2020-2021成都七中实验学校(初中部)八年级数学下期末模拟试卷(含答案)

合集下载

2020-2021成都市八年级数学下期末试卷(附答案)

2020-2021成都市八年级数学下期末试卷(附答案)

2020-2021成都市八年级数学下期末试卷(附答案)一、选择题1.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( ) A .7B .6C .5D .42.估计()-⋅1230246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间3.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60 B .平均数是21C .抽查了10个同学D .中位数是504.计算4133÷的结果为( ). A .32 B .23C .2D .25.如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为( )A .10米B .16米C .15米D .14米6.下列有关一次函数y =﹣3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小 B .函数图象与y 轴的交点坐标为(0,2) C .函数图象经过第一、二、四象限 D .图象经过点(1,5)7.如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD 为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD8.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线互相垂直的四边形D.对角线相等的四边形9.若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或10.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)11.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.89C.8D.4112.如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.二、填空题13.如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.14.24的结果是__________.15.函数y=21xx中,自变量x的取值范围是_____.16.计算:182-=______.17.函数1y=x的定义域____.18.已知一次函数y=kx+b(k≠0)经过(2,-1),(-3,4)两点,则其图象不经过第________象限.19.若3的整数部分是a,小数部分是b,则3a b-=______.20.如图所示,已知ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC 中,能说明ABCD是矩形的有______________(填写序号)三、解答题21.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a10)>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?22.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.23.如图,直线l1的函数解析式为y=2x–2,直线l1与x轴交于点D.直线l2:y=kx+b与x 轴交于点A,且经过点B(3,1),如图所示.直线l1、l2交于点C(m,2).(1)求点D、点C的坐标;(2)求直线l2的函数解析式;(3)利用函数图象写出关于x、y的二元一次方程组22y xy kx b=-⎧⎨=+⎩的解.24.如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论.25.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF求证:四边形BECF是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD =CD =12BC =3, AD 同时是BC 上的高线, ∴AB =22AD BD +=5.故它的腰长为5. 故选C.2.B解析:B 【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围. 【详解】(130246=11302466=252,而25=45=20⨯ 20, 所以2<252<3, 所以估计(1302462和3之间, 故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.3.B解析:B 【解析】 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.4.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】===.原式2故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.5.B解析:B【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC中,根据勾股定理得:=10米.所以大树的高度是10+6=16米.故选:B.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.6.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.7.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B8.D解析:D【解析】【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=12BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【详解】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.9.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边==,当13,12分别是斜边和一直角边时,第三边==5.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.10.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.11.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC22225889AB BC++=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.12.A解析:A【解析】【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【详解】解:根据题意可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,反映到图象上应选A.故选:A.【点睛】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.二、填空题13.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出FG即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE1【解析】【分析】首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD∥BG,AD=BC,∴∠DAE=∠G=30°,∵DE=EC,∠AED=∠GEC,∴△ADE≌△GCE,∴AE=EG=AD=CG=1,在Rt△BFG中,∵∴,-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.14.4【解析】【分析】根据二次根式的性质直接化简即可【详解】故答案为:4【点睛】此题主要考查了运用二次根式的性质进行化简注意:解析:4【解析】【分析】根据二次根式的性质直接化简即可.【详解】.|4|4故答案为:4.【点睛】(0)||0 (0)(0)a aa aa a⎧⎪===⎨⎪-⎩><.15.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y=中自变量x的取值范围是x﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分解析:x≠1【解析】【分析】根据分式有意义的条件即可解答.【详解】函数y=21xx-中,自变量x的取值范围是x﹣1≠0,即x≠1,故答案为:x≠1.【点睛】本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.16.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法【解析】【分析】先化简二次根式,然后再合并同类二次根式.【详解】2=1(22-【点睛】本题考查二次根式的减法,化成最简二次根式再计算,这是通常最直接的做法.17.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变解析:0x>.【解析】【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x的取值即可.【详解】根据题意得,0 xx≥⎧⎨≠⎩解得,0x>故答案为:0x>.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.18.三【解析】设y=kx+b得方程组-1=2k+b4=-3k+b解得:k=-1b=1故一次函数为y=-x+1根据一次函数的性质易得图象经过一二四象限故不经过第三象限故答案:三解析:三【解析】设y=kx+b,得方程组解得:k=-1,b=1,故一次函数为y=-x+1,根据一次函数的性质,易得,图象经过一、二、四象限,故不经过第三象限.故答案:三.19.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】3a,小数部分为b,∴a=1,b31,3-b331)=1.故答案为1.20.①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形由此可得能使平行四边形ABCD是矩形的条件是①和④解析:①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.三、解答题21.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.22.(1)剩余木料的面积为6dm2;(2)2.【解析】【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(2)估算322的大小,结合题意解答即可.【详解】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为2dm和2dm,∴剩余木料的面积为(2﹣2)×2=6(dm2);(2)4<2<4.5,12<2,∴从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条,故答案为:2.【点睛】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.23.(1)D(1,0),C(2,2);(2)y=–x+4;(3)22 xy=⎧⎨=⎩.【解析】【分析】(1)求函数值为0时一次函数y=2x-2所对应的自变量的值即可得到D点横坐标,把C (m,2)代入y=2x-2求出m得到C点坐标;(2)把C、B坐标代入y=kx+b中,利用待定系数法求直线l2的解析式;(3)利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】(1)∵点D为直线l1:y=2x–2与x轴的交点,∴当y=0时,0=2x–2,解得x=1,∴D(1,0);∵点C在直线l1:y=2x–2上,∴2=2m–2,解得m=2,∴点C的坐标为(2,2);(2)∵点C(2,2)、B(3,1)在直线l2上,∴22 31k bk b+=⎧⎨+=⎩,解得14kb=-⎧⎨=⎩,∴直线l2的解析式为y=–x+4;(3)由图可知二元一次方程组22y xy kx b=-⎧⎨=+⎩的解为22xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.24.(1)BD=1m;(2)CE与BE的大小关系是CE=BE,证明见解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根据勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根据全等三角形的性质得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根据等腰三角形的判定得出即可.【详解】(1)∵AO⊥OD,AO=4m,AB=5m,∴,∵梯子的顶端A沿墙下滑1m至C点,∴OC=AO﹣AC=3m,∵CD=AB=5m ,∴由勾股定理得:OD=4m ,∴BD=OD ﹣OB=4m ﹣3m=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明如下:连接CB ,由(1)知:AO=DO=4m ,AB=CD=5m ,∵∠AOB=∠DOC=90°,在Rt △AOB 和Rt △DOC 中AB DC AO DO =⎧⎨=⎩, ∴Rt △AOB ≌Rt △DOC (HL ),∴∠ABO=∠DCO ,OC=OB ,∴∠OCB=∠OBC ,∴∠ABO ﹣∠OBC=∠DCO ﹣∠OCB ,∴∠EBC=∠ECB ,∴CE=BE .【点睛】本题考查了勾股定理,等腰三角形的性质和判定,全等三角形的判定与性质等,能灵活运用勾股定理进行计算是解(1)的关键,能求出∠DCO=∠ABO 和OC=OB 是解(2)的关键.25.证明见解析.【解析】【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC ,设对角线交于点O .∵四边形ABCD 是平行四边形,∴OA=OD ,OB=OC .∵AE=DF ,OA ﹣AE=OD ﹣DF ,∴OE=OF .∴四边形BEDF 是平行四边形.。

2020-2021成都八中七年级数学下期末模拟试卷(附答案)

2020-2021成都八中七年级数学下期末模拟试卷(附答案)

2020-2021成都八中七年级数学下期末模拟试卷(附答案)一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A .1个B .2个C .3个D .4个2.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°3.2-的相反数是( )A .2-B .2C .12D .12- 4.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩5.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( )A .﹣2B .2C .3D .﹣36.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个7.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个8.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,89.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A.35°B.45°C.55°D.125°10.不等式组3(1)112123x xx x-->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是()A.B.C.D.11.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(2,1) B.(﹣2,﹣1) C.(﹣2,1) D.(2,﹣1)12.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°二、填空题13.如图,将周长为9的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为_____.14.已21xy=⎧⎨=-⎩是关于x、y的二次元方程39ax y+=的解,则a的值为___________15.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=________°.16.如果a 的平方根是3±,则a =_________17.化简(2-1)0+(12)-2-9+327-=________________________. 18.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.19.已知方程x m ﹣3+y 2﹣n =6是二元一次方程,则m ﹣n =_____.20.如图,将周长为10的三角形ABC 沿BC 方向平移1个单位长度得到三角形DEF ,则四边形ABFD 的周长为__________.三、解答题21.如图,12180∠+∠=︒,B DEF ∠=∠,55BAC ∠=︒,求DEC ∠的度数.22.如图,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A 1 ,B 1 ,C 1 ;(2)画出平移后三角形A 1B 1C 1;(3)求三角形ABC 的面积.23.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 220a b b --=.()1则C 点的坐标为______;A 点的坐标为______.()2已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ SS =?若存在,请求出t 的值;若不存在,请说明理由. ()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHCACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.24.已知AB CD ∥,CE 平分ACD ∠,交AB 于点E ,128∠=︒,求A ∠的度数.25.解不等式组:5(1)21111(3)32x x x x +>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.无理数有3π,0.2112111211112……(每两个2之多一个1),3,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.3.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .4.A解析:A【解析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.5.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.6.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.7.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.9.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.10.B解析:B【解析】【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.【详解】解:3(1)112123x xx x-->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x<2,解不等式②得:x≥-1,在数轴上表示解集为:,故选:B.【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.11.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.12.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.二、填空题13.11【解析】【分析】根据平移的基本性质得出四边形ABFD的周长=AD+AB +BF+DF=1+AB+BC+1+AC即可得出答案【详解】解:根据题意将周长为9的△ABC沿BC方向向右平移1个单位得到△D解析:11【解析】【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【详解】解:根据题意,将周长为9的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=9,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=11.故答案为:11.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.14.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x与y的值代入方程组求出a的值,代入原式计算即可求出值.【详解】解:把21xy=⎧⎨=-⎩,代入得239a-=,解得:6a=故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.15.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.16.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.,∵9的平方根为3,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.17.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键解析:-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.详解:原式=1+4-3-3=-1.故答案为:-1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.18.0【解析】【分析】根据二元一次方程的定义可以得到x的次数等于1且系数不等于0由此可以得到m的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.19.3【解析】试题分析:先根据二元一次方程的定义得出关于mn的方程求出mn的值再代入m-n进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m-3=1解得m=4;2-n=1解得n=1∴m-n=4-解析:3试题分析:先根据二元一次方程的定义得出关于m 、n 的方程,求出m 、n 的值,再代入m-n 进行计算即可.∵方程x m-3+y 2-n =6是二元一次方程,∴m-3=1,解得m=4;2-n=1,解得n=1,∴m-n=4-1=3.考点:二元一次方程的定义.20.12【解析】试卷分析:根据平移的基本性质由等量代换即可求出四边形ABFD 的周长解:根据题意将周长为10个单位的△ABC 沿边BC 向右平移1个单位得到△DEF 可知AD=1BF=BC+CF=BC+1DF=解析:12【解析】试卷分析:根据平移的基本性质,由等量代换即可求出四边形ABFD 的周长.解:根据题意,将周长为10个单位的△ABC 沿边BC 向右平移1个单位得到△DEF , 可知AD =1,BF =BC +CF =BC +1,DF =AC ;又因为AB +BC +AC =10,所以,四边形ABFD 的周长=AD +AB +BF +DF =1+AB +BC +1+AC =12.故答案为12.点睛:本题主要考查平移的性质.解题的关键在于要利用平移的性质找出相等的线段.三、解答题21.55︒【解析】【分析】只要证明AB ∥DE ,利用平行线的性质即可解决问题.【详解】解:∵1180CDF ∠+∠=︒,12180∠+∠=︒,∴2CDF ∠=∠,∴//EF BC ,∴DEF CDE ∠=∠,∵B DEF ∠=∠,∴B CDE ∠=∠,∴//DE AB ,∴55DEC BAC ∠=∠=︒.【点睛】此题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.22.(1)A 1(4,7),B 1(1,2),C 1(6,4);(2)见解析;(3)192【分析】(1)根据平移的规律变化结合平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用△ABC 所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1) 观察图形可知点A (-2,2),点B (-5,-3),点C (0,-1),所以将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度后所得对应点的坐标为:A 1(3,5),B 1(0,0),C 1(5,2);(2)△A 1B 1C 1如图所示;(3)△ABC 的面积=5×5-12×5×2-12×2×3-12×3×5 =25-5-3-7.5=25-15.5=9.5.【点睛】 本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(1)()2,0;()0,4 ;(2)1;(3)2.【解析】分析:(1)根据绝对值和算术平方根的非负性,求得a ,b 的值即可;(2)先得出CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC∠∠∠+进行计算即可.详解:(12a b -+|b ﹣2|=0,∴a ﹣2b =0,b ﹣2=0,解得:a =4,b =2,∴A (0,4),C (2,0);(2)由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒,∴0<t ≤2时,点Q 在线段AO 上,即 CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,∴1111222212222DOP D DOQ D SOP y t t S OQ x t t =⋅=-⨯=-=⋅=⨯⨯=(),. ∵S △ODP =S △ODQ ,∴2﹣t =t ,∴t =1; (3)OHC ACE OEC∠∠∠+的值不变,其值为2. ∵∠2+∠3=90°.又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124421421414OHC ACE OEC ∠∠∠∠∠∠∠∠∠∠∠∠∠+++++===++().点睛:本题主要考查了坐标与图形性质,解决问题的关键值作辅助线构造平行线.解题时注意:任意一个数的绝对值都是非负数,算术平方根具有非负性,非负数之和等于0时,各项都等于0.24.124A ∠=︒.【解析】【分析】首先根据角平分线的性质可得∠ACE=∠DCE ,再根据平行线的性质可得∠AEC=∠ECD ,∠A+∠ACD=180°,进而得到∠A 的度数.【详解】解:∵CE 平分∠ACD 交AB 于E ,∴∠ACD=2∠DCE ,∵AB ∥CD ,128∠=︒∴∠ECD=128∠=︒,∴∠ACD=56°,∵AB ∥CD ,∴180********A ACD ∠=︒-∠=︒-︒=︒.【点睛】此题考查平行线的性质,解题关键是掌握平行线的性质定理.25.﹣2<x ≤3,表示在数轴上见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】5(1)21111(3)32x x x x ①②+>-⎧⎪⎨-≥-⎪⎩, 解①得:x >﹣2,解②得:x ≤3,故不等式组的解集是:﹣2<x ≤3,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

2020-2021成都七中初二数学下期末第一次模拟试题(附答案)

2020-2021成都七中初二数学下期末第一次模拟试题(附答案)

2020-2021成都七中初二数学下期末第一次模拟试题(附答案)一、选择题1.如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52)D .(-5,2)2.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >3.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个.A .4B .3C .2D .14.以下命题,正确的是( ).A .对角线相等的菱形是正方形B .对角线相等的平行四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形5.三角形的三边长为22()2a b c ab +=+,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形6.如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树断裂之前的高度为()A.10米B.16米C.15米D.14米7.下列计算正确的是()A.2-=2B.52=3(4)÷⨯D.62=3-C.52=108.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.9.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线互相垂直的四边形D.对角线相等的四边形10.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B89C.8D4111.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的()A.平均数B.中位数C.众数D.平均数与众数12.下列运算正确的是()A.235+=B.32﹣2=3C.236⨯=D.632÷=二、填空题13.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足_________条件时,四边形BEDF是正方形.14.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.15.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙面试8692测试成绩(百分制)笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

2023-2024学年四川省成都七中初中学校八年级(下)期末数学模拟试卷(含答案)

2023-2024学年四川省成都七中初中学校八年级(下)期末数学模拟试卷(含答案)

2023-2024学年四川省成都七中初中学校八年级(下)期末数学模拟试卷一、选择题(本大题共8小题,每小题4分,共32分)1.下列标志中,既是中心对称图形,也是轴对称图形的是( )A. B. C. D.2.若a>b,则下列结论不成立的是( )A. 2a>2bB. a2>b2C. a+m>b+mD. −4a>−4b3.若分式x−1x+1的值为0,则x=( )A. −1B. 1C. ±1D. 04.下列各式从左到右的变形中,属于因式分解的( )A. x2+x−2=(x+2)(x−1)B. 2(x−3y)=2x−6yC. (x+2)2=x2+4x+4D. ax+bx+c=x(a+b)+c5.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑色皮块的内角和是( )A. 180°B. 360°C. 540°D. 720°6.下列命题是假命题的是( )A. 到线段两端点距离相等的点在该线段的垂直平分线上B. 有一个角等于60°的等腰三角形是等边三角形C. 一个锐角和一条边分别相等的两个直角三角形全等D. 三角形三条角平分线交于一点,并且这一点到三条边的距离相等7.若函数y=ax和函数y=bx+c的图象如图所示,则关于x的不等式ax−bx>c的解集是( )A. x<2B. x<1C. x>2D. x>18.为了贯彻落实“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”的发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x 万平方米,则所列方程正确的是( )A. 90x −90(1+25%)x =30B. 90(1+25%)x −90x =30C. 90x −9025%x =30D. 90(1−25%)x −90x =30二、填空题(本大题共5小题,每小题4分,共20分)9.分解因式:a 3−9a = .10.如图,将一根有弹性的皮筋AB 自然伸直固定在水平面上,然后把皮筋中点C 竖直向上拉升5cm 到点D ,如果皮筋自然长度为24cm(即AB =24cm),则此时AD = ______cm .11.若关于x 的方程m−1x−1−x x−1=0有增根,则m 的值是______.12.如图,在等腰△ABC 中,AB =AC ,∠C =25°,将△ABC 绕点B 逆时针旋转至△DBE 且点A 的对应点D 落在CA 延长线上,则∠CBE = ______.13.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连结CD.若CD =AC ,∠A =48°,则∠ACB =______.三、解答题(共98分)14.(12分)(1)解不等式组:{2x−5x+12≤1①5x−1<3(x+1)②;(2)解方程:x−2x−3=2−13−x.15.(8分)先化简,再求值:(xx−1−1)÷x2−xx2−2x+1,再从不等式−1≤x≤1的整数解中选择一个适当的数代入求值.16.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(−4,1),B(−1,1),C(−2,3).(1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)直接写出以C1、B1、B2为顶点的三角形的形状是______.17.(10分)四边形ABCD中,DE⊥AC,BF⊥AC,且DE=BF,AF=CE.(1)求证:四边形ABCD是平行四边形;(2)若DE=4,CF=3,EF=5,求四边形ABCD的周长.18.(10分)如图,△ABC是等腰直角三角形,∠ACB=90°,BC=5,点D为平面内任意一点,将线段CD绕点C逆时针方向旋转90°得到线段CE,连接AE.(1)若点D为△ABC内部任意一点时.①如图1,判断线段AE与BD的数量关系并给出证明;②如图2,连接DE,当点E,D,B在同一直线上且BD=2时,求线段CD的长;(2)如图3,直线AE与直线BD相交于点P,延长AC到点F,使得CF=AC,连接PF,请求出PF的取值范围.19.(4分)若多项式x2−mx+6(m是常数)分解因式后,有一个因式是x−2,则m的值为______.20.(4分)若关于x的分式方程x−2x−1=mx1−x有正整数解,则整数m为______.21.(4分)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,称为平面图形的镶嵌.某工人师傅把四块完全相同的平面图形按如图所示的方式进行镶嵌,经测量,CD=30cm,BC=50cm,B、D两点之间的距离为40cm,则图中阴影部分的面积为______cm2.22.(4分)在Rt△ABC中,BC=12,AB=26,点D为斜边AB的中点,P为AC边一动点,△BDP沿着PD所在的直线对折得到△EDP.若△EDP与△ADP重合部分的面积为△EDP的面积一半,此时CP=______.23.(4分)如图,已知Rt△ABC中,∠B=90°,点E为BC上一动点,DC⊥BC,连接AE,DE.DE与AC交于点F,∠DFC=45°,AC=215,CE=33,若BE=DC,则AE=______.24.(8分)某超市用1200元购进一批甲玩具,用500元购进一批乙玩具,所购甲玩具件数是乙玩具件数的2倍,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多40件,求该超市用不超过1400元最多可以采购甲玩具多少件?25.(10分)如图1,直线y=−2x+b(b为常数)交x轴的正半轴于点A(2,0).交y轴正半轴于点B.(1)求直线AB的解析式;(2)点C是线段AB中点,点P是x轴上一点,点Q是y轴上一点,若以A、C、P、Q为顶点的四边形恰好是平行四边形,请直接写出点P的坐标;(3)如图2,若点P是x轴负半轴上一点,设点P的横坐标为t,以AP为底作等腰△APM(点M在x轴下方),过点A作直线l//PM.过点O作OE⊥AM于E,延长EO交直线l于点F,连接PF、OM,若2∠PFO+∠AFE=180°,请用含t的代数式表示△PMO的面积.26.(12分)已知:如图,在Rt△ABC中,∠ACB=90°,AC=15,BC=20,CD⊥AB,垂足为D,点E是点D关于AC的对称点,连接AE,CE.(1)求CD和AD的长;(2)若将线段AE沿着射线AB方向平移,当点E平移到线段AC上时,求此时CE的长;(3)如图,将△ACE绕点A顺时针旋转一个角α(0°<α<2∠CAB),记旋转中的△ACE为△AC′E′,在旋转过程中,设C′E′所在的直线与直线BC交于点P,与直线AB交于点Q,若存在这样的P,Q两点,使△BPQ为等腰三角形,请求出此时AQ的长,若不存在,请说明理由.参考答案1.A2.D3.B4.A5.C6.C7.D8.A9.a(a+3)(a−3)10.1311.212.80°13.108°14.解:(1)解不等式①得,x≥−3,解不等式②得,x<2,所以不等式组的解集是−3≤x<2;(2)原分式方程可化为x−2 x−3=2+1x−3,方程两边乘x−3得,x−2=2(x−3)+1,解得x=3,检验:当x=3时,x−3=0,因此x=3不是原分式方程的解,所以,原分式方程无解.15.解:原式=(xx−1−x−1x−1)⋅(x−1)2x(x−1)=1x−1⋅x−1x=1x,在−1≤x≤1的整数解中,x为−1、0、1,由题意得:x≠0和1,当x=−1时,原式=1−1=−1.16.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作.(3)等腰直角三角形.17.(1)证明:∵DE⊥AC,BF⊥AC,∴∠CED=∠AFB=90°,在△ABF和△CDE中,{AF=CE∠AFB=∠CEDBF=DE,∴△ABF≌△CDE(SAS),∴AB=CD,∠BAF=∠DCE,∴AB//CD,∴四边形ABCD是平行四边形;(2)解:∵CF=3,EF=5,∴EC=CF+EF=3+5=8,∵∠CED=90°,∴CD=DE2+EC2=42+82=45,由(1)可知,△ABF≌△CDE,∴BF=DE=4,∵BF⊥AC,∴∠BFC=90°,∴BC=BF2+CF2=42+32=5,∵四边形ABCD是平行四边形,∴AB=CD=45,AD=BC=5,∴平行四边形ABCD的周长=2(AB+BC)=2×(45+5)=85+10.18.解:(1)①AE=BD,理由如下:∵将线段CD绕点C逆时针方向旋转90°得到线段CE,∴CD=CE,∠DCE=90°=∠ACB,∴∠ACE=∠BCD,又∵AC=BC,∴△ACE≌△BCD(SAS),∴AE=BD;②∵△ABC是等腰直角三角形,∠ACB=90°,BC=5,∴AB=2BC=52,∵△ACE≌△BCD,∴∠CAE=∠CBD,AE=BD=2,∴∠CAE+∠BAC+∠ABE=∠CAB+∠ABE+∠CBD=90°,∴∠AEB=90°,∴BE=AB2−AE2=50−4=46,∴DE=46−2,∵CD=CE,∠DCE=90°,(46−2)=23−2;∴CD=22(2)∵△ACE≌△BCD,∴∠E=∠CDB,∠ACE=∠DCB,∵∠BCD +∠CDB +∠CBD =90°,∴∠CBD +∠E +∠BCD =180°,∵∠E +∠EPB +∠PBC +∠BCD +∠ECD =360°,∴∠EPB =90°,∴点P 在以AB 为直径的圆上运动,如图3,取AB 的中点O ,过点O 作OH ⊥AF 于H ,当点O 在线段PF 上时,PF 有最大值与最小值,∵△ABC 是等腰直角三角形,∠ACB =90°,BC =5,∴AB =5 2,AO =BO =522,∵OH ⊥AC ,BC ⊥AC ,∴OH//BC ,∴AO AB =OH BC =AH AC =12,∴CH =AH =OH =52,∵CF =AC =5,∴HF =152,∴OF = OH 2+HF 2= (52)2+(152)2=5 102,∴PF 的最大值为5 102+5 22,PF 的最小值为5 102−5 22,∴5 102−5 22≤PF ≤5 102+5 22.19.520.021.120022.523.1524.解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x−1)元,根据题意得:1200x =500x−1×2,解得:x=6,经检验,x=6是原方程的解,∴x−1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+40)件,根据题意得:6y+5(2y+40)≤1400,解得:y≤75,∵y为整数,∴y最大值=75,答:该超市用不超过1400元最多可以采购甲玩具75件.25.解:(1)∵直线y=−2x+b(b为常数)交x轴的正半轴于点A(2,0),∴0=−4+b,∴b=4,∴直线AB解析式为:y=−2x+4;(2)∵直线y=−2x+4(b为常数)交y轴正半轴于点B,∴点B(0,4),∵点C是线段AB中点,∴点C(1,2),∵点P是x轴上一点,点Q是y轴上一点,∴设点P(x,0),点Q(0,y),当AC为边时,若四边形ACQP是平行四边形时,∴CQ//AP,CQ=AP,∴y =2,∴CQ =1=AP ,∴点P(1,0),若四边形ACPQ 是平行四边形时,∴AP 与CQ 互相平分,∴1+02=x +22,∴x =−1,∴点P(−1,0),当AC 为对角线时,若四边形APCQ 是平行四边形时,∴AC 与PQ 互相平分,∴1+22=0+x 2,∴x =3,∴点P(3,0);综上所述:点P 坐标为(1,0)或(−1,0)或(3,0);(3))∵△AMP 是等腰三角形,MP =MA ,∴∠MAP =∠MPA ,设∠MAP =α,∵直线l//MP ,∴∠FAP =∠MPA =α,∴∠FAE =2α,∵FE ⊥AM ,∴∠FEA =90°,∴∠AFE =90°−2α,又∵∠NFP +∠PFO +∠AFE =180°,2∠PFO +∠AFE =180°,∴∠NFP =∠PFO =12(180°−∠AFE)=12[180°−(90°−2α)]=45°+α,又∵∠NFP =∠FPA +∠FAP ,∴45°+α=∠FPA +α,∴∠FPA =45°,过点P 作PN ⊥x 轴于点P ,交直线l 于点N ,过点M 作MQ ⊥x 轴于点Q ,交直线l 于点T ,如图2所示,∴∠NPA=90°,∴∠FPN=45°,在△NFP和△OFP中{∠NFP=∠PFOPF=PF∠NPF=∠OPF,∴△NFP≌△OFP(ASA)∴NP=OP,∵PN//MT,MP//直线l,∴四边形NPMT是平行四边形,∴NP=MT,又∵∠TAQ=∠MAQ,AQ=AQ,∠AQT=∠AQM,∴PN=MT=2MQ=2QT,∵点P的横坐标为t,点P是x轴负半轴上一点,∴QM=−12t,OP=−t,∴△PMO的面积=12×(−12t)×(−t)=14t2.26.解:(1)∵∠ACB=90°,AC=15,BC=20,∴AB=AC2+BC2=152+202=25,∵S△ABC=12×AC×BC=12×AB×CD,∴15×20=25×CD,∴CD=12,∴AD=AC2−CD2=152−122=9;(2)如图,连接ED交AC于O,设点E平移到线段AC上于点H,∵点E是点D关于AC的对称点,∴EO=DO,AC⊥DE,AE=AD=9,CD=EC=12,∵将△ACE沿射线AB方向平移,∴EH//AB,∴∠HEO=∠ADO,又∵∠EOH=∠AOD,∴△AOD≌△HOE(ASA),∴EH=AD=9,同理可得DO=AD⋅CDAC =365;∴HO=AO=AD2−DO2=275,∴AH=2×275=545,∴CH=15−545=215,即平移后的CE为215;(3)由(2)可知AE=AD=9,CD=EC=12,①旋转的过程中,C′E′和线段BC相交,AB的延长线相交时,如图,由旋转得,AC′=AC=15,∠CAE′=∠BAC′,∵∠AE′C′=∠C=90°,∠AFE′=∠PFC,∴∠CAE′=∠CPF,∴∠BAC′=∠CPF,∵∠CPF=∠BPQ,∴∠BAC′=∠BPQ,∵△BPQ为等腰三角形,且∠CBQ是钝角,∴BP=BQ,∴∠BPQ=∠BQP,∴∠BAC′=∠BQP,∴C′Q=AC′=15,在Rt△AE′Q中,AE′=AE=AD=9,E′Q=EC+C′Q=E′C′+AC′=15+12=27,∴AQ=AE′2+E′Q2=910;②如图,∵△BPQ为等腰三角形,∴∠PBQ=∠BPQ,∵∠BPQ+∠E′FA=90°,∠E′AF+∠E′FA=90°,∴∠E′AF=∠ABC,由旋转得,AC′=AC=15,AE=AE′=9,EC=E′C=12,∠CAE′=∠BAC′,∠CAE′=∠ABC=∠C′AB,∴AC′//BC,∴∠CAC′=∠BCA=90°,∠P=∠C′=∠ABC=∠C′AB,∴AQ=C′Q,∠QAF=∠QFA,∴AQ=QF=C′Q,∵AF2=C′F2−C′A2,AF2=E′F2+E′A2,∴C′F 2−C′A 2=E′F 2+E′A 2,∴(12+E′F )2−152=E′F 2+81,∴E′F =274,∴C′F =754,∴AQ =12C′F =758;③如图,旋转的过程中,C′E′和线段BC ,AB 相交时,当∠BQP =∠PBQ 时,∵∠PBQ =∠AC′E′,∠BQP =∠AQC′,∴∠AC′E′=∠AQC′,∴AQ =AC′=AC =15;当∠BPQ =∠BQP 时,∵∠PBQ =∠AC′E′,∴∠C′AQ =∠C′QA ,∴C′Q =C′A =15,∴QE′=C′Q−C′E′=15−12=3,根据勾股定理得AQ = AE′2+E′Q 2= 92+32=3 10,即满足条件的AQ 的长为9 10或758或3 10或15.。

四川省成都市2020-2021学年八年级下学期教学质量监测调研考试(期末)数学模拟试卷(2)(含解

四川省成都市2020-2021学年八年级下学期教学质量监测调研考试(期末)数学模拟试卷(2)(含解

2020-2021学年下期成都市教学质量监测调研考试八年级数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。

2.在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3.选择题部分必须使用2B铅笔填涂;非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。

4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效。

5.保持答题卡清洁,不得折叠、污染、破损等。

A卷(共100分)第I卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.已知a<b,则下列不等式正确的是()A.a﹣3<b﹣3B.>C.﹣a<﹣b D.6a>6b2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列由左边到右边的变形,属分解因式的是()A.a2﹣2=(a+1)(a﹣1)﹣1B.(a+b)(a﹣b)=a2﹣b2C.a2+2=a(a+)D.1﹣a2=(1+a)(1﹣a)4.已知不等式组,那么x的取值范围在数轴上可表示为()A.B.C.D.5.已知分式的值等于零,则x的值为()A.﹣2B.﹣3C.3D.±36.将一次函数y=﹣2x的图象向下平移6个单位,得到新的图象的函数解析式为()A.y=﹣8x B.y=4x C.y=﹣2x﹣6D.y=﹣2x+67.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC8.如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于()A.2B.3C.4D.59.矩形具有而菱形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相垂直10.如图,菱形ABCD边长为5cm,P为对角线BD上一点,PH⊥AB于点H,且PH=2cm,则△PBC的面积为()cm2A.8B.7C.6D.5第II卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.因式分解:a2﹣4=.12.若关于x的分式方程=产生增根,则m=.13.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为.。

【三套打包】成都七中八年级下学期期末数学试题含答案

【三套打包】成都七中八年级下学期期末数学试题含答案

最新八年级下册数学期末考试题【答案】一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠22.方程2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为()A.3、2、5B.2、3、5C.2、﹣3、﹣5D.﹣2、3、53.如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为()A.40m B.80m C.160m D.不能确定4.将方程x2+4x+1=0配方后,原方程变形为()A.(x+2)2=3B.(x+4)2=3C.(x+2)2=﹣3D.(x+2)2=﹣55.一个菱形的两条对角线分别是6cm,8cm,则这个菱形的面积等于()A.48cm2B.24cm2C.12cm2D.18cm26.若函数y=x m+1+1是一次函数,则常数m的值是()A.0B.1C.﹣1D.﹣27.顺次连接四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.以上都不对8.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3C.x>32D.x>310.如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG 于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=12BE,正确的有()A.2个B.3个C.4个D.5个二、填空题(本题共6小题,每题4分,共24分)11.直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是.12.若一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,则k的取值范围是.13.一组数据3,5,a,4,3的平均数是4,这组数据的方差为.14.勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”.中国是发现和研究勾股定理最古老的国家之一.中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD是由4个全等的直角三角形再加上中间的那个小正方形EFGH组成的.若小正方形的边长是1,每个直角三角形的短的直角边长是3,则大正方形ABCD的面积是.15.“绿水青山就是金山银山”.为了山更绿、水更清,某县大力实施生态修复工程,发展林业产业,确保到2021年实现全县森林覆盖率达到72.75%的目标.已知该县2019年全县森林覆盖率为69.05%,设从2019年起该县森林覆盖率年平均增长率为x ,则可列方程 .16.在矩形ABCD 中,对角线AC 、BD 相交于点O ,过A 点作AE ⊥BD ,垂足为点E ,若ED =3OE ,AE BD 的长为 .三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(801)( 3.14)π--18.(8分)如图,在▱ABCD 中,E 、F 分别是BC 、AD 的中点,求证:四边形AECF 是平行四边形.19.(8分)已知关于x 的一元二次方程x 2﹣(n +3)x +3n =0.求证:此方程总有两个实数根.20.(8分)如图,矩形纸片ABCD 中,AD =4,AB =8,把纸片沿直线AC 折叠,使点B 落在E 处,AE 交DC 于点F ,求△CEF 的面积.21.(8分)如图,点A和点B分别在x轴和y轴上,且OA=OB=4,直线BC交x轴于点C,S△BOC=S△ABC.(1)求直线BC的解析式;(2)在直线BC上求作一点P,使四边形OBAP为平行四边形(尺规作图,保留痕迹,不写作法).22.(10分)甲、乙两市参加省教育厅举办的学生机器人大赛,两市参赛队伍数相等.比赛结束后,发现两市各队共有以下四种得分情况,分别为70分、80分、90分、100分(满分为100分).依据统计数据绘制了如下尚不完整的统计图表(1)在图1中,“70分”所在扇形的圆心角等于度.(2)请你将图2的条形统计图补充完整.(3)经计算,乙市的平均分是83分,中位数是80分,请将图3中空格补充完整并求甲市的平均分、中位数;并从平均分和中位数的角度分析哪个市的成绩较好.23.(10分)电商时代使得网购更加便捷和普及.小张响应国家号召,自主创业,开了家淘宝店.他购进一种成本为100元/件的新商品,在试销中发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求y与x之间的函数关系式;(2)若某天小张销售该产品获得的利润为1200元,求销售单价x的值.24.(12分)如图1,在平面直角坐标系中,放置一个边长为5正方形ABCD,人使得它的两个顶点B和A恰好落在x轴正半轴和y轴正半轴上,M为正方形的中心.(1)若点B和点A在x轴和y轴上滑动,求证:在这个运动过程中,M始终在第一象限的角平分线上.(2)若点A运动到(0,3),求此时M点的坐标.25.(14分)已知直线l:y=kx+k+1与x轴、y轴分别交于点A、B.(1)直线l经过定点M,请写出定点M坐标.(2)若原点O①求出此时直线的解析式;②将直线l绕A点顺时针旋转90°与y轴交于点C,在l上是否存在一点P,使得OP+PC的值最小?若存在,请求出P点坐标,并求出OP+PC的最小值;若不存在,请说明理由.参考答案一、选择题1.A ; 2.C ; 3.B ; 4.A ; 5.B ; 6.A ; 7.A ; 8.D ; 9.A ; 10.C ; 二、填空题 11.132; 12.k >2; 13.0.8; 14.25; 15.69.05%(1+x )2=72.75%;16.4; 三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.解:原式=2+2-1=3 18.证明:因为ABCD 为平行四边形, 所以,AD =BC ,AD ∥BC , 因为E 、F 为BC 、AD 的中点, 所以,AF =12AD ,EC =12BC , 所以,AF =EC ,AF ∥EC ,所以,四边形AECF 是平行四边形.19.解:△=222(3)126912(3)0n n n n n n +-=++-=-≥, 所以,方程总有两个实数根.20. 解:AD =EC ,∠D =∠C ,∠AFD =∠CFE , 所以,△AFD ≌△CFE , 所以,FD =FE ,FA =FC , 设FD =x ,则FA =FC =8-x 在Rt △ADF 中,42+x 2=(8-x )2,解得:x =3, 所以,新人教版八年级(下)期末模拟数学试卷(含答案)一、选择题(本题共10个小题,每小题3分,共30分) 1.下列式子中,属于最简二次根式的是( ) A .B .C .D .2.下列各组数中能作为直角三角形的三边长的是( ) A .1,2,3B .2,3,4C .3,4,5D .4,5,63. 已知□ABCD 中,∠A +∠C =200°,则∠B 的度数是( ) A .100°B .160°C .60°D .80°4. 要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生的10次数学测试成绩进行数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( ) A .甲B .乙C .丙D .无法确定5. 函数y =﹣x 的图象与函数y =x +1的图象的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限6. 如图,在矩形ABCD 中,点M 从点B 出发沿BC 向点C 运动,点E 、F 分别是AM 、MC 的中点,则EF 的长随着M 点的运动( ) A .不变 B .变长 C .变短 D .先变短再变长7.已知x =+1,y =﹣1,则x 2+xy +y 2的值为( ) A .4B .6C .8D .108. 将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变. 当∠B =60°时,如图(1),测得AC =2;当∠B =90°时,如图(2),此时AC 的长为( ) A .B .2C .D .9. 已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离.则下列说法错误的是( )A.体育场离张强家2.5千米B.体育场离文具店1千米C.张强在文具店逗留了15分D.张强从文具店回家的平均速度是703千米/分 10.正方形111A B C O 、2221A B C C 、3332A B C C …按如图所示的方式放置.点1A 、2A 、3A …和点1C 、2C 、3C …分别在直线1y x =+和x 轴上,则点2019A 的坐标是( ) A. )2,2(20192018B. )2,1-2(20182018第6题 第8题第9题C. )22(20182019, D. )2,1-2(20192018二、填空题(本题共5小题,每小题3分,共15分)11. 若二次根式m -3有意义,则实数m 的取值范围是 .12.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是 .13.如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 的增大而_______.(填“增大”或“减小”)14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若25)2=+b a (,大正方形的面积为13,则小正方形的面积为 .15.如图,已知正方形ABCD 的边长为7,点E 、F 分别在AD 、DC上,AE =DF =3,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 . 三、解答题(本题共8小题,满分75分) 16.(8分)计算: )(1-22-182-32第14题第15题17.(9分)某学生本学期6次数学考试成绩如下表所示: (1)6次考试成绩的中位数为 ,众数为 . (2)求该生本学期四次月考的平均成绩.(3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?18.(9分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC =24cm ,CB =18cm ,两轮中心的距离AB =30cm ,求点C 到AB 的距离.(结果保留整数)19.(9分)问题:探究函数1-1+=x y 的图象与性质.小明根据学习函数的经验,对函数1-1+=x y 的图象与性质进行了研究. 下面是小明的研究过程,请补充完成.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:其中,m = n = ;(1)(2)(2)在如图所示的平面直角坐标中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象.(3)观察图象,写出该函数的两条性质.20.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (4,-3),且与y 轴相交于点B ,与正比例函数y =21x 的图象交于点C ,点C 的横坐标为2. (1)求k 、b 的值;(2)若点D 在x 轴上,且满足S △COD =S △BOC ,求点D 的坐标.21.(10分)如图,在四边形ABCD 中,AB ∥CD ,AC 垂直平分BD ,交BD 于点F ,延长DC 到点E ,使得CE =DC ,连接BE . (1)求证:四边形ABCD 是菱形. (2)填空:①当∠ADC = °时,四边形ACEB 为菱形; ②当∠ADC =90°,BE =4时,则DE =22.(10分)某体育用品商店,准备用不超过2800元购买足球和篮球共计60个,已知一个篮球的进价为50元,售价为65元;一个足球的进价为40元,售价为50元.(1)若购进x个篮球,购买这批球共花费y元,求y与x之间的函数关系式;(2)设售出这批球共盈利w元,求w与x之间的函数关系式;(3)体育用品商店购进篮球和足球各多少个时,才能获得最大利润?最大利润是多少?23.(11分)已知正方形ABCD与正方形CEFG(点C、E、F、G按顺时针排列),M是AF 的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,求证:DM=EM,DM⊥EM.简析:由M是AF的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌.由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2新人教版八年级(下)期末模拟数学试卷(含答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,63. 已知□ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.60°D.80°4. 要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生的10次数学测试成绩进行数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是()A.甲B.乙C.丙D.无法确定5.函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限6. 如图,在矩形ABCD 中,点M 从点B 出发沿BC 向点C 运动,点E 、F 分别是AM 、MC 的中点,则EF 的长随着M 点的运动( ) A .不变 B .变长 C .变短 D .先变短再变长7.已知x =+1,y =﹣1,则x 2+xy +y 2的值为( ) A .4B .6C .8D .108. 将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变. 当∠B =60°时,如图(1),测得AC =2;当∠B =90°时,如图(2),此时AC 的长为( ) A .B .2C .D .9. 已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离.则下列说法错误的是( )A.体育场离张强家2.5千米B.体育场离文具店1千米C.张强在文具店逗留了15分D.张强从文具店回家的平均速度是703千米/分 10.正方形111A B C O 、2221A B C C 、3332A B C C …按如图所示的方式放置.点1A 、2A 、3A …和点1C 、2C 、3C …分别在直线1y x =+和x 轴上,则点2019A 的坐标是( ) A. )2,2(20192018B. )2,1-2(20182018C. )22(20182019, D. )2,1-2(20192018二、填空题(本题共5小题,每小题3分,共15分)11. 若二次根式m -3有意义,则实数m 的取值范围是 .12.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道第6题 第8题第10题第9题了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是 .13.如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 的增大而_______.(填“增大”或“减小”)14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若25)2=+b a (,大正方形的面积为13,则小正方形的面积为 .15.如图,已知正方形ABCD 的边长为7,点E 、F 分别在AD 、DC上,AE =DF =3,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 . 三、解答题(本题共8小题,满分75分) 16.(8分)计算: )(1-22-182-3217.(9分)某学生本学期6次数学考试成绩如下表所示: (1)6次考试成绩的中位数为 ,众数为 . (2)求该生本学期四次月考的平均成绩.(3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?第14题第15题18.(9分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC =24cm ,CB =18cm ,两轮中心的距离AB =30cm ,求点C 到AB 的距离.(结果保留整数)19.(9分)问题:探究函数1-1+=x y 的图象与性质.小明根据学习函数的经验,对函数1-1+=x y 的图象与性质进行了研究. 下面是小明的研究过程,请补充完成.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:其中,m = n = ;(2)在如图所示的平面直角坐标中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象.(3)观察图象,写出该函数的两条性质.(1)(2)20.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (4,-3),且与y 轴相交于点B ,与正比例函数y =21x 的图象交于点C ,点C 的横坐标为2. (1)求k 、b 的值;(2)若点D 在x 轴上,且满足S △COD =S △BOC ,求点D 的坐标.21.(10分)如图,在四边形ABCD 中,AB ∥CD ,AC 垂直平分BD ,交BD 于点F ,延长DC 到点E ,使得CE =DC ,连接BE . (1)求证:四边形ABCD 是菱形. (2)填空:①当∠ADC = °时,四边形ACEB 为菱形; ②当∠ADC =90°,BE =4时,则DE =22.(10分)某体育用品商店,准备用不超过2800元购买足球和篮球共计60个,已知一个篮球的进价为50元,售价为65元;一个足球的进价为40元,售价为50元. (1)若购进x 个篮球,购买这批球共花费y 元,求y 与x 之间的函数关系式; (2)设售出这批球共盈利w 元,求w 与x 之间的函数关系式;(3)体育用品商店购进篮球和足球各多少个时,才能获得最大利润?最大利润是多少?23.(11分)已知正方形ABCD 与正方形CEFG (点C 、E 、F 、G 按顺时针排列),M 是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,求证:DM=EM,DM⊥EM.简析:由M是AF的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌.由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2。

2020-2021成都七中初二数学下期末第一次模拟试题(附答案)

2020-2021成都七中初二数学下期末第一次模拟试题(附答案)
2
••.EH // FG, EH=FG ,
••・四边形EFGH是平行四边形,
假设AC=BD,
- EH=1AC , EF=1BD ,
5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距
离s(千米)与所用时间t(分)之间的关系()
A.10B.789C.8D.V41
11.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:
颜色
原;色
绿色
白色
紫色
红色
数量(件)
120
150
230
75
430
经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的(
【参考答案】
一、选择题
1.A
解析:A
【解析】
【分析】
先判定△DBE^AOCD,可得BD=OC=4,设AE=x,贝U BE=4 — x=CD,依据BD+CD=5,可得4+4- x=5,进而得到AE=3,据此可得E( - 5, 3).
【详解】
由题可得:AO=BC=5, AB=CO=4,由旋转可得:DE=OD, /EDO=90。.
A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形
6.如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大
树断裂之前的高度为()
A.10米B.16米C.15米D.14米
7.下列计算正确的是()
ATT47=2B.52= 3C.. 5,2=.10D.. 6 .2=3
8.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故
A.442=4,故A选项错误;
B.、后与J2不是同类二次根式,不能合并,故B选项错误;

2020-2021成都市七中育才学校八年级数学下期末第一次模拟试卷(及答案)

2020-2021成都市七中育才学校八年级数学下期末第一次模拟试卷(及答案)

B 的距离为 12m,这棵大树在折断前的高度为( )
A.10m
B.15m
C.18m
D.20m
二、填空题
13.如图,BD 是△ABC 的角平分线,DE∥BC,交 AB 于点 E,DF∥AB,交 BC 于点 F,当
△ABC 满足_________条件 时,四边形 BEDF 是正方形.
14.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三 角形,若正方形 A、B、C、E 的面积分别为 2,5,1,10.则正方形 D 的面积是______.
20.已知一次函数 y=kx+b 的图象如图,则关于 x 的不等式 kx+b>0 的解集是______.
三、解答题 21.如图,在平面直角坐标系中,直线 y x 4 过点 A(6, m) 且与 y 轴交于点 B ,把点 A 向左平移 2 个单位,再向上平移 4 个单位,得到点 C .过点 C 且与 y 3x 平行的直线交 y 轴于点 D .
【分析】 【详解】 试题分析:众数是 26cm,出现了 3 次,次数最多;在这 10 个数中按从小到大来排列最中间 的两个数是 26,26;它们的中位书为 26cm 考点:众数和中位数 点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念
10.B
解析:B 【解析】 【分析】
【详解】
解:如图,
A.4 个
B.3 个
C.2 个
D.1 个
6.计算 4 1 的结果为( ). 33
A. 3 2
B. 2 3
C. 2
D.2
7.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方
形,设直角三角形较长直角边长为 a,较短直角边长为 b.若 ab 8 ,大正方形的面积为

2020-2021学年四川省成都七中嘉祥外国语学校八年级(下)期末数学模拟试卷含答案

2020-2021学年四川省成都七中嘉祥外国语学校八年级(下)期末数学模拟试卷含答案

2020-2021学年四川省成都七中嘉祥外国语学校八年级(下)期末数学模拟试卷一、选择题(每小题3分,共30分)1.(3分)已知a>b,则下列不等式中正确的是()A.﹣3a>﹣3b B.﹣>﹣C.3﹣a>3﹣b D.a﹣3>b﹣32.(3分)分解因式2x2﹣4x的最终结果是()A.2(x2﹣2x)B.x(2x2﹣4)C.2x(x﹣2)D.2x(x﹣4)3.(3分)在函数y=中,自变量x的取值范围是()A.x>1B.x<1C.x≠1D.x=14.(3分)如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:55.(3分)下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且P A=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个6.(3分)等腰三角形一腰上的高与底边所夹的角()A.等于顶角B.等于顶角的一半C.等于顶角的2倍D.等于底角的一半7.(3分)下列图形不是中心对称图形的是()A.正方形B.矩形C.菱形D.正三角形8.(3分)甲、乙两名工人加工某种零件,已知甲每天比乙多加工5个零件,甲加工80个零件和乙加工70个零件所用的天数相同.设甲每天加工x个零件,则根据题意列出的方程是()A.B.C.D.9.(3分)延长平行四边形ABCD的一边AB到E,使BE=BD,连接DE交BC于F.若∠DAB=120°,∠CFE=135°,AB=1,则AC的长为()A.1B.1.2C.D.1.510.(3分)如图,直线y1=kx+b经过点A和点B,直线y2=2x过点A,则不等式2x<kx+b<0的解集为()A.x<﹣2B.﹣2<x<﹣1C.﹣2<x<0D.﹣1<x<0二、填空题(每小题4分,共16分)11.(4分)是一个完全平方式,则k=.12.(4分)等腰三角形一底角为30°,底边上的高为9cm,则这个等腰三角形的腰长是cm,顶角是.13.(4分)如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为平方单位.14.(4分)如图所示,矩形ABCD沿对角线BD折叠,已知矩形的长BC=8cm,宽AB=6cm,那么折叠后重合部分的面积是.三、解答题(共54分)15.(12分)(1)解分式方程:;(2)解不等式组:,并求出所有整数解的和.16.(6分)先化简,再求值:,其中x=2﹣.17.(8分)在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1,C1对应;(2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应;(3)填空:在(2)中,设原△ABC的外心为M,△A2B2C2的外心为M,则M与M2之间的距离为.18.(8分)(1)已知:关于x的二次三项式ax2﹣2x+3,有一个一次因式为x+3,求二次项系数a及另一个因式.(2)已知关于x方程=m的解是非正数,求m的取值范围.19.(10分)如图,△ABC中,∠BAC=90°,BG平分∠ABC,GF⊥BC于点F,AD⊥BC于点D,交BG 于点E,连接EF.(1)求证:①AE=AG;②四边形AEFG为菱形.(2)若AD=8,BD=6,求AE的长.20.(10分)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.四、填空题(每小题4分,共20分)21.(4分)如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.22.(4分)已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)的值为.23.(4分)若m=﹣1,则m2011+2m2010﹣m2009的值是.24.(4分)若关于x的方程x2+(2k﹣1)x+k2﹣=0有两个相等的实数根,则k=.25.(4分)如图,边长为的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°…,按此规律所作的第n个菱形的边长为.五、解答题(共30分)26.(8分)某工程机械厂根据市场需求,计划生产两种型号的大型挖掘机共100台,该厂所筹资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如表:型号A B成本(万元)200240售价(万元/台)250300(1)该厂对这两型挖掘机有几种生产方案?(2)该厂用哪种生产方案能获最大利润?最大利润是多少?27.(10分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)在图1中,请你写出AB与AP所满足的数量关系和位置关系并说明理由;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.28.(12分)如图在平面直角坐标系内,点A与C的坐标分别为(4,8),(0,5),过点A作AB⊥x轴于点B,过OB上的动点D作直线y=kx+b平行于AC,与AB相交于点E,连接CD,过点E作直线EF∥CD,交AC于点F.(1)求经过点A,C两点的直线解析式;(2)当点D在OB上移动时,能否使四边形CDEF成为矩形?若能,求出此时k、b的值;若不能,请说明理由;(3)如果将直线AC作向下平移,交y轴于点C′,交AB于点A′,连接DC′,过点E作EF′∥DC′,交A′C′于点F′,那么能否使四边形C′DEF′成为正方形?若能,请求出此时正方形的面积;若不能,请说明理由.2020-2021学年四川省成都七中嘉祥外国语学校八年级(下)期末数学模拟试卷参考答案一、选择题(每小题3分,共30分)1.D;2.C;3.C;4.C;5.A;6.B;7.D;8.D;9.A;10.B;二、填空题(每小题4分,共16分)11.±;12.18;120°;13.();14.;三、解答题(共54分)15.(12分)(1)解分式方程:;(2)解不等式组:,并求出所有整数解的和.【解答】解:(1)去分母得:﹣1﹣2x+4=1﹣x,解得:x=2,检验:把x=2代入得:x﹣2=0,∴x=2是增根,分式方程无解;(2),由①得:x>﹣1,由②得:x≤2,∴不等式组的解集为﹣1<x≤2,即整数解为0,1,2,则不等式组的所有整数解的和为0+1+2=3.16.(6分)先化简,再求值:,其中x=2﹣.【解答】解:原式===;当x=2﹣时,原式==﹣.17.(8分)在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1,C1对应;(2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应;(3)填空:在(2)中,设原△ABC的外心为M,△A2B2C2的外心为M,则M与M2之间的距离为.【解答】解:(1)如图;(2)如图;(3)从图可知:外心也是向下移动了4个单位,向左移动了1个单位.故根据勾股定理得:=.18.(8分)(1)已知:关于x的二次三项式ax2﹣2x+3,有一个一次因式为x+3,求二次项系数a及另一个因式.(2)已知关于x方程=m的解是非正数,求m的取值范围.【解答】解:(1)设另一个因式为(ax+b),∵关于x的二次三项式ax2﹣2x+3,有一个一次因式为x+3,∴ax2﹣2x+3=(x+3)(ax+b),整理得ax2﹣2x+3=ax2+(3a+b)x+3b,∴,解得a=﹣1,b=1,另一个因式为:﹣x+1;(2)解方程=m,得x=,∵方程的解为非正数,∴≤0,解得:m≥.19.(10分)如图,△ABC中,∠BAC=90°,BG平分∠ABC,GF⊥BC于点F,AD⊥BC于点D,交BG 于点E,连接EF.(1)求证:①AE=AG;②四边形AEFG为菱形.(2)若AD=8,BD=6,求AE的长.【解答】证明:(1)①∵BG平分∠ABC,∴∠ABE=∠DBE,∵∠ABE+∠AGE=90°,∠EBD+∠DEB=90°,∠GEA=∠BED,∴∠AEG=∠EGA,即AG=AE.②∵GF⊥BC于点F,AD⊥BC于点D,BG平分∠ABC,∴∠CFG=∠CDA=90°∴AD∥GF,AG=GF,又∵AG=AE,∴AE=GF,∴四边形AEFG是平行四边形,∴GF=AE,AG=EF∵AG=AE∴AG=GF=AE=EF∴四边形AEFG为菱形(2)由题意可知,在Rt△ABD中,AD=8,BD=6,所以根据勾股定理得:AB=10,因为∠CAB=∠ADB=90°,∠ABD=∠CBA(公共角),所以△ABC∽△DBA,故可求出AC=,BC=,在△ADC中,设AG=GF=x,由平行线分线段成比例可得x:AD=CG:AC,即x:8=:,解之得x=5,所以AE的长为5.20.(10分)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.【解答】解:(1)如图所示,∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;(2)∵∠OFE1=120°,∴∠D1FO=60°,∵∠CD1E1=30°,∴∠4=90°,又∵AC=BC,∠A=45°即△ABC是等腰直角三角形.∴OA=OB=AB=3cm,∵∠ACB=90°,∴CO=AB=×6=3cm,又∵CD1=7cm,∴OD1=CD1﹣OC=7﹣3=4cm,在Rt△AD1O中,cm;(3)点B在△D2CE2内部,理由如下:设BC(或延长线)交D2E2于点P则∠PCE2=15°+30°=45°,在Rt△PCE2中,CP=CE2=,∵,即CB<CP,∴点B在△D2CE2内部.四、填空题(每小题4分,共20分)21.;22.﹣6;23.0;24.2;25.()n;五、解答题(共30分)26.(8分)某工程机械厂根据市场需求,计划生产两种型号的大型挖掘机共100台,该厂所筹资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如表:型号A B成本(万元)200240售价(万元/台)250300(1)该厂对这两型挖掘机有几种生产方案?(2)该厂用哪种生产方案能获最大利润?最大利润是多少?【解答】解:(1)设生产A型号挖掘机x台,则生产B型号挖掘机(100﹣x)台,依题意得:,解得:≤x≤40.又∵x为整数,∴x可以为38,39,40.答:该厂共有3种生产方案.(2)设获得的利润为w元,则w=(250﹣200)x+(300﹣240)(100﹣x)=﹣10x+6000.∵﹣10<0,∴w随x的增大而减小,∴当x=38时,w取得最大值,最大值=﹣10×38+6000=5620.答:当生产A型号挖掘机38台,B型号挖掘机62台时,能获最大利润,最大利润为5620元.27.(10分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)在图1中,请你写出AB与AP所满足的数量关系和位置关系并说明理由;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.【解答】解:(1)AP=AB,AP⊥AB,∵AC⊥BC,且AC=BC,边EF与边AC重合,且EF=FP.∴△ABC与△EFP是全等的等腰直角三角形,∴∠BAC=∠CAP=45°,AB=AP,∴∠BAP=90°,∴AP=AB,AP⊥AB;(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ,理由如下:延长BQ交AP于G,由(1)知,∠EPF=45°,∠ACP=90°,∴∠PQC=45°=∠QPC,∴CQ=CP,在△BCQ和△ACP中,,∴△BCQ≌△ACP(SAS),∴AP=BQ,∠CBQ=∠P AC,∵∠ACB=90°,∴∠CBQ+∠BQC=90°,∵∠CQB=∠AQG,∴∠AQG+∠P AC=90°,∴∠AGQ=180°﹣90°=90°,∴AP⊥BQ;(3)成立,理由如下:如图,∵∠EPF=45°,∴∠CPQ=45°,又∵AC⊥BC,∴∠CQP=∠CPQ=45°,∴CQ=CP,在Rt△BCQ和Rt△ACP中,,∴Rt△BCQ≌Rt△ACP(SAS),∴BQ=AP,如图3,延长QB交AP于点N,则∠PBN=∠CBQ,∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC,在Rt△BCQ中,∠BQC+∠CBQ=90°,∴∠APC+∠PBN=90°,∴∠PNB=90°,∴QB⊥AP.28.(12分)如图在平面直角坐标系内,点A与C的坐标分别为(4,8),(0,5),过点A作AB⊥x轴于点B,过OB上的动点D作直线y=kx+b平行于AC,与AB相交于点E,连接CD,过点E作直线EF∥CD,交AC于点F.(1)求经过点A,C两点的直线解析式;(2)当点D在OB上移动时,能否使四边形CDEF成为矩形?若能,求出此时k、b的值;若不能,请说明理由;(3)如果将直线AC作向下平移,交y轴于点C′,交AB于点A′,连接DC′,过点E作EF′∥DC′,交A′C′于点F′,那么能否使四边形C′DEF′成为正方形?若能,请求出此时正方形的面积;若不能,请说明理由.【解答】解:(1)设直线AC的解析式为y=kx+b,∵A(4,8),C(0,5),∴,解得k=,b=5,∴直线AC的解析式为:y﹣5=x,即y=x+5;(2)如图1,设D(m,0),∵,DE∥AC,AC⊥CD,∴k=,k CD=﹣,又C(0,5),D(m,0),∴,∴m=,∴点D(,0)代入y=x+b,∴b=﹣;(3)如图2,假设存在这样的正方形则由题意:将直线AC作向下平移,则可设直线AC的解析式为:y=x+5+c,∵A′C′∥DE,∴k=直线DE的解析式为:y=x+b,令y=0,得x=b,设D(b,0),C′(0,5+c),又∵E点横坐标为4,∴E(4,3+b),则OD=﹣b,BD=4+b,BE=3+b,OC′=5+c,∵由题意使四边形C′DEF′成为正方形,∴DO=BE,OC′=DB,则,解得:∴边长为=,∴正方形的面积S=.。

四川省成都市2020-2021学年八年级下学期期末数学试题(word版 含答案)

四川省成都市2020-2021学年八年级下学期期末数学试题(word版 含答案)
故选B.
【点睛】
本题考查一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求m的范围.
5.D
【分析】
利用多边形内角和公式和外角和定理,列出方程即可解决问题.
【详解】
解:根据题意,得:(n-2)×180=360×3,
解得n=8.
(2)设生产A,B两种产品所获总利润为y(元),其中一种产品的生产件数为x,试写出y关于x的函数解析式,并利用函数的性质说明(1)中哪种生产方案所获总利润最大,最大利润是多少.
27.如图1,在正方形 中,对角线 相交于点 ,点 为线段 上一点,连接 ,将 绕 点顺时针旋转 得到 ,连接 交 于点 .
先根据数轴上不等式解集的表示方法求出此不等式的解集,再求出所给不等式的解集与已知解集相比较即可求出a的值.
【详解】
解:由数轴上关于x的不等式的解集可知x≥﹣1,
解不等式:2x﹣a≥3,
解得:x≥ ,
故 =﹣1,
解得:a=﹣5.
故答案为:﹣5.
【点睛】
本题考查在数轴上表示一元一次不等式的解集,熟知实心圆点与空心圆点的区别是解题关键.
【详解】
解:去分母得:x−6=m,
由分式方程有增根,得到x−1=0,即x=1,
把x=1代入整式方程得:m=−5,
故答案为:−5
【点睛】
此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
13. .
【分析】
根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得 的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.

2020-2021成都市八年级数学下期末试卷(附答案)

2020-2021成都市八年级数学下期末试卷(附答案)

2020-2021成都市八年级数学下期末试卷(附答案)2020-2021成都市八年级数学下期末试卷(附答案)一、选择题1.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为()A。

7B。

6C。

5D。

42.估计230-24÷1的值应在()A。

1和2之间B。

2和3之间C。

3和4之间D。

4和5之间3.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)学生数 20 2 40 3 60 4 90 1,则关于这些同学的每天锻炼时间,下列说法错误的是()A。

众数是60B。

平均数是21C。

抽查了10个同学D。

中位数是504.计算41的结果为()A。

B。

C。

2D。

2/35.如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树断裂之前的高度为()A。

10米B。

16米C。

15米D。

14米6.下列有关一次函数y=-3x+2的说法中,错误的是()A。

当x值增大时,y的值随着x增大而减小B。

函数图象与y轴的交点坐标为(0,2)C。

函数图象经过第一、二、四象限D。

图象经过点(1,5)7.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A。

BA=BCB。

AC、BD互相平分C。

AC=BDD。

AB∥CD8.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A。

矩形B。

平行四边形C。

对角线互相垂直的四边形D。

对角线相等的四边形9.若一个直角三角形的两边长为12、13,则第三边长为()510.若正比例函数的图象经过点(2,2),则这个图象必经过点(1,1).11.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A。

10B。

四川省成都市2020—2021学年初二下期末数学试卷含答案解析

四川省成都市2020—2021学年初二下期末数学试卷含答案解析

四川省成都市2020—2021学年初二下期末数学试卷含答案解析一、选择题(本题共16小题,每小题3分,共48分.)1.若分式的值为0,则x的值为()A.x=0B.x=1C.x=﹣2D.x=﹣12.将分式中分子与分母的各项系数都化成整数,正确的是()A.B.C.D.3.某种流感病毒的直径是0.00000008m,那个数据用科学记数法表示为()A.8×10﹣6mB.8×10﹣5mC.8×10﹣8mD.8×10﹣4m4.函数y=﹣中的自变量x的取值范畴是()A.x≥0B.x<0且x≠1C.x<0D.x≥0且x≠15.一次函数y=﹣2x﹣1的图象不通过()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,AD⊥BC,D是BC的中点,那么下列结论错误的是()A.△ABD≌△ACDB.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形7.若点(﹣3,y1),(﹣2,y2),(﹣1,y3)在反比例函数y=﹣图象上,则下列结论正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y18.如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情形的扇形统计图,从图中能够看出选择短跑的学生人数为()A.33B.36C.39D.429.下列命题中,逆命题是假命题的是()A.全等三角形的对应角相等B.直角三角形两锐角互余C.全等三角形的对应边相等D.两直线平行,同位角相等10.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP 的依照是()A.SASB.ASAC.AASD.SSS11.某校八年级1班一个学习小组的7名同学在半期考试中数学成绩分别是85,93,62,99,56,93,89,这七个数据的众数和中位数分别是()A.93、89B.93、93C.85、93D.89、9312.将一张矩形纸对折再对折,然后沿着如图中的虚线剪下,打开,那个图形一定是一个(A.三角形B.矩形C.菱形D.正方形13.等腰梯形两底的差是4,两腰的长也是4,则那个等腰梯形的两锐角差不多上()A.75°B.60°C.45°D.30°14.如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确的是(A.△ABE≌△DCFB.△ABE和△DCF差不多上等腰直角三角形C.四边形BCFE是等腰梯形D.E、F是AD的三等分点15.一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所通过时刻x(h)之间的函数关系的是()A.B.C.D.16.如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E和F,若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用H•L证明Rt△AEP≌Rt△AFPC.AP平分∠BADD.点P一定是菱形ABCD的两条对角线的交点二、填空题17.运算:(a﹣3)2(ab2)﹣3=(结果化为只含正整数指数幂的形式)18.把命题“平行四边形的两组对边分别相等”改写成“假如…,那么…”的形式是.19.点P(﹣4,5)关于x轴对称的点P′的坐标是.20.到三角形各顶点距离相等的点是三角形的交点.21.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)22.小青在八年级上学期的数学成绩如下表所示.平常测验期中考试期末考试成绩86 90 81假如学期总评成绩依照如图所示的权重运算,小青该学期的总评成绩是分.23.假如关于x的方程=无解,则m=.24.如图,双曲线与直线y=mx+n在第一象限内交于点A(1,5)和B(5,1),依照图象,在第一象限内,反比例函数值大于一次函数值时x的取值范畴是.三、解答题(第25题18分,其余每题8分,共50分)25.(1)运算:(﹣2)3+(﹣)﹣2•(1﹣)0(2)先化简,再求值:÷﹣,其中x=(3)解方程:=+2.26.2020年4月20,我省雅安市芦山县发生了里氏7.0级强烈地震.为支援灾区,某中学八年级师生发起了自愿捐款活动.已知第一天捐款4800元,翌日捐款6000元,翌日捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?27.已知:如图,在△ABC中,AB=AC,∠B=36°.(1)尺规作图:作AB的垂直平分线交BC于点D,垂足为F,连接AD;(保留作图痕迹,不写作法)(2)求证:△ACD是等腰三角形.28.如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.29.经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了操纵西瓜的质量,农科所采纳A、B两种种植技术进行试验,现从这两种技术种植的西瓜中各随机抽取10颗,记录它们的质量如下(单位:kg):A:5.5 4.8 5.0 5.2 4.9 5.2 4.5 4.8 5.1 5.0B:4.7 5.0 4.5 4.9 5.1 5.3 4.6 4.9 5.1 4.9(1)若质量为(5±0.25)kg的为优等品,依照以上信息完成如表:种植技术优等品数量(颗)平均数(kg)方差A 0.068B 4.9(2)请分别从优质品数量、平均数与方差三方面对A、B两种技术作出评判;从市场销售的角度看,你认为推广哪种种植技术较好.四、能力展现题30.某超市预备购进A、B两种品牌的饮料共100件,两种饮料每件利润分别是15元和13元.设购进A 种饮料x件,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y与x的函数关系式;(2)依照两种饮料历次销量记载:A种饮料至少购进30件,B种饮料购进数量许多于A种饮料件数的2倍.问:A、B两种饮料进货方案有几种?哪一种方案能使超市所获利润最高?最高利润是多少?31.如图,在△ABC中∠ACB=90°,D是AC的中点,过点A的直线l∥BC,将直线AC绕点D逆时针旋转(旋转角α<∠ACB),分别交直线l于点F与BC的延长线交于点E,连接AE、CF.(1)求证:△CDE≌△ADF;(2)求证:四边形AFCE是平行四边形;(3)当∠B=22.5°,AC=BC时,请探究:是否存在如此的α能使四边形AFCE成为正方形?请说明理由;若能,求出这时的旋转角α的度数和BC与CE的数量关系.2020-2021学年四川省成都市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共16小题,每小题3分,共48分.)1.若分式的值为0,则x的值为()A.x=0B.x=1C.x=﹣2D.x=﹣1【考点】分式的值为零的条件.【专题】运算题.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x﹣1=0且x+2≠0,∴x=1.故选B.【点评】分式是0的条件中专门需要注意的是分母不能是0,这是经常考查的知识点.2.将分式中分子与分母的各项系数都化成整数,正确的是()A.B.C.D.【考点】分式的差不多性质.【分析】依照分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解:分式中分子与分母的各项系数都化成整数,正确的是,故选:A.【点评】本题考查了分式的差不多性质,利用了分式的差不多性质.3.某种流感病毒的直径是0.00000008m,那个数据用科学记数法表示为()A.8×10﹣6mB.8×10﹣5mC.8×10﹣8mD.8×10﹣4m【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也能够利用科学记数法表示,一样形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 08=8×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数.一样形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.函数y=﹣中的自变量x的取值范畴是()A.x≥0B.x<0且x≠1C.x<0D.x≥0且x≠1【考点】函数自变量的取值范畴;分式有意义的条件;二次根式有意义的条件.【分析】依照二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就能够求解.【解答】解:依照二次根式的性质和分式的意义,被开方数大于等于0,可知:x≥0;分母不等于0,可知:x﹣1≠0,即x≠1.因此自变量x的取值范畴是x≥0且x≠1.故选D.【点评】本题考查的是函数自变量取值范畴的求法.函数自变量的范畴一样从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.一次函数y=﹣2x﹣1的图象不通过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】因为k=﹣2<0,b=﹣1<0,依照一次函数y=kx+b(k≠0)的性质得到图象通过第二、四象限,图象与y轴的交点在x轴下方,因此可判定一次函数y=﹣2x﹣1的图象不通过第一象限.【解答】解:关于一次函数y=﹣2x﹣1,∵k=﹣2<0,∴图象通过第二、四象限;又∵b=﹣1<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还通过第三象限,∴一次函数y=﹣2x﹣1的图象不通过第一象限.故选A.【点评】本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象通过第二、四象限,y随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x 轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.6.如图,AD⊥BC,D是BC的中点,那么下列结论错误的是()A.△ABD≌△ACDB.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等边三角形的判定.【分析】依照垂直的定义可得∠ADB=∠ADC=90°,依照线段中点的定义可得BD=CD,然后利用“边角边”证明△ABD和△ACD全等,依照全等三角形对应角相等可得∠B=∠C,全等三角形对应边相等可得AB=AC,然后选择答案即可.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵D是BC的中点,∴BD=CD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴∠B=∠C,AB=AC,故A、B、C选项结论都正确,只有AB=BC时,△ABC是等边三角形,故D选项结论错误.故选D.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定,熟练把握三角形全等的判定方法是解题的关键.7.若点(﹣3,y1),(﹣2,y2),(﹣1,y3)在反比例函数y=﹣图象上,则下列结论正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【考点】反比例函数图象上点的坐标特点.【专题】运算题.【分析】依照反比例函数图象上点的坐标特点得到﹣3•y1=﹣1,﹣2•y2=﹣1,﹣1•y3=﹣1,然后分别运算出y1、y2、y3的值后比较大小即可.【解答】解:依照题意得﹣3•y1=﹣1,﹣2•y2=﹣1,﹣1•y3=﹣1,解得y1=,y2=,y3=1,因此y1<y2<y3.故选D.【点评】本题考查了反比例函数图象上点的坐标特点:反比例函数y=xk(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.8.如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情形的扇形统计图,从图中能够看出选择短跑的学生人数为()A.33B.36C.39D.42【考点】扇形统计图.【分析】先求出选择短跑的学生所占的百分比,再乘以总人数即可.【解答】解:依照题意得:300×(1﹣33%﹣26%﹣28%)=39(名).答:选择短跑的学生有39名.故选C.【点评】此题考查了扇形统计图,扇形统计图直截了当反映部分占总体的百分比大小,关键是求出选择短跑的学生所占的百分比.9.下列命题中,逆命题是假命题的是()A.全等三角形的对应角相等B.直角三角形两锐角互余C.全等三角形的对应边相等D.两直线平行,同位角相等【考点】命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题,再进行判定即可.【解答】解:A、全等三角形的对应角相等的逆命题是对应角相等的三角形全等,是假命题;B、直角三角形两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;C、全等三角形的对应边相等的逆命题是对应边相等的三角形全等,是真命题;D、两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;故选A.【点评】此题考查了命题与定理,两个命题中,假如第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.10.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP 的依照是()A.SASB.ASAC.AASD.SSS【考点】作图—差不多作图;全等三角形的判定.【分析】认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,因此两个三角形符合SSS判定方法要求的条件,答案可得.【解答】解:∵以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;在△OCP和△ODP中,,∴△OCP≌△ODP(SSS).故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角11.某校八年级1班一个学习小组的7名同学在半期考试中数学成绩分别是85,93,62,99,56,93,89,这七个数据的众数和中位数分别是()A.93、89B.93、93C.85、93D.89、93【考点】众数;中位数.【分析】依照众数的定义即众数是一组数据中显现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),即可得出答案.【解答】解:∵85,93,62,99,56,93,89中,93显现了2次,显现的次数最多,∴这七个数据的众数是93,把85,93,62,99,56,93,89从小到大排列为:56,62,85,89,93,93,99,最中的数是89,则中位数是89;故选A.【点评】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中显现次数最多的数.12.将一张矩形纸对折再对折,然后沿着如图中的虚线剪下,打开,那个图形一定是一个(A.三角形B.矩形C.菱形D.正方形【考点】剪纸问题.【分析】依照折叠可得剪得的四边形四条边都相等,依照此特点可得那个图形是菱形.【解答】解:依照折叠方法可知:所得到图形的4条边差不多上所剪直角三角形的斜边,同时相等,依照四条边相等的四边形是菱形可得那个图形是菱形,故选:C.【点评】本题要紧考查学生的动手能力及空间想象能力,关键是正确明白得剪图的方法.13.等腰梯形两底的差是4,两腰的长也是4,则那个等腰梯形的两锐角差不多上()A.75°B.60°C.45°D.30°【考点】等腰梯形的性质.【分析】依照题意画出图形,过点A作AE∥CD交BC于点E,依照等腰梯形的性质,易得四边形AECD 是平行四边形,依照平行四边形的对边相等,可得△ABE是等边三角形,即可得∠B的值.【解答】解:如图所示:梯形ABCD是等腰梯形,且AD∥BC,过点A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AE=CD,AD=EC,∵BE=BC﹣CE=BC﹣AD=AB=CD=4,∴∠B=60°.∴那个等腰梯形的锐角为60°.故选B.【点评】本题考查了等腰梯形的性质、平行四边形的判定与性质以及等边三角形的性质,依照题意作出辅助线,构造出平行四边形是解答此题的关键.14.如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确的是(A.△ABE≌△DCFB.△ABE和△DCF差不多上等腰直角三角形C.四边形BCFE是等腰梯形D.E、F是AD的三等分点【考点】矩形的性质.【分析】A、由AAS证得△ABE≌△DCF;B、依照矩形的性质、角平分线的性质推知△ABE和△DCF差不多上等腰直角三角形;C、由A中的全等三角形的性质得到BE=CF.结合矩形的对边平行得到四边形BCFE是等腰梯形;D、依照A在全等三角形的性质只能得到AE=DF,点E、F不一定是AD的三等分点.【解答】解:如图,∵四边形ABCD是矩形ABCD,∴∠A=∠D=∠DCB=∠ABC=90°.又BE、CF分别平分∠ABC和∠DCB,∴∠ABE=∠DCF=45°,∴∠AEB=∠ABE=45°,∠DFC=∠DCF=45°,∴AB=AE,DF=DC,∴△ABE和△DCF差不多上等腰直角三角形.故B正确;在△ABE与△DCF中,.则△ABE≌△DCF(AAS),故A正确;∵△ABE≌△DCF,∴BE=CF.又BE与FC不平行,且EF∥BC,EF≠BC,∴四边形BCFE是等腰梯形.故C正确;∵△ABE≌△DCF,∴AE=DF.然而不能确定AE=EF=FD成立.即点E、F不一定是AD的三等分点.故D错误.故选:D.【点评】本题考查了矩形的性质,全等三角形的性质和判定,平行线的性质的应用,要紧考查学生的推理能力.15.一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所通过时刻x(h)之间的函数关系的是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】因为该盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香,因此蚊香剩余长度y随所通过时刻x的增加而减少,又中间熄灭了2h,由此即可求出答案.【解答】解:因为蚊香剩余长度y随所通过时刻x的增加而减少,又中间熄灭了2h.故选C.【点评】解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.16.如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E和F,若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用H•L证明Rt△AEP≌Rt△AFPC.AP平分∠BADD.点P一定是菱形ABCD的两条对角线的交点【考点】菱形的性质;全等三角形的判定;角平分线的性质.【分析】依照到角的两边距离相等的点在角的平分线上判定出AP平分∠BAD,依照菱形的对角线平分一组对角线可得AC平分∠BAD,然后对各选项分析判定利用排除法求解.【解答】解:∵PE⊥AB,PF⊥AD,PE=PF,∴AP平分∠BAD,∵四边形ABCD是菱形,∴对角线AC平分∠BAD,故A、C选项结论正确;能够利用“HL”证明Rt△AEP≌Rt△AFP,故B选项正确;点P在AC上,但不一定在BD上,因此,点P一定是菱形ABCD的两条对角线的交点不一定正确.故选D.【点评】本题考查了菱形的性质,到角的两边距离相等的点在角的平分线上的性质,全等三角形的判定与性质,熟练把握各性质是解题的关键.二、填空题17.运算:(a﹣3)2(ab2)﹣3=\frac{1}{{a}^{9}{b}^{6}}(结果化为只含正整数指数幂的形式)【考点】负整数指数幂.【分析】依照负整数指数幂的运算法则分别进行运算,即可得出答案.【解答】解:(a﹣3)2(ab2)﹣3=()2(=•=;故答案为:.【点评】此题考查了负整数指数幂,把握负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于那个数的n次幂的倒数是本题的关键.18.把命题“平行四边形的两组对边分别相等”改写成“假如…,那么…”的形式是假如一个四边形是平行四边形,那么它两组对边分别相等.【考点】命题与定理.【分析】假如后面应是命题中的条件,那么后面是由条件得到的结论.【解答】解:原命题的条件是:四边形是平行四边形,结论是两组对边分别相等;改写成“假如…,那么…”的形式是:假如一个四边形是平行四边形,那么它两组对边分别相等,故答案为:假如一个四边形是平行四边形,那么它两组对边分别相等.【点评】本题考查了命题与定理的知识,解决本题的关键是准确找到所给命题的条件和结论.19.点P(﹣4,5)关于x轴对称的点P′的坐标是(﹣4,﹣5).【考点】关于x轴、y轴对称的点的坐标.【分析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:点P(﹣4,5)关于x轴对称的点P′的坐标是(﹣4,﹣5),故答案为:(﹣4,﹣5).【点评】此题要紧考查了关于x轴对称点的坐标,关键是把握点的坐标的变化规律.20.到三角形各顶点距离相等的点是三角形三条边的垂直平分线的交点.【考点】线段垂直平分线的性质.【分析】依照线段的垂直平分线的性质明白到三角形的一边的两个端点距离相等的点应该在这边的垂直平分线上,第一满足到两个顶点即到一条线段(边),再满足到另一个顶点即可,因此到三角形各顶点距离相等的点应该在三边的垂直平分线上,由此能够得到结论.【解答】解:∵到三角形的一边的两个端点距离相等的点应该在这边的垂直平分线,到三角形的另一边的两个端点距离相等的点应该在这边的垂直平分线,二垂直平分线有一个交点,由等量代换可知到三角形各顶点距离相等的点是三角形三条边的垂直平分线的交点.故填空答案:三条边的垂直平分线.【点评】此题要紧考查线段的垂直平分线的性质等几何知识.分别满足所要求的条件是正确解答本题的关键.21.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】平行四边形的判定.【专题】开放型.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:依照平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).【点评】此题考查了平行四边形的判定,为开放性试题,答案不唯独,要把握平行四边形的判定方法.两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.22.小青在八年级上学期的数学成绩如下表所示.平常测验期中考试期末考试成绩86 90 81假如学期总评成绩依照如图所示的权重运算,小青该学期的总评成绩是84.2分.【考点】加权平均数;扇形统计图.【分析】依照总成绩中由三次成绩组成而且所占比例不同,运用加权平均数的运算公式求出即可.【解答】解:总评成绩为:86×10%+90×30%+81×60%=84.2(分).故答案为84.2.【点评】此题要紧考查了加权平均数的应用,注意学期的总评成绩是依照平常成绩,期中成绩,期末成绩的权重运算得出,注意加权平均树算法的正确运用,在考试中是易错点.23.假如关于x的方程=无解,则m=﹣5.【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解那个整式方程得到的解使原方程的分母等于0.【解答】解:去分母得:x﹣3=m,解得:x=m+3,∵原方程无解,∴最简公分母:x+2=0,解得:x=﹣2,即可得:m=﹣5.故答案为﹣5.【点评】本题考查了分式方程的解,分式方程无解分两种情形:整式方程本身无解;分式方程产生增根.24.如图,双曲线与直线y=mx+n在第一象限内交于点A(1,5)和B(5,1),依照图象,在第一象限内,反比例函数值大于一次函数值时x的取值范畴是0<x<1或x>5.【考点】反比例函数与一次函数的交点问题.【分析】依照图象观看,反比例函数图象在一次函数图象上方时,即反比例函数的值大于一次函数的值.【解答】解:从图象可知反比例函数图象在一次函数图象上方时,即反比例函数的值大于一次函数的值,因此x的取值范畴是0<x<1或x>5.故答案为:0<x<1或x>5.【点评】此题考查了由图象确定两函数的大小问题,直截了当由图象入手较为简单.三、解答题(第25题18分,其余每题8分,共50分)25.(1)运算:(﹣2)3+(﹣)﹣2•(1﹣)0(2)先化简,再求值:÷﹣,其中x=(3)解方程:=+2.【考点】分式的化简求值;零指数幂;负整数指数幂;解分式方程.【专题】运算题.【分析】(1)原式第一项利用乘方的意义化简,第二项利用负指数幂、零指数幂法则运算即可得到结果;(2)原式第一项利用除法法则变形,约分后利用同分母分式的减法法则运算得到最简结果,将x的值代入运算即可求出值;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣8+9×1=﹣8+9=1;(2)原式=•﹣=﹣=,当x=时,原式==﹣3;(3)去分母得:2x(x+1)=1+2x2﹣2,去括号得:2x2+2x=2x2﹣1,解得:x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了分式的化简求值,熟练把握运算法则是解本题的关键.26.2020年4月20,我省雅安市芦山县发生了里氏7.0级强烈地震.为支援灾区,某中学八年级师生发起了自愿捐款活动.已知第一天捐款4800元,翌日捐款6000元,翌日捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?【考点】分式方程的应用.【分析】设第一天捐款的人数为x人,翌日捐款的人数为(x+50)人,依照两天人均捐款数相等,列方程求解.【解答】解:设第一天捐款的人数为x人,翌日捐款的人数为(x+50)人,由题意得,=,解得:x=200,经检验,x=200是原分式方程的解,且符合题意.则两天共参加的捐款人数为:2×200+50=450(人).答:两天共参加捐款的人数是450人.【点评】本题考查了分式方程的应用,解答本题的关键是读明白题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.27.已知:如图,在△ABC中,AB=AC,∠B=36°.(1)尺规作图:作AB的垂直平分线交BC于点D,垂足为F,连接AD;(保留作图痕迹,不写作法)(2)求证:△ACD是等腰三角形.【考点】作图—复杂作图;线段垂直平分线的性质;等腰三角形的判定.【分析】(1)依照垂直平分线的作法作出AB的垂直平分线交BC于点D,垂足为F,再连接AD即可求解;(2)依照等腰三角形的性质和线段垂直平分线的性质得到∠1=∠C=∠B=36°,再依照三角形内角和定理和三角形外角的性质得到∠DAC=∠ADC,再依照等腰三角形的判定即可求解.。

四川省成都市锦江区七中学育才校2020-2021学年八下数学期末检测试题含解析

四川省成都市锦江区七中学育才校2020-2021学年八下数学期末检测试题含解析

四川省成都市锦江区七中学育才校2020-2021学年八下数学期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,120FOG ∠=,FOG ∠的两边,OF OG 与,AB BC 分别相交于,D E ,FOG ∠绕O 点顺时针旋转时,下列四个结论正确的个数是( )①OD OE =;②ODE BDE S S ∆∆=;③433ODBE S =四边形;④BDE ∆周长最小值是9.A .1个B .2个C .3个D .4个2.若一组数据1.2.3.x 的极差是6,则x 的值为( ).A .7B .8C .9D .7或3-3.下列选项中的图形,不属于中心对称图形的是( ) A . B . C . D .4.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x -=+ 5.如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,AF ⊥BC ,垂足为点F ,∠ADE =30°,DF =2,则△ABF 的周长为( )A .4B .8C .6+D .6+26.若点P (2m+1,312m -)在第四象限,则m 的取值范围是( ) A .13m < B .12m >- C .1123m -<< D .11<23m -≤ 7.菱形具有而矩形不一定具有的性质是( )A .对角相等B .四条边都相等C .邻角互补D .对角线互相平分8.已知平行四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是( )A .90D ∠=B .AB CD =C .AB BC =D .AC BD =9.在一次数学测试中,某小组的5名同学的成绩(百分制,单位:分)如下:80,98,98,83,96,关于这组数据说法错误的是( )A .众数是98B .平均数是91C .中位数是96D .方差是6210.已知两条对角线长分别为6cm 和8cm 的菱形,顺次连接它的四边的中点得到的四边形的面积是 ( ) A .100 B .48 C .24 D .12二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,直线y=-4x+4与x 、y 轴分别相交于点A 、B ,四边形ABCD 是正方形,抛物线2y ax bx c =++过C ,D 两点,且C 为顶点,则a 的值为_______.12.已知一组数据6,6,1,x ,1,请你给正整数x 一个值_____,使这组数据的众数为6,中位数为1.级需要搬运的图书数量的两倍.上午全部学生在初一年级搬运,下午一半的学生仍然留在初一年级(上下午的搬运时间相等)搬运,到放学时刚好把初一年级的图书搬运完.下午另一半的学生去初二年级搬运图书,到放学时还剩下一小部分未搬运,最后由三个学生再用一整天的时间刚好搬运完.如果这批学生每人每天搬运的效率是相同的,则这批学生共有人数为______.14.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组x 30{5x>0-≥-的整数,则这组数据的平均数是 . 15.如图,三个边长均为1的正方形按如图所示的方式摆放,A 1,A 2分别是正方形对角线的交点,则重叠部分的面积和为______.16.如图,已知ABC △中,902C AC BC ∠=︒==,,将ABC △绕点A 逆时针方向旋转60︒到''AB C 的位置,连接C'B ,则C'B 的长为__________.17.若样本数据1,2,3,2的平均数是a ,中位数是b ,众数是c ,则数据a ,b ,c 的方差是___.18.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=_____度.三、解答题(共66分)19.(10分)如图(甲),在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.(1)求证:CE CF =;(2)在如图(甲)中,若G 在AD 上,且45GCE ∠=︒,则GE BE GD =+成立吗?证明你的结论.(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图(乙)四边形ABCD 中,AD ∥BC (BC >AD ),90B ∠=︒,6AB BC ==,点E 是AB 上一点,且45DCE∠=︒,2BE=,求DE的长.20.(6分)骑自行车旅行越来越受到人们的喜爱,顺风车行经营的A型车2017年7月份销售额为3.2万元,今年经过改造升级后,A型车每辆的销售价比去年增加400元,若今年7月份与去年7月份卖出的A型车数量相同,则今年7月份A型车销售总额将比去年7月份销售总额增加25%.求今年7月份顺风车行A型车每辆的销售价格.21.(6分)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°,求∠B的度数.22.(8分)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.23.(8分)先化简,再求值22226951222a ab b ba ba ab a b a⎛⎫-+÷---⎪--⎝⎭,其中a=3,b=﹣1.24.(8分)(1)计算:(1+23)(3﹣2)﹣(2﹣3)2(2)因式分解:2mx2﹣8mxy+8my225.(10分)如图,直角坐标系中,一次函数的图象分别与,轴交于,两点,正比例函数的图象与交于点.(2)求的值; (3)一次函数的图象为,且,,不能围成三角形,直接写出的值.26.(10分)我们借助对同一个长方形面积的不同表示,可以解释一些多项式的因式分解.例如选取图①中的A 卡片1张、B 卡片1张、C 卡片2张,就能拼成图②所示的正方形,从而可以解释2222()a ab b a b ++=+.请用A 卡片1张、B 卡片2张、C 卡片3张拼成一个长方形,画图并完成多项式2232a ab b ++的因式分解.参考答案一、选择题(每小题3分,共30分)1、B【解析】【分析】首先连接OB 、OC ,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE ,于是可判断△BOD ≌△COE ,利用全等三角形的对应边相等可对①进行判断;再利用S BOD =S COE 得到四边形ODBE 的面积=13 S ABC ,则可对③进行判断,然后作OH ⊥DE ,则DH=EH ,计算出S ODE 3OE 2,利用S △ODE 随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断,接下来由△BDE 的周长3,结合垂线段最短,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,计算出此时OE 的长则可对④进行判断.【详解】连接OB ,OC ,如图.∵△ABC为等边三角形,∴∠ABC=∠ACB=60°.∵点O是△ABC的中心,∴OB=OC,OB. OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE.在△BOD和△COE中,∠BOD=∠COE,BO=CO,∠OBD=∠OCE,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴SBOD=S COE,∴四边形ODBE的面积=SOBC =13S ABC=13×34×42=33,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°.∴OH=12OE,33OE,∴3OE,∴S△ODE=12·12·OE·3OE=3OE2,即SODE随OE的变化而变化,而四边形ODBE的面积为定值,∴SODE≠S BDE,所以②错误;∵BD=CE,∴△BDE 的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+ OE ,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,此时, ∴△BDE 周长的最小值=4+2=6,所以④错误.故选B.【点睛】 此题考查旋转的性质、等边三角形的性质和全等三角形的判定与性质,解题关键是牢记旋转前、后的图形全等. 2、D【解析】试题分析:根据极差的定义,分两种情况:x 为最大值或最小值:当x 为最大值时,x 16x 7-=⇒=;当x 是最小值时,3x 6x 3-=⇒=-.∴x 的值可能7或3-.故选D.考点:1.极差;2.分类思想的应用.3、B【解析】【分析】根据中心对称图形特点分别分析判断,中心对称图形绕一个点旋转180°后图形仍和原来图形重合.【详解】解:A 、属于中心对称图形,不符合题意;B 、不是中心对称图形,符合题意;C 、是中心对称图形,不符合题意;D 、是中心对称图形,不符合题意.故答案为:B【点睛】本题考查的中心对称图形,由其特点进行判断是解题的关键.4、D【解析】【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048,减去提前完成时间72048x+,可以列出方程:72072054848x-=+故选:D.【点睛】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.5、D【解析】【分析】先利用直角三角形斜边中线性质求出AB,再利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.【详解】∵AF⊥BC,点D是边AB的中点,∴AB=2DF=4,∵点D,E分别是边AB,AC的中点,∴DE∥BC,∴∠B=∠ADE=30°,∴AF=AB=2,由勾股定理得,BF=,则△ABF的周长=AB+AF+BF=4+2+2=6+2,故选:D.【点睛】此题考查三角形中位线定理,含30度角的直角三角形,直角三角形斜边上的中线,解题关键在于利用30角所对的直角边等于斜边的一半求解.6、C【解析】【分析】点P(2m+1,312m-)在第四象限,故2m+1>0,312m-<0,解不等式可得.【详解】∵点P(2m+1,312m-)在第四象限,∴2m+1>0,312m-<0,解得:11 23m-<<.故选:C【点睛】考核知识点:点的坐标和象限.理解点的坐标符号与限项关系.7、B【解析】【分析】根据菱形和矩形的性质,容易得出结论.【详解】解:菱形的性质有:四条边都相等,对边平行且相等;对角相等,邻角互补;对角线互相垂直平分;矩形的性质有:对边平行且相等;四个角都是直角;对角线互相平分;根据菱形和矩形的性质得出:菱形具有而矩形不一定具有的性质是四条边都相等;故选:B.【点睛】本题考查了菱形和矩形的性质;熟练掌握菱形和矩形的性质是解决问题的关键.8、C【解析】【分析】由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.【点睛】本题考查正方形的判定.正方形的判定方法有:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③先判定四边形是平行四边形,再用1或2进行判定.9、D【分析】根据数据求出众数、平均数、中位数、方差即可判断. 【详解】A. 98出现2次,故众数是98,正确B. 平均数是80989883965++++=91,正确;C. 把数据从小到大排序:80,83,96,98,98,故中位数是96 ,正确故选D.【点睛】此题主要考查统计调查的应用,解题的关键是熟知众数、平均数、中位数、方差的求解. 10、D【解析】【分析】顺次连接这个菱形各边中点所得的四边形是矩形,且矩形的边长分别是菱形对角线的一半.【详解】解:如图∵E、F、G、H分别为各边中点∴EF∥GH∥AC,EF=GH=12 AC,EH=FG=12BD,EH∥FG∥BD∵DB⊥AC,∴EF⊥EH,∴四边形EFGH是矩形,∵EH=12BD=3cm,EF=12AC=4cm,∴矩形EFGH的面积=EH×EF=3×4=12cm2,故选D.本题考查了菱形的性质,菱形的四边相等,对角线互相垂直,连接菱形各边的中点得到矩形,且矩形的边长是菱形对角线的一半.二、填空题(每小题3分,共24分)11、-1【解析】【分析】如图作CN ⊥OB 于N ,DM ⊥OA 于M ,CN 与DM 交于点F ,利用三角形全等,求出点C 、点D 和点F 坐标即可解决问题.【详解】解:如图,作CN⊥OB 于N ,DM⊥OA 于M ,CN 与DM 交于点F.∵直线y=-1x+1与x 轴、y 轴分别交于A 、B 两点,∴点B (0,1),点A (1,0),△ABO≌△DAM∵四边形ABCD 是正方形,∴AB=AD=DC=BC,∠BAD=90°,∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,∴∠ABO=∠DAM,在△ABO 和△DAM 中,90BOA AMD ABO DAMAB AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△ABO≌△DAM,∴AM=BO=1,DM=AO=1,同理可以得到:CF=BN=AO=1,DF=CN=BO=1,∴点F (5,5),C (1,5),D (5,1),把C (1,1),D (5,1)代入2ax bx c =++得:5=1641255a b c a b c ++⎧⎨=++⎩,解得:b=-9a-1, ∵C 为顶点, ∴42b a -=,即9442a a---= ,解得:a=-1. 故答案为-1.【点睛】本题考查二次函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.12、2【解析】【分析】由数据1、1、6、6、x 的众数为6、中位数为1知x <1且x≠1,据此可得正整数x 的值.【详解】∵数据1、1、6、6、x 的众数为6、中位数为1,∴x <1且x≠1,则x 可取2、3、4均可,故答案为2.【点睛】考查了中位数、众数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.13、8【解析】【分析】设二年级需要搬运的图书为a 本,则一年级搬运的图书为2a 本,这批学生有x 人,每人每天的搬运效率为m ,根据题意的等量关系建立方程组求出其解即可.【详解】解:设二年级需要搬运的图书为a 本,则一年级搬运的图书为2a 本,这批学生有x 人,每人每天的搬运效率为m ,由题意得:1112222111122mx x m a xm m a +⨯⨯⎧⎪⎪⎨⎪⨯⨯⎪+⎩==解得:x=8,即这批学生有8人【点睛】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,设参数法列方程解实际问题的运用,解答时根据工作量为2a和a建立方程是关键,运用整体思想是难点.14、1.【解析】解不等式组x30{5x>0-≥-得,3≤x<1,∵x是整数,∴x=3或2.当x=3时,3,2,6,8,x的中位数是2(不合题意舍去);当x=2时,3,2,6,8,x的中位数是2,符合题意.∴这组数据的平均数可能是(3+2+6+8+2)÷1=1.15、1 2【解析】【分析】过点A1分别作正方形两边的垂线A1D与A1E,根据正方形的性质可得A1D=A1E,再根据同角的余角相等求出∠BA1D=∠CA1E,然后利用“角边角”证明△A1BD和△A1CE全等,根据全等三角形的面积相等求出阴影部分的面积等于正方形面积的14,即可求解.【详解】如图,过点A1分别作正方形两边的垂线A1D与A1E,∵点A1是正方形的中心,∴A1D=A1E,∵∠BA1D+∠BA1E=90°,∠CA1E+∠BA1E=90°,∴∠BA1D=∠CA1E,A1D=A1E,∠A1DB=∠A1EC=90°,∴△A1BD≌△A1CE(ASA),∴△A1BD的面积=△A1CE的面积,∴两个正方形的重合面积=14正方形面积=14,∴重叠部分的面积和为14×2=12. 故答案是:12. 【点睛】 考查了全等三角形的判定与性质,正方形的性质,作辅助线构造出全等三角形求出阴影部分的面积是14正方形的面积的是解题的关键.16、13+【解析】【分析】连接BB'BC',交'AB 于D ,ABC △中,根据勾股定理得,2222AB AC ==⨯=,根据旋转的性质得:'BC 垂直平分AB'ABB',△为等边三角形,分别求出',C D BD ,根据''C B C D BD =+计算即可. 【详解】如图,连接BB'BC',交'AB 于D ,如图,ABC △中,∵902C AC BC ∠=︒==, ∴2222AB ===,∵ABC △绕点A 逆时针方向旋转60︒到''AB C 的位置,∴90260AC'B'ACB AC'=AC =B'C'=BC AB =AB'BAB'∠=∠=︒=∠=︒,,,, ∴'BC 垂直平分AB'ABB',△为等边三角形, ∴131'32C'D AB'BD AB ====,, ∴13C'B =C'D+BD =+故答案为:13【点睛】考查等腰直角三角形的性质,等边三角形的判定与性质,旋转的性质等,17、1.【解析】【分析】先确定出a ,b ,c 后,根据方差的公式计算a ,b ,c 的方差.【详解】解:平均数()123242a =+++÷=;中位数()2222b =+÷=;众数2c =;a ∴,b ,c 的方差(222[(22)(22)22)30⎤=-+-+-÷=⎦.故答案是:1.【点睛】考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.18、30°【解析】【分析】根据旋转的性质得到∠BOD=45°,再用∠BOD 减去∠AOB 即可.【详解】∵将△AOB 绕点O 按逆时针方向旋转45°后,得到△COD ,∴∠BOD=45°,又∵∠AOB=15°, ∴∠AOD=∠BOD -∠AOB=45°-15°=30°. 故答案为30°.三、解答题(共66分)19、(1)见解析;(1)成立,理由见解析;(3)5【解析】分析:(1)因为ABCD 为正方形,所以CB=CD ,∠B=∠CDA=90°,又因为DF=BE ,则△BCE ≌△DCF ,即可求证CE=CF ;(1)因为∠BCD=90°,∠GCE=45°,则有∠BCE+∠GCD=45°,又因为△BCE ≌△DCF ,所以∠ECG=∠FCG ,CE=CF ,CG=CG ,则△ECG ≌△FCG ,故GE=BE+GD 成立;(3)①过点C 作CG ⊥AD 交AD 的延长线于点G ,利用勾股定理求得DE 的长.详解:(1)在正方形ABCD 中 CB=CD ,∠B=∠CDA=90°,∴∠CDF=∠B=90°.在△BCE 和△DCF 中,CB CD B CDF BE DF ⎧⎪∠∠⎨⎪⎩===∴△BCE ≌△DCF (SAS ).∴CE=CF .(1)GE=BE+GD 成立.理由如下:∵∠BCD=90°,∠GCE=45°,∴∠BCE+∠GCD=45°.∵△BCE ≌△DCF (已证),∴∠BCE=∠DCF .∴∠GCF=∠GCD+∠DCF=∠GCD+∠BCE=45°.∴∠ECG=∠FCG=45°.在△ECG 和△FCG 中,CE CF ECG FCG CG CG ⎧⎪∠∠⎨⎪⎩===,∴△ECG ≌△FCG (SAS ).∴GE=FG .∵FG=GD+DF ,∴GE=BE+GD .(3)①如图1,过点C 作CG ⊥AD ,交AD 的延长线于点G ,由(1)和题设知:DE=DG+BE ,设DG=x,则AD=6-x,DE=x+3,在Rt△ADE中,由勾股定理得:AD1+AE1=DE1,∴(6-x)1+31=(x+3)1,解得x=1.∴DE=1+3=5.点睛:此题是一道把等腰三角形的判定、勾股定理、正方形的判定和全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.20、2000【解析】【分析】设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.【详解】解:设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得3200032000(125%)400x x⨯+=+解得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.【点睛】本题考查了分式方程的应用,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验.21、(1)见解析;(2)108°【解析】【分析】(1)利用平行四边形的性质得出AD∥BC,AD=BC,证出∠D=∠ECF,由ASA即可证出△ADE≌△FCE;(2)证出AB=FB,由等腰三角形的性质和三角形内角和定理即可得出答案.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠D=∠ECF,在△ADE和△FCE中,D ECF DE CEAED FEC ===∠∠⎧⎪⎨⎪∠∠⎩∴△ADE ≌△FCE (ASA );(2)∵△ADE ≌△FCE ,∴AD=FC ,∵AD=BC ,AB=2BC ,∴AB=FB ,∴∠BAF=∠F=36°,∴∠B=180°-2×36°=108°.【点睛】运用了平行四边形的性质,全等三角形的判定与性质,等腰三角形的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.22、y=2x ﹣1.【解析】【分析】设一次函数的解析式是:y=kx+b ,把(3,-5)与(-4,9)代入即得到一个关于k ,b 的方程组,解方程组即可求解.【详解】解:设一次函数为()0y kx b k =+≠因为它的图象经过3,5-4-9(),(,), 所以5=394k b k b +⎧⎨-=-+⎩ 解得:21k b =⎧⎨=-⎩ 所以这个一次函数为21y x =-【点睛】本题考查了待定系数法求函数的解析式,正确解方程组是关键.23、23b a -+,23. 【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】22226951222a ab b b a b a ab a b a⎛⎫-+÷--- ⎪--⎝⎭ =22(3)5(2)(2)1(2)2a b b a b a b a a b a b a--+-÷--- =2222(3)21(2)54a b a b a a b b a b a--⋅---+ =2(3)11(3)(3)a b a b a b a a-⋅-+- =31(3)b a a b a a--+ =3(3)(3)b a b a a b a --++ =33(3)b a b a a b a ---+ =2(3)-+a a b a =23b a-+, 当a =3,b =﹣1时,原式=23(2)3-⨯-+=23. 【点睛】 本题考查分式的混合运算,熟练掌握运算法则是解题关键.24、(1;(1)1m (x ﹣1y )1.【解析】【分析】(1)利用平方差公式,完全平方公式进行计算即可(1)先提取公因式1m ,再对余下的多项式利用完全平方公式继续分解.【详解】(1﹣ ﹣(1﹣+3)+6﹣﹣=3﹣2+1;(1)原式=1m(x2﹣4xy+4y2)=1m(x﹣1y)1.【点睛】此题考查提公因式法与公式法的综合运用,二次根式的混合运算,解题关键在于掌握运算法则25、(1);(2)4;(3)或2或.【解析】【分析】(1)先求得点的坐标,再运用待定系数法即可得到的解析式;(2)过作于,于,则,,再根据,,可得,,进而得出的值;(3)分三种情况:当经过点时,;当,平行时,;当,平行时,;故的值为或2或.【详解】解:(1)把代入一次函数,可得,解得,,设的解析式为,则,解得,的解析式为;(2)如图,过作于,于,则,,,令,则;令,则, ,, ,,;(3)一次函数的图象为,且,,不能围成三角形, 当经过点时,; 当,平行时,; 当,平行时,; 故的值为或2或.【点睛】 本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.26、见详解,()()2a b a b ++【解析】【分析】先画出图形,再根据图形列式分解即可.【详解】解:如图,()()22322a ab b a b a b ++=++【点睛】此题主要考查了因式分解,正确的画出图形是解决问题的关键.。

四川省成都新都区七校联考2020-2021学年八年级数学第二学期期末监测试题含解析

四川省成都新都区七校联考2020-2021学年八年级数学第二学期期末监测试题含解析

四川省成都新都区七校联考2020-2021学年八年级数学第二学期期末监测试题 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.下列各式中,与是同类二次根式的是( ) A . B . C . D .2.计算:5b 220b a ÷=( )(a >0,b >0) A .10b a B .10a b C .2a D .2a 23.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是 ( )A .B .C .D .4.在平面直角坐标系中,点(1,2)P --位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.下列是假命题的是( )A .平行四边形对边平行B .矩形的对角线相等C .两组对边分别平行的四边形是平行四边形D .对角线相等的四边形是矩形6.将一次函数y =﹣2x 的图象向下平移6个单位,得到新的图象的函数解析式为( )A .y =﹣8xB .y =4xC .y =﹣2x ﹣6D .y =﹣2x +67.如图,AC 、BD 是四边形ABCD 的对角线,若E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,顺次连接E 、F 、G 、H 四点,得到四边形EFGH ,则下列结论不正确的是( )A.四边形EFGH一定是平行四边形B.当AB=CD时,四边形EFGH是菱形C.当AC⊥BD时,四边形EFGH是矩形D.四边形EFGH可能是正方形8.下列调查中,适宜采用抽样调查方式的是()A.调查八年级某班学生的视力情况B.调查乘坐飞机的旅客是否携带违禁物品C.调查某品牌LED灯的使用寿命D.学校在给学生订制校服前尺寸大小的调查9.使式子有意义的x的取值范围是( )A.x≥0B.x>0 C.x>3 D.x≥310.如图,在平行四边行ABCD 中,AD=8,点E、F 分别是BD、CD 的中点,则EF 等于()A.3.5 B.4 C.4.5 D.511.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.12.如果23ab=,那么aa b+等于A.3:2 B.2:5 C.5:3 D.3:5 二、填空题(每题4分,共24分)13.若分式293xx--的值为0,则x的值为_______.14.如图,▱ABCD的对角线AC、BD相交于点O,点E是CD的中点;若AD=8cm,则OE的长为_______.15.如图,在Rt△ABC中,AC=8,BC=6,直线l经过点C,且l∥AB,P为l上一个动点,若△ABC与△PAC相似,则PC=.16.如图,AB=AC,则数轴上点C所表示的数为__________.17.如图①,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B.图②是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值是__18.若关于x的一元二次方程x2﹣2x+4m=0有实数根,则m的取值范围是_____.三、解答题(共78分)19.(8分)(1)如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是________;(2)根据下面四个算式:5232=(5+3)×(53)=8×2;11252=(11+5)×(115)=16×6=8×12;15232=(15+3)×(153)=18×12=8×27;19272=(19+7)×(197)=26×12=8×1.请你再写出两个(不同于上面算式)具有上述规律的算式;(3)用文字写出反映(2)中算式的规律,并证明这个规律的正确性.20.(8分)如图,在□ABCD中,点E在AD上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)(1)在图1中,过点E作直线EF将□ABCD分成两个全等的图形;(2)在图2中,DE=DC,请你作出∠BAD的平分线AM.21.(8分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.22.(10分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)求y关于x的函数解析式;(2)每分钟进水、出水各多少升?23.(10分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲10 6 10 6 8乙7 9 7 8 9经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?24.(10分)如图,在平面直角坐标系中,菱形OABC的顶点,A C在反比例函数kyx=图象上,直线AC交OB于点D,交,x y正半轴于点,E F,且32OE OF==()1求OB的长:()2若10AB,求k的值.25.(12分)如图,在平面直角坐标系中,A(0,8),B(﹣4,0),线段AB的垂直平分线CD分别交AB、OA于点C、D,其中点D的坐标为(0,3).(1)求直线AB的解析式;(2)求线段CD的长;(3)点E为y轴上一个动点,当△CDE为等腰三角形时,求E点的坐标.26.某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A 品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.参考答案一、选择题(每题4分,共48分)1、B【解析】【分析】先化简二次根式,再根据同类二次根式的定义判定即可.【详解】解:A、与的被开方数不同,不是同类二次根式,故本选项错误.B、=2,与的被开方数相同,是同类二次根式,故本选项正确.C、与的被开方数不同,不是同类二次根式,故本选项错误.D、=3,与的被开方数不同,不是同类二次根式,故本选项错误.故选:B.【点睛】本题考查同类二次根式,解题的关键是二次根式的化简.2、C【解析】【分析】根据二次根式的除法法则计算可得.【详解】解:原式2222042 5205b b b aa aa b=÷=⋅==,故选C.【点睛】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.3、D【解析】【分析】【详解】注水需要60÷10=6分钟,注水2分钟后停止注水1分钟,共经历6+1=7分钟,排除A、B;再根据停1分钟,再注水4分钟,排除C.故选D.4、C【解析】【分析】根据第三象限内的点的横坐标小于零,纵坐标小于零,可得答案.【详解】解:在平面直角坐标系中,点(1,2)P--位于第三象限,故选:C.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、D【解析】【分析】利用平行四边形的判定、矩形的性质及矩形的判定方法分别判断后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,正确,是真命题;B、矩形的对角线相等,正确,是真命题;C、两组对边分别平行的四边形是平行四边形,正确,是真命题;D、对角线相等的平行四边形是矩形,故错误,是假命题,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定、矩形的性质及矩形的判定方法,难度不大.6、C【解析】【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】解:将一次函数的图象向下平移6个单位,那么平移后所得图象的函数解析式为:,故选:.【点睛】此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.7、C【解析】【分析】根据三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理判断即可.【详解】解:∵E、F分别是BD、BC的中点,∴EF∥CD,EF=12 CD,∵H、G分别是AD、AC的中点,∴HG∥CD,HG=12 CD,∴HG∥EF,HG=EF,∴四边形EFGH是平行四边形,A说法正确,不符合题意;∵F、G分别是BC、AC的中点,∴FG=12 AB,∵AB=CD,∴FG=EF,∴当AB=CD时,四边形EFGH是菱形,B说法正确,不符合题意;当AB⊥BC时,EH⊥EF,∴四边形EFGH是矩形,C说法错误,符合题意;当AB=CD,AB⊥BC时,四边形EFGH是正方形,说法正确,不符合题意;故选:C.【点睛】此题考查中点四边形、三角形中位线定理,掌握平行四边形、矩形、菱形、正方形的判定定理是解题的关键.8、C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、调查八年级某班学生的视力情况适合全面调查,故A选项错误;B、调查乘坐飞机的旅客是否携带违禁物品,适合全面调查,故B选项错误;C、调查某品牌LED灯的使用寿命适合抽样调查,故C选项正确;D、学校在给学生订制校服前尺寸大小的调查,适于全面调查,故D选项错误.故选C.【点睛】对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、D【解析】【分析】根据二次根式有意义的条件:被开方数是非负数,列不等式求解.【详解】解:∵式子有意义,∴x-3≥0,解得:x≥3,故选D..【点睛】本题考查了二次根式的意义的条件.关键是把握二次根式中的被开方数必须是非负数,否则二次根式无意义.10、B【解析】分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=1,又由点E、F分别是BD、CD 的中点,利用三角形中位线的性质,即可求得答案.详解:∵四边形ABCD是平行四边形,∴BC=AD=1.∵点E、F分别是BD、CD的中点,∴EF=12BC=12×1=2.故选B.点睛:本题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.11、C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【解析】【分析】根据比例的基本性质(两内项之积等于两外项之积)和合比定理【如果a :b=c :d ,那么(a+b ):b=(c+d ):d (b 、d ≠0)】解答并作出选择.【详解】 ∵a b =23的两个内项是b 、2,两外项是a 、3, ∴32b a =, ∴根据合比定理,得23522a b a ++==,即52a b a +=; 同理,得a a b+=2:5. 故选B.【点睛】本题考查比例的性质,熟练掌握比例的基本性质是解题关键.二、填空题(每题4分,共24分)13、-1【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:29=030x x ⎧-⎨-≠⎩, 解得:x=-1.故答案为:-1.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.14、4cm【解析】先说明OE是△ACD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【详解】∵▱ABCD的对角线AC、BD相交于点O,∴OA=OC,∵点E是CD的中点,∴CE=DE,∴OE是△ACD的中位线,∵AD=8cm,∴OE=12AD=12×8=4cm,故答案为:4cm.【点睛】本题考查了平行四边形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.15、6.1或2【解析】分类讨论:(1)当∠PCA=90°时,不成立;(2)∵Rt△ABC中,AC=8,BC=6,∴AB=2,当∠APC=90°时,∵∠PCA=∠CAB,∠APC=∠ACB,∴△CPA∽△ACB,∴ACAB=PCAC,∴810=8PC,∴PC=6.1.(3)当∠CAP=90°时,∵∠ACB=∠CAP=90°,∠PCA=∠CAB,∴△PCA∽△BAC,∴PCAB=CAAC,∴PC=AB=2.故答案为:6.1或2.点睛:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形,根据未知三角形中已知边与已知三角形的可能对应分类讨论;(2)或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小;(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式表示各边的长度,之后利用相似列方程求解.1651【解析】分析:根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.详解:由勾股定理得:AB=2221+5AC5∵点A表示的数是﹣1,∴点C51.51.点睛:本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.17、5 2【解析】【分析】过点D作DE⊥BC于点E,通过分析图象,点F从点A到D用a s,此时,△FBC的面积为a,依此可求菱形的高DE;再由图象可知,5Rt△DBE中应用勾股定理求BE的值,进而在Rt△DEC应用勾股定理求a的值.【详解】过点D作DE⊥BC于点E.由图象可知,点F 由点A 到点D 用时为a s ,△FBC 的面积为a cm 2.∴AD=a , ∴12DE·AD=a , ∴DE=2.当点F 从D 到B 5,∴5Rt △DBE 中, ()2222=5-2=1BD BE -. ∵ABCD 是菱形,∴EC=a-1,DC=a ,Rt △DEC 中,a 2=22+(a-1) 2,解得a=52. 【点睛】此题考查菱形的性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系;18、m≤14【解析】【分析】由关于x 的一元二次方程x 2﹣2x +4m =0有实数根,可知b 2﹣4ac ≥0,据此列不等式求解即可.【详解】解:由题意得,4-4×1×4m ≥0解之得m ≤14故答案为m ≤14.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.三、解答题(共78分)19、(1)a2-b2=(a+b)(ab);(2)72-52=8×3;92-32=8×9等;(3)规律:任意两个奇数的平方差是8的倍数,证明见解析【解析】【分析】(1)利用两个图形,分别求出阴影部分的面积,即可得出关系式;(2)任意写出两个奇数的平方差,右边写出8的倍数的形式即可;(3)两个奇数的平方差一定能被8整除;任意写一个即可,如:(2n+1)2-(2n-1)2=8n.【详解】解:(1)图甲的阴影部分的面积为:a2-b2,图乙平行四边形的底为(a+b),高为(a-b),因此面积为:(a+b)(a-b),所以a2-b2=(a+b)(a-b),故答案为:a2-b2=(a+b)(a-b);(2)32-12=(3+1)×(3-1)=4×2=8×1,172-52=(17+5)×(17-5)=22×12=8×33,(3)两个奇数的平方差一定能被8整除;设较大的奇数为(2n+1)较小的奇数为(2n-1),则,(2n+1)2-(2n-1)2=[(2n+1)+(2n-1)][(2n+1)-(2n-1)]=8n,∴(2n+1)2-(2n-1)2=8n.即:任意两个奇数的平方差是8的倍数【点睛】本题考查平方差公式及其应用,掌握平方差公式的结构特征是正确应用的前提.20、(1)详见解析;(2)详见解析【解析】【分析】(1)作▱ABCD的对角线AC、BD,交于点O,作直线EO交BC于点F,直线EF即为所求;(2)作射线AF即可得.【详解】(1)如图1,直线EF即为所求;(2)如图2,射线AM即为所求.【点睛】本题主要考查作图-基本作图,熟练掌握平行四边形的性质是解题的关键.21、(1)54°;(2)见解析;(3)85;(4)甲班20同名同学的成绩比较整齐.【解析】试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;(4)根据方差的意义即可做出评价.解:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20﹣6﹣3﹣6=5,统计图补充如下:(3)20﹣1﹣7﹣8=4,=85;(4)∵S甲2<S乙2,∴甲班20同名同学的成绩比较整齐.22、(1)5(04)515(412)4x x y x x <⎧⎪=⎨+⎪⎩;(2)每分钟进水、出水各5L ,154L . 【解析】【分析】(1)根据题意和函数图象可以求得y 与x 的函数关系式;(2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.【详解】解:(1)当0≤x≤4时,设y 关于x 的函数解析式是y =kx ,4k =20,得k =5,即当0≤x≤4时,y 与x 的函数关系式为y =5x ,当4<x≤12时,设y 与x 的函数关系式为y =ax+b ,4201230a b a b +=⎧⎨+=⎩,得5415a b ⎧=⎪⎨⎪=⎩, 即当4≤x≤12时,y 与x 的函数关系式为5154y x =+, 由上可得,5(04)515(412)4x x y x x <⎧⎪=⎨+⎪⎩; (2)进水管的速度为:20÷4=5L/min , 出水管的速度为: 51230151244⨯-=-L/min , 答:每分钟进水、出水各5L ,154 L . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23、(1)乙平均数为8,方差为0.8;(2)乙.【解析】【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:15[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S21n=[(x1x-)2+(x2x-)2+…+(x n x-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.24、(1)6;(2)4【解析】【分析】(1)首先利用勾股定理求出EF的长,然后结合题意利用菱形的性质证明出△DOE为等腰三角形,由此求出DO,最后进一步求解即可;(2)过点A作AN⊥OE,垂足为E,在Rt△AON中,利用勾股定理求出AN的长,然后进一步根据反比例函数的性质求出k值即可.【详解】(1)∵32OE OF==,∴EF=226OE OF+=,∠OEF=∠OFE=45°,∵四边形OABC为菱形,∴OA=AB=BC=OC,OB⊥AC,DO=DB,∴△DOE为等腰三角形,∴DO=DE=12EF=3,∴OB=2DO=6;(2)如图,过点A 作AN ⊥OE ,垂足为E ,则△ANE 为等腰直角三角形,∴AN=NE ,设AN=x ,则NE=x ,ON=x ,在Rt △AON 中,由勾股定理可得:()222xx +=,解得:1x =2x =当1x =A 点坐标为:(),C 点坐标为:;当2x =C 点坐标为:(,A 点坐标为:,);∴4k ==.【点睛】本题主要考查了菱形的性质和等腰三角形性质与判定及勾股定理和反比例函数性质的综合运用,熟练掌握相关概念是解题关键.25、(1)直线AB 的解析式为y=2x+8;(2)3)满足题意的点E 坐标为(0,0,5)或(0,5)或(0,112). 【解析】【分析】(1)用待定系数法求解即可;(2)先由勾股定理求出AB 的长,再由垂直平分线的性质求出AC 的长,然后证明△CAD ∽△OAB ,利用相似三角形的对应边成比例即可求出CD 的长,(3)先由△CAD ∽△OAB ,求出AD 和OD 的长,然后分当CD=DE 时,当CD=CE 时,当CE=DE 时三种情况求解即可;【详解】(1)∵A (0,8),∴设直线AB 的解析式为y=kx+8,∵B (﹣4,0),∴﹣4k+8=0,∴k=2,∴直线AB 的解析式为y=2x+8;(2)∵A (0,8),B (﹣4,0),∴OA=8,OB=4,AB=4,∵CD是AB的垂直平分线,∴∠ACD=90°,AC=AB=2,∵∠ACD=∠AOB=90°,∠CAD=∠OAB,∴△CAD∽△OAB,∴,∴,∴CD=,(3)∵△CAD∽△OAB,∴,∴,∴AD=5,∴OD=OA﹣AD=3,D(0,3),当CD=DE时,DE=,∴E(0,5+)或(0,5﹣),当CD=CE时,如图1,∵A(0,8),B(﹣4,0),∴C(﹣2,4),过点C作CF⊥y轴于F,∴DF=EF,F(0,4),∴E(0,5);当CE=DE时,如图2,过E作E'G⊥CD,则E'G是线段CD的中垂线,∵AB ⊥CD ,∴E'G 是△ACD 的中位线,∴DE'=AE'=AD=,∴OE'=OD+DE'=, ∴E (0,),即:满足题意的点E 坐标为(0,5+)或(0,5﹣)或(0,5)或(0,). 【点睛】本题考查了待定系数法求一次函数解析式,勾股定理,线段垂直平分线的性质,相似三角形的判定与性质,等腰三角形的性质及分类讨论的数学思想,熟练掌握待定系数法、相似三角形的判定与性质、类讨论的数学思想是解答本题的关键.26、(1)30元,32元(2)122422.448==+yxyx(3)当购买数量超过5个而不足30个时,购买A 品牌的计算机更合算;当购买数量为30个时,购买两种品牌的计算机花费相同;当购买数量超过30个时,购买B 品牌的计算机更合算.【解析】【分析】(1)根据“购买2个A 品牌和3个B 品牌的计算器共需156元”和“购买3个A 品牌和1个B 品牌的计算器共需122元”列方程组求解即可.(2)根据题意分别列出函数关系式.(3)由12<yy、12=yy、12>yy列式作出判断.【详解】解:(1)设A 品牌计算机的单价为x元,B 品牌计算机的单价为y元,则由题意可知:231563122x y x y +=⎧⎨+=⎩,解得3032x y =⎧⎨=⎩. 答:A ,B 两种品牌计算机的单价分别为30元,32元.(2)由题意可知:10.830=⨯yx,即124=yx. 当05≤≤x时,232=yx; 当5>x时,()23253250.7=⨯+-⨯yx,即222.448=+yx. (3)当购买数量超过5个时,222.448=+yx. ①当12<yy时,2422.448<+xx,解得30<x, 即当购买数量超过5个而不足30个时,购买A 品牌的计算机更合算; ②当12=yy时,2422.448=+xx,解得30=x, 即当购买数量为30个时,购买两种品牌的计算机花费相同; ③当12>yy时,2422.448>+xx,解得30>x, 即当购买数量超过30个时,购买B 品牌的计算机更合算.。

四川省成都市天府七中学2021年数学八年级第二学期期末统考试题含解析

四川省成都市天府七中学2021年数学八年级第二学期期末统考试题含解析

四川省成都市天府七中学2021年数学八年级第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.使代数式2x+有意义的x的取值范围是()A.x>2 B.x>﹣2 C.x≥2D.x≥﹣22.小颖八年级第一学期的数学成绩分别为:平时90分,期中86分,期末95分.若按下图所显示的权重要求计算,则小颖该学期总评成绩为()A.88 B.91.8C.92.8D.933.如图,在平行四边形ABCD中,对角线AC和BD相交于点O,点E是BC边的中点,OE=1,则AB的长为()A.2 B.1C.12D.44.若关于x,y的二元一次方程组y kx by mx n=+⎧⎨=+⎩的解为12xy=⎧⎨=⎩,一次函数y=kx+b与y=mx+n的图象的交点坐标为()A.(1,2) B.(2,1) C.(2,3) D.(1,3) 5.下列各式从左到右是分解因式的是( )A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)33D .t 2﹣16+3t =(t+4)(t ﹣4)+3t6.用配方法解方程x 2-8x+9=0时,原方程可变形为( )A .(x-4)2=9B .(x-4)2=7C .(x-4)2=-9D .(x-4)2=-77.与2是同类二次根式的是( )A .12B .0.5C .20D .4x8.已知一次函数(1)y k x =-. 若y 随x 的增大而增大,则k 的取值范围是( )A .1k <B .1k >C .k 0<D .0k >9.下列角度不可能是多边形内角和的是( )A .180°B .270°C .360°D .900°10.下列图书馆的标志中,是中心对称图形的是( )A .B .C .D .11.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表所示:选手甲 乙 丙 丁 方差 0.035 0.036 0.028 0.015则这四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁12.如果平行四边形一边长为12cm ,那么两条对角线的长度可以是( )A .8cm 和16cmB .10cm 和16cmC .8cm 和14cmD .10cm 和12cm二、填空题(每题4分,共24分)13.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 度数是_____度.13221315.如图,AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD =_____.16.如图,在中,,.对角线AC 与BD 相交于点O ,,则BD 的长为____________.17.如图在平面直角坐标系xOy 中,直线l 经过点A (-1,0),点A 1,A 2,A 3,A 4,A 5,……按所示的规律排列在直线l 上.若直线 l 上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,若点A n (n 为正整数)的横坐标为2015,则n=___________.18.如图,直线y ax b =+(a >0)与x 轴交于点(-1,0),关于x 的不等式ax b +>0的解集是_____________.三、解答题(共78分)19.(8分)已知直线l 为x+y=8,点P (x ,y )在l 上且x >0,y >0,点A 的坐标为(6,0).(1)设△OPA 的面积为S ,求S 与x 的函数关系式,并直接写出x 的取值范围;(2)当S=9时,求点P 的坐标;(3)在直线l 上有一点M ,使OM+MA 的和最小,求点M 的坐标.20.(8分)我市某火龙果基地销售火龙果,该基地对需要送货且购买量在2000kg ~5000kg (含2000kg 和5000kg )的客户有两种销售方案(客户只能选择其中一种方案):方案A :每千克6.8元,由基地免费送货;方案B :每千克6元,客户需支付运费2000元 .(1)请分别写出按方案A ,方案B 购买这种火龙果的应付款y (元)与购买数量x (kg )之间的函数表达式; (2)求购买量在什么范围时,选择方案A 比方案B 付款少?(3)某水果批发商计划用30000元,选用这两种方案中的一种,购买尽可能多的这种火龙果,他应选择哪种方案?21.(8分)如图,在正方形ABCD 中,AB=3,点E ,F 分别在CD ,AD 上,CE=DF ,BE ,CF 相交于点G .(1)求∠BGC 的度数;(2)若CE=1,H 为BF 的中点时,求HG 的长度;(3)若图中阴影部分的面积与正方形ABCD 的面积之比为2:3,求△BCG 的周长.22.(10分)化简或解方程(1)133(12)3; (2)22740x x +-=23.(10分)已知,关于x 的一次函数y =(1﹣3k)x+2k ﹣1,试回答:(1)k 为何值时,图象交x 轴于点(34,0)? (2)k 为何值时,y 随x 增大而增大?24.(10分)矩形纸片ABCD,AB=4,BC=12,E、F分别是AD、BC边上的点,ED=1.将矩形纸片沿EF折叠,使点C落在AD边上的点G处,点D落在点H处.(1)矩形纸片ABCD的面积为(2)如图1,连结EC,四边形CEGF是什么特殊四边形,为什么?(1)M,N是AB边上的两个动点,且不与点A,B重合,MN=1,求四边形EFMN周长的最小值.(计算结果保留根号)BE DF求证:ADF≌CBE;25.(12分)如图,E、F是▱ABCD对角线AC上的两点,且//.26.心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、CD分别为线段,CD为双曲线的一部分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.①②③
B.仅有①②
C.仅有①③
D.仅有②③
2.均匀地向如图的容器中注满水,能反映在注水过程中水面高度 h 随时间 t 变化的函数图
象是( )
A.
B.
C.
D.
3.如图,在四边形 ABCD 中,AB∥CD,要使得四边形 ABCD 是平行四边形,可添加的 条件不正确的是 ( )
A.AB=CD
B.BC∥AD
∴∠ABC=90°,AC=BD,OA=OB , 故选 D 【点睛】 本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.
10.A
解析:A 【解析】 【分析】 首先写出函数的解析式,根据函数的特点即可确定. 【详解】 由题意得:s 与 t 的函数关系式为 s=600-200t,其中 0≤t≤3, 所以函数图象是 A. 故选 A. 【点睛】 本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根 据实际情况来判断函数图象.
求解可得【详解】解:根据题意知解得:x≥4 故答案为 x≥4【点睛】本题考查 函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式
解析:x≥4 【解析】 【分析】 根据被开方数为非负数及分母不能为 0 列不等式组求解可得. 【详解】
x 4 0
解:根据题意,知
x
1
0

解得:x≥4,
故答案为 x≥4.
s(单位:km)随行驶时间 t(单位:小时)变化的关系用图象表示正确的是( )
A.
B.
C.
D.
11.如图,将四边形纸片 ABCD 沿 AE 向上折叠,使点 B 落在 DC 边上的点 F 处 .若 AFD 的周长为 18, ECF 的周长为 6,四边形纸片 ABCD 的周长为 ( )
A.20
B.24
C.32
D.48
12.正比例函数 y kxk 0 的函数值 y 随 x 的增大而增大,则 y kx k 的图象大致是
()
A.
B.
C.
D.
二、填空题
13.如图,在正方形 ABCD 的外侧,作等边△ADE,则∠AEB=_________°.
14.在函数 y x 4 中,自变量 x 的取值范围是______. x 1
2020-2021 成都七中实验学校(初中部)八年级数学下期末模拟试卷(含答案)
一、选择题
1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步 500m,先到终点 的人原地休息.已知甲先出发 2s.在跑步过程中,甲、乙两人的距离 y(m)与乙出发的时间 t(s)之间的关系 如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )
()
A.1
B.2
C.3
D.4
6.已知一次函数 y=-0.5x+2,当 1≤x≤4 时,y 的最大值是( )
A.1.5
B.2
C.2.5
D.-6
7.若一个直角三角形的两边长为 12、13,则第三边长为( )
A.5
B.17
C.5 或 17
D.5 或
8.如图,以数轴的单位长度线段为边作一个正方形,以表示数 1 的点为圆心,正方形对角
二、填空题
13.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为
解析:15° 【解析】 【分析】 【详解】
解:由题意可知: BAD 90 , DAE 60 . AB AD AE.
BAE 150 . △ABE 是等腰三角形 AEB 15 . 故答案为15 . 14.x≥4【解析】【分析】根据被开方数为非负数及分母不能为 0 列不等式组
12.B
解析:B 【解析】 【分析】 由于正比例函数 y=kx(k≠0)函数值随 x 的增大而增大,可得 k>0,-k<0,然后判断一 次函数 y=kx-k 的图象经过的象限即可. 【详解】 解:∵正比例函数 y=kx(k≠0)函数值随 x 的增大而增大, ∴k>0, ∴-k<0,
∴一次函数 y=kx-k 的图象经过一、三、四象限; 故选:B. 【点睛】 本题主要考查了一次函数的图象,一次函数 y=kx+b(k≠0)中 k,b 的符号与图象所经过的象 限如下:当 k>0,b>0 时,图象过一、二、三象限;当 k>0,b<0 时,图象过一、三、 四象限;k<0,b>0 时,图象过一、二、四象限;k<0,b<0 时,图象过二、三、四象 限.
D 作 AC 的平行线,两直线相交于点 E.
(1)求证:四边形 OCED 是矩形;
(2)若 CE=1,DE=2,ABCD 的面积是

23.在一条东西走向河的一侧有一村庄 C,河边原有两个取水点 A,B,其中 AB=AC, 由于某种原因,由 C 到 A 的路现在已经不通,某村为方便村民取水决定在河边新建一个取 水点 H(A、H、B 在一条直线上),并新修一条路 CH,测得 CB=3 千米,CH=2.4 千 米,HB=1.8 千米. (1)问 CH 是否为从村庄 C 到河边的最近路?(即问:CH 与 AB 是否垂直?)请通过计 算加以说明; (2)求原来的路线 AC 的长.
2.A
解析:A 【解析】 试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度 h 随时间 t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选 A.
考点:函数的图象.
3.C
解析:C 【解析】
【分析】 根据平行四边形的判定方法,逐项判断即可.
【详解】 ∵AB∥CD, ∴当 AB=CD 时,由一组对边平行且相等的四边形为平行四边形可知该条件正确; 当 BC∥AD 时,由两组对边分别平行的四边形为平行四边形可知该条件正确; 当∠A=∠C 时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件 正确; 当 BC=AD 时,该四边形可能为等腰梯形,故该条件不正确; 故选:C. 【点睛】
15.化简 42 的结果是__________.
16.计算: 8 1 =______. 2
17.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五 十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路 s 关于行走的时 间 t 和函数图象,则两图象交点 P 的坐标是_____.
8.D
解析:D 【解析】 【分析】 【详解】
∵边长为 1 的正方形对角线长为: 12 12 2 ,
∴OA= 2-1
∵A 在数轴上原点的左侧,
∴点 A 表示的数为负数,即1 2 .
故选 D
9.D
解析:D 【解析】 【分析】 根据矩形性质可判定选项 A、B、C 正确,选项 D 错误. 【详解】 ∵四边形 ABCD 为矩形,
自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
CE,求证:OE=OG; (2)如图 2,H 是 BC 上的点,过点 H 作 EH⊥BC,交线段 OB 于点 E,连结 DH 交 CE 于 点 F,交 OC 于点 G.若 OE=OG, ①求证:∠ODG=∠OCE; ②当 AB=1 时,求 HC 的长.
22.如图,在菱形 ABCD 中,对角线 AC 与 BD 交于点 O.过点 C 作 BD 的平行线,过点
5.B
解析:B 【解析】
由图象可得
2k 3k
5 5
,解得 5 k 3
5 2
,故符合的只有 2;故选 B.
6.A
解析:A
【解析】
【分析】
根据一次函数的系数 k=-0.5<0,可得出 y 随 x 值的增大而减小,将 x=1 代入一次函数解析 式中求出 y 值即可.
【详解】 在一次函数 y=-0.5x+2 中 k=-0.5<0, ∴y 随 x 值的增大而减小, ∴当 x=1 时,y 取最大值,最大值为-0.5×1+2=1.5, 故选 A. 【点睛】 本题考查了一次函数的性质,牢记“k<0,y 随 x 的增大而减小”是解题的关键.
11.B
解析:B 【解析】 【分析】 根据折叠的性质易知矩形 ABCD 的周长等于△AFD 和△CFE 的周长的和. 【详解】 由折叠的性质知,AF=AB,EF=BE. 所以矩形的周长等于△AFD 和△CFE 的周长的和为 18+6=24cm. 故矩形 ABCD 的周长为 24cm. 故答案为:B. 【点睛】 本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相 等.
18.已知实数 a、b 在数轴上的位置如图所示,则化简 a2 b2 (b a)2 的结果为
________
19.在 ABC 中, AC BC 13, AB 10,则 ABC 面积为_______.
20.有一组数据如下:2,3,a,5,6,它们的平均数是 4,则这组数据的方差是 .
三、解答题
21.已知正方形 ABCD 的对角线 AC,BD 相交于点 O. (1)如图 1,E,G 分别是 OB,OC 上的点,CE 与 DG 的延长线相交于点 F. 若 DF⊥
24.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显 示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的 支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中 A 种支付方式所对应的圆心角为
【点睛】
本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意
义:①当表达式的分母不含有自变量时,自变量取全体实数.例如 y=2x+13 中的 x.②当
表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次
根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,
相关文档
最新文档