数字逻辑

合集下载

(完整word版)《数字逻辑》(第二版)

(完整word版)《数字逻辑》(第二版)

第一章1. 什么是模拟信号什么是数字信号试举出实例。

模拟信号-----指在时间上和数值上均作连续变化的信号。

例如,温度、压力、交流电压等信号。

数字信号-----指信号的变化在时间上和数值上都是断续的,阶跃式的,或者说是离散的,这类信号有时又称为离散信号。

例如,在数字系统中的脉冲信号、开关状态等。

2. 数字逻辑电路具有哪些主要特点数字逻辑电路具有如下主要特点:●电路的基本工作信号是二值信号。

●电路中的半导体器件一般都工作在开、关状态。

●电路结构简单、功耗低、便于集成制造和系列化生产。

产品价格低廉、使用方便、通用性好。

●由数字逻辑电路构成的数字系统工作速度快、精度高、功能强、可靠性好。

3. 数字逻辑电路按功能可分为哪两种类型主要区别是什么根据数字逻辑电路有无记忆功能,可分为组合逻辑电路和时序逻辑电路两类。

组合逻辑电路:电路在任意时刻产生的稳定输出值仅取决于该时刻电路输入值的组合,而与电路过去的输入值无关。

组合逻辑电路又可根据输出端个数的多少进一步分为单输出和多输出组合逻辑电路。

时序逻辑电路:电路在任意时刻产生的稳定输出值不仅与该时刻电路的输入值有关,而且与电路过去的输入值有关。

时序逻辑电路又可根据电路中有无统一的定时信号进一步分为同步时序逻辑电路和异步时序逻辑电路。

4. 最简电路是否一定最佳为什么一个最简的方案并不等于一个最佳的方案。

最佳方案应满足全面的性能指标和实际应用要求。

所以,在求出一个实现预定功能的最简电路之后,往往要根据实际情况进行相应调整。

5. 把下列不同进制数写成按权展开形式。

(1) 10 (3) 8(2) 2 (4) 16解答(1)10 = 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3(2)2= 1×24+1×22+1×21+1×2-2+1×2-4(3)8 = 3×82+2×81+5×80+7×8-1+4×8-2+4×8-3(4) 16 = 7×162+8×161+5×160+4×16-1+10×16-2+15×16-3 6.将下列二进制数转换成十进制数、八进制数和十六进制数。

《数字逻辑教案》

《数字逻辑教案》

《数字逻辑教案》word版第一章:数字逻辑基础1.1 数字逻辑概述介绍数字逻辑的基本概念和特点解释数字逻辑在计算机科学中的应用1.2 逻辑门介绍逻辑门的定义和功能详细介绍与门、或门、非门、异或门等基本逻辑门1.3 逻辑函数解释逻辑函数的概念和作用介绍逻辑函数的表示方法,如真值表和逻辑表达式第二章:数字逻辑电路2.1 逻辑电路概述介绍逻辑电路的基本概念和组成解释逻辑电路的功能和工作原理2.2 逻辑电路的组合介绍逻辑电路的组合方式和连接方法解释组合逻辑电路的输出特点2.3 逻辑电路的时序介绍逻辑电路的时序概念和重要性详细介绍触发器、计数器等时序逻辑电路第三章:数字逻辑设计3.1 数字逻辑设计概述介绍数字逻辑设计的目标和方法解释数字逻辑设计的重要性和应用3.2 组合逻辑设计介绍组合逻辑设计的基本方法和步骤举例说明组合逻辑电路的设计实例3.3 时序逻辑设计介绍时序逻辑设计的基本方法和步骤举例说明时序逻辑电路的设计实例第四章:数字逻辑仿真4.1 数字逻辑仿真概述介绍数字逻辑仿真的概念和作用解释数字逻辑仿真的方法和工具4.2 组合逻辑仿真介绍组合逻辑仿真的方法和步骤使用仿真工具进行组合逻辑电路的仿真实验4.3 时序逻辑仿真介绍时序逻辑仿真的方法和步骤使用仿真工具进行时序逻辑电路的仿真实验第五章:数字逻辑应用5.1 数字逻辑应用概述介绍数字逻辑应用的领域和实例解释数字逻辑在计算机硬件、通信系统等领域的应用5.2 数字逻辑在计算机硬件中的应用介绍数字逻辑在中央处理器、存储器等计算机硬件部件中的应用解释数字逻辑在计算机指令执行、数据处理等方面的作用5.3 数字逻辑在通信系统中的应用介绍数字逻辑在通信系统中的应用实例,如编码器、解码器、调制器等解释数字逻辑在信号处理、数据传输等方面的作用第六章:数字逻辑与计算机基础6.1 计算机基础概述介绍计算机的基本组成和原理解释计算机硬件和软件的关系6.2 计算机的数字逻辑核心讲解CPU内部的数字逻辑结构详细介绍寄存器、运算器、控制单元等关键部件6.3 计算机的指令系统解释指令系统的作用和组成介绍机器指令和汇编指令的概念第七章:数字逻辑与数字电路设计7.1 数字电路设计基础介绍数字电路设计的基本流程解释数字电路设计中的关键概念,如时钟频率、功耗等7.2 数字电路设计实例分析简单的数字电路设计案例讲解设计过程中的逻辑判断和优化7.3 数字电路设计工具与软件介绍常见的数字电路设计工具和软件解释这些工具和软件在设计过程中的作用第八章:数字逻辑与数字系统测试8.1 数字系统测试概述讲解数字系统测试的目的和方法解释测试在保证数字系统可靠性中的重要性8.2 数字逻辑测试技术介绍逻辑测试的基本方法和策略讲解测试向量和测试结果分析的过程8.3 故障诊断与容错设计解释数字系统中的故障类型和影响介绍故障诊断方法和容错设计策略第九章:数字逻辑在现代技术中的应用9.1 数字逻辑与现代通信技术讲解数字逻辑在现代通信技术中的应用介绍数字调制、信息编码等通信技术9.2 数字逻辑在物联网技术中的应用解释数字逻辑在物联网中的关键作用分析物联网设备中的数字逻辑结构和功能9.3 数字逻辑在领域的应用讲述数字逻辑在领域的应用实例介绍逻辑推理、神经网络等技术中的数字逻辑基础第十章:数字逻辑的未来发展10.1 数字逻辑技术的发展趋势分析数字逻辑技术的未来发展方向讲解新型数字逻辑器件和系统的特点10.2 量子逻辑与量子计算介绍量子逻辑与传统数字逻辑的区别讲解量子计算中的逻辑结构和运算规则10.3 数字逻辑教育的挑战与机遇分析数字逻辑教育面临的挑战讲述数字逻辑教育对培养计算机科学人才的重要性重点和难点解析重点环节一:逻辑门的概念和功能逻辑门是数字逻辑电路的基本构建块,包括与门、或门、非门、异或门等。

《数字逻辑教案》

《数字逻辑教案》

《数字逻辑教案》word版一、教学目标:1. 让学生了解数字逻辑的基本概念和原理。

2. 培养学生运用数字逻辑分析和解决问题的能力。

3. 引导学生掌握数字逻辑的基本运算和设计方法。

二、教学内容:1. 数字逻辑的基本概念:数字逻辑电路、逻辑门、逻辑函数等。

2. 逻辑运算:与运算、或运算、非运算、异或运算等。

3. 逻辑门电路:与门、或门、非门、异或门等。

4. 数字逻辑电路的设计方法:组合逻辑电路、时序逻辑电路。

5. 数字逻辑电路的应用:数字计算器、数字存储器等。

三、教学方法:1. 讲授法:讲解数字逻辑的基本概念、原理和运算方法。

2. 实验法:让学生动手搭建逻辑门电路,加深对数字逻辑的理解。

3. 案例分析法:分析实际应用中的数字逻辑电路,提高学生解决问题的能力。

四、教学准备:1. 教材:《数字逻辑》2. 实验器材:逻辑门电路模块、导线、电源等。

3. 教学工具:PPT、黑板、粉笔等。

五、教学进程:1. 第1周:数字逻辑的基本概念和原理。

第2周:逻辑运算和逻辑门电路。

第3周:组合逻辑电路的设计方法。

第4周:时序逻辑电路的设计方法。

第5周:数字逻辑电路的应用案例。

2. 实验环节:在第3周和第4周结束后,安排一次实验课程,让学生动手搭建逻辑门电路,加深对数字逻辑的理解。

3. 课程总结:在第5周课程结束后,进行课程总结,回顾本门课程的主要内容,巩固所学知识。

4. 课程考核:期末进行课程考核,包括笔试和实验操作两部分,全面评估学生的学习效果。

六、教学评估:1. 课堂参与度评估:通过观察学生在课堂上的提问、回答和讨论情况,评估学生的参与度和兴趣。

2. 作业评估:通过检查学生的作业完成情况,评估学生对课堂所学知识的理解和掌握程度。

3. 实验报告评估:对学生实验报告的完整性、准确性和创新性进行评估,了解学生对实验内容的理解和应用能力。

4. 期末考试评估:通过期末考试的笔试和实验操作两部分,全面评估学生对数字逻辑知识的掌握程度和应用能力。

数字逻辑名词解释

数字逻辑名词解释

组合逻辑电路简称组合电路,它由最基本的的逻辑门电路组合而成。

时序逻辑电路简称时序电路,它是由最基本的逻辑门电路加上反馈逻辑回路(输出到输入)或器件组合而成的电路。

组合逻辑电路特点是:输出值只与当时的输入值有关,即输出唯一地由当时的输入值决定。

电路没有记忆功能,输出状态随着输入状态的变化而变化,类似于电阻性电路,如加法器、译码器、编码器、数据选择器等都属于此类。

时序逻辑电路特点:与组合电路最本质的区别在于时序电路具有记忆功能。

时序电路的特点是:输出不仅取决于当时的输入值,而且还与电路过去的状态有关。

它类似于含储能元件的电感或电容的电路,如触发器、锁存器、计数器、移位寄存器、储存器等电路都是时序电路的典型器件译码器将N个输入转换成对应的M个输出的过程M≤2N类型全部译码和部分译码;二进制译码、代码译码器、数字显示译码器。

Eg: N-2n译码器, eg: 3线-8线译码器N-M译码器,M<2n, eg: 4线-10线译码器译码功能:根据输出引脚哪一条线有效,就可知道具体输入的二进制代码是哪一种组合。

•对二输入变量A0,A1,译码器将得到四个输出Y0,Y1,Y2,Y3,•对三输入变量A0,A1,A2,译码器将得到八个输出Y0,Y1,…,Y7,•每一个输出Yi对应该输入的最小项。

•对二输入变量,如:Yi’=0,即输入变量组合A1A0的M进制(M输出)形式为i。

•用数字形式表示即:Yi mi•可用译码器实现最小项1)二进制译码器的输出端能提供输入变量的全部最小项;2)任何组合逻辑函数都可以变换为最小项之和的标准式;=>用二进制译码器和门电路可实现任何组合逻辑函数。

当译码器输出低电平有效时,多选用与非门;译码器输出高电平有效时,多选用或门。

优点:可减少集成电路的使用数量。

例:用3线-8线译码器74LS138实现下面的逻辑函数:Y1=A’B’+AC+A’C’Y2=A’C+AC’Y3=B’C+BC’将逻辑函数化为最小项之和的形式:Y1=A’B’+AC+A’C’=A’B’C+A’B’C’+ABC+AB’C+A’BC’+A’B’C’=m1+m0+m7+m5+m2+m0= (m0’m1’m2’m5’m7’)’Y2=A’C+AC’=A’BC+A’B’C+ABC’+AB’C’= m3+m1+m6+m4= (m1’m3’m4’m6’)’Y3=B’C+BC’=AB’C+A’B’C+ABC’+A’BC’=m5+m1+m6+m2= (m1’m2’m5’m6’)’当译码器输出低电平有效时,多选用与非门;译码器输出高电平有效时,多选用或门。

数字逻辑表达式化简规则

数字逻辑表达式化简规则

数字逻辑表达式化简规则数字逻辑是计算机科学中的重要基础,它研究的是由逻辑门构成的电路的设计和分析问题。

在数字逻辑中,逻辑门可以用逻辑表达式来表示,而逻辑表达式的化简是数字逻辑设计中的一项关键任务。

本文将介绍数字逻辑表达式化简的一些常用规则。

1. 同一律同一律是数字逻辑表达式化简中最基本也是最简单的规则之一。

它指的是对于任意的逻辑变量x,都有x+x=x和x·x=x成立。

这意味着一个逻辑变量与自己进行或运算或与自己进行与运算的结果都等于自己。

2. 零和律零和律也是数字逻辑表达式化简中常用的规则之一。

它指的是对于任意的逻辑变量x,都有x+0=x和x·1=x成立。

这意味着一个逻辑变量与0进行或运算的结果等于自己,与1进行与运算的结果也等于自己。

3. 吸收律吸收律是数字逻辑表达式化简中常用的规则之一。

它指的是对于任意的逻辑变量x和y,如果x+y=x,则称该规则为或运算的吸收律;如果x·y=x,则称该规则为与运算的吸收律。

吸收律的意义在于可以将逻辑表达式中重复出现的项进行合并,简化表达式。

4. 分配律分配律是数字逻辑表达式化简中常用的规则之一。

它指的是对于任意的逻辑变量x、y和z,有x·(y+z)=x·y+x·z和x+(y·z)=(x+y)·(x+z)成立。

分配律的意义在于可以将逻辑表达式中的项进行分解和合并,简化表达式。

5. 德摩根定律德摩根定律是数字逻辑表达式化简中常用的规则之一。

它指的是对于任意的逻辑变量x和y,有¬(x+y)=¬x·¬y和¬(x·y)=¬x+¬y成立。

德摩根定律的意义在于可以将逻辑表达式中的非运算进行转化,简化表达式。

6. 卡诺图卡诺图是一种图形化的方法,用于数字逻辑表达式的化简。

它将逻辑变量的取值以格子的形式表示在平面上,然后通过画线的方式找出逻辑表达式的最简形式。

数字逻辑课件——绪言

数字逻辑课件——绪言

基本模拟电路:
• 信号放大及运算 (信号放大、功率放大) • 信号处理(采样保持、电压比较、有源滤波) • 信号发生(正弦波发生器、三角波发生器、…)
数字电路研究的问题
基本电路元件
• 逻辑门电路 • 触发器
基本数字电路
• 组合逻辑电路 • 时序电路(寄存器、计数器、脉冲发生器、
脉冲整形电路) • A/D转换器、D/A转换器
逻辑0
0010111100111010 十六位数据的图形表示
数值大小和每次的增减变化为N·,N为整数, 为
最小数量单位。
数量如小于这个最小数量单位,则没有任何物理意义 。如2567.82326…km,
如量化单位为:1km
数字量为:2568km
如量化单位为:1m 数字量为: 2567823m
数字信号所传递的内容称为数字信息。处理数字信 号的电路称为数字电路,包括传送、逻辑运算、控 制计数、寄存、显示以及脉冲波形的产生和变换。
本课程的学习要求: 1、深入掌握数字电路领域的基本概念和基本理论。 2、熟练掌握数字电路的分析方法和设计方法。 3、逐步提高阅读集成电路产品手册的能力,以便从 中获取更多信息。 4、积极实践,提高使用仪器、测试电路和排除故障 的能力。
2.研究的内容
模拟电路主要研究:输入、输出信号间的大小、相位、失 真等方面的关系。主要采用电路分析方法,动态性能 用微变等效电路分析。
数字电路主要研究:电路输出、输入间的逻辑关系。主要 的工具是逻辑代数,电路的功能用真值表、逻辑表达 式及波形图表示。
模拟电路研究的问题
基本电路元件:
•晶体三极管 •场效应管 •集成运算放大器
2、使用灵活,易于器件标准化。
随着半导体工艺的发展,数字电路器件的体积越来 越小,集成度越来越高。今天,可以在一块硅片上 制造几千个、几万个甚至几千万个元件,并可制造 单片数字计算机、单片的数字信号处理器等功能很 强的标准化通用器件,也可由使用者定制专用的芯 片。

数字逻辑电路的特点

数字逻辑电路的特点

数字逻辑电路的特点
数字逻辑电路是由逻辑门、触发器、计数器等元件按照一定的逻辑功能和连接关系组成的电路。

它具有以下特点:
1. 二进制输入输出:数字逻辑电路的输入和输出信号都以二进制形式表示,只有两个状态(0和1)。

这大大简化了信号的
处理和传输。

2. 确定性:数字逻辑电路的运算过程是确定的,根据特定的逻辑规则进行操作。

对于相同的输入,始终得到相同的输出。

3. 可靠性:由于数字逻辑电路中只有两种状态,电路的工作状态更加稳定可靠。

数字信号可以通过正定低音噪声的方式进行传输和处理,从而降低误差率。

4. 可编程性:数字逻辑电路可以通过对逻辑门的布尔函数进行编程,实现不同的逻辑功能。

这使得数字逻辑电路具有较强的灵活性和可扩展性。

5. 高集成度:数字逻辑电路可以通过集成电路技术实现高度集成,将多个逻辑门或其他元件集成到同一芯片上。

这样可以大大提高电路的集成度和运算速度。

6. 低功耗:数字逻辑电路在计算机和其他数字设备中广泛应用,因为它们的功耗较低。

与模拟电路相比,数字逻辑电路不需要进行放大和滤波等复杂的处理,从而节省了能量消耗。

总的来说,数字逻辑电路具有简单、稳定、灵活、可靠、高效等特点,为计算机和其他数字设备提供了强大的计算和控制能力。

数字逻辑 知识点总结大全

数字逻辑 知识点总结大全

数字逻辑知识点总结大全数字逻辑是一门研究数字信号在计算机中传输和处理的学科,它涉及到数字电路和逻辑电路的设计、分析和应用。

数字逻辑在计算机科学、电子工程、通信工程等领域都有着广泛的应用。

下面将对数字逻辑的知识点进行详细的总结,包括数字系统、布尔代数、逻辑门、时序逻辑和组合逻辑等内容。

数字系统数字系统是由有限个数的符号和数字组成的一种系统。

在计算机中,使用的数字系统一般为二进制,即由0和1组成。

除了二进制,还有十进制、八进制和十六进制等其他进制系统。

其中,二进制是计算机内部使用的基本进制。

数字系统中的基本概念包括位、字节、字和字长。

位是数字系统中的最小单位,它只有两种状态:0和1。

字节是8位的二进制数,用来表示一个字符或一个字母。

字是由多个字节组成的一个固定长度的数据单元。

而字长是一个数字系统中的字的长度,它决定了一个数字系统中能够表示的最大的数值范围。

布尔代数布尔代数是一种逻辑代数,它用来描述逻辑语句的真假情况。

在布尔代数中,所有逻辑变量的取值只有两种情况:真和假。

布尔代数中的基本运算包括与运算、或运算和非运算。

与运算表示两个逻辑变量同时为真时结果为真,否则为假;或运算表示两个逻辑变量中任意一个为真时结果为真,否则为假;非运算表示逻辑变量的取值取反。

布尔代数中的定理包括分配律、结合律、德摩根定律、消去律等。

这些定理是布尔代数中的基本规则,用于简化布尔表达式,并帮助我们理解逻辑电路的设计和分析。

逻辑门逻辑门是数字电路中的基本组成部分,它用来实现布尔代数中的逻辑运算。

逻辑门一般包括与门、或门、非门、异或门、与非门、或非门等类型。

这些门都有着特定的逻辑功能和真值表。

与门表示与运算,或门表示或运算,非门表示非运算,异或门表示异或运算,与非门表示与非运算,或非门表示或非运算。

这些逻辑门可以组成各种复杂的逻辑电路,包括加法器、减法器、多路选择器、触发器、寄存器等。

时序逻辑时序逻辑是数字逻辑中的一个重要分支,它涉及到数字电路中的时序关系和时序控制。

数字逻辑——精选推荐

数字逻辑——精选推荐

数字逻辑3)按计数增减分:加法计数器,减法计数器,加/减法计数器.7.3.1 异步计数器⼀,异步⼆进制计数器1,异步⼆进制加法计数器分析图7.3.1 由JK触发器组成的4位异步⼆进制加法计数器.分析⽅法:由逻辑图到波形图(所有JK触发器均构成为T/ 触发器的形式,且后⼀级触发器的时钟脉冲是前⼀级触发器的输出Q),再由波形图到状态表,进⽽分析出其逻辑功能.2,异步⼆进制减法计数器减法运算规则:0000-1时,可视为(1)0000-1=1111;1111-1=1110,其余类推.注:74LS163的引脚排列和74LS161相同,不同之处是74LS163采⽤同步清零⽅式.(2)CT74LS161的逻辑功能①=0时异步清零.C0=0②=1,=0时同步并⾏置数.③==1且CPT=CPP=1时,按照4位⾃然⼆进制码进⾏同步⼆进制计数.④==1且CPT·CPP=0时,计数器状态保持不变.4,反馈置数法获得N进制计数器⽅法如下:·写出状态SN-1的⼆进制代码.·求归零逻辑,即求置数控制端的逻辑表达式.·画连线图.(集成计数器中,清零,置数均采⽤同步⽅式的有74LS163;均采⽤异步⽅式的有74LS193,74LS197,74LS192;清零采⽤异步⽅式,置数采⽤同步⽅式的有74LS161,74LS160;有的只具有异步清零功能,如CC4520,74LS190,74LS191;74LS90则具有异步清零和异步置9功能.等等)试⽤CT74LS161构成模⼩于16的N进制计数器5,同步⼆进制加/减计数器⼆,同步⼗进制加法计数器8421BCD码同步⼗进制加法计数器电路分析三,集成同计数器1,集成⼗进制同步加法计数器CT74LS160(1)CT74LS160的引脚排列和逻辑功能⽰意图图7.3.3 CT74LS160的引脚排列图和逻辑功能⽰意图(2)CT74LS160的逻辑功能①=0时异步清零.C0=0②=1,=0时同步并⾏置数.③==1且CPT=CPP=1时,按照BCD码进⾏同步⼗进制计数.④==1且CPT·CPP=0时,计数器状态保持不变.2.集成⼗进制同步加/减计数器CT74LS190其逻辑功能⽰意图如教材图7.3.15所⽰.功能如教材表7.3.10所⽰.集成计数器⼩结:集成⼗进制同步加法计数器74160,74162的引脚排列图,逻辑功能⽰意图与74161,74163相同,不同的是,74160和74162是⼗进制同步加法计数器,⽽74161和74163是4位⼆进制(16进制)同步加法计数器.此外,74160和74162的区别是,74160采⽤的是异步清零⽅式,⽽74162采⽤的是同步清零⽅式.74190是单时钟集成⼗进制同步可逆计数器,其引脚排列图和逻辑功能⽰意图与74191相同.74192是双时钟集成⼗进制同步可逆计数器,其引脚排列图和逻辑功能⽰意图与74193相同.7.3.3 利⽤计数器的级联获得⼤容量N进制计数器计数器的级联是将多个计数器串接起来,以获得计数容量更⼤的N进制计数器.1,异步计数器⼀般没有专门的进位信号输出端,通常可以⽤本级的⾼位输出信号驱动下⼀级计数器计数,即采⽤串⾏进位⽅式来扩展容量.举例:74LS290(1)100进制计数器(2)64进制计数器2,同步计数器有进位或借位输出端,可以选择合适的进位或借位输出信号来驱动下⼀级计数器计数.同步计数器级联的⽅式有两种,⼀种级间采⽤串⾏进位⽅式,即异步⽅式,这种⽅式是将低位计数器的进位输出直接作为⾼位计数器的时钟脉冲,异步⽅式的速度较慢.另⼀种级间采⽤并⾏进位⽅式,即同步⽅式,这种⽅式⼀般是把各计数器的CP端连在⼀起接统⼀的时钟脉冲,⽽低位计数器的进位输出送⾼位计数器的计数控制端.举例:74161(1)60进制(2)12位⼆进制计数器(慢速计数⽅式)12位⼆进制计数器(快速计数⽅式)7.4 寄存器和移位寄存器寄存器是由具有存储功能的触发器组合起来构成的.⼀个触发器可以存储1位⼆进制代码,存放n位⼆进制代码的寄存器,需⽤n个触发器来构成.按照功能的不同,可将寄存器分为基本寄存器和移位寄存器两⼤类.基本寄存器只能并⾏送⼊数据,需要时也只能并⾏输出.移位寄存器中的数据可以在移位脉冲作⽤下依次逐位右移或左移,数据既可以并⾏输⼊,并⾏输出,也可以串⾏输⼊,串⾏输出,还可以并⾏输⼊,串⾏输出,串⾏输⼊,并⾏输出,⼗分灵活,⽤途也很⼴.7.4.1 基本寄存器概念:在数字电路中,⽤来存放⼆进制数据或代码的电路称为寄存器.1,单拍⼯作⽅式基本寄存器⽆论寄存器中原来的内容是什么,只要送数控制时钟脉冲CP上升沿到来,加在并⾏数据输⼊端的数据D0~D3,就⽴即被送⼊进寄存器中,即有:2.双拍⼯作⽅式基本寄存器(1)清零.CR=0,异步清零.即有:(2)送数.CR=1时,CP上升沿送数.即有:(3)保持.在CR=1,CP上升沿以外时间,寄存器内容将保持不变.7.4.2 移位寄存器1.单向移位寄存器四位右移寄存器:时钟⽅程:驱动⽅程:状态⽅程:右移位寄存器的状态表:输⼊现态次态Di CP1 ↑1 ↑1 ↑1 ↑0 0 0 01 0 0 01 1 0 01 1 1 01 0 0 01 1 0 01 1 1 01 1 1 1连续输⼊4个1单向移位寄存器具有以下主要特点:单向移位寄存器中的数码,在CP脉冲操作下,可以依次右移或左移.n位单向移位寄存器可以寄存n位⼆进制代码.n个CP脉冲即可完成串⾏输⼊⼯作,此后可从Q0~Qn-1端获得并⾏的n位⼆进制数码,再⽤n个CP脉冲⼜可实现串⾏输出操作.若串⾏输⼊端状态为0,则n个CP脉冲后,寄存器便被清零.2.双向移位寄存器M=0时右移M=1时左移3.集成双向移位寄存器74LS194CT74LS194的引脚排列图和逻辑功能⽰意图:CT74LS194的功能表:⼯作状态0 × × ×1 0 0 ×1 1 0 ↑1 1 1 ×异步清零保持右移左移并⾏输⼊7.4.3 移位寄存器的应⽤⼀,环形计数器1,环形计数器是将单向移位寄存器的串⾏输⼊端和串⾏输出端相连, 构成⼀个闭合的环.结构特点:,即将FFn-1的输出Qn-1接到FF0的输⼊端D0.⼯作原理:根据起始状态设置的不同,在输⼊计数脉冲CP的作⽤下,环形计数器的有效状态可以循环移位⼀个1,也可以循环移位⼀个0.即当连续输⼊CP脉冲时,环形计数器中各个触发器的Q端或端,将轮流地出现矩形脉冲.实现环形计数器时,必须设置适当的初态,且输出Q3Q2Q1Q0端初始状态不能完全⼀致(即不能全为"1"或"0"),这样电路才能实现计数, 环形计数器的进制数N与移位寄存器内的触发器个数n相等,即N=n2,能⾃启动的4位环形计数器状态图:由74LS194构成的能⾃启动的4位环形计数器时序图⼆,扭环形计数器1,扭环形计数器是将单向移位寄存器的串⾏输⼊端和串⾏反相输出端相连,构成⼀个闭合的环.实现扭环形计数器时,不必设置初态.扭环形计数器的进制数N与移位寄存器内的触发器个数n满⾜N=2n的关系结构特点为:,即将FFn-1的输出接到FF0的输⼊端D0.状态图:2,能⾃启动的4位扭环形计数器7.4.4 顺序脉冲发⽣器在数字电路中,能按⼀定时间,⼀定顺序轮流输出脉冲波形的电路称为顺序脉冲发⽣器.顺序脉冲发⽣器也称脉冲分配器或节拍脉冲发⽣器,⼀般由计数器(包括移位寄存器型计数器)和译码器组成.作为时间基准的计数脉冲由计数器的输⼊端送⼊,译码器即将计数器状态译成输出端上的顺序脉冲,使输出端上的状态按⼀定时间,⼀定顺序轮流为1,或者轮流为0.前⾯介绍过的环形计数器的输出就是顺序脉冲,故可不加译码电路即可直接作为顺序脉冲发⽣器.⼀,计数器型顺序脉冲发⽣器计数器型顺序脉冲发⽣器⼀般⽤按⾃然态序计数的⼆进制计数器和译码器构成.举例:⽤集成计数器74LS163和集成3线-8线译码器74LS138构成的8输出顺序脉冲发⽣器.⼆,移位型顺序脉冲发⽣器◎移位型顺序脉冲发⽣器由移位寄存器型计数器加译码电路构成.其中环形计数器的输出就是顺序脉冲,故可不加译码电路就可直接作为顺序脉冲发⽣器.◎时序图:◎由CT74LS194构成的顺序脉冲发⽣器见教材P233的图7.4.6和图7.4.77.5 同步时序电路的设计(略)7.6 数字系统⼀般故障的检查和排除(略)本章⼩结计数器是⼀种应⽤⼗分⼴泛的时序电路,除⽤于计数,分频外,还⼴泛⽤于数字测量,运算和控制,从⼩型数字仪表,到⼤型数字电⼦计算机,⼏乎⽆所不在,是任何现代数字系统中不可缺少的组成部分.计数器可利⽤触发器和门电路构成.但在实际⼯作中,主要是利⽤集成计数器来构成.在⽤集成计数器构成N进制计数器时,需要利⽤清零端或置数控制端,让电路跳过某些状态来获得N进制计数器.寄存器是⽤来存放⼆进制数据或代码的电路,是⼀种基本时序电路.任何现代数字系统都必须把需要处理的数据和代码先寄存起来,以便随时取⽤.寄存器分为基本寄存器和移位寄存器两⼤类.基本寄存器的数据只能并⾏输⼊,并⾏输出.移位寄存器中的数据可以在移位脉冲作⽤下依次逐位右移或左移,数据可以并⾏输⼊,并⾏输出,串⾏输⼊,串⾏输出,并⾏输⼊,串⾏输出,串⾏输⼊,并⾏输出.寄存器的应⽤很⼴,特别是移位寄存器,不仅可将串⾏数码转换成并⾏数码,或将并⾏数码转换成串⾏数码,还可以很⽅便地构成移位寄存器型计数器和顺序脉冲发⽣器等电路.在数控装置和数字计算机中,往往需要机器按照⼈们事先规定的顺序进⾏运算或操作,这就要求机器的控制部分不仅能正确地发出各种控制信号,⽽且要求这些控制信号在时间上有⼀定的先后顺序.通常采取的⽅法是,⽤⼀个顺序脉冲发⽣器来产⽣时间上有先后顺序的脉冲,以控制系统各部分协调地⼯作.顺序脉冲发⽣器分计数型和移位型两类.计数型顺序脉冲发⽣器状态利⽤率⾼,但由于每次CP信号到来时,可能有两个或两个以上的触发器翻转,因此会产⽣竞争冒险,需要采取措施消除.移位型顺序脉冲发⽣器没有竞争冒险问题,但状态利⽤率低.由JK触发器组成的4位异步⼆进制减法计数器的⼯作情况分析略.⼆,异步⼗进制加法计数器由JK触发器组成的异步⼗进制加法计数器的由来:在4位异步⼆进制加法计数器的基础上经过适当修改获得.有效状态:0000——1001⼗个状态;⽆效状态:1010~1111六个状态.三,集成异步计数器CT74LS290为了达到多功能的⽬的,中规模异步计数器往往采⽤组合式的结构,即由两个独⽴的计数来构成整个的计数器芯⽚.如:74LS90(290):由模2和模5的计数器组成;74LS92 :由模2和模6的计数器组成;74LS93 :由模2和模8的计数器组成.1.CT74LS290的情况如下.(1)电路结构框图和逻辑功能⽰意图(2)逻辑功能如下表7.3.1所⽰.注:5421码⼗进制计数时,从⾼位到低位的输出为.2,利⽤反馈归零法获得N(任意正整数)进制计数器⽅法如下:(1)写出状态SN的⼆进制代码.(2)求归零逻辑(写出反馈归零函数),即求异步清零端(或置数控制端)信号的逻辑表达式.(3)画连线图.举例:试⽤CT74LS290构成模⼩于⼗的N进制计数器.CT74LS290则具有异步清零和异步置9功能.讲解教材P215的[例7.3.1].注:CT74LS90的功能与CT74LS290基本相同.7.3.2 同步计数器⼀,同步⼆进制计数器1.同步⼆进制加法计数器2,同步⼆进制减法计数器3,集成同步⼆进制计数器CT74LS161(1)CT74LS161的引脚排列和逻辑功能⽰意图注:74LS163的引脚排列和74LS161相同,不同之处是74LS163采⽤同步清零⽅式.(2)CT74LS161的逻辑功能①=0时异步清零.C0=0②=1,=0时同步并⾏置数.③==1且CPT=CPP=1时,按照4位⾃然⼆进制码进⾏同步⼆进制计数.④==1且CPT·CPP=0时,计数器状态保持不变.4,反馈置数法获得N进制计数器⽅法如下:·写出状态SN-1的⼆进制代码.·求归零逻辑,即求置数控制端的逻辑表达式.·画连线图.(集成计数器中,清零,置数均采⽤同步⽅式的有74LS163;均采⽤异步⽅式的有74LS193,74LS197,74LS192;清零采⽤异步⽅式,置数采⽤同步⽅式的有74LS161,74LS160;有的只具有异步清零功能,如CC4520,74LS190,74LS191;74LS90则具有异步清零和异步置9功能.等等)试⽤CT74LS161构成模⼩于16的N进制计数器5,同步⼆进制加/减计数器⼆,同步⼗进制加法计数器8421BCD码同步⼗进制加法计数器电路分析三,集成同计数器1,集成⼗进制同步加法计数器CT74LS160(1)CT74LS160的引脚排列和逻辑功能⽰意图图7.3.3 CT74LS160的引脚排列图和逻辑功能⽰意图(2)CT74LS160的逻辑功能①=0时异步清零.C0=0②=1,=0时同步并⾏置数.③==1且CPT=CPP=1时,按照BCD码进⾏同步⼗进制计数.④==1且CPT·CPP=0时,计数器状态保持不变.2.集成⼗进制同步加/减计数器CT74LS190其逻辑功能⽰意图如教材图7.3.15所⽰.功能如教材表7.3.10所⽰.集成计数器⼩结:集成⼗进制同步加法计数器74160,74162的引脚排列图,逻辑功能⽰意图与74161,74163相同,不同的是,74160和74162是⼗进制同步加法计数器,⽽74161和74163是4位⼆进制(16进制)同步加法计数器.此外,74160和74162的区别是,74160采⽤的是异步清零⽅式,⽽74162采⽤的是同步清零⽅式.74190是单时钟集成⼗进制同步可逆计数器,其引脚排列图和逻辑功能⽰意图与74191相同.74192是双时钟集成⼗进制同步可逆计数器,其引脚排列图和逻辑功能⽰意图与74193相同.7.3.3 利⽤计数器的级联获得⼤容量N进制计数器计数器的级联是将多个计数器串接起来,以获得计数容量更⼤的N进制计数器.1,异步计数器⼀般没有专门的进位信号输出端,通常可以⽤本级的⾼位输出信号驱动下⼀级计数器计数,即采⽤串⾏进位⽅式来扩展容量.举例:74LS290(1)100进制计数器(2)64进制计数器2,同步计数器有进位或借位输出端,可以选择合适的进位或借位输出信号来驱动下⼀级计数器计数.同步计数器级联的⽅式有两种,⼀种级间采⽤串⾏进位⽅式,即异步⽅式,这种⽅式是将低位计数器的进位输出直接作为⾼位计数器的时钟脉冲,异步⽅式的速度较慢.另⼀种级间采⽤并⾏进位⽅式,即同步⽅式,这种⽅式⼀般是把各计数器的CP端连在⼀起接统⼀的时钟脉冲,⽽低位计数器的进位输出送⾼位计数器的计数控制端.举例:74161(1)60进制(2)12位⼆进制计数器(慢速计数⽅式)12位⼆进制计数器(快速计数⽅式)7.4 寄存器和移位寄存器寄存器是由具有存储功能的触发器组合起来构成的.⼀个触发器可以存储1位⼆进制代码,存放n位⼆进制代码的寄存器,需⽤n个触发器来构成.按照功能的不同,可将寄存器分为基本寄存器和移位寄存器两⼤类.基本寄存器只能并⾏送⼊数据,需要时也只能并⾏输出.移位寄存器中的数据可以在移位脉冲作⽤下依次逐位右移或左移,数据既可以并⾏输⼊,并⾏输出,也可以串⾏输⼊,串⾏输出,还可以并⾏输⼊,串⾏输出,串⾏输⼊,并⾏输出,⼗分灵活,⽤途也很⼴.7.4.1 基本寄存器概念:在数字电路中,⽤来存放⼆进制数据或代码的电路称为寄存器.1,单拍⼯作⽅式基本寄存器⽆论寄存器中原来的内容是什么,只要送数控制时钟脉冲CP上升沿到来,加在并⾏数据输⼊端的数据D0~D3,就⽴即被送⼊进寄存器中,即有:2.双拍⼯作⽅式基本寄存器(1)清零.CR=0,异步清零.即有:(2)送数.CR=1时,CP上升沿送数.即有:(3)保持.在CR=1,CP上升沿以外时间,寄存器内容将保持不变.7.4.2 移位寄存器1.单向移位寄存器四位右移寄存器:时钟⽅程:驱动⽅程:状态⽅程:右移位寄存器的状态表:输⼊现态说明Di CP1 ↑1 ↑1 ↑1 ↑0 0 0 01 0 0 01 1 0 01 1 1 01 0 0 01 1 0 01 1 1 01 1 1 1连续输⼊4个1单向移位寄存器具有以下主要特点:单向移位寄存器中的数码,在CP脉冲操作下,可以依次右移或左移.n位单向移位寄存器可以寄存n位⼆进制代码.n个CP脉冲即可完成串⾏输⼊⼯作,此后可从Q0~Qn-1端获得并⾏的n位⼆进制数码,再⽤n个CP脉冲⼜可实现串⾏输出操作.若串⾏输⼊端状态为0,则n个CP脉冲后,寄存器便被清零.2.双向移位寄存器M=0时右移M=1时左移3.集成双向移位寄存器74LS194CT74LS194的引脚排列图和逻辑功能⽰意图:CT74LS194的功能表:⼯作状态0 × × ×1 0 1 ↑1 1 0 ↑1 1 1 ×异步清零保持右移左移并⾏输⼊7.4.3 移位寄存器的应⽤⼀,环形计数器1,环形计数器是将单向移位寄存器的串⾏输⼊端和串⾏输出端相连, 构成⼀个闭合的环.结构特点:,即将FFn-1的输出Qn-1接到FF0的输⼊端D0.⼯作原理:根据起始状态设置的不同,在输⼊计数脉冲CP的作⽤下,环形计数器的有效状态可以循环移位⼀个1,也可以循环移位⼀个0.即当连续输⼊CP脉冲时,环形计数器中各个触发器的Q端或端,将轮流地出现矩形脉冲.实现环形计数器时,必须设置适当的初态,且输出Q3Q2Q1Q0端初始状态不能完全⼀致(即不能全为"1"或"0"),这样电路才能实现计数, 环形计数器的进制数N与移位寄存器内的触发器个数n相等,即N=n2,能⾃启动的4位环形计数器状态图:由74LS194构成的能⾃启动的4位环形计数器时序图⼆,扭环形计数器1,扭环形计数器是将单向移位寄存器的串⾏输⼊端和串⾏反相输出端相连,构成⼀个闭合的环.实现扭环形计数器时,不必设置初态.扭环形计数器的进制数N与移位寄存器内的触发器个数n满⾜N=2n的关系结构特点为:,即将FFn-1的输出接到FF0的输⼊端D0.状态图:2,能⾃启动的4位扭环形计数器7.4.4 顺序脉冲发⽣器在数字电路中,能按⼀定时间,⼀定顺序轮流输出脉冲波形的电路称为顺序脉冲发⽣器.顺序脉冲发⽣器也称脉冲分配器或节拍脉冲发⽣器,⼀般由计数器(包括移位寄存器型计数器)和译码器组成.作为时间基准的计数脉冲由计数器的输⼊端送⼊,译码器即将计数器状态译成输出端上的顺序脉冲,使输出端上的状态按⼀定时间,⼀定顺序轮流为1,或者轮流为0.前⾯介绍过的环形计数器的输出就是顺序脉冲,故可不加译码电路即可直接作为顺序脉冲发⽣器.⼀,计数器型顺序脉冲发⽣器计数器型顺序脉冲发⽣器⼀般⽤按⾃然态序计数的⼆进制计数器和译码器构成.举例:⽤集成计数器74LS163和集成3线-8线译码器74LS138构成的8输出顺序脉冲发⽣器.⼆,移位型顺序脉冲发⽣器◎移位型顺序脉冲发⽣器由移位寄存器型计数器加译码电路构成.其中环形计数器的输出就是顺序脉冲,故可不加译码电路就可直接作为顺序脉冲发⽣器.◎时序图:◎由CT74LS194构成的顺序脉冲发⽣器见教材P233的图7.4.6和图7.4.77.5 同步时序电路的设计(略)7.6 数字系统⼀般故障的检查和排除(略)本章⼩结计数器是⼀种应⽤⼗分⼴泛的时序电路,除⽤于计数,分频外,还⼴泛⽤于数字测量,运算和控制,从⼩型数字仪表,到⼤型数字电⼦计算机,⼏乎⽆所不在,是任何现代数字系统中不可缺少的组成部分.计数器可利⽤触发器和门电路构成.但在实际⼯作中,主要是利⽤集成计数器来构成.在⽤集成计数器构成N进制计数器时,需要利⽤清零端或置数控制端,让电路跳过某些状态来获得N进制计数器.寄存器是⽤来存放⼆进制数据或代码的电路,是⼀种基本时序电路.任何现代数字系统都必须把需要处理的数据和代码先寄存起来,以便随时取⽤.寄存器分为基本寄存器和移位寄存器两⼤类.基本寄存器的数据只能并⾏输⼊,并⾏输出.移位寄存器中的数据可以在移位脉冲作⽤下依次逐位右移或左移,数据可以并⾏输⼊,并⾏输出,串⾏输⼊,串⾏输出,并⾏输⼊,串⾏输出,串⾏输⼊,并⾏输出.寄存器的应⽤很⼴,特别是移位寄存器,不仅可将串⾏数码转换成并⾏数码,或将并⾏数码转换成串⾏数码,还可以很⽅便地构成移位寄存器型计数器和顺序脉冲发⽣器等电路.在数控装置和数字计算机中,往往需要机器按照⼈们事先规定的顺序进⾏运算或操作,这就要求机器的控制部分不仅能正确地发出各种控制信号,⽽且要求这些控制信号在时间上有⼀定的先后顺序.通常采取的⽅法是,⽤⼀个顺序脉冲发⽣器来产⽣时间上有先后顺序的脉冲,以控制系统各部分协调地⼯作.顺序脉冲发⽣器分计数型和移位型两类.计数型顺序脉冲发⽣器状态利⽤率⾼,但由于每次CP信号到来时,可能有两个或两个以上的触发器翻转,因此会产⽣竞争冒险,需要采取措施消除.移位型顺序脉冲发⽣器没有竞争冒险问题,但状态利⽤率低.。

数字逻辑知识点总结公式

数字逻辑知识点总结公式

数字逻辑知识点总结公式1. 基本逻辑门在数字逻辑电路中,最基本的逻辑门有与门、或门和非门。

它们是数字逻辑电路的基本构建单元,由它们可以组合成各种逻辑功能。

逻辑门的公式如下:- 与门:当且仅当所有输入端都为高电平时,输出端才为高电平。

公式表示为Y = A * B,其中*代表逻辑与运算。

- 或门:当任意一个输入端为高电平时,输出端就为高电平。

公式表示为Y = A + B,其中+代表逻辑或运算。

- 非门:输出端与输入端相反,即当输入端为高电平时,输出端为低电平;当输入端为低电平时,输出端为高电平。

公式表示为Y = !A,其中!代表逻辑非运算。

这些逻辑门可以通过晶体管、集成电路等实现,是数字逻辑电路的基础。

2. 布尔代数布尔代数是一种数学系统,它定义了逻辑运算的代数规则。

在布尔代数中,逻辑变量只有两个取值:0和1。

布尔代数的基本运算包括逻辑与、逻辑或、逻辑非等,并且满足交换律、结合律、分配律等规则。

布尔代数的公式如下:- 逻辑与:A * B- 逻辑或:A + B- 逻辑非:!A布尔代数的运算规则能够帮助我们简化逻辑表达式,设计更简洁高效的逻辑电路。

3. 编码器和译码器编码器和译码器是数字逻辑电路中常用的功能模块,它们用来将输入信号转换为特定的编码形式,或将编码信号转换为原始信号。

编码器的公式如下:- n到m线编码器:将n个输入线转换为m位二进制编码。

输出端有2^m个不同状态。

公式表示为Y = f(A0, A1, ..., An),其中Y为输出,A0~An为输入。

编码方式有优先编码、格雷码等。

- m到n线译码器:将m位二进制编码转换为n个输出线的信号。

公式表示为Y0 = f0(A0, A1,..., Am-1),Y1 = f1(A0, A1,..., Am-1),...,其中Y0~Yn为输出,A0~Am-1为输入。

编码器和译码器广泛应用于数字信号的处理和通信系统中。

4. 多路选择器和解码器多路选择器和解码器是数字逻辑电路中的另外两种常用功能模块。

数字逻辑知识点总结大全

数字逻辑知识点总结大全

数字逻辑知识点总结大全数字逻辑是一门研究数字电路的科学,是计算机工程和电子工程的基础。

数字逻辑通过对数字信号的处理和处理,来实现各种功能。

数字逻辑的知识点包括布尔代数,逻辑门,编码器,译码器,寄存器,计数器等等。

本文将对数字逻辑的知识点进行系统总结,以便读者更好地理解和掌握数字逻辑的知识。

1. 布尔代数布尔代数是数字逻辑的基础,它用于描述逻辑信号的运算和表示。

布尔代数包括与运算、或运算、非运算、异或运算等逻辑运算规则。

布尔代数中的符号有"∧"、"∨"、"¬"、"⊕"表示与、或、非、异或运算。

布尔代数可以用于构建逻辑方程、化简逻辑表达式、设计逻辑电路等。

2. 逻辑门逻辑门是数字电路的基本组成单元,实现了布尔代数的逻辑运算。

常见的逻辑门包括与门、或门、非门、异或门等,它们分别实现了逻辑与、逻辑或、逻辑非、逻辑异或运算。

逻辑门通过组合和连接可以实现各种复杂的逻辑功能,是数字逻辑电路的基础。

3. 编码器和译码器编码器和译码器是数字逻辑中的重要元件,用于实现数据的编码和解码。

编码器将多个输入信号编码成少量的输出信号,译码器则反之。

常见的编码器包括二进制编码器、BCD编码器等,常见的译码器包括二进制译码器、BCD译码器等。

4. 寄存器寄存器是数字逻辑中的重要存储单元,用于存储二进制数据。

寄存器可以实现数据的暂存、延时、并行传输等功能。

常见的寄存器包括移位寄存器、并行寄存器、串行寄存器等,它们按照不同的存储方式和结构实现了不同的功能。

5. 计数器计数器是数字逻辑中的重要计数单元,用于实现计数功能。

计数器可以按照不同的计数方式实现不同的计数功能,常见的计数器包括二进制计数器、BCD计数器、模数计数器等。

6. 时序逻辑时序逻辑是数字逻辑中的重要内容,它描述数字电路在不同时间点的状态和行为。

时序逻辑包括触发器、时钟信号、同步电路、异步电路等,它们用于描述数字电路的时序关系并实现相关功能。

数字逻辑课件

数字逻辑课件

数字信号 u t
特点是脉冲式的,只有两种状态: 有脉冲和无脉冲。 一般我们用高电平代表有脉冲,低电平代表无脉 冲----正逻辑 当然也可以反过来定义----负逻辑
研究数字电路时注重电路输出、
输入间的逻辑关系,因此不能采用 模拟电路的分析方法。主要的分析 工具是逻辑代数,时序图,逻辑电 路图等。
2 1 0
位权
一个十进制数 N可以表示成加权和的形式: D:decimal
( N )D
n 1 i m
取值
ai 10i
权重
若用电子电路进行十进制数运算, 必须要有十个电路状态与十个数码相对 应。这样将在技术上带来许多困难,电 路复杂,运算速度慢,而且很不经济。 早期的模拟计算机就是如此。
• 方法: 整数部分 • --从低位(小数点左边第一位)开始,每三位二进制数分为一组, 最后不足三位的前面补零,每组用一位等价的八进制数来代替; 小数部分 • --从高位(小数点右边第一位)开始,每三位二进制数分为一组, 最后不足三位的后面补零,然后按顺序写出对应的八进制数。
• 例:将二进制数(10111101.01110111)2转换为八进制数。
开关合为逻辑1开关断为逻辑0灯亮为逻辑1灯灭为逻辑0非逻辑逻辑反非逻辑真值表非逻辑关系非逻辑关系表示式与非逻辑真值表与非逻辑表达式与非逻辑表达式ab或非逻辑真值表或非逻辑表达式或非逻辑表达式cdab两输入变量ab不同时输出y为1而ab相同时输出y为0两输入变量ab相同时输出y为1而ab不同时输出y为0yyaabb运算类型逻辑表达式功能说明相同为1不同为0abcdabcdab与非逻辑或非逻辑与或非逻辑异或逻辑同或逻辑复合逻辑关系小结乘运算规则
t
对模拟信号进行传输、 处理的电子线路称为 模拟电路。

数字逻辑及数字集成电路

数字逻辑及数字集成电路

数字逻辑及数字集成电路
数字逻辑和数字集成电路都是数字电路的核心技术,它们提供了安全、可靠的电路设计。

数字逻辑指的是使用逻辑来表达电路的一种方法,是把信号编码为二进制数字信号,根据逻辑符号来设计和分析电路的。

逻辑电路的设计目的是控制、记录或者处理数字信号,满足一定的功能需求,它们是计算机系统的基础。

数字集成电路是一种集成式电子装置,它把元件(如阻值、电感、变换器)、器件(如功率放大器、比较器)和电路(如反馈电路、模拟/数字转换器)整合在一起,用于存储、信号处理和控制电路中。

它们相比其它的晶体管和晶体管的电路非常的小,具有体积小、可靠性高、功耗低以及安装方便等优点。

数字集成电路实际上是以比特信号形式表示的,把复杂的功能作为一种芯片,可以应用于现在的大多数数码产品中。

数字逻辑和数字集成电路以其无与伦比的优势,已广泛应用于计算机、通信和电子系统等领域中。

它们为计算机、信息处理系统、智能家居系统、汽车电子系统、安全认证系统等提供了安全、可靠的电路设计。

未来的数字技术将会发展的更加智能化,智能化的电子产品也会在不久的未来普及,数字逻辑和数字集成电路将会为这一切发展提供支持和贡献。

数字逻辑课程知识点总结

数字逻辑课程知识点总结

数字逻辑课程知识点总结数字逻辑是计算机科学和电子工程中非常重要的基础知识之一。

数字逻辑课程主要介绍数字系统的基本概念和原理,包括数字信号的表示和处理、数字逻辑元件的设计和应用、数字系统的组成和设计方法等。

本文将针对数字逻辑课程的主要知识点进行总结,希望能帮助读者对这一领域有更深入的理解。

数字逻辑基本概念1. 数字系统和数制数字系统是一种用来表示和处理数字信息的系统,而数制是表示数字的一种方法。

在数字逻辑中,我们常用的数制有二进制、八进制和十进制等。

不同的数制有不同的特点和应用,例如二进制适合于数字电路的设计和计算机的处理,而十进制适合于人类的日常计数。

2. 逻辑代数逻辑代数是用来描述和分析逻辑运算的一种代数体系,其中包括逻辑运算符、逻辑表达式、逻辑函数等。

在数字逻辑中,我们经常使用的逻辑代数包括与、或、非等基本逻辑运算符,以及逻辑表达式的简化和化简方法。

数字逻辑元件1. 逻辑门逻辑门是数字电路中最基本的元件,它用来实现不同的逻辑运算。

常见的逻辑门包括与门、或门、非门等,它们分别实现与运算、或运算、非运算等基本逻辑功能。

2. 组合逻辑电路组合逻辑电路由多个逻辑门和其他逻辑元件组成,用来实现复杂的逻辑运算和功能。

在数字逻辑中,我们需要学习组合逻辑电路的设计原理和实现方法,以及相关的逻辑运算和化简技巧。

3. 时序逻辑电路时序逻辑电路是在组合逻辑电路的基础上加入时钟信号和触发器等元件,用来实现时序逻辑功能和时序控制。

学习时序逻辑电路需要掌握时钟信号和触发器的基本原理,以及时序逻辑电路的设计和分析方法。

数字系统设计方法1. 进制转换进制转换是将不同数制的数值相互转换的过程,常见的转换包括二进制到十进制、十进制到二进制、二进制到八进制等。

掌握进制转换的方法和技巧对于理解数字系统和进行数字逻辑设计非常重要。

2. 逻辑函数的表示和化简逻辑函数是描述逻辑关系的代数表达式,可以通过真值表、卡诺图、奇偶检验等方法来表示和化简。

数字逻辑电路大全

数字逻辑电路大全
5.74LS系列——为低功耗肖特基系列。 6.74AS系列——为先进肖特基系列, 它是74S系列的后继产品。 7.74ALS系列——为先进低 功耗肖特基系列, 是74LS系列的后继产品。
2.3 MOS逻辑门电路
一、 NMOS门电路 1.NMOS非门
V D D (+ 12V )
V D D (+ 12V )
R b1
Rc2
4K
1 .6 K
+ VC C( + 5 V )
1
3
31
A
2T 2
L
T1 B
3
1
2T 3
R e2
1K
A
&
L
B
OC门主要有以下几方面的应用:
(1)实现线与。 电路如右图所示,逻辑关系为:
A B
(2)实现电平转换。 如图示,可使输出高电平变为10V。 C
D
+10V
& VO
(3)用做驱动器。 如图是用来驱动发光二极管的电路。
六、 TTL门电路的其他类型
1.非门
+VCC
Rc 2
Rc4
R b1
3
1
T2 4
1
3
31
2T2
A
T1
D
L
1
A
3
1
2T 3
Re2
L=A
(a)
(b)
2.或非门
R1A
R2
R1B
1
+VCC R4
3
T2 4
1 1
33
D
A
31
T1A
T22A T22B
13
T1B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 集成门电路与触发器
2. 开通时间 开通时间:二极管从反向截止到正向导通的时间称为开 通时间。 二极管的开通时间很短,对开关速度影响很小,相 对反向恢复时间而言几乎可以忽略不计。
第三章 集成门电路与触发器
3.2.2 晶体三极管的开关特性
一、静态特性 晶体三极管由集电结和发射结两个PN结构成。根据两 个PN结的偏置极性,三极管有截止、放大、饱和3种工作 状态。
TTL(Transistor Transistor Logic)电路是晶体 管-晶体管逻辑电路的简称。 TTL电路的功耗大、线路较复杂,使其集成度受到 一定的限制,故广泛应用于中小规模逻辑电路中。
下面,对几种常见TTL门电路进行介绍,重点讨论TTL 与非门。
第三章 集成门电路与触发器
一、典型TTL与非门 1. 电路结构及工作原理 (1) 电路结构 典型TTL与非门电 路图及相应逻辑符号如 右图所示。 该电路可按 图中虚线划分为三部分: 输入级—— 由多发射极晶体管T1和电阻R1组成; 中间级—— 由晶体管T2和电阻R2、R3组成; 输出级—— 由晶体管T3、T4、D4和电阻R4、R5组成。
3.2.1 晶体二极管的开关特性
一、静态特性 静态特性是指二极管在导通和截止两种稳定状态下的特性。
第三章 集成门电路与触发器
典型二极管的静态特性曲线 (又称伏安特性曲线) : 1. 正向特性
门槛电压 ( VTH ):使二极管开始导通的正向电压,又称为阈值 电压 (一般锗管约0.1V,硅管约0.5V)。 ★正向电压 VD ≤ VTH :管子截止,电阻很大、正向电流 IF 接近 于 0, 二极管类似于开关的断开状态 ; ★正向电压 VD = VTH :管子开始导通,正向电流 IF 开始上升; ★正向电压 VD >VTH (一般锗管为0.3V,硅管为0.7V) :管子充 分导通, 电阻很小,正向电流IF 急剧增加,二极管类似于开关的接 通状态。使二极管充分导通的电压为导通电压,用VF表示。
端 悬空时,流过接地输入端的电流。
(8) 高电平输入电流IiH:指某一输入端接高电平,而其他输入端接地
时,流入高电平输入端的电流,又称为输入 漏电流。
第三章 集成门电路与触发器
(9) 平均传输延迟时间tpd: 指一个矩形波信号从与非门输入端传到与
非门输出端(反相输出)所延迟的时间。通常 将从输入波上沿中点到输出波下沿中点的 时间延迟称为导通延迟时间tpdL;从输入 波下沿中点到输出波上沿中点的时间延迟 称为截止延迟时间tpdH。
第三章 集成门电路与触发器



集 成 门 电 路 与 触 发 器
第三章 集成门电路与触发器
集成门电路和触发器等逻辑器件是实现数字系统功能的 物质基础。 随着微电子技术的发展,人们把实现各种逻辑功能的元 器件及其连线都集中制造在同一块半导体材料小片上,并封 装在一个壳体中,通过引线与外界联系,即构成所谓的集成 电路块,通常又称为集成电路芯片。 采用集成电路进行数字系统设计的优点: 可靠性高、可维性好、功耗低、成本低等优点,可以大 大简化设计和调试过程。
第三章 集成门电路与触发器
双极型集成电路又可进一步可分为: TTL(Transistor Transistor Logic)电路; ECL(Emitter Coupled Logic)电路; I2L(Integrated Injection Logic)电路。 ┊ TTL电路的“性能价格比”最佳,应用最广泛。 MOS集成电路又可进一步分为: PMOS( P-channel Metel Oxide Semiconductor); NMOS(N-channel Metel Oxide Semiconductor); CMOS(Complement Metal OxideSemiconductor)。 ┊ CMOS电路应用较普遍,因为它不但适用于通用逻电路 的设计,而且综合性能最好 。
第三章 集成门电路与触发器
3.2.3 MOS管的开关特性
一、静态特性 MOS管作为开关元件,同样是工作在截止或导通两种状 态。MOS管是电压控制元件,主要由栅源电压vGS决定其工 作状态。
工作特性如下: 当VGS <开启电压VTN 时:MOS管工作在截止区,输出 电压vDS ≈VDD,MOS管处于“断开”状态; 当VDS≥VGS -VTN 时:MOS管工作在导通区,输出电压 vDS≈ 0V,MOS管处于“接通”状态。
第三章 集成门电路与触发器
由于二极管的单向导电性,所以在数字电路中经常把它 当作开关使用。 二极管组成的开关电路图如图(a)所示。二极管导通 状态下的等效电路如图(b)所示,截止状态下的等效电路如图 (c)所示,图中忽略了二极管的正向压降。
D
U 0 R 关闭 R 断开 R
(a)
(b) 二极管开关电路及其等效电路
第三章 集成门电路与触发器
二、动态特性
MOS管本身导通和截止时电荷积累和消散的时间 很小。 动态特性主要取决于电路中杂散电容充、放电所需 的时间。
第三章 集成门电路与触发器
为了提高MOS器件的工作速度,引入了CMOS电路。 在CMOS电路中,由于充电电路和放电电路都是低阻电 路,因此,其充、放电过程都比较快,从而使CMOS电路有 较高的开关速度。
第三章 集成门电路与触发器
1.开通时间( ton ) 开通时间:三极管从截止状态到饱和状态所需要的时间。 时间ton =延迟时间td +上升时间tr 2. 关闭时间 ( toff ) 关闭时间 :三极管从饱和状态到截止状态所需要的时间。 关闭时间toff =存储时间ts +下降时间tf 开通时间ton和关闭时间toff是影响电路工作速度的主要因素。
平。VOH的典型值是3.6V。
(2) 输出低电平VOL:输出低电平VoL是指输入全为高电平时的输
出电平。VOL的典型值是0.3V。
(3) 开门电平VO N :指在额定负载下,使输出电平达到标准低电平
VSL的输入电平,它表示使与非门开通的最小输 入电平。VON的产品规范值为VON≤1.8V。
第三章 集成门电路与触发器
第三章 集成门电路与触发器
(2) 工作原理 逻辑功能分析如下: ※ 输入端全部接高电平(3.6V):电源Vcc通过R1和T1的集电结
向T2提供足够的基极电流,使T2饱和导通。T2的发射极电流在R3上产生的 压降又使 T4 饱和导通,输出为低电平(≈0.3V)。
实现了“输入全高 ,输出为低”的逻辑关系。 ※当有输入端接低电平(0.3V)时:输入端接低电平的发射结导
第三章 集成门电路与触发器
3. 2 半导体器件的开关特性
数字电路中的晶体二极管、三极管和MOS管等器件一般是 以开关方式运用的,其工作状态相当于相当于开关的“接通” 与“断开”。 数子系统中的半导体器件运用在开关频率十分高的电路中 (通常开关状态变化的速度可高达每秒百万次数量级甚至千万次 数量级),研究这些器件的开关特性时,不仅要研究它们的静止 特性,而且还要分析它们的动态特性。
第三章 集成门电路与触发器
2. 反向特性 二极管在反向电压VR 作用下,处于截止状态,反向电阻 很大,反向电流 IR 很小(将其称为反向饱和电流,用 IS 表 示,通常可忽略不计 ),二极管的状态类似于开关断开。而 且反向电压在一定范围内变化基本不引起反向电流的变化。 注意事项: ● 正向导通时可能因电流过大而导致二极管烧坏。组成 实际电路时通常要串接一只电阻 R,以限制二极管的正向电 流; ● 反向电压超过某个极限值时,将使反向电流IR突然猛 增,致使二极管被击穿(通常将该反向电压极限值称为反向击 穿电压VBR),一般不允许反向电压超过此值。
(4) 关门电平VOFF :指输出空载时,使输出电平达到标准高电平VSH的
输入电平,它表示使与非门关断所允许的最大输 入电平。VOFF 的产品规范值VOFF≥0.8V。
(5) 扇入系数Ni :指与非门允许的输入端数目。 (6) 扇出系数No:指与非门输出端连接同类门的最多个数。 (7) 输入短路电流IiS :指当与非门的某一个输入端接地而其余输入
第三章 集成门电路与触发器
本章知识要点:
● ● ● 半导体器件的开关特性; 逻辑门电路的功能、外部特性及使用方法; 常用触发器的功能、触发方式与外部工作特性。
第三章 集成门电路与触发器
3.1
数字集成电路的分类
数字集成电路通常按照所用半导体器件的不同或者根据 集成规模的大小进行分类。 一、根据所采用的半导体器件进行分类 根据所采用的半导体器件,数字集成电路可以分为两大类。 1.双极型集成电路:采用双极型半导体器件作为元件。主 要特点是速度快、负载能力强,但功耗较大、 集成度较低。 2.单极型集成电路(又称为MOS集成电路): 采用金属-氧化 物半导体场效应管(Metel Oxide Semiconductor Field Effect Transister)作为元件。主要特点是结构简单、制造方便、集 成度高、功耗低,但速度较慢。
(c)
第三章 集成门电路与触发器
二、 动态特性 二极管的动态特性是指二极管在导通与截止两种状态转 换过程中的特性,它表现在完成两种状态之间的转换需要一 定的时间。为此,引入了反向恢复时间和开通时间的概念 时间称为反向恢复时间。
反向恢复时间tre=存储时间ts+渡越时间tt
第三章 集成门电路与触发器
在数字逻辑电路中,三极管相当于一个由基极信号控制的 无触点开关,其作用对应于触点开关的“闭合”与“断开”。 电路在三极管截止与饱和状态下的等效电路如下:
晶体三极管在截止与饱和这两种稳态下的特性称为三极 管的静态开关特性。
第三章 集成门电路与触发器
二、动态特性
晶体三极管在饱和与截止两种状态转换过程中具有的特性 称为三极管的动态特性。 三极管的开关过程和二极管一样,管子内部也存在着电荷 的建立与消失过程。因此,两种状态的转换也需要一定的时间 才能完成。
相关文档
最新文档