机械能守恒定律公式运用

合集下载

机械能守恒定律3种表达式_机械能量守恒定律公式汇总

机械能守恒定律3种表达式_机械能量守恒定律公式汇总

机械能守恒定律3种表达式_机械能量守恒定律公式汇总机械能守恒定律的概念在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。

这个规律叫做机械能守恒定律。

机械能守恒定律(lawofconservationofmechanicalenergy)是动力学中的基本定律,即任何物体系统。

如无外力做功,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。

外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。

这个定律的简化说法为:质点(或质点系)在势场中运动时,其动能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。

这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。

这只能在一些特殊的惯性参考系如地球参考系中才成立。

如图所示,若不考虑一切阻力与能量损失,滚摆只受重力作用,在此理想情况下,重力势能与动能相互转化,而机械能不变,滚摆将不断上下运动。

机械能守恒定律守恒条件机械能守恒条件是:只有系统内的弹力或重力所做的功。

【即忽略摩擦力造成的能量损失,所以机械能守恒也是一种理想化的物理模型】,而且是系统内机械能守恒。

一般做题的时候好多是机械能不守恒的,但是可以用能量守恒,比如说把丢失的能量给补回来。

从功能关系式中的WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。

当系统不受外力或所受外力做功之和为零,这个系统的总动量保持不变,叫动量守恒定律。

当只有动能和势能(包括重力势能和弹性势能)相互转换时,机械能才守恒。

机械能守恒定律的三种表达式1.从能量守恒的角度选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。

2.从能量转化的角度系统的动能和势能发生相互转化时,若系统势能的减少量等于系统。

机械能守恒定律应用

机械能守恒定律应用

机械能守恒定律应用机械能守恒定律是物理学中的一个重要概念,它指出在不受外力作用的情况下,一个物体的机械能总量保持不变。

这个定律已经被广泛应用于各种场合,特别是在能量转化和物体运动方面。

本文将详细介绍机械能守恒定律的概念和应用。

1. 机械能守恒定律的概念机械能守恒定律是能量守恒定律的一个特例,它指出一个系统在不受非弹性力的作用下,其机械能总量不变。

机械能是通过物体的动能和势能来定义的,其中动能是由于物体的运动而产生的,而势能则是由于物体所处的位置而产生的。

通常情况下,机械能可以用以下公式表示:E = K + U其中,E为物体的机械能总量,K为物体的动能,U为物体的势能。

2. 机械能守恒定律的应用机械能守恒定律在物理学中有许多应用,以下是其中的一些例子:2.1 能量装换问题机械能守恒定律可以用于解决能量转换问题,例如在弹簧振子中,弹簧弹性势能被转换成物体的动能,从而使物体上升到最高点。

在这个过程中,重力阻力等其他力的作用可以忽略不计,因此可以应用机械能守恒定律,将物体在不同位置的动能和势能相加,得到一个总的机械能,该总能量应该保持不变。

2.2 物体运动问题机械能守恒定律可以用于分析物体的运动轨迹和速度。

例如,当一个物体被释放并从高处下落时,重力为其提供势能并使其获得动能。

在这个过程中,机械能守恒定律可以用来计算物体在到达地面前的速度和位移。

该定律还可以用来解决其他的运动问题,例如在一个受到弹簧拉力的小球从高台上落下时,如何计算小球落地前的速度和位置。

2.3 机械能的优化问题机械能守恒定律可以用于优化机械系统的设计。

例如,如何设计一个摆钟,使其摆动的角频率最小?在这个问题中,可以运用机械能守恒定律,并通过调整摆的长度和重力势能的大小来最小化摆动的角频率。

该定律还可以用于优化其他机械系统,例如弹簧运动系统、滑雪板等。

3. 结论机械能守恒定律在物理学中广泛应用,主要用于能量转换和物体运动方面的问题。

通过应用该定律,我们可以解决许多实际问题,并在机械系统的设计中实现优化。

高中物理必修二第七章-机械能守恒定律知识点总结

高中物理必修二第七章-机械能守恒定律知识点总结

机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。

功是能量转化的量度。

2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。

某力对物体做负功,也可说成“物体克服某力做功”。

当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。

6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。

7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。

即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。

方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。

二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。

2公式:tW P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。

5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。

(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。

机械能守恒定律的运用

机械能守恒定律的运用

机械能守恒定律的运用一、机械能守恒定律简介机械能守恒定律是力学中的重要定律之一,它描述了一个封闭系统中,只有重力做功和物体势能的变化可以改变物体的机械能,而机械能的总量在没有外力做功的情况下保持不变。

根据机械能守恒定律,我们可以通过计算物体的机械能来分析物体的运动。

二、机械能守恒定律的适用范围机械能守恒定律适用于不受空气阻力和其他非保守力的影响的封闭系统。

在这种情况下,物体的机械能可以通过机械能的转化来保持不变。

机械能包括物体的动能和势能两部分,其中动能与物体的质量和速度有关,势能则与物体的位置和形状有关。

三、机械能守恒定律的数学表达式根据机械能守恒定律,我们可以得到以下数学表达式:总机械能 = 动能 + 势能总机械能 = 常数这意味着在没有外力做功的情况下,物体的总机械能保持不变。

四、机械能守恒定律的运用举例1. 自由落体运动自由落体是指在重力作用下,物体在没有空气阻力的情况下垂直地向下运动。

根据机械能守恒定律,我们可以分析自由落体运动。

在自由落体过程中,物体只受到重力做功,而没有其他外力做功。

因此,物体的机械能保持不变。

起初,物体处于较高位置,只有势能,没有动能。

随着物体下落,势能减少,而动能增加。

当物体到达地面时,势能减少到零,动能达到最大值。

可以利用机械能守恒定律的数学表达式来计算物体在不同位置的势能和动能。

2. 弹簧振动弹簧振动是指当给定物体与一个或多个弹簧连接时,物体在弹簧的作用下来回运动。

在没有外力作用的情况下,根据机械能守恒定律,物体的总机械能保持不变。

在弹簧振动过程中,物体的机械能转化为势能和动能之间的相互转换。

当物体离开平衡位置时,弹簧产生弹性力,将物体拉回平衡位置,使得物体的动能减小,势能增加。

当物体通过平衡位置时,动能最大,势能最小。

可以利用机械能守恒定律的数学表达式来分析弹簧振动过程中势能和动能的变化。

五、结论机械能守恒定律是力学中的重要定律之一,它描述了一个封闭系统中,只有重力做功和物体势能的变化可以改变物体的机械能,而机械能的总量在没有外力做功的情况下保持不变。

机械能守恒定律及其应用

机械能守恒定律及其应用

机械能守恒定律及其应用机械能守恒定律及其应用机械能守恒定律是物理学中的重要定律之一,它指出在一个自由体系中,机械能守恒不变。

这个定律是基于能量守恒定律发展出来的,而机械能,则包括系统的动能和势能。

机械能守恒定律的应用非常广泛,可以用来解释或预测各种物理现象,例如弹性碰撞、滑动摩擦等。

机械能和动能在物理学中,机械能被定义为系统的动能和势能之和。

动能表示系统内物体的运动能量,而势能则表示系统中物体由于它们的位置而具有的能量。

这两种能量可以通过下面的公式来计算:机械能= 动能+ 势能动能= 0.5mv^2,其中m为物体的质量,v为物体的速度势能= mgh,其中m为物体的质量,g为重力加速度,h为物体的高度机械能守恒定律机械能守恒定律表述如下:一个系统中,如果所有作用力都是保守力,那么机械能守恒不变。

在这个定律中,所谓的保守力是指只与位置有关的力。

在这样的力作用下,系统的总机械能将保持不变,即机械能的初始值等于机械能的最终值。

如果存在非保守力,如滑动摩擦、空气阻力等,那么系统的机械能将不再是恒定的。

应用弹性碰撞在物理学中,弹性碰撞是指两个物体相撞后不会失去动能的碰撞。

这个现象可以用机械能守恒定律来解释。

考虑两个质量分别为m1和m2的小球以速度v1和v2相向运动,它们碰撞后弹性分离,速度分别变为v1'和v2'。

在弹性碰撞过程中,小球之间的作用力可以看做保守力,因此可以使用机械能守恒定律:1/2 m1v1^2 + 1/2 m2v2^2 = 1/2 m1v1'^2 + 1/2 m2v2'^2通过解这个方程组,可以求出小球在弹性碰撞后的速度。

滑动摩擦滑动摩擦是指物体之间相对滑动时产生的阻力。

摩擦力常常会导致机械能的损失,因此在实际物理问题中,必须考虑摩擦力对机械能守恒定律的影响。

考虑一个物体运动在一个光滑的水平面上,它的速度为v0,然后被一个恒定的摩擦力Ff反向作用,作用距离为d,使物体在最终速度为v的情况下停下来。

机械能守恒定律及应用

机械能守恒定律及应用

机械能守恒定律及应用引言机械能守恒定律是物理学中的一个重要定律,它描述了封闭系统内机械能的守恒性质。

对于大部分的力学问题,机械能守恒定律都能够提供有效的解题方法和理解依据。

本文将介绍机械能守恒定律的基本概念和公式,并探讨其在日常生活和工程实践中的应用。

机械能守恒定律的概念和公式机械能守恒定律是指在一个封闭的系统中,系统的机械能的总量不会发生变化。

机械能是由系统的动能和势能所组成的,可以表示为E = K + U,其中E代表机械能,K代表动能,U代表势能。

动能是物体由于运动而具有的能量,可以表示为K = (1/2)mv^2,其中m代表物体的质量,v代表物体的速度。

势能是物体由于位置而具有的能量,常见的势能包括重力势能、弹性势能等等。

重力势能可以表示为U = mgh,其中g代表重力加速度,h代表物体的高度。

根据机械能守恒定律,一个封闭系统中的机械能在任何时刻都保持不变。

这意味着,当系统内发生能量转换时,从一个形式的能量转化为另一个形式的能量,但总的机械能保持不变。

机械能守恒定律在日常生活中的应用机械能守恒定律在日常生活中有很多实际的应用。

下面将介绍几个常见的例子。

滑动摩擦的能量转化当一个物体在水平面上以一定速度滑动时,会受到摩擦力的作用,摩擦力将物体的动能转化为热能。

根据机械能守恒定律,物体的动能减少,热能增加,但总的机械能保持不变。

机械钟的运行机械钟是利用重力势能和弹簧势能的转换来驱动的。

当弹簧松开时,弹簧势能转化为振动动能,然后通过齿轮传递给指针和钟面,使钟表运行。

根据机械能守恒定律,弹簧势能的减少等于钟表运动过程中动能的增加,保持总的机械能不变。

瀑布的能量转化瀑布是一个常见的能量转化的例子。

当水从高处流下时,它具有较大的重力势能,同时也具有动能。

当水流经瀑布的过程中,重力势能逐渐转化为动能,形成壮观的水流。

根据机械能守恒定律,水的重力势能减少,动能增加,总的机械能保持不变。

机械能守恒定律在工程实践中的应用机械能守恒定律在工程实践中有着广泛的应用。

机械能守恒定律及其应用

机械能守恒定律及其应用
02 热水器
优化能源利用,节省用水成本
03 空调
调节室内温度,节约能源消耗
结尾
通过深入了解机械能守恒定律在生活中的应用, 我们可以更好地利用能量资源,推动绿色、可持 续的生活方式。机械能守恒定律不仅是物理学原 理,更是指导我们节约能源、保护环境的重要思 想。
● 06
第六章 总结与展望
机械能守恒定律 的重要性
为科学研究提供理论基础
02 实用性
提高能源利用效率
03
未来发展方向
在未来,机械能守恒定律将在新能源开发、环保 和可持续发展中发挥更加重要的作用。随着科技 进步和社会需求的不断变化,人们对此定律的理 解和应用将不断深入。
未来发展方向
新能源开发
研究新型能源的转化原理 提高可再生能源利用率
环保
减少能源消耗对环境的影 响 推动清洁能源的发展
弹簧振子的实验
弹簧振子实验是一种常见的实验方法,通过测量 弹簧振子的运动轨迹和动能、势能的变化,验证 机械能守恒定律在弹簧振子系统中的有效性。实 验过程包括确定初始条件、记录振动数据、计算 能量变化等步骤。
自由落体实验
01 实验方法
使用重物自由落体
02 数据分析
测量速度和高度
03 能量变化
动能与势能之间的转化
01 能量守恒公式
K1 + U1 K2 + U2 02
03
守恒定律的应用范围
摆锤系统
系统的动能和势能转化
自由落体
动能转变为重力势能
滑坡运动
势能转变为动能
机械能守恒定律 应用案例
通过机械能守恒定律, 我们可以解释很多自 然现象,比如弹簧振 子的运动、摩擦力的 影响等。这一定律的 应用不仅局限于实验 室,也在工程领域有 广泛应用。

机械能守恒定律

机械能守恒定律

机械能守恒定律机械能守恒定律是力学中的一个基本原理,它描述了在没有外力做功和没有摩擦损失的情况下,系统的机械能保持不变。

机械能包括了物体的动能和势能,它们之间可以相互转化但总和保持恒定。

一、机械能的定义机械能是指物体的动能和势能的总和,即:E = K + U其中,E表示机械能,K表示动能,U表示势能。

动能是物体由于运动而具有的能量,由物体的质量和速度决定;势能则是物体由于位置而具有的能量,它与物体的质量、位置和外力有关。

二、机械能守恒定律的表达形式机械能守恒定律可以通过以下公式表示:E₁ = E₂即在某一过程中,物体的机械能在始末状态保持不变。

这意味着在没有外界做功和能量损失的情况下,物体的机械能始终保持恒定。

三、机械能守恒定律的应用机械能守恒定律可以应用于各种力学问题的求解中,例如弹簧振子、自由落体等。

下面以一个滑块运动的例子来说明机械能守恒定律的应用。

假设有一个质量为m的滑块,沿着光滑的水平面上有一个长度为l的弹簧。

当滑块位于弹簧的伸长端时,弹簧势能为0,机械能仅由滑块的动能组成;当滑块位于弹簧的压缩端时,机械能由滑块的动能和弹簧的势能组成。

根据机械能守恒定律,可以得到以下关系:(1/2)mv₁² = (1/2)kx²其中,v₁表示滑块在伸长端的速度,k表示弹簧的弹性系数,x表示滑块相对平衡位置的位移。

通过这个关系式,我们可以求解出滑块在不同位置的速度和位移。

四、机械能守恒定律的局限性尽管机械能守恒定律在许多力学问题中都适用,但在实际问题中,往往存在着一些能量损失,如摩擦阻力等。

这些能量损失将导致系统的机械能不再保持恒定。

因此,在考虑具体的实际情况时,我们需要考虑这些能量损失,并将其纳入计算中。

五、总结机械能守恒定律是力学中的一个重要原理,它描述了在没有外力做功和没有能量损失的情况下,系统的机械能保持不变。

通过机械能守恒定律,我们可以解决许多力学问题,并得到物体在不同位置和状态下的速度和位移等信息。

动能定理、机械能守恒、动量守恒综合应用

动能定理、机械能守恒、动量守恒综合应用

动能定理、机械能守恒、动量守恒综合应用一、动能定理:合力对物体所做的功等于物体动能的变化 2022121mv mv W -=合注:W 合为合力做功,一般有两种求法:①是物体所有力做功的代数和W 总 = W 1+W 2+…+W n ; ②是先求合力然后用功的定义式:θLCOS F W 合=二、机械能守恒定律:1、两种表述方法:①在只有重力和弹力(弹簧)做功的情况下,物体的动能和势能发生相互转化,但机械能总量保持不变。

222121v m h mg mv mgh '+'=+ 即 k p k p E E E E '+'=+②如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。

减增E E ∆=∆2、解题步骤:①明确研究对象和它的运动过程。

②分析研究对象的受力情况,判断机械能是否守恒。

③确定对象运动的起始和终了状态,选定零势能参考平面,确定物体在始、末两状态的机械能 ④选定一种表达式,统一单位,列式求解三、动量守恒定律1、定律内容及公式:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。

22112211v m v m v m v m '+'=+ 即:p 1+p 2=p 1/+p 2/ 或:Δp 1= -Δp 2 2、动量守恒定律成立的条件①系统不受外力或者所受外力之和为零;②系统受外力,但外力远小于内力,可以忽略不计;③系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

④全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

训练1如图所示,AB 为1/4圆弧轨道,半径为R=0.8m ,BC 是水平轨道,长S=3m ,BC 处的摩擦系数为μ=1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止。

求物体在轨道AB 段所受的阻力对物体做的功。

训练2抛出的手雷在最高点时水平速度为10m/s ,这时突然炸成两块,其中大块质量300g 仍按原方向飞行,其速度测得为50m/s ,另一小块质量为200g ,求它的速度的大小和方向。

机械能守恒定律公式

机械能守恒定律公式

机械能守恒定律公式引言机械能守恒定律是物理学中一个重要的定律,描述了在不存在外力和能量转换的情况下,机械能守恒的原理。

它在解析力学和能量守恒等领域有广泛的应用。

本文将介绍机械能守恒定律的公式和相关知识。

机械能守恒定律的概念机械能守恒定律是指在没有外力做功和能量转化的情况下,系统的机械能保持不变。

机械能是由动能和势能组成的,动能是物体由于运动而具有的能量,势能是物体由于位置或形状而具有的能量。

机械能守恒定律的公式推导我们首先来推导机械能守恒定律的公式。

设一个物体的质量为m,速度为v,高度为h,考虑重力和无阻力情况下的力学能量守恒。

根据动能和势能的定义,物体的动能和势能可以表示为:动能K = 1/2 * m * v^2 势能U = m * g * h其中,m是物体的质量,v是物体的速度,g是重力加速度,h是物体的高度。

根据能量守恒原理,物体的总能量E保持不变,即:E = K + U将动能和势能的表达式代入,可以得到:E = 1/2 * m * v^2 + m * g * h这就是机械能守恒定律的公式。

机械能守恒定律的应用机械能守恒定律在实际问题中有广泛的应用。

下面我们以一个简单的例子来说明机械能守恒定律的应用。

假设有一个物体沿着一条光滑的斜面滑动,斜面的倾角为θ,物体的质量为m。

我们要求物体从斜面的顶端滑到底部时的速度v。

根据机械能守恒定律,物体在顶端的机械能等于底端的机械能。

在顶端,物体只具有势能,而在底端,物体具有动能和势能。

设物体在顶端的高度为h,那么顶端的势能可以表示为:U = m * g * h在底端,物体的高度为0,动能可以表示为:K = 1/2 * m * v^2根据机械能守恒定律,顶端的势能等于底端的机械能,即:m * g * h = 1/2 * m * v^2通过上述方程,我们可以解得滑块最终的速度v。

总结机械能守恒定律是物理学中一个重要的定律,描述了在没有外力和能量转换的情况下,机械能保持不变的原理。

机械能守恒定律的应用

机械能守恒定律的应用

机械能守恒定律的应用机械能守恒定律是指在一个封闭系统中,机械能(动能和势能的总和)总是守恒的,即机械能的总量在运动过程中保持不变。

这个定律是物理学中的一个基本原理,广泛应用于各种实际问题的解答中。

1.动能和势能的概念:–动能:物体由于运动而具有的能量。

–势能:物体由于位置或状态而具有的能量。

2.机械能守恒的条件:–只有重力或弹力做功:在没有外力作用或外力做功为零的情况下,系统的机械能守恒。

3.机械能守恒定律的数学表达:–( K + U = )–其中,( K ) 表示动能,( U ) 表示势能,等号右边表示机械能的总量是一个常数。

4.应用机械能守恒定律解题的步骤:a.确定研究对象和受力分析。

b.选取合适的参考平面,确定物体的势能。

c.分析各种力的做功情况,判断机械能是否守恒。

d.根据机械能守恒定律,列出相应的方程。

e.解方程,得出结论。

5.机械能守恒定律在实际问题中的应用:–自由落体运动:物体从高处下落到地面过程中,重力势能转化为动能,机械能守恒。

–抛体运动:物体在水平方向抛出后,竖直方向受到重力作用,机械能守恒。

–弹性碰撞:两个物体发生弹性碰撞时,机械能守恒。

–滑轮组和斜面:在滑轮组或斜面上下滑动的物体,机械能守恒。

6.注意事项:–在应用机械能守恒定律时,要注意选取合适的参考平面,以免出现计算错误。

–考虑实际情况,如空气阻力、摩擦力等因素,这些因素可能会导致机械能的损失。

通过以上知识点的学习,学生可以掌握机械能守恒定律的概念、条件和应用方法,并在解决实际问题时,能够运用机械能守恒定律进行解答。

习题及方法:1.习题:一个物体从高度 h 自由落下,不计空气阻力。

求物体落地时的速度 v。

选取地面为参考平面,物体的初始势能为 ( U_i = mgh ),其中 m 为物体质量,g 为重力加速度。

落地时,势能为零,动能为( K = mv^2 )。

根据机械能守恒定律,有 ( U_i = K ),代入数据解得 ( v = )。

机械能守恒定律及应用

机械能守恒定律及应用

1.关于机械能是否守恒,下列说法正 确的是( ) A. 做匀速直线运动的物体机械能一定 守恒 B. 做圆周运动的物体机械能一定守恒 C. 做变速运动的物体机械能可能守恒 D. 合外力对物体做功不为零,机械能 一定不守恒
C
2.(2011·全国高考)一蹦极运动员身系弹性 蹦极绳从水面上方的高台下落,到最低点时距 水面还有数米距离。假定空气阻力可忽略,运 动员可视为质点,下列说法正确的是( ) A. 运动员到达最低点前重力势能始终减小 B. 蹦极绳张紧后的下落过程中,弹性力做 负功,弹性势能增加 C. 蹦极过程中,运动员、地球和蹦极绳所 组成的系统机械能守恒 D. 蹦极过程中,重力势能的改变与重力势 能零点的选取有关
2.机械能守恒定律表达式
Ek1+Ep1= Ek= EA= Ek2+Ep2 △Ep △EB
观 点
表达式
守恒观点
转化观点
转移观点
对机械能守恒定律三种表达式的理解 守恒观点. 意义:系统初状态的机械能等于末状态的机械能. 注意问题:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面. 表达式:mgh1+1/2mv12=mgh2+1/2mv22或
湖南长郡卫星远程学校
制作 06
2012年下学期
制作 06
湖南长郡卫星远程学校
(3)选取零势能面,确定研究对象在 初、末状态的机械能。 (4)根据机械能守恒定律列出方程。 (5)解方程求出结果,并对结果进行 必要的讨论和说明。
质量为m的小球从高H处由静止开始自由下落,以地面作为零势能面.当小球的动能和重力势能相等时,重力的瞬时功率为( )
[名师点睛]
2012年下学期
制作 06

机械能守恒定律应用(杆连接类问题)

机械能守恒定律应用(杆连接类问题)

系统机械能守恒问题(杆连接)一. 知识点分析:1.通过杆连接的物体系统,杆对两个物体都施加力的作用,物体各自的机械能不守恒, 但杆只使机械能在物体间转移,并不把机械能转化为其他形式的能,所以系统的机械 能守恒。

2.机械能守恒定律的表达方式,①物体在初状态的机械能E 1等于其末状态的机械能E 2,即E 2=E 1或E k2+E p2=E k1+E p1 ②减少(或增加)的势能△E p 等于增加(或减少)的总动能△E k ,即△E P =△E k .③系统内一物体机械能的增加(或减少)等于另一物体机械能的减少(或增加),即 △E 1=-△E 2二.例题分析:【例1】如图所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴。

AO 、BO 的长分别为2L 和L 。

开始时直角 尺的AO 部分处于水平位置而B 在O 的正下方。

让该系统由静止开始自由转动, 求:⑴当A 到达最低点时,A 小球的速度大小v ;⑵ B 球能上升的最大高度h ; ⑶开始转动后B 球可能达到的最大速度v m 。

【例2】一根质量不计的细杆长为2 L , 一端固定在光滑的水平转轴O 上, 在杆的另一端和杆的中点各固定一个质量为m 的小球, 然后使杆从水平位置由静止开始, 在竖直 平面内自由下摆, 如图所示, 试求:⑴ 杆向下摆至竖直位置时, 两球的速度.⑵ 杆从水平位置向下摆至竖直位置的过程中, 杆对球B 所做的功. ⑶ 摆至竖直位置时, 杆OA 和AB 的张力T 1、T 2之比.BAO【例3】如右图所示,轻质细杆的两端分别固定质量均为m 的两个小球A 和B ,细杆可绕O 轴在竖直 平面内无摩擦地自由转动,BO =2AO ,将细杆从水平静止状态自由释放, 求:(1)细杆转到竖直位置时A 和B 的速度? (2)杆对O 轴作用力的大小和方向。

【例4】半径为R 的光滑圆环竖直放置,环上套有两个质量分别为m 和2m 的 小球A 和B ,A ,B 之间用一长为R 的轻杆相连,如图所示,开始时, A ,B 都静止,且A 在圆环的最高点,现将A,B 释放,求: (1)A 到最低点时的速度大小?(2)在第一问所述过程中杆对B 球做的功?【例5】如图所示,倾角为θ光滑斜面上放有两个质量均为m 的小球A 和B , 两球之间用一根长为L 的轻杆相连,下面的小球B 离斜面底端的高度 为h ,两球从静止开始下滑,不计球与地面碰撞时的机械能损失,且地面光滑,求:(1)两球在光滑水平面上运动时的速度大小;(2)此过程中杆对A 球所做的功;A Bθh AB机械能守恒定律 应用4-----系统机械能守恒问题分析(杆连接类)参考答案例1:解:以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒。

机械能守恒定律的应用

机械能守恒定律的应用

机械能守恒定律的应用机械能守恒定律是一个基本的物理原理,它可以被广泛应用于各种力学问题的求解中。

本文将介绍机械能守恒定律的概念,并探讨其中几个实际应用的例子。

一、机械能守恒定律的概述机械能守恒定律是指在没有外界非弹性力(如摩擦力、空气阻力等)作用下,一个力学系统的机械能总量保持不变。

机械能可以分为势能和动能两部分。

势能是指物体由于位置或形状而具有的能量,常见的势能有重力势能、弹性势能等。

动能是指物体由于运动而具有的能量,其大小与物体的质量和速度有关。

机械能守恒定律可以用以下公式表示:机械能初态 = 势能初态 + 动能初态 = 机械能末态 = 势能末态 + 动能末态二、应用一:自由落体运动自由落体运动是指只有重力做功的物体下落过程。

根据机械能守恒定律,当一个物体从一定高度自由下落时,其机械能一直保持不变。

例如,一个质量为m的物体从高度h自由下落,下落到最低点时具有最大的动能,而势能为零。

根据机械能守恒定律,可以得到以下关系式:mgh = 1/2 mv^2其中,m为物体的质量,g为重力加速度,v为物体的下落速度。

三、应用二:弹簧振子弹簧振子是一种具有弹性势能的力学系统。

当弹簧振子在振动过程中,机械能的总量保持不变。

考虑一个质量为m的物体,用弹簧与固定支撑连接,在平衡位置附近发生振动。

根据机械能守恒定律,可以得到以下关系式:1/2 kx^2 = 1/2 mv^2其中,k为弹簧的劲度系数,x为物体的位移,v为物体的速度。

四、应用三:滑雪运动滑雪是一种运用机械能守恒定律的典型例子。

当滑雪者从山顶出发,下滑到山脚时,机械能总量保持不变。

在滑雪运动中,滑雪者的势能被转化为动能。

滑雪者越接近山脚,动能越大,而势能越小。

根据机械能守恒定律,可以得到以下关系式:mgh = 1/2 mv^2其中,m为滑雪者的质量,g为重力加速度,h为滑雪者的高度,v为滑雪者的速度。

五、总结机械能守恒定律是一个重要的物理原理,广泛应用于各种力学问题的求解中。

机械能守恒定律的理解与应用

机械能守恒定律的理解与应用

机械能守恒定律的理解及应用一、机械能守恒定律:1.机械能守恒定律容表述:①表述一: 在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但总的机械能保持不变.这个结论叫做机械能守恒定律.不但动能和重力势能的相互转化中机械能保持不变,在弹性势能和动能的转化过程中,如果只有弹簧的弹力做功,机械能也是保持不变的.②表述二: 在只有重力或弹力做功的物体系统,动能与势能可以相互转化,但总的机械能不变.这个结论叫做机械能守恒定律.机械能守恒定律是力学中的一条重要定律,又是更普遍的能的转化和守恒定律的一种特殊情况.2.怎样理解机械能守恒定律:①只有重力做功的情形:重力势能是相对的,表达式为Ep = mgh ,式中的h 是物体的重心到参考平面(零重力势能面)的高度.若物体在参考平面以上,则重力势能为正;若物体在参考平面以下,则重力势能为负.通常,选择地面作为零重力势能参考平面.重力势能的变化量与零重力势能的选取无关.重力对物体做多少正功,物体的重力势能就减少多少;重力对物体做多少负功,物体的重力势能就增加多少.即W 重= -ΔE 重.②只有弹力做功的情形:一个物体由于外力的作用发生形变,如果撤去外力后形变会消失,这种形变就叫做弹性形变.物体因发生弹性形变而具有的势能叫做弹性势能. 和重力势能一样,弹性势能也是相对的.对于弹簧的弹性势能一般取其为原长时弹性势能为零. 弹力对物体做了多少负功,物体的弹性势能就增加多少.即W 弹= -ΔE 弹.重力做功和弹力做功均和途径无关.重力势能的大小与哪些因素有关,学生容易理解.以下就弹性势能的大小与哪些因素有关做出说明:一个物体在A 位置时,弹簧处于原长,如图1所示.我们对物体从A →B →C →B→A 的过程进行分析.当物体到B 位置时,弹簧的弹力做了负功,弹簧具有了弹性势能.再将物体推到C 处,弹力又做了负功,弹簧的弹性势能进一步增加.当物体从C 回到B,弹力做正功,弹簧的弹性势能减少.再将物体从B 回到A ,弹力继续做正功,弹簧的弹性势能继续减少.从这个例子,我们注意到:(Ⅰ)和重力势能一样,物体的弹性势能和弹力做功密切相关.弹力做多少负功(外力克服弹力做功),物体的弹性势能就增加多少;弹力做多少正功(弹力克服外力做功),物体的弹性势能就减少多少. (Ⅱ)和重力一样,弹力做功也和途径无关.物体从B 到C 弹力做的负功和C 到B 弹力做的正功相互抵消,因此物体从A 直接到B 跟物体从A 到C 再回到B 做的功是一样多的. 这个问题可以这样理解,由于物体在同一个位置的弹力相同,在B 、C 间靠着很近的两个点之间,向左移动和向右移动经过这两个点做的功,大小相同,符号相反如图1所示.而力在一段位移对物体做功的总量是力对每一小段位移做功的累加.所以,物体从B 到C 弹力做的负功和C 到B 弹力做的正功相互抵消(图1中,为了清楚的表示物理量的关系,把B 、C 间靠着很近的两个点的间距放大了).不难想象,在压缩弹簧中的过程,弹力做的功和两个因素有关:一个是弹簧的劲度系数;另一个是压缩的距离.因此对同一根弹簧,形变越大弹性势能越大,两根弹簧发生同样的形变,位移方向2图1图劲度系数大的弹簧弹性势能大.由于弹簧从平衡位置拉伸和压缩相同的长度时的力相同,所以同一根弹簧,从平衡位置拉伸和压缩相同的长度时,弹簧的弹性势能相同.所以,弹簧的弹性势能与弹簧的劲度系数和形变量两个因素有关.③机械能守恒定律动能和势能之和称为机械能.一种形式的机械能可以和另一种形式的机械能相互转化.下面我们看一些例子.物体自由下落或沿光滑斜面滑下的时候,重力对物体做功,物体的重力势能减少;而物体速度越来越大,表示物体的动能增加了.这时重力势能转变为动能.原来具有一定速度的物体,在竖直上升或沿光滑斜面上升的过程中,物体克服重力做功,速度越来越小,物体动能减少了;而随着高度增加,重力势能却增加了.这时动能转化成重力势能.弹性势能也可以和动能相互转化.放开一个被压缩的弹簧,它可以把一个与它接触的小球弹出去.这时弹力做功,弹簧的弹性势能就减少;同时小球得到一定的速度,动能增加.放开被拉开的弓把箭射出去,这时弓的弹性势能减少,箭的动能增加.从这些例子我们可以看出,机械能的相互转化是通过重力或弹力做功来实现的.重力或弹力做功的过程,也就是机械能从一种形式转化为另一种形式的过程.那么在各种机械能相互转化的过程中有什么规律呢?我们用一个最简单的例子来看一下.一个做自由落体运动的小球从1位置下落到2位置,设小球在位置1和2的速度分别为v 1和v 2,1位置和2位置离地的高度分别为h 1和h 2(如图3).根据落体运动的规律可知:)(2212122h h g v v -=-等式两边都乘以0.5m,得22211211m v m v mg h mg h 22⋅-⋅=⋅-⋅ 由此可知,在小球从1位置落到2位置的过程中,它重力势能的减少量等于它动能的增加量,也就是说它在下落过程中机械能总量保持不变.机械能守恒定律关系式的推导,我们还可以通过下列方法来建立:我们还是用图3给出的情形研究.小球从1位置下落到2位置的过程中,重力做功W G =mg (h 1-h 2);运用动能定理,21222121mv mv W G -=,得: 2122212121mv mv mgh mgh -=-,即:2222112121mv mgh mv mgh +=+. 3.机械能守恒定律的应用例:【例1】 以10m/s 的速度将质量m 的物体从地面竖直向上抛出,忽略空气阻力,求(1)物体上升的最大高度(2)上升过程中何处重力势能和动能相等解:(1)以地面为参考面,设物体上升的最大高度为h ,由机械能守恒得E 1=E 2,即mgh mv +=+002120, 所以m m g v h 5102102220=⨯== 3图(2)在地面有E 1=2021mv 在高h 1处有E k =E p ,即12112221mgh mv mgh E =+= 由机械能守恒定律得21E E =,即120221mgh mv = 解得m m g v h 5.21041004201=⨯== 【例2】把一个小球用细线悬挂起来,就成为一个摆(见图4),摆长为L ,最大偏角为θ.小球从A 处释放运动到最低位置O 时的速度是多大?解:在小球运动的过程中,小球共受到重力和绳对小球的拉力共2个力的作用.由于绳子对小球的拉力方向始终与速度方向垂直,绳子对小球的拉力不做功,只有重力对小球做功,小球的机械能守恒.小球重力势能的减小量为cos 1(-mgL θ),动能的增加量为0212-mv ,根据机械能守恒得:221)cos 1(mv mgL =-θ,即)cos 1(2θ-=gL v . 【例3】如图5所示,质量均为m 的A 、B 两个小球, 用长为2L 的轻杆相连接,在竖直平面,绕固定轴O 沿顺时针方向自由转动(转轴在杆的中点),不计一切摩擦. (1)某时刻A 、B 球恰好在如图所示的位置,A 、B 球的线速度大小均为v .试判断A 、B 球以后的运动是否为匀速圆周运动,请说明理由!(2)若gL v =,在如图所示的位置时, B 球从杆上脱落,求B 球落地时的速度大小.解:(1)在图示位置转动一个较小的角度,由几何关系可得,A 球下降的高度和B 球上升的高度相同,A 、B 球系统的重力势能不变,由于系统的机械能守恒,所以A 、B 球的动能不变,所以A 、B 球以后的运动是为匀速圆周运动.(2) B 球速度大小与A 球相同,做平抛运动,满足机械能守恒条件设球落地时速度大小是v ',取地面为重力势能零点,运用机械能守恒定律:22212121mv L mg v m +=' 得: 小球落地的速度大小为gL v 2='.对于一个物体系来说,如果没有外力做功,又没有耗散力做功,而只有保守力做功,那么系物体的动能和势能可以相互转换,但总机械能保持不变.【例2】给出的情景就是系统机械能守恒的实例.这里要指出的是,由于杆对A 球和B 球都做功,A 球和B 球的机械能均不守恒,但在A 球向下转动的过程中,杆对A 球做正功,杆对B 球做负功,杆对A 、B 球做功的总量为零,所以系统的机械能守恒.vv O A B L L L 5.2地面5图6图4图。

机械能守恒定律的应用

机械能守恒定律的应用

机械能守恒定律的应用机械能守恒定律是物理学中的一项基本定律,它阐述了在一个封闭系统中,机械能总量始终保持不变。

机械能包括动能和势能两部分,当一个物体的动能增加时,相应的它的势能就会减少,反之亦然。

机械能守恒定律可以用于许多实际问题的求解,下面将介绍一些具体的应用。

一、杠杆原理杠杆原理是物理学的基本原理之一,它是建立在机械能守恒定律的基础之上的。

在一个用杠杆举起质量为m1的物体时,施加在杠杆另一端的力为F,杠杆的长度为L,质量为m2。

假设杠杆的转轴与m2重合,杠杆能举起质量为m1的物体的条件是:F × L = m1 × g × d其中,d为m1的下降距离,g为重力加速度。

由机械能守恒定律可知:m1gh = (m1+m2)gd + T其中gh为杠杆所受的重力势能,gd为下降的高度,T为杠杆所受的拉力。

可推算如下:T = m1g - F = m1g - m1g×(d/L)= m1g(1 - d/L)因此,当T>0时,杠杆可以举起质量为m1的物体。

二、圆周运动圆周运动也是机械能守恒定律的一个应用。

在一个固定于竖直平面中心轴上的物体绕着这个轴做圆周运动时,它的动能和势能都会随着时间的变化而不断变化。

但是,由于这个系统是没有外力和摩擦力的,因此机械能守恒定律成立。

在编号为1和2的时刻,物体的动能和势能分别为:1: E1 = K1 + U1 = (1/2)mv1² + mgh12: E2 = K2 + U2 = (1/2)mv2² + mgh2根据机械能守恒定律,E1 = E2,因此(1/2)mv1² + mgh1 = (1/2)mv2² + mgh2如果我们假设物体的速度是均匀的,那么我们可以得到:v2 = v1 × (h2/h1)^(1/2)这个公式可以用来计算相同轨道上不同高度物体的速度。

三、工程问题机械工程中有许多涉及机械能守恒定律的问题。

机械能守恒定律的原理与应用

机械能守恒定律的原理与应用

机械能守恒定律的原理与应用一、机械能守恒定律的原理1.定义:机械能守恒定律是指在一个封闭的系统中,如果没有外力做功,或者外力做的功为零,那么系统的机械能(动能和势能之和)将保持不变。

2.表达式:机械能守恒定律可以用数学公式表示为:E_k + E_p =constant,其中E_k表示动能,E_p表示势能,constant表示常数。

3.条件:机械能守恒定律成立的条件是:系统受到的合外力为零,或者外力做的功为零。

在实际问题中,通常需要忽略摩擦力、空气阻力等因素。

二、机械能守恒定律的应用1.判断能量转化:在分析一个物体在受到外力作用下从一个位置移动到另一个位置的过程中,可以通过机械能守恒定律判断动能和势能的转化关系。

2.解决动力学问题:在解决动力学问题时,如果系统受到的合外力为零,或者外力做的功可以忽略不计,可以直接应用机械能守恒定律来求解物体的速度、位移等物理量。

3.设计机械装置:在设计和分析机械装置(如摆钟、滑轮组等)的工作原理时,可以利用机械能守恒定律来解释和预测系统的行为。

4.航天工程:在航天工程中,卫星、飞船等航天器在太空中运动时,由于受到的空气阻力很小,可以近似认为机械能守恒。

因此,机械能守恒定律在航天器的轨道计算、动力系统设计等方面有重要应用。

5.体育运动:在体育运动中,例如跳水、跳高等项目,运动员在运动过程中受到的空气阻力和摩擦力相对较小,可以忽略不计。

因此,机械能守恒定律可以用来分析运动员的速度、高度等参数。

6.生活中的例子:如滚摆运动、电梯运动等,可以通过机械能守恒定律来解释和预测物体在不同位置、不同速度下的状态。

综上所述,机械能守恒定律是物理学中的一个重要原理,在解决实际问题时具有广泛的应用价值。

在学习和应用过程中,要掌握其原理和条件,并能够灵活运用到各种场景中。

习题及方法:1.习题:一个物体从地面上方以5m/s的速度竖直下落,不计空气阻力,求物体落地时的速度和落地时的高度。

方法:根据机械能守恒定律,物体的势能转化为动能,即 mgh = 1/2 mv^2,其中m为物体质量,g为重力加速度,h为高度,v为速度。

机械能守恒定律及其应用

机械能守恒定律及其应用

机械能守恒定律及其应用机械能守恒定律是物理学中的基本原理之一,它描述了在没有外力和摩擦力的情况下,机械能在系统内部始终保持恒定的规律。

这个定律可以应用于各种实际情况,从解释物体的运动到优化工程设计都发挥着重要的作用。

一、机械能守恒定律的表达形式机械能守恒定律可以用以下公式来表示:E = K + U其中,E表示系统总机械能,K表示系统的动能,U表示系统的势能。

根据这个公式,我们可以看出系统的总机械能等于动能和势能的代数和。

当没有外力和摩擦力作用于系统时,机械能守恒定律成立。

根据机械能守恒定律,系统内部的能量可以互相转化,但总的能量保持不变。

二、机械能守恒定律的实际应用1. 自由落体运动机械能守恒定律可以帮助我们理解自由落体运动。

在没有空气阻力的情况下,一个物体在自由下落过程中,势能的减少等于动能的增加。

当物体落地时,势能完全转化为动能,这时物体的速度达到最大值。

2. 弹簧振子弹簧振子是另一个常见的应用机械能守恒定律的例子。

当一个物体通过振动来回移动时,它的动能和势能会交替转化,但它们的代数和保持不变。

当物体通过均衡位置时,动能最大,势能为零;当物体达到最大偏离位置时,势能最大,动能为零。

3. 能源利用与工程设计机械能守恒定律在能源利用和工程设计中也起着重要的作用。

通过合理地利用机械能守恒定律,可以优化机械系统的设计,提高能源利用效率。

例如,在水力发电站中,水通过水轮机转动,水的势能转化为发电机的机械能,再转化为电能,最终实现能源的转换和利用。

总结:机械能守恒定律是一个基本的物理原理,描述了在没有外力和摩擦力的情况下,机械能在系统内部保持恒定的规律。

这一定律在自由落体运动、弹簧振子、能源利用与工程设计等多个领域有着广泛的应用。

通过合理地利用机械能守恒定律,我们可以更好地理解和解释物体的运动,优化工程设计,提高能源利用效率。

机械能守恒定律的应用为我们的生活和科学研究带来了许多便利,对于物理学的发展具有重要意义。

机械能守恒定律及其应用

机械能守恒定律及其应用

机械能守恒定律及其应用一、重力势能1. 重力做功的特点:重力做功与路径无关,只与始末位置的竖直高度差有关,当重力为的物体从A 点运动到B 点,无论走过怎样的路径,只要A 、B 两点间竖直高度差为h ,重力mg 所做的功均为 mgh W G =2. 重力势能:物体由于被举高而具有的能叫重力势能。

其表达式为:mgh E P =,其中h 为物体所在处相对于所选取的零势面的竖直高度,而零势面的选取可以是任意的,一般是取地面为重力势能的零势面。

由于零势面的选取可以是任意的,所以一个物体在某一状态下所具有的重力势能的值将随零势面的选取而不同,但物体经历的某一过程中重力势能的变化却与零势面的选取无关。

3. 重力做功与重力势能变化间的关系:重力做的功总等于重力势能的减少量,即a. 重力做正功时,重力势能减少,减少的重力势能等于重力所做的功 - ΔE P = W Gb. 克服重力做功时,重力势能增加,增加的重力势能等于克服重力所做的功 ΔE P = - W G二、弹性势能1. 发生弹性形变的物体具有的能叫做弹性势能2.弹性势能的大小跟物体形变的大小有关,E P ′= 1/2×kx 23. 弹性势能的变化与弹力做功的关系:弹力所做的功,等于弹性势能减少. W 弹= - ΔE P ′三、机械能守恒定律1. 机械能:动能和势能的总和称机械能。

而势能中除了重力势能外还有弹性势能。

所谓弹性势能批量的是物体由于发生弹性形变而具有的能。

2、机械能守恒守律:只有重力做功和弹力做功时,动能和重力势能、弹性势能间相互转换,但机械能的总量保持不变,这就是所谓的机械能守恒定律。

3 、机械能守恒定律的适用条件:(1)对单个物体,只有重力或弹力做功.(2)对某一系统,物体间只有动能和重力势能及弹性势能相互转化,系统跟外界没有发生机械能的传递, 机械能也没有转变成其它形式的能(如没有内能产生),则系统的机械能守恒.(3)定律既适用于一个物体(实为一个物体与地球组成的系统),又适用于几个物体组成的物体系,但前提必须满足机械能守恒的条件.【要点名师精解】【例1】如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档