碱减量废水

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碱减量废水处理技术研究

化纤印染厂生产排放印花染色废水和碱减量生产废水。涤纶仿真丝纤维在高温、高碱度条件下被减量,PTA溶入碱液中。碱减量废水中CODcr和碱含量极高,给废水处理增加难度[1][2]。本文提出一种应用工业废料的碱减量废水处理新技术,实验研究表明有效、可靠、廉价,适合印染碱减量废水处理。

1实验工艺

实验工艺流程如图1所示。

取铸铁屑,用5%盐酸浸泡清洗,加1%JHH活化剂溶液浸泡6h后,装入微电解柱待用。SBR 槽各投加活性污泥2L,其中2槽悬挂30%软性填料,污泥驯化2周,周期COD去除率约80%~85%,待用。

2静态实验结果和讨论

2.1酸析静态试验

水质:碱减量废水,No.1:NaOH 2.4%,COD 8854mg/L,BOD5 1845mg/L, SS 350 mg/L;No.2:pH 14,COD 6524 mg/L,BOD5 1283 mg/L, SS 136mg/L。

表1 碱减量废水酸析点对COD 和BOD5/COD的影响

碱减量废水实验PH 12 10 8 6 4 3 2 1

No.1废水COD/(mg.L-1) 8765 8271 8135 7878 3377 1684 1534 1454 BOD5/COD 0.21 0.21 0.22 0.24 0.26 0.34 0.36 0.35 SS/(mg.L-1) 235 478 554 658 457 145 254 387

利用染料化工厂65%废酸,调节碱减量废水PH。表1结果显示,加酸量越大,PTA去除越多。酸析点PH<3时,COD去除率>80%,BOD5/COD>0.30,SS也明显降低。

2.2微电解静态实验[3]

2.2.1 PH对铁耗和BOD5/COD的影响

按pH值为1、2、3、4、5制备碱减量废水酸析沉淀上清液2L。在微电解柱加入1.5L已活化铸铁屑,微电解反应0.5h 。实验反应条件:出柱废水①:微电解柱静止;出柱废水②:微电解柱置于振荡器上;出柱废水③:微电解柱静止,通空气10mL/(cm2.min);出柱废水④:微电解柱1.5L铸铁屑中均匀添加10%Φ 0.5~Φ1mm焦炭并置于振荡器上。微电解处理后碱减量废水测定总铁,用电石渣中和至PH9,充分搅拌0.5h,静沉1h,取上清液测定BOD5、COD。实验结果见表2。

铸铁屑中含有铁和炭,在酸性溶液存在条件下,形成一个个以铁为阳极、炭为阴极的微原电池,产生如下电极反应:

阳极Fe-2e→Fe2+E0+(Fe2+/Fe)=-0.44V

阴极2H+2e→2[H]→H2↑ E0(H+/H2)=0V

Fe2+在碱减量废水中将被作为混凝剂使用。OH-是一种羟基自由基,可氧化多种有机物。PH 影响微电解的电极反应速度和电极反应产物生成。电极反应进行使OH-大量增加,导致PH上升。当PH升高1.5左右后,其上升速度趋缓。

不同条件对微电解废水总铁影响较大。其中高频率振荡时改善电极表面条件最为有利,氧化还原反应得到加速,铁离子进入溶液速度加快。曝气充氧条件下,氧的大量加入并未对电极反应明显加速。OH-的增加也没有对BOD5/COD产生推动作用。当微电解柱加入10%焦炭时,其处理效果也没有提高。

分析实验结果数据发现,只要出柱废水pH提高0.6以上,总铁在652mg/L以上,就可保证COD去除率>5.5%。

2.2.2反应时间对铁耗、BOD5/COD和混凝效果的影响

备已酸析碱减量废水6L(pH3,COD4 846mg/L,BOD5/COD 0.25),加入微电解柱作HRT实验。测定微电解柱出柱碱减量废水总铁,用电石渣调节至pH9后,测定上清液的BOD5/COD。再取微电解柱排出碱减量废水,以10%比例加至印染废水(pH7.6,COD1358mg/L,BOD5/COD 0.02,,色度800倍)中,加电石渣调至PH8.5,测定微电解柱出柱碱减量废水的混凝效果,实验结果如表3。

实验发现,当HRT>40min时,COD去除率大于62%,色度去除率大于80%,BOD5/COD 有很大提高。利用铸铁屑微电解产生Fe2+,在每吨碱减量废水加1~3kg废铁屑,水量占10%时可产生理想混凝效果,费用约0.07~0.21元/t印染废水。

3SBR对比实验

对碱减量废水的研究,重点进行了活性污泥和生物膜法两种SBR工艺比较。HRT分配研究中,使用图2所示SBR时序。每次实验加入混凝沉淀后印染废水6L(PH7.8,COD1685mg/L,BOD5 339mg/L,色度240倍。实验结果见图3、图4、表4。

表4 SBR 运行实验终点印染废水BOD5/COD值

时序Ⅰ时序Ⅱ时序Ⅲ时序Ⅳ

生物膜法 SBR 16/177 18/109 15/93 10/185

活性污泥 SBR 21/158 20/136 16/124 11/215

图2时序Ⅰ为典型的“兼氧—好氧”处理工艺,通过6h兼氧段、7h好氧段使COD达标去除。时序Ⅱ采用“兼氧1-好氧1-兼氧2-好氧2”工艺,其COD去除率比时序Ⅰ高。时序Ⅲ的COD 去除率最高。对照时序Ⅳ,COD降解曲线虽呈现陡峭状,但是长达13h的好氧只能使COD降到185~215mg/L,BOD510~11mg/L。对照图4、图5,两种SBR工艺的生化降解趋势大致一致,膜SBR的降解能力优于泥SBR。

考验SBR的耐冲击负荷能力,实验结果见图5。泥SBR槽加入碱减量废水后,COD曲线为一直线,说明活性污泥呈不可逆转死亡。膜SBR槽在曝气6天后,COD曲线微微下倾,8天后COD降至148mg/L。说明附着型活性污泥的耐冲击负荷能力大于悬浮型活性污泥。

4动态试验

4.1微电解柱连续运行动态实验

在微电解柱中投加铸铁屑1.5L,以HRT 0.5h,0.2L/h流量连续运行1个周期后,用JHH活化剂活化铸铁屑,每2天增添铸铁屑。测定碱减量废水出柱废水参数见表5。进柱废水:pH 3.2,COD 1567mg/L。

动态试验中,在保持进柱废水PH3.2条件下,周期运行中处理效率基本均衡,铸铁屑表观晶亮,疏松。观察出柱废水发现,水中有少量焦炭粉末悬浮,应是铸铁屑中析出,其量为6~16mg/L,中和后焦炭末与亚铁絮体混合不能分离。3个周期连续实验表明,在保持一定运行条件下,微电解柱可以保证正常运行,未出现钝化、堵塞、处理效率下降问题。COD去除率64%~82%;总铁量653~811mg/L。

4.2碱减量废水动态实验

当碱减量废水0.2L/h,印染废水1.8L/h流量作动态连续运行时,整个工艺流程的控制点可灵活调整。表5示出关键工艺参数控制于不同控制点时的运行结果。碱减量废水原水参数:NaOH0.84%,COD7884mg/L,BOD5 1452mg/L,SS 256mg/L。SBR时序见图6,时序编号同图2。

相关文档
最新文档