电磁场有限元法(2)
计算电磁学中的有限元方法
计算电磁学中的有限元方法随着计算机技术的不断发展和应用,计算电磁学研究的范围和深度不断提高,其应用领域也越来越广泛。
有限元方法是计算电磁学研究中重要的数值分析方法之一,其可模拟复杂电磁场问题,有着广泛的应用。
本文将简要介绍计算电磁学中的有限元方法的一些基本原理和应用。
一、有限元法基本理论有限元方法是数值分析中一种重要的数学工具,其基本思想是将整个计算区域分割成若干个简单的单元,然后在每个单元内选取一个适当的基函数,通过求解基函数系数来表示数值解。
这种思想很容易扩展到计算电磁场问题上,因为电磁场分布可以被视为由一些小电磁场单元组成。
有限元方法的基本过程包括建立有限元模型、离散化、求解以及后处理。
其中建模是有限元方法中最重要的一个环节。
在建模过程中,首先需要选取合适的计算区域,并将其离散化为若干个小单元(如三角形、四边形等)。
然后,我们需要选取适当的基函数,并确定它们所对应的系数的初始值。
一旦有限元模型被建立,我们就可以进行求解了。
具体来说,有限元法的求解过程需要求解一个大规模的稀疏矩阵方程,其中系数矩阵和右侧向量都与电磁场有关。
这个过程需要借助计算机的优势,通过矩阵解法算法完成求解。
最后,我们通过后处理来获得我们需要的电磁场信息或工程参数,例如电势、磁场强度、感应电动势等。
二、有限元法应用领域有限元法在计算电磁学中广泛应用。
其应用范围涉及电机、变压器、电力电子、雷达、电磁兼容等多个领域。
有限元法可用于仿真复杂的电磁场分布问题,例如在电机设计中,有限元法可用于电机磁场分析、电机振动分析以及谐波分析等。
在电力电子领域中,有限元法可用于设计电感元件和变压器等。
另外,有限元法在雷达技术中也有着广泛的应用,可用于雷达天线设计和仿真。
三、有限元法的优缺点有限元法作为一种数值分析方法,具有一定优缺点。
有限元法的主要优点在于它具有很强的适应性和通用性,可用于模拟各种复杂的材料和几何形状。
此外,有限元法允许我们针对不同的模型选择不同的元素类型和元素尺寸,因此可以根据实际需求自由选择不同的模型。
电磁场分析 有限元法
第3章新型混合磁极永磁电动机的计算分析方法3.1 前言新型混合磁极永磁电机的计算分析方法是进行本课题研究需要首先解决的问题。
由于新型混合磁极永磁电机是一种全新的电机,没有现成的解析计算公式,且解析计算也难以把握电机的各种非线性的复杂因素,无法准确的计算、分析和研究这种电机。
因此,采用电磁场数值计算方法是必要的选择。
本章阐述了基于有限元法的电磁场计算分析方法、齿磁通计算分析方法和交、直轴电抗的计算分析方法。
3.2 电磁场计算分析方法电机计算方法通常有磁路法和电磁场法。
磁路法的计算精度不高,处理基波时对电机设计具有一定的指导意义。
电磁场法能够处理饱和、谐波、涡流以及齿槽的影响,尤其在计算机普遍应用的今天,磁场法以其精度高等优势得到了广泛的应用。
有限元法是将所考察的连续场分割为有限个单元,然后用函数来表示每个单元的解,在求得代数方程之后再引进边界条件,因为边界条件不进入单个有限单元的方程,所以能够采用同样的函数。
采用电磁场有限元软件对新型混合磁极永磁电机的电磁场进行有限元分析,我们可以得到矢量磁位AZ、磁场强度、磁感应强度等结果和磁力线、等磁位线等曲线,从而了解该电机内部的磁场分布情况。
根据电磁场分析结果,通过绕组与磁场的感应关系即可求得基波绕组和三次谐波绕组的电势波形和大小。
课题组提出了齿磁通法对电机磁场进行计算。
采用齿磁通法计算电机磁场时,需要至少旋转一个齿距下的的磁场情况,因此计算量较大,但能够得到绕组电压值和波形,其精度也较高。
有限元计算分为以下几步:第一、建立有限元模型,确定求解区域。
第二、分配电机材料,铁磁材料与气隙的分配与普通电机分配相似,在分配永磁材料时,需注意永磁材料的矫顽力方向,同时在永磁材料分配应确定永磁材料是径向磁通;文中选定是径向磁通。
第三、网格剖分,选定网格类型,再对六极混合磁极永磁电机有限元模型进行网格剖分。
第四、对电机模型进行施加电流密度,求解得出AZ值。
创建模型:创建一个模型的顺序是由点到线、由线到面,这一部分的工作在Preprocessor的Modeling完成。
电磁场分析的有限元法
第7章 光波导分析的有限元法
7.1 微分方程边值问题
7.1.3 伽辽金(Galerkin)方法
Galerkin 法选取基函数i为加权函数,效果最好
Ri
S
i
(
2 t
K
2 t
)
dS
0
N
c j j j1
N
Ri
cj
S
i
(
2 t
K
2 t
)
j
dS
0
j1
Kij Sit2jdS S i jdS
7.1 微分方程边值问题 7.2 有限元分析
7.3 光波导模式问题的应用举例
2
第7章 光波导分析的有限元法
分析或设计波导器件时,知道波导模的特性及其场分布 非常重要。光波导精确求解的条件有限,近似分析时精度受 到限制,要高精度求得传播常数和电磁场分布,还要依赖于 数值分析法。
电磁场分析的数值法有很多,如有限元法(FEM)、有限 差分法、模匹配法、横向共振法等,而FEM因其较高的精度 和通用性,是目前使用最广泛、比较公认的精确数值技术方 法之一,并作为各种近似计算的基准。FEM特别适用于复杂 的几何结构和介电特性分布,可以解决几乎任意截面和折射 率分布的介质光波导的模式及场分布问题。
L f
L f 0 为方程的严格解(真解) 设 为方程的近似解,定义余数
r L f 表示近似解接近真解的程度
的最佳近似,应能使余数r在域内所有点有最小值。
余数加权积分
R wrd
其中w为加权函数
满足R=0的解称为微分方程的弱解或近似解。
w的选取方法:点重合, 子域重合, 最小二乘法, 迦辽金法等。
FEM是已发展成熟的数值计算方法。数学理论包括泛函 分析理论和抽象空间理论,应用范围包括土木工程如桥梁、 建筑,机械制造如船舶、飞机设计,计算场分布如应力场、 流体场、电磁场等等。有大量的商品化软件,使用方便。
瞬态电磁场分析计算方法研究
瞬态电磁场分析计算方法研究一、瞬态电磁场基础概念瞬态电磁场是指随着时间变化的电磁场,由于其具有复杂性和强烈的非线性特性,分析瞬态电磁场需要非常精细的计算方法。
电磁场由电荷和电流产生,当电荷和电流变化快速时,将产生强烈的瞬态电磁场。
一些重要的应用领域,例如雷达,无线电通信,电力系统和电子设备等,都需要研究瞬态电磁场,因为它们具有许多微弱同时又非常重要的效应。
二、瞬态电磁场计算方法计算瞬态电磁场的方法可以分为两种,即数值法和解析法。
数值法基于数值模拟,可以模拟各种物理现象,包括电荷和电流的变化以及其对电磁场的影响。
解析法则基于解析模型,通过解析电磁场的方程来计算电磁场的分布。
两种方法各有优缺点,需要根据应用需求选择合适的方法。
1. 数值法(1) 有限差分法在有限差分法中,将计算区域离散成网格,然后将瞬态电磁场方程数值化。
有限差分法是瞬态电磁场计算最常见也是最简单的方法,其精度可以通过增加网格的数目来提高。
有限差分法适用于简单的几何形状和小型模型。
(2) 有限元法有限元法可以处理不规则的几何形状和大型模型,其基本思想是将瞬态电磁场方程映射到连续的三角形或四边形元素上,然后用数学方法求解。
有限元法需要先进行预处理,即建立有限元模型、分解矩阵系数、处理边界条件等,因此计算复杂度较高。
(3) 时域积分法时域积分法可以直接处理瞬态电磁场方程,在时域内求解电流密度和电场分布,然后将其转换为频域的形式,在频域外推求得瞬态电磁场。
时域积分法适用于处理任意几何形状和复杂的电荷和电流形式,但计算复杂度很高。
2. 解析法(1) 分析解法分析解法是通过解析求解瞬态电磁场方程来计算电场的分布。
分析解法适用于特定的几何形状和边界条件,并且可以在较短的时间内得到解析解,因此适用于瞬态电磁场短时间内的快速计算,但不能用于计算较复杂的几何形状。
(2) 半解析解法半解析解法是结合有限元法和分析解法的优势而发展出来的一种方法。
它可以处理较复杂的几何形状,并且通过使用分析解法来处理区域内的一些部分,再用数值方法来处理其他部分。
电磁场的数学建模与解答技巧
电磁场的数学建模与解答技巧电磁场是电荷和电流所产生的相互作用效应,它在工程学、物理学以及计算机模拟中都扮演着重要角色。
为了更好地理解和分析电磁场,数学建模和解答技巧是必不可少的。
本文将从电磁场的数学建模入手,介绍几种常用的数学建模方法,并给出解答技巧的实例。
一、电磁场的数学建模方法之一:微分方程微分方程是描述电磁场的一种常用数学工具。
通常,通过麦克斯韦方程组可以得到电磁场满足的偏微分方程。
对于静电场,可以使用拉普拉斯方程描述,表示为:∇²ϕ = -ρ/ε₀其中ϕ是电势,ρ是电荷密度,ε₀是真空介电常数。
对于静磁场,则可以使用斯托克斯方程描述,表示为:∇×B = μ₀J其中B是磁感应强度,J是电流密度,μ₀是真空磁导率。
通过求解这些微分方程,可以得到电磁场的分布情况。
二、电磁场的数学建模方法之二:有限元法有限元法是一种常用的数值解法,可用于求解任意形状的电磁场问题。
该方法将电磁场区域划分为有限个小单元,并在每个小单元内以多项式函数逼近电磁场的分布。
通过建立离散的代数方程组,并求解该方程组,可以得到电磁场的近似解。
三、电磁场的数学建模方法之三:有限差分法有限差分法是一种离散方法,通过将连续的电磁场问题转化为离散的代数问题进行求解。
该方法将连续的电磁场区域划分为网格,并在每个网格节点上进行逼近。
通过近似微分算子,将偏微分方程转化为差分方程,并通过迭代求解差分方程得到电磁场的解。
四、电磁场解答技巧实例为了更好地展示电磁场解答技巧,以下给出一个实例。
考虑一个带有一根无限长直导线的无限大平面问题。
已知导线的电流密度为I,求解该情况下的磁场分布。
根据安培环路定理,可以得到这个问题的微分方程为:∇×B = μ₀Iδ(x)δ(y)ez其中δ表示狄拉克δ函数,ez表示z轴方向上的单位向量。
通过对微分方程进行求解,可以得到在导线周围的磁场强度为:B = μ₀I/2πr其中r表示距导线的径向距离。
工程电磁场数值分析(有限元法)解读课件
有限元法在工程电磁场中的应用
在静电场中,电荷分布是确定的,电场强度和电位是求解的目标。有限元法可以将连续的静电场离散化为有限个单元,通过求解离散化的方程组来得到电场强度和电位。
有限元法在静电场问题中能够有效地处理复杂的边界条件和电荷分布,为工程实际中静电场问题的求解提供了有效的数值分析方法。
在静电场问题中,有限元法将连续的求解区域离散化为有限个单元,每个单元内的电荷分布被假设为均匀分布。通过将电场强度和电位表示为单元中心点的插值函数,可以建立离散化的方程组。求解该方程组可以得到每个单元中心点的电场强度和电位,从而得到整个区域的电场分布。
静电场问题
总结词
详细描述
在静磁场中,磁力线是闭合的,磁场强度是确定的。有限元法可以将连续的静磁场离散化为有限个单元,通过求解离散化的方程组来得到磁场强度和磁感应强度。
有限元法在静磁场问题中能够有效地处理复杂的边界条件和磁场分布,为工程实际中静磁场问题的求解提供了有效的数值分析方法。
在静磁场问题中,有限元法将连续的求解区域离散化为有限个单元,每个单元内的磁场分布被假设为均匀分布。通过将磁场强度和磁感应强度表示为单元中心点的插值函数,可以建立离散化的方程组。求解该方程组可以得到每个单元中心点的磁场强度和磁感应强度,从而得到整个区域的磁场分布。
02
诺依曼边界条件
规定电场和磁场在边界处的法向分量,与狄利克雷边界条件一起使用。
STEP 01
STEP 02
ห้องสมุดไป่ตู้
STEP 03
有限元法基础
结构分析
用于分析各种结构的应力、应变、位移等。
流体动力学
用于分析流体流动、传热等问题。
电磁场
用于分析电磁场分布、电磁力、电磁感应等问题。
计算电磁学3-有限元法、里兹法、伽辽金法、矩量法
电磁波方程
Yee格式及蛙跳机制
电磁波方程的离散
激励源
Mur吸收边界条件
解的数值稳定性
Yee格式及蛙跳机制
n d 2 l E dl = 0 dt A H dS 1 = 0 H n1 dS H n dS A A t d H d l = E dA J dA 0 l A dt A
t H x 0
E
n 1 z i , j , k 1/2
Hx z
n 1 2 i , j 1/2, k 1/2
Hz
n 1 2 i 1/2, j 1/2, k
Hz x
n 1 2 i 1/2, j 1/2, k
n 1 2 J Source _y
f x x
xi
1 2 f x x f x x O x i i 2x
离散
计算机处理
1.积分 f xi x
电磁场问题的有限元分析
ANSYS电磁场分析首先求解出电磁场的磁势和电势, 然后经后处理得到其他电磁场物理量,如磁力线分布、磁 通量密度、电场分布、涡流电场、电感、电容以及系统能 量损失等
● 电力发电机 ● 变压器 ● 电动机 ● 天线辐射 ● 等离子体装置
9.1 电磁场基本理论
(4)ANSYS电磁场分析简介 2. ANSYS电磁场分析方法 (2)建立分析模型。 在建立几何模型后,对求解区域用选定的单元进行划分, 并对划分的单元赋予特性和进行编号。 单元划分的疏密程度要根据具体情况来定,即在电磁 场变化大的区域划分较密,而变化不大的区域可划分得稀 疏些。 (3)施加边界条件和载荷。 (4)求解和后处理。
过滤图形用户界面进入电磁场 分析环境。在ANSYS软件的 Multiphysics模块中,执行:Main Menu>Preferences,在弹出的对话 框中选择多选框“Magnetic-Nodal” 后,单击[OK]。
9.2 二维静态磁场分析
(2)二维静态磁场分析实例 (2) 建立模型 ①生成大圆面:Main Menu>Preprocessor>Modeling>Create>Area >Circle>By Dimensions弹出如对话框,在对 话框中输入大圆的半径“6”.然后单击 [OK]。 ②生成小圆: MainMenu>Preprocessor>Modeling>Create>Areas>Ci rcle>Solid Circle,弹出一个对话框,在“WP X”后面 输入“1”,在“Radius”后面输入“2”,单击[OK], 则生成第第二个圆。 ③布尔操作: MainMenu>Preprocessor>Modeling>Cr eate>Booleans>Overlap>Area,在弹出 对话框后,单击[Pick All]。
电磁场计算中的有限元方法教程
电磁场计算中的有限元方法教程引言电磁场计算是电磁学领域中重要的研究内容之一,广泛应用于电气工程、通信工程、电子技术等领域。
而有限元方法(Finite Element Method,简称FEM)是一种常用的数值计算技术,可以解决电磁场计算中的复杂问题。
本文将介绍有限元方法在电磁场计算中的基本原理、步骤和应用。
一、有限元方法简介有限元方法是一种通过将待求解区域划分成有限数量的小单元,利用单元上的近似函数构造整个区域上的解的数值计算方法。
有限元方法的基本思想是在每个小单元内近似解以建立一个代数方程组,通过将这些方程组联立得到整个区域上的解。
有限元方法具有处理复杂几何形状、边界条件变化和非线性问题的优势,因此被广泛应用于工程和科学计算中。
二、电磁场方程建立在电磁场计算中,关键是建立合适的电磁场方程。
常见的电磁场方程包括静电场方程、恒定磁场方程、麦克斯韦方程等。
根据具体情况选择适用的方程,并根据材料的性质和边界条件确定相应的方程形式。
三、有限元网格划分有限元方法需要将计算区域划分为有限数量的小单元。
在电磁场计算中,通常采用三角形或四边形单元来进行划分,这取决于计算区域的几何形状和分辨率要求。
划分过程需要考虑电场变化的特点和计算精度的需求,合理划分网格对精确计算电磁场起着重要的作用。
四、有限元方程的建立有限元网格划分完成后,需要建立相应的有限元方程组。
以求解静电场问题为例,我们可以利用能量最小原理、偏微分方程等方法建立有限元方程组。
有限元方程组的建立需要考虑电场的连续性、边界条件和材料特性等。
五、有限元方程求解有限元方程组的求解是求解电磁场分布的核心任务。
根据具体的方程形式和计算区域的几何形状,可以采用直接法、迭代法、近似法等方法来求解方程。
在电磁场计算中,常用的求解算法包括高斯消元法、迭代法、有限元法和有限差分法等。
六、计算结果的后处理在得到有限元方法计算的电磁场分布结果后,需要进行相应的后处理,进行数据分析和可视化。
电磁场有限元方法
电磁场有限元方法
电磁场有限元方法是一种用于求解电磁场分布的数值计算方法。
它基于有限元法,将连续的电磁场问题离散化为有限个区域,通过计算每个区域内的电磁场变量进行求解。
在电磁场有限元方法中,电磁场通常通过两个基本变量来描述:电场和磁场。
这些变量可通过Maxwell方程组进行表达,并且可以通过有限元法对其进行离散化。
在离散化过程中,整个计算区域被划分为小的有限单元,并在每个单元上建立适当的数学模型。
然后,通过求解相应的矩阵方程组,可以得到每个单元内的电磁场变量的近似解。
电磁场有限元方法的求解步骤通常包括以下几个步骤:
1. 网格划分:将计算区域划分为小的有限单元。
2. 建立数学模型:在每个单元上建立适当的数学模型来描述电磁场变量的行为。
3. 生成方程组:通过应用Maxwell方程组和适当的边界条件,可以得到矩阵方程组。
4. 求解方程组:使用数值求解方法,如迭代法或直接法,求解得到每个单元内的电磁场变量的近似解。
5. 后处理:根据得到的解,可以计算出其他感兴趣的物理量,如电流密度,功率密度等。
电磁场有限元方法在计算电磁场分布时具有很好的灵活性和精确性。
它广泛应用于电磁设备的设计和分析,如电机、变压器、传感器等。
电磁场数值仿真方法研究及其应用
电磁场数值仿真方法研究及其应用随着电子技术与信息技术的快速发展,电磁场问题的数值仿真越来越成为电磁学研究中不可或缺的手段之一。
电磁场数值仿真方法可以帮助设计师进行各种电磁元器件的设计,优化电磁场参数,并且优化电磁场作用下系统的设计方案。
本文将探讨电磁场数值仿真方法的基础概念,以及它在实际应用中的重要性。
一、电磁场数值仿真的基础概念电磁场数值仿真是指使用计算机对电磁场的分布及相互作用进行模拟和计算的方法。
(一)有限元法有限元法是一种将复杂连续体划分成有限个简单的单元,然后用单元间的边角相连来近似代表整个区域的方法。
有限元法是应用最为广泛的数值仿真方法之一,它在计算机辅助设计(CAD)、制造工程、材料科学、结构分析、动力学分析等领域得到了广泛应用。
(二)有限差分法有限差分法是一种将任意点的导数或差商代入微分方程或差分方程之中,以差分代替导数,用数值逼近代替函数分析的方法。
有限差分法在工程实践中被广泛应用于热力学分析、电磁场分析和力学分析等领域。
(三)有限体积法有限体积法是一种将物理问题所在的区域划分成离散的体元(例如长方体、立方体等),并将微分方程转化成离散的代数方程组,最终求解模型的数值方法。
有限体积法可以适应任何不规则形状的区域,是处理非结构区域的方法。
有限体积法在化学、石油、流体、地下水、空气动力学、电磁场问题等领域得到广泛的应用。
二、电磁场数值仿真的应用(一)电子元器件设计电子元器件在设计阶段需要进行电磁场分析,以获得对元器件性能的深刻理解。
电磁场数值仿真可以为工程师提供实际的设计方案,优化设计方案并预测器件性能,从而达到更好的设计成果。
(二)电磁互联电子设备中的电磁互联是电磁场数值仿真的重要应用之一。
在电磁互联中,电磁场分析是一个非常关键的步骤,通过对电磁场分析来控制电磁信号的辐射、耦合、传输和响应来提高电子系统的性能。
(三)电磁故障分析电磁场数值仿真可以为电磁场故障分析提供一种有效的方法,以确定故障的来源和机制。
电磁场课件5 分离变量法、有限差分法、有限元法
(1)
右式 = 代入式(1)
0
mn
a
0
nπ a E n sin ( x )dx E n m n a 2
2
2 aU 0 a a E n Fn ' sh( n π ) mπ 2 2 4U 0 Fn ' m n 1,3,5,... n πsh n π
代入通解
4U 0 1 nπ nπ ( x, y ) sin( x )sh( y ) π n 1 nsh nπ a a ncos (自然边界条件),得 当 , n 1 时,A0 B 0 0, A1 E
当 , n 1 时,A0 B o An 0
1 ( , ) E cos
2 2 0
1 2 2
0
1 2 0
0 a
a
0, 1 根据对称性
Ex E cos
自然边界条件
( , ) ( , ) 及 ( , ) 0 2
2)分离变量,设
x x x x
若 k 0,
2 n
双曲函数 ( x, y ) 1 ( x ) 2 ( y ) ( An cos k n x Bn sin k n x )(C n chk n y Dn shk n y )
( An chk n x B n shk n x )(C n cos k n y D n sin k n y )
Bn ' Dn 'sin kn a Fn 'sin kn a 0
kn
n n ( x , y ) Fn ' sin( x ) sh y a a n 1
电磁场有限元方法
电磁场有限元方法
电磁场有限元方法(finite element Method,FEM)是电磁场分析和设计中一种新兴的解析方法,它将电磁场问题看作是一个数学方程组,然后用”有限元”的数值求解方法进行求解。
可以简单的理解电磁有限元方法的原理就是,先将物理场先用几何拼装的对象表示,用有限个节点(Node)和有限个单元(Element)来组合起来,并对每一个单元内的所有量(如场、势等)的作量线性拟合,这样就将复杂的电磁场问题拆分成几何元素相互连接在一起的小片状,甚至可以定义为0维,1维,2维,3维电磁场问题,可以作出相应的对应有限元元素,比如三维空间就有单元四面体和单元六面体,这样子就可以将这些有限元元素拼成一个完整的电磁场,并且在每个单元内使用坐标系,用均匀格点的方法将微分方程数值插值,以达到计算的目的。
因此求解此式的核心就是有限元的概念,它的基本思想就是对一个复杂的模型分割成若干小几何实体,在这些小几何实体上需要求解的量的取值用某种连续的样条函数的插值来表示,给定一族几何实体上的及其边界条件,可以求出各个点上的量的值。
计算电磁场理论中的有限差分法与有限元法
计算电磁场理论中的有限差分法与有限元法电磁场理论是电磁学的重要组成部分,研究电磁场的分布和变化规律对于解决实际问题具有重要意义。
在计算电磁场中,有限差分法和有限元法是两种常用的数值计算方法。
本文将从理论原理、应用范围和优缺点等方面对这两种方法进行探讨。
有限差分法是一种将连续问题离散化的方法,通过将连续的电磁场分割成网格,然后在每个网格上进行离散计算。
这种方法的基本思想是将微分方程转化为差分方程,然后利用差分方程进行求解。
有限差分法的优点是简单易懂,计算过程直观,适用于各种电磁场问题的求解。
然而,由于差分法中的网格离散化会引入一定的误差,所以在计算精度上存在一定的限制。
与有限差分法相比,有限元法是一种更加精确的数值计算方法。
有限元法将电磁场问题的求解区域划分为有限个小单元,然后在每个小单元上建立适当的插值函数,通过求解代数方程组得到电磁场的近似解。
有限元法的优点是可以处理复杂的几何形状和材料特性,适用于各种边界条件和非线性问题。
然而,有限元法的计算过程相对较为复杂,需要对问题进行合理的离散化和网格划分,同时对于大规模问题,计算量也较大。
在实际应用中,根据具体问题的特点和求解要求,选择合适的数值计算方法是十分重要的。
对于简单的电磁场问题,如一维导线的电流分布,可以选择有限差分法进行求解。
而对于复杂的电磁场问题,如三维空间中的电磁波传播,有限元法更适合。
此外,有限差分法和有限元法还可以结合使用,通过将两种方法的优点相结合,提高计算精度和效率。
除了理论原理和应用范围,有限差分法和有限元法的优缺点也值得关注。
有限差分法的优点是简单易懂,计算过程直观,而且对于一些简单问题可以得到较为准确的结果。
然而,由于差分法中的网格离散化会引入一定的误差,对于复杂问题的求解精度有限。
相比之下,有限元法可以处理复杂的几何形状和材料特性,适用于各种边界条件和非线性问题,计算精度较高。
然而,有限元法的计算过程相对复杂,需要对问题进行合理的离散化和网格划分,同时对于大规模问题计算量较大。
工程电磁场数值分析(有限元法)
04
有限元法在工程电磁场中的应用
静电场问题
总结词
有限元法在静电场问题中应用广泛,能够准确模拟和预测静电场 的分布和特性。
详细描述
静电场问题是指电荷在静止状态下产生的电场,有限元法通过将 连续的静电场离散化为有限个单元,对每个单元进行数学建模和 求解,能够得到精确的解。这种方法在电力设备设计、电磁兼容 性分析等领域具有重要应用。
单元分析
对每个单元进行数学建模,包 括建立单元的平衡方程、边界 条件和连接条件等。
整体分析
将所有单元的平衡方程和连接 条件组合起来,形成整体的代 数方程组。
求解代数方程组
通过求解代数方程组得到离散 点的场量值。
有限元法的优势和局限性
02
01
03
优势 可以处理复杂的几何形状和边界条件。 可以处理非线性问题和时变问题。
传统解析方法难以解决复杂电磁场问题,需要采用数值分析方法 进行求解。
有限元法的概述
有限元法是一种基于离散化的数值分 析方法,它将连续的求解域离散为有 限个小的单元,通过求解这些单元的 近似解来逼近原问题的解。
有限元法具有适应性强、精度高、计 算量小等优点,广泛应用于工程电磁 场问题的数值分析。
02
静磁场问题
总结词
有限元法在静磁场问题中同样适用,能够有效地解决磁场分布、磁力线走向等问题。
详细描述
静磁场问题是指恒定磁场,不随时间变化的磁场问题。有限元法通过将磁场离散化为有限个磁偶极子,对每个磁 偶极子进行数学建模和求解,能够得到静磁场的分布和特性。这种方法在电机设计、磁力泵设计等领域具有重要 应用。
有限元法的基本步骤
01
电磁场数值计算方法
电磁场数值计算方法引论计算电磁学:现代数学方法、现代电磁场理论与现代计算机相结核的一门新兴学科。
目的:求解电磁场分布以及计算电磁场与复杂目标的相互作用。
电磁场计算方法分类分类方法按数学模型:微分方程、积分方程、变分方程。
按求解域:频域、时域法。
按近似性:解析法、半解析法、渐进法和数值法。
1、解析法求出电磁分布的数学表达式。
其优点:(1)、精确(2)、参数改变时不要重新推导(3)、解中包含了对某些参数的依赖关系,容易发现规律性主要方法有:分离变量法、级数展开法、格林函数法、保角变换法和积分变换法。
缺点:只有个别情况才能用解析法解决,一般情况较难应用。
2、渐进法由求解物体的线度l与波长λ的关系可以划分为(1)、低频区。
lλ≈(2)、谐振区。
lλ(3)、高频区。
lλ低频区:静态场近似,电路近似(等效电路)高频区:光学近似。
GO 几何光学法 GTD 几何绕射光学UTD 一般几何绕射 UAT 一致渐进理论PTD 衍射的物理理论 STD 衍射谱理论缺点:求解复杂系统的电磁场问题时可能引起大的误差,只能应用于简单的电大系统。
3、数值法把数学方程离散化,把连续问题化为离散问题,把解析方程化为代数方程。
把连续连续的场分布转换为计算离散点的场值或者表达场的级数表达式的数值化系数。
(1)、有限差分法——求解电磁场满足的微分方程。
(麦氏方程、泊松方程以及波动方程)△、用差商近似代替导数,用查分近似代替微分。
△、把微分方程转化为差分方程(代数方程)。
特点:简单,物理概念明确。
(2)、矩量法——求解电磁场积分方程。
△、把未知函数展开为选定基函数表示的级数,存在未知函数。
△、把求解未知函数问题转变为求解系数问题。
△、再选择合适权函数,计算加权平均意义下的误差。
△、令误差为零,积分方程变为关于系数的代数方程。
△、矩量法在应用时若直接采用分解法和迭代法求解则计算量非常大,例如计算电大目标散射问题的计算,为解决这个问题,产生了一系列的快速算法。
电磁计算的有限元方法及其数值求解
电磁计算的有限元方法及其数值求解电磁计算作为重要的科学技术方法之一,其精度和效率对于科技领域的发展具有至关重要的作用。
而有限元方法作为一种重要的数值计算方法,在电磁计算中应用广泛。
本文将介绍有限元方法在电磁计算中的应用和数值求解。
一、有限元方法的概述有限元方法是一种求解偏微分方程数值解的常用方法。
其核心思想是将一个复杂的区域分割成若干个小区域,通过对小区域内的物理变量进行逼近,最终得到整体的物理变量分布。
在电磁计算中,有限元方法是一种经典的数值计算方法,具有良好的适用性和精度。
有限元方法的求解过程分为建立数学模型、离散化、求解和后处理四个主要步骤。
其中建立数学模型是有限元方法的关键,正确的数学模型可以保证计算结果的精度。
二、电磁计算中有限元方法的应用在电磁计算中,有限元方法常用于求解电学、磁学和电磁学问题。
例如电感、电容、电阻等电学问题,磁感线分布、磁通量等磁学问题,以及电磁场分布、电磁波传播等电磁学问题。
对于电学问题,有限元方法常用于求解电场的分布和电容、电感等参数的计算。
例如,铁芯电感器等电学元件可以通过有限元方法求解电感值,从而进行电磁场分析和设计。
对于磁学问题,有限元方法常用于求解磁场分布和电感、磁通量等参数的计算。
例如,变压器、电机等磁学元件可以通过有限元方法求解磁感线分布和磁通量,从而进行磁场分析和设计。
对于电磁学问题,有限元方法常用于求解电磁场分布和电磁波传播等问题。
例如,天线、波导等电磁学元件可以通过有限元方法求解电磁场分布和传播特性,从而进行电磁波分析和设计。
三、电磁计算中有限元方法的数值求解有限元方法的数值求解过程包括矩阵的组装和求解两个主要步骤。
在电磁计算中,有限元方法的数值求解主要涉及到矩阵的组装。
矩阵的组装是指将离散化得到的局部矩阵组合成全局矩阵,并考虑边界条件和耦合矩阵的影响。
在组装全局矩阵的过程中,通常采用稀疏矩阵的存储方式,以节省存储空间和提高计算效率。
在全局矩阵组装完成后,可以采用直接法或迭代法对矩阵进行求解。
工程电磁场数值分析4(有限元法)
变分原理
有限元法的数学基础是变分原理, 即通过求解泛函的极值问题来得 到原问题的近似解。
微分方程
有限元法将微分方程转化为等价 的变分问题,然后通过离散化将 变分问题转化为标准的线性代数 方程组。
插值函数
为了将连续的物理量离散化,有 限元法使用插值函数来近似表示 连续函数,从而得到离散化的数 值解。
有限元法的离散化过程
01
MATLAB/Simulin k
流行的数值计算和仿真软件,提 供丰富的数学函数库和图形界面, 适用于有限元分析。
02
COMSOL Multiphysics
多物理场有限元分析软件,支持 多种编程语言接口,如Python、 Java等。
03
ANSYS Maxwell
专业的电磁场有限元分析软件, 提供强大的前后处理和求解功能。
对初值条件敏感
有限元法的数值解对初值条件较为敏感,可能导致计算结果的不稳 定。
对边界条件的处理复杂
对于某些复杂边界条件,有限元法需要进行特殊处理,增加了计算 的复杂性。
有限元法的改进方向与未来发展
高效算法设计
研究更高效的算法,减少计算量,提高计算 效率。
自适应网格生成技术
发展自适应的网格生成技术,根据求解需求 动态调整离散化参数。
通过选择适当的离散化参数和节点数,有 限元法能够获得高精度的数值解。
灵活性好
可并行计算
有限元法可以灵活地处理复杂的几何形状 和边界条件,方便进行模型修改和扩展。
有限元法可以方便地进行并行计算,提高 计算效率。
有限元法的缺点
计算量大
有限元法需要对整个求解区域进行离散化,导致节点数和自由度 数增加,计算量大。
电磁兼容性分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n E 0 n ( E) 0
5
求解边值问题两种经典方
• 里兹(Ritz)变分方法
用变分表达式(也称为泛函)表示边值问题,泛 函的极小值对应于给定边界条件下的控制微分 方程。通过求泛函相对于其变量的极小值,可 得到近似解。
• 伽辽金(Galerkin)方法
残数加权方法类型,它通过对微分方程的残数 求加权方法来得到方程的解。
E e Nie eie
i 1
n
3
区域离散的概念
为了模拟复杂的区域形状,需要针对不同的问题采用不同的 剖分单元形式,通常对于二维问题,我们采用三角形单元剖 分;对于三维问题,采用的是四面体单元:
4
有限元边值问题
典型的边值问题可用区域内的控制微分方程和包围区域 边界上的边界条件来定义: LФ=f 其中L为微分算符,f为激励或者强加函数,Ф是未知量。
背景知识
• 有限元法是近似求解数理边值问题的一种数值技术; • 1968年开始用于求解电磁场问题; • 有限元法的本质是将微分方程的求解转化为代数方程的求解; 里兹有限元法、伽辽金有限元法 • 最大特点:以适当的形式将解域划分为有限个单元,在每个单 元中构造子域基函数,利用里兹变分法或伽辽金法构造代数形 式的有限元方程。 • 优点1:具有灵活的离散单元,可以精确地模拟各种复杂的几 何结构,求解包含各种复杂形状、复杂媒质的电磁场问题。 • 优点2:所形成的方程组的系数矩阵为稀疏对称阵,利于求解。 • 缺点1:比积分方程法多一维,增加了未知量的数目。 • 缺点1 :对于开放问题必须使用边界吸收条件截断计算空间, 增加了一定的计算复杂度。 • 在电磁场计算中,矢量基函数已基本取代了标量基函数; 2 • 一般情况下,分为频域有限元法和时域有限元法。
2
g
e i 1
3
e
N Dn d
e i e
其中: D x x y y x y
21
求解方程组
经过以上各步,得到包含所有结点未知量 的线性 方程组:
[ K ] b g
其中,[b]来自于强加源 f ,[g]来自于边界条件,矩 阵 [K] 中的每个元素表达了每个结点与其相邻所有 结点在基函数上的相关性。求解该线性方程组即得 到所有结点上的标量值,再通过原来每个单元中的 展开函数回代,便可以得到该单元中的任意一点上 所需要的标量值。
e 11 e 21 e 31
K K K
e 12 e 22 e 32
K K K
e 13 e 23 e 33
e 1 e 2 e 3
18
K矩阵的形成
1 1 4 2 3 3 5
(1) K31 (1) (2) (3) K11 K33 K33 (3) K13 (1) ( 2) K 21 K 23 (3) K1(2) K 3 23 0
19
列向量[b]的形成
1 1 4 2
2
e e b N e i fdxdy i 1
3
3
3
(1) b1 b3 5 (1) b (2) (3) b1 b3 b3 2 (3) 4 b3 b e 1 b b (1) (2) (4) e 1 b2 b2 b3 b4 (3) ( 4) b1(2) b2 b5 b1 (4 ) b2 b6
6
里兹(Ritz)变分方法
LФ=f 的解等于下式泛函对
泛函:
的解
vj是定义在全域上的展开函数
cj是待定的展开系数
7
里兹(Ritz)变分方法
将试探函数代入泛函:
令其对ci的偏导数为零,从而得到线性代数方程组
8
里兹(Ritz)变分方法
其中: (应用算符L的自伴性质)
求解该方程组可以得到 LФ=f 的近似解
Dirichlet边界条件: Neumann边界条件: 混合边界条件: ( x
p
n p
on 1
on 1
on 2
d d x y y ) n q dx dy
12
空间离散
1
1Leabharlann 这是二维区域离散的示意图。
4
2
2 3 3 5 4 6
黑色数字表示节点的全局编 码,红色数字表示三角形单 元的全局编号。
e i e j e j
i j i j
性质2:当观察点(x,y)位于第i个结点的对边上时:
Nie x, y 0
结论: 一个单元边的 e值与其相对结点处的 值无关,
而由该边两端点处的 值确定。从而保证了单 16 元两侧解的连续性
用伽辽金法建立公式
①
R e N x f dxdy y x y y x Nie Nie e e x y Ni dxdy x x y y
组成每个三角形单元的节点在三角形内有一组局 部编码。显然,该局部编码与节点的全局编码有 一一对应关系。
13
选择插值基函数
e 使用线性三角形单元,在第e个单元内, ( x ) 可以
近似为:
( x, y ) a b x c y
e e e e
e 1 a e be x1e c e y1e
22
三维有限元分析
三维边值问题
d d d d d d x y f z dx dx dy dy dz dz (x , y , z ) V
Dirichlet 条件: Neumann边界条件:
p
在电磁学中,控制微分方程包括简单的泊松方程以及复杂的标量 波动方程,甚至也有更复杂的矢量波动方程。
( 1
r
E) k02 r E jk0 Z 0 J
边界条件有简单的狄利克雷(Dirichlet)条件和诺曼(Neumann)条件,也有 复杂的阻抗和辐射边界条件,甚至还有更复杂的高阶条件。
e e e e e 节点坐标带入: e a b x c y2 2 2 e e e 3 a e be x3 c e y3
解得:
e ( x, y ) Nie ( x, y )ie
i 1
14
3
e N 其中, i ( x, y ) 为插值基函数
插值基函数
1 e e e N x, y a b x c i i y e i 2
电磁场有限元法
参考资料: 1. 金建铭,“电磁场有限元方法”,西安电子科技大学出版社
2. 王长清,“现代计算电子学基础”,北京大学出版社
3. 张榴晨,徐 松 ,“有限元法在电磁计算中的应用”,中国铁道出版 社
4. 王秉中,“计算电磁学”,科学出版社
5. 盛新庆,“计算电磁学要论”,中国科技大学出版社
0 (2) (3) K31 K32 (3) K12 (2) (4) K 21 K31 ( 3) (4) K1(2) K K 1 22 11 (4) K 21
0 1 0 2 0 3 (4) K 32 4 (4) K12 5 (4) K 22 6
有限元的基本思路
• 将计算空间离散,划分为有限个小单元,小单元 形式简单,数量有限; • 根据小单元的不同形状,定义单元内的基函数, 要求各基函数之间线性无关; • 基函数是坐标的函数,每个基函数在单元内与各 自特定的点或线相关。在这个特定的点或线上, 定义在其上的基函数等于1,其它基函数等于0; • 求解的目标就是单元内这些特定的点或线上的电 场值。一旦已知,则单元内任一点的电场值都可 以表示为单元内所有基函数的一个线性组合。
9
伽辽金(Galerkin)方法
——使用残数加权法求解微分方程 假设 是 LФ=f 的近似解,则得到非零的残数为:
残数加权方法要求
wi是所选择的加权函数
10
伽辽金(Galerkin)方法
在伽辽金方法中,加权函数与近似解展开中所 用的函数相同,这样可得到最精确的解。 假设近似解为:
则取加权函数选为:
e i
i 1, 2,3
其中:
e e e e a1e x2 y3 y 2 x3 ; e e b1e y2 y3 ; e e c1e x3 x2
a x y y x ;
e 2 e e 3 1 e e 3 1 e e e a3 x1e y2 y1e x2 ;
b y y ;
n p
在S1上
on 1
混合条件:(x
d d d x y y z z ) n q dx dy dz
在S2上
23
空间离散
4
这是三维区域离散的示意图。
4
6
20
列向量[g]的形成
1 1 4 2 3 3 5 4 6
(1) g1 g3 (1) g (2) (3) g1 g3 g 3 2 (3) 4 g3 g e 1 g g (1) (2) (4) e 1 g2 g2 g3 g4 (3) g1(2) g 2 g1( 4) g5 (4 ) g2 g6
e 2 e 3 e 1 e e b3 y1e y2 ;
c x x
e 2 e 1
e 3
e e c3 x2 x1e
1 e e e e b1 c2 b2 c1 第e个单元的面积 2
e
15
二维插值基函数的性质
1 性质1: N x , y ij 0
e N ie fdxdy e N ie D n e d