能确切的反映 各因素的情况。为了消除水平数的影响,可以计算其平均差 方和:
因素的平均差方和=因素差方和 =Q因 因素的自由度 f因
试验误差的差方和是所有试验结果在不同水平下的指标值与该 水平下的均值之间的差的平方和。它是由随机误差引起的,故 叫误差的差方和。
Qe QT ( QA QB QN )
2.计算自由度:
试验的总自由度: fT n 1
各因素自由度: f因 m 1
如果有交互作用,则交互作用的自由度为两因素自由度之积:
一.几个数据处理中常用的数理统计名词:
首先对几个数理统计名词进行回顾
1. 平均值 x
就是所有数据的和除以数据的个数。
x
1 n
n i 1
xi
1 n
x1
x2
xn
总体平均值:
1 n
n
xi
i 1
n
总体:数理统计学中指的是研究对象的某一特性值的全体; 样本:从总体中随机抽出的一组测量值。
2.极差 R: 就是一组数据中的最大值减去最小值得到的差值。 3.差方和Q: 测量值对平均值的偏差的平方和,就叫~。也叫离差平方和。

正交试验设计(方差分析)

正交试验设计(方差分析)
第1列的极差较小,说明因素A的水平变动时,指标变动 较小,说明因素A对指标影响较小;
而第4列是空列,极差为0.34,这是由随机误差产生的,又 因为因素A的极差0.36与空列的极差0.34接近,所以可粗略 地认为因素A对指标影响不显著
由此可以根据极差的大小顺序排出因素的主次:


B、C、A
由因素的主次可以看出后区牵伸(因素B)对指标影响 最主要,其次是后区隔距(因素C),罗拉加压影响最小.
C
1.6 3.9 4.0 0.53 1.30 1.33 0.80
误差列
各数据说明
2.9
其中:
3.8 2.8 0.97 1.27 0.93 0.34
K ( j) i
为第j列的第i水 平数据之和
k( j) i 为其平均值
R( j)
为第j列的极差
9
T xi i 1
=9.5
返回
2. 分据知,第2列和第3列的极差较大, 这反映了当因素B、C的水平波动时,指标波动较大,说明因 素B、C对指标影响较大;
上一张 下一张 主 页 退 出
6.5.1 正交试验结果的方差分析
方差分析基本思想是将数据的总变异分解成因 素引起的变异和误差引起的变异两部分,构造F统 计量,作F检验,即可判断因素作用是否显著。
正交试验结果的方差分 析思想、步骤同前!!
方差分析的基本步骤与格式
设: 用正交表Ln(rm)来安排试验 试验结果为yi(i=1,2,…n)
方差分析时,在进行表头设计时一般要求留有空列,即误差 列
误差的离差平方和为所有空列所对应离差平方和之和 :
SSe SS空列
(2)计算自由度
第6讲(5)
正交试验设计 (方差分析)

利用SPSS进行方差分析以及正交试验设计

利用SPSS进行方差分析以及正交试验设计

利用SPSS进行方差分析以及正交试验设计方差分析是一种常见的统计方法,用于比较两个或多个组之间的差异。

正交试验设计是一种实验设计方法,能够同时考虑多个因素对结果的影响。

本文将利用SPSS进行方差分析和正交试验设计的步骤介绍,并讨论如何解读分析结果。

首先,我们将介绍方差分析的步骤。

方差分析的基本思想是比较组间和组内的变异程度。

假设我们有一个因变量和一个自变量,自变量有两个或多个水平。

下面是方差分析的步骤:1.导入数据:将数据导入SPSS软件,并确保每个变量都已正确标记。

2.选择统计分析:点击SPSS菜单栏上的"分析",然后选择"方差",再选择"单因素"。

3.设置因变量和自变量:在弹出的对话框中,将需要进行方差分析的因变量拖放到因素列表框中,然后将自变量也拖放到因素列表框中。

4.点击"设定"按钮:点击"设定"按钮,设置方差分析的参数,例如是否需要进行正态性检验、多重比较等。

然后点击"确定"。

5.查看结果:SPSS将输出方差分析的结果,包括各组之间的F值、p值等统计指标。

可以根据p值判断各组之间是否存在显著差异。

接下来,我们将介绍正交试验设计的步骤。

正交试验设计是一种多因素独立变量的实验设计方法,可以在较小的实验次数内获得较高的信息量。

下面是正交试验设计的步骤:1.设计矩阵:根据研究目的和独立变量的水平,构建正交试验的设计矩阵。

2.导入数据:将设计矩阵导入SPSS软件,并将每个变量的水平标注为自变量。

3.选择统计分析:点击SPSS菜单栏上的"分析",然后选择"一般线性模型",再选择"多元方差分析"。

4.设置因变量和自变量:在弹出的对话框中,将因变量拖放到因子列表框中,然后将自变量也拖放到因子列表框中。

5.点击"设定"按钮:点击"设定"按钮,设置正交试验设计的参数,例如交互作用是否显著、多重比较等。

正交设计试验资料的方差分析

正交设计试验资料的方差分析

数据整理
将收集到的数据整理成 表格形式,便于后续分 析。
数据筛选
对异常值进行筛选和处 理,确保数据质量。
正交设计试验资料的方差分析过程
确定试验因素和水平
明确试验因素和各因素的水平, 为后续分析提供基础。
计算各因素的效应值
根据试验结果,计算各因素的效 应值。
计算误差平方和
根据效应值和水平,计算误差平 方和。
跨学科融合
标准化与规范化
结合其他学科的理论和方法,拓展正交设 计试验的应用领域,推动多学科交叉融合 发展。
制定和完善正交设计试验的标准和规范, 提高试验的可靠性和可比性。
正交设计试验资料方差分析的实际应用价值
科学研究
在科学研究领域,正交设计 试验资料方差分析可用于探 索和验证科学假设,揭示现 象背后的机制和规律。
正交试验设计的基本原理
1 2
正交性原理
正交试验设计基于正交性原理,即每个因素在试 验中出现的次数相同,且各次出现的概率相等。
均匀分散原理
正交试验设计通过均匀分散原理,确保每个水平 在试验中都有均衡的分布,从而减少结果的偏差。
3
代表性原理
正交试验设计通过代表性原理,选取具有代表性 的样本点进行试验,以反映整体情况。
正交设计试验资料的方差 分析
• 正交设计试验概述 • 方差分析基础 • 正交设计试验资料的方差分析方法 • 实例分析 • 总结与展望
01
正交设计试验概述
正交试验设计的基本概念
正交试验设计是一种统计技术,用于 在多因素、多水平条件下进行试验, 以最小化试验次数,同时最大化信息 收集。
它利用正交表来安排试验,确保每个 因素的每个水平都被等可能地选取, 从而得到全面而均衡的试验结果。

正交实验设计与方差分析2024

正交实验设计与方差分析2024

引言概述正交实验设计与方差分析是一种常用于实验设计和数据分析的统计方法。

这种方法能够帮助研究人员系统地设计实验、收集数据,并通过方差分析对数据进行统计分析。

正交实验设计适用于多因素实验设计,能够探究多个因素对结果变量的影响,并确定各个因素对结果变量的相对重要性。

方差分析则是用来比较不同组别之间的均值差异是否显著,并推断这些差异是否由于随机因素引起。

正文内容1.正交实验设计的基本原理1.1.因素和水平1.2.正交实验设计的完备性和平衡性1.3.主效应和交互效应的概念1.4.正交表和正交实验设计的选择1.5.正交实验设计的优点和局限性2.正交实验设计的建立步骤2.1.确定要研究的因素和水平2.2.选择适当的正交表2.3.构建试验方案2.4.进行实验和数据收集2.5.数据分析和结果解释3.方差分析的基本原理3.1.单因素方差分析3.2.多因素方差分析3.3.方差分析中的假设检验3.4.方差分析的效应量和效应大小3.5.方差分析结果的解释和报告4.正交实验设计与方差分析的应用领域4.1.医学研究4.2.工程设计4.3.农业实验4.4.社会科学研究4.5.生产过程优化5.正交实验设计与方差分析的案例分析5.1.一个药物疗效评价的正交实验设计案例5.2.一个工程设计的正交实验设计案例5.3.一个农业实验的正交实验设计案例5.4.一个社会科学研究的正交实验设计案例5.5.一个生产过程优化的正交实验设计案例总结正交实验设计与方差分析是一种重要的统计方法,在实验设计和数据分析中具有广泛的应用。

通过正交实验设计,研究人员能够系统地探究多个因素对结果变量的影响,并确定各个因素的相对重要性。

方差分析则用于比较不同组别之间的均值差异,并推断这些差异是否显著。

正交实验设计与方差分析能够帮助研究人员有效地设计实验、收集数据并进行统计分析,为科学研究和应用提供有力支持。

在不同领域,如医学研究、工程设计、农业实验、社会科学研究和生产过程优化等方面都有广泛的应用。

正交试验设计结果的方差分析

正交试验设计结果的方差分析

n
T xi i 1
②各因素引起的离差平方和
• 第j列所引起的离差平方和 :
S j
1 r
(
m p1
K
2 pj
)
T2 n
k
ST S j Se j 1
③交互作用的离差平方和
• 若交互作用只占有一列,则其离差平方和就等于 所列离差平方和之和,
第6章 正交试验设计结果的方差分析
正交试验设计结果的方差分析法
• 能估计误差的大小 • 能精确地估计各因素的试验结果影响的重要程度
6.1 方差分析的基本步骤
• 正交试验多因素的方差分析,其基本思想是先计算出各因素 和误差的离差平方和,然后求出自由度、均方、F值,最后进 行F检验。
• 如果用正交表Ln(mk)来安排试验,则因素的水平数为m,正交 表的列数为k,总试验次数为n,试验结果为xi(i=1~n)。
– 若m = 2, fA×B=fj – 若m = 3, fA×B= 2fj= fA +fB ④误差的自由度:
fe=空白列自由度之和
(3)计算均方

以A因素为例
:VA
SA fA
以A×B为例 :
VAB
S AB f AB
误差的均方:
Ve
Se fe
注意:
• 若某因素或交互作用的均方≤Ve,则应将它们归入误差列 • 计算新的误差、均方
(6)列方差分析表
6.2 二水平正交试验的方差分析
• 正交表中任一列对应的离差平方和:
例6-1
6.2.2 三水平正交试验的方差分析
• m=3,所以任一列的离差平方和:
例6-3 注意: ➢ 交互作用的方差分析 ➢ 有交互作用时,优方案的确定
6.3 混合水平正交试验的方差分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


A 罗拉加压 10×11×10 (原工艺) 11×12×10 13×14×13
B 后区牵伸 1.80 (原工艺) 1.67 1.50 6 8 10
C 后区隔距 (原工艺)
返回
首先要选择一个合适的正交表,选 L9 (34 ) 来制定试验 方案. 其次,将A、B、C三个因素随机地填在表的三列上, 如A、B、C依次放在1,2,3列,第4列为空列,这个过 程叫表头设计.
A1 1、 2、 3、 4、
A2 5、 6 7、
A3 8、 9
各水平所在的试 验号
各水平所在试验 号的试验数据
1.5、1.3、-0.2
2.6、1.4、-0.3
2.8、 0.4、 0
在因素A每个水平的三次试验中,因素B、C三个水平 都分别各出现一次,因此,可以理解为因素A有三个水平, 每个水平重复做三次试验,按照单因子方差分析:
第4 列 1 2 3
因素A第1 水平3次 试验结果yi 重复测定 y1 值 y2 y3
单因素 4 2 1 2 3 y4 5 2 2 3 1 y5 因素A第2 试验数 1 (y1 y2 ... y9 ) SS 6 = ( y1 y22 y3 ) (y4 3y5 y6 ) (y7 y8 2y9 ) (修正项) 水平 3次重 1 y6 据资料 3 9 复测定值 7 1 3 1 3 2 y7 T 格式 = (K K K ) 8 3 2 1 3 y8


同理可选出因素B和因素C的最好条件分别为B3、C1。 于是通过 “算一算”得到一个较优的水平组合A1 B3C1.称为 “算一算” 的好条件. 比较“直接看”的好条件A2B3C1与 “算一算”的好条 件A1 B3C1,除了因素A的水平不同外,其它两个因素所取 的好条件是一致的。又因为第一列的极差与误差列的极差 接近,认为因素A对条干不匀率的影响不显著,为方便操作 选取原工艺A1.最后确定最优工艺为A1B3C1.
则:
SSe SSe SS A
df dfe df A
SS MSe e df e
e
(4)计算F值
各均方除以误差的均方,例如:
MS A FA MSe

MS A FA MSe
FA B
MS A B MSe

FA B
MS A B MSe
(5)显著性检验
L9 (34 )
B 1
试验


A 1
C 1
空列 1

1
2
3 4 5 6 7 8 9
1
1 2 2 2 3 3 3
2
3 1 2 3 1 2 3
2
3 2 3 1 3 1 2
2
3 3 1 2 2 3 1
正交试验的数据分析
(一) 极差分析法 下面仍以例1试验方案为例,回顾极差分析法的思想方 法.依照上表安排的试验方案,进行9次试验(一般不要 按序号顺序来做这9个试验,而应随机地挑选试验号来完 成这些试验.),并将试验数据填写在上表的数据列 中.(该数据是将原始数据减20而得到的,这并不影响分析 结果.) 1. 数据计算
Km22 SS2

Kmk2 SSk
总偏差平方和:
( x i ) 2 SS T = x i - i=1 n i=1
2 n
n
n
列偏差平方和:
2 ( x ) i m 1 2 SS j = K ij - i=1 (j=1, 2, ... ,k) r i=1 n
试验总次数为n,每个因素水平数为 m个,每个水平作r次重复r=n/m。
( j)
B、C、A
由因素的主次可以看出后区牵伸(因素B)对指标影响 最主要,其次是后区隔距(因素C),罗拉加压影响最小.
3.选出最优工艺参数 (1)直接看: 直接比较已做的9次试验得到的条子条干不匀率,容易 看出第6号试验条干不匀率最小, 第6号试验的水平组合 A2B3C1称为“直接看”的好条件.它是通过试验的实践直接 得到的,比较可靠. (2)算一算: ( j) 通过比较 ki 的大小可选出排在第j列的因素的最好水平, (1) (1) (1) 如第1列的因素A: k1 0.87 k3 1.07 k2 1.23 分别表示因素A的三个水平的平均条干不匀率,经比较可知当 因素A取A1水平时,条干不匀率最小,所以A1的效果最好.
第6讲(5)
正交试验设计 (方差分析)
正交试验设计的任务之一就是利用正交表确定试验方 案.下面通过一个实例来回顾如何利用正交表制定试验 方案的步骤. 例1 某棉纺厂为了研究并条机的工艺参数对条子条干 不匀率的影响,选择了罗拉加压、后区牵伸、后区隔距 三个因素进行试验,因素及水平如下表:
水 因 平 1 2 3
2 2 2 2 A 2 2 2 2
3
1
2
3
9
9
3
3
2
1
y9 水平3次重 复测定值
因素A第3 分析第1列因素时,其它列暂不考虑,将其看做条件因素。 因素 A1 A2 A3 重复1 y1 y4 y7 重复2 y2 y5 y8 重复3 y3 y6 y9 和 y1+y2+y3 y4+y5+y6 y7+y8+y9 K1 K2 K3
表头设计
表 Ln(mk)正交表及计算表格
A B …

试验数据
列号
试验号 1 2 … n
1
1 1 … m
2
… … … …

… … … … …
k
… … … …
xi
x1 x2

xi2
x12 x22

xn
T= x
i= 1 n n
xn2
T2 CT n
K1j K2j

K11 K21

K12 K22


6.5 正交试验结果的方差分析
极差分析法简单明了,通俗易懂,计算工作量少便 于推广普及。但这种方法不能将试验中由于试验条件改
变引起的数据波动同试验误差引起的数据波动区分开来,
也就是说,不能区分因素各水平间对应的试验结果的差 异究竟是由于因素水平不同引起的,还是由于试验误差 引起的,无法估计试验误差的大小。此外,各因素对试 验结果的影响大小无法给以精确的数量估计,不能提出 一个标准来判断所考察因素作用是否显著。为了弥补极 差分析的缺陷,可采用方差分析。
先将各因素和交互作用的方差与误差方差比较,若MS因
(MS交) <2MSe,可将这些因素或交互作用的偏差平方和、 自由度并入误差的偏差平方和、自由度,这样使误差的偏差
平方和和自由度增大,提高了F检验的灵敏度。

L9(34)正交表
处理号 1 2 3
第1列(A) 1 1 1
第2列 1 2 3
第3 列 1 2 3
2 当m=2时, SS = 1 (K1j - K 2j) (j=1, 2, ... ,k) j
n
总自由度:
dfT=n-1
因素自由度:
df=m 1 ,m为因素水平个数 j
例2(例1续)方差分析法首先计算各列的离差平方和 S j 以因素A所在的第一列 S1 为例,给出 S j 的计算公式.
A因素的水平
若交互作用占有多列,则其离差平方和等于所占多列离差平 方和之和, 例:r=3时
SS AB SS SS (AB) (AB)
1 2
④试验误差的离差平方和
方差分析时,在进行表头设计时一般要求留有空列,即误差 列
误差的离差平方和为所有空列所对应离差平方和之和 :
SSe SS空列
例如:
若FA F (df A , dfe ) ,则因素A对试验结果有显著影响
若 FAB F (df AB , dfe ),则交互作用A×B对试验结果有 显著影响
(6)列方差分析表
(1)偏差平方和分解:
总偏差平方和=各列因素偏差平方和+误差偏差平方和
SST SS因素 SS空列(误差)
1
2 3 3 1 2 2 3 1
1.5
1.3 -0.2 2.6 1.4 -0.3 2.8 0.4 0
返回4 返回31
返回
例1
各数 列 号 据
试验结果分析表续
B
6.9 3.1 -0.5 2.30 1.03 -0.17 2.47
A
2.6 3.7 3.2 0.87 1.23 1.07 0.36
C
1.6 3.9 4.0 0.53 1.30 1.33 0.80
上一张 下一张 主 页 退 出
6.5.1 正交试验结果的方差分析
方差分析基本思想是将数据的总变异分解成因 素引起的变异和误差引起的变异两部分,构造F统 计量,作F检验,即可判断因素作用是否显著。
正交试验结果的方差分 析思想、步骤同前!!
方差分析的基本步骤与格式
设:
用正交表Ln(rm)来安排试验 试验结果为yi(i=1,2,…n)
(2)自由度分解:
dfT df因素 df空列( 误列(
(3)方差:
SS因素 SS误差 MS因素= ,MS误差= df因素 df误差
(4)构造F统计量:
MS因素 F因素= MS误差
(5)列方差分析表,作F检验
若计算出的F值F0>Fa,则拒绝原假设,认为 该因素或交互作用对试验结果有显著影响;若 F0≼Fa,则认为该因素或交互作用对试验结果 无显著影响。
④误差的自由度:
dfe=空白列自由度之和
(3)计算均方
SS A 以A因素为例 : MS A df A
以A×B为例

MS AB
SS AB df AB

误差的均方:
相关文档
最新文档