1.2.1《函数的概念》PPT课件(人教版A必修1)

合集下载

必修1课件1.2.1-2 函数的概念 (二)

必修1课件1.2.1-2 函数的概念 (二)

3.分段函数:有些函数在它的定义域中,对于自变 量x的不同取值范围,对应法则不同,这样的函数通 常称为分段函数.分段函数是一个函数,而不是几个 函数. 4.复合函数:设 f(x)=2x3,g(x)=x2+2,
则称 f[g(x)] =2(x2+2)3=2x2+1
g[f(x)] =(2x3)2+2=4x212x+11为复合函数.
2
a2
实数a 的取值范围(0,2].
复合函数
例如、y f (u ) u 2 , u R u g ( x) 2 x 1, x R 则y f [ g ( x)] (2 x 1) , x R.
2
例4.已知
f ( x) 的定义域为[-1,3],
的定义域。 解:∵f(x)的定义域为[-1,3],∴ 1 ∴
例2、求函数 y x 4x 6, x [1,5] 的值域
解:配方,得 ( x 2) 2 y xR y 2
2
函数的值域为 y | y 2} {
7 7 ∴函数的定义域为: , ) ( , ) ( 3 3
例3. 若函数
1 y ax ax 的定义域是R, a
2
求实数a 的取值范围
解:∵定义域是R,
1 ∴ ax ax 0恒成立, a a0 0 1 等价于 2 a 4a 0 a
例6.已知y=f(x+1)的定义域为[1,2],求f(x),f(x-3) 的定义域。 解:∵y=f(x+1)的定义域为[1,2], 即f(x)的定义域为[2,3] 又∵f(x)的定义域为[2,3], ∴ ∴
∴ 2 x 1 3
2 x3 3

人教版高中数学必修一第一章函数的概念课件PPT

人教版高中数学必修一第一章函数的概念课件PPT
例3 (1)已知函数f(x)=2x+1,求f(0)和f [f (0)]; 解 f(0)=2×0+1=1. ∴f [f (0)]=f(1)=2×1+1=3. (2)求函数 g(x)=01,,xx为为无有理理数数, 的定义域,值域; 解 x为有理数或无理数,故定义域为R. 只有两个函数值0,1,故值域为{0,1}.
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念

高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.

高中数学新课标人教A版必修一:1.2.1 函数的概念 课件 (共16张PPT)

高中数学新课标人教A版必修一:1.2.1 函数的概念 课件 (共16张PPT)

3 两个函数相同:当且仅当三要素相同。
例1 y= x 3 + 2 x 是函数吗?
——函数的定义域和值域均为非空的数集
例2 y=± x 是函数吗?
——对于函数定义域中每一个x,值域中都有 唯一确定的y和它对应。(不是函数)
练习:下列图形哪个可以表示函数的图象?
y
0x
A
y
0x
B
y
0x
C
四、如何求函数的定义域
想 f(1)表示什么意思? 一 想 f(1)与f(x)有什么区别?
一般地,f(a)表示当x=a时的函数值,是一个常量。 f(x)表示自变量x的函数,一般情况下是变量。 14
例:已知函数f(x)=3x2-5x+2.求f(0),f(a)和 f(a+1)
想一想 f[f(0)]等于多少?
练习:f(x)=|x+1|,则f(-1) +f(1)等于多少?
六、小结
1 函数的概念
2 定义域的求法 3 对函数符号y=f(x)的理解
七、布置作业
一、复习回顾
初中时学过函数的概念,它是怎样叙述的? 设在一个变化过程中,有两个变量x和y,
如果对于x的每一个值,y都有唯一的值与 它对应.那么就说y是x的函数. 其中x叫做 自变量,y是函数值。
想一想
y=1(x∈R)是函数吗?
Go to 13
研究函数y 1 x
为了研究的方便,取几组特殊的x值和对应的y值
当x=1时,y=1
当x=2时,y
1 2
当xБайду номын сангаас3时,y 1
3
A
B
y1
x
1
1
1
2
2

人教版高中数学必修一1.2.1函数的的概念_ppt课件

人教版高中数学必修一1.2.1函数的的概念_ppt课件

题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;

人教版高中数学必修一(1.2.1-1函数的概念)ppt课件

人教版高中数学必修一(1.2.1-1函数的概念)ppt课件

定义域
f:x 2x1
值域
函数解析式:f(x)=2x+1或y=2x+1
-3
-5
-2
-3
-1
-1 f(x)2x1
0
1
1
3
2
5
3
7 对应法则
对应法则施
加的运算对
f ( 3 ) 2 ( 3 ) 象 1 5
对应法 则
运算对象
运算内容:乘以2加一
象,即y的值
-3 -2 -1 0 1 2 3
f(a )f,(a 1 )
练习:
g(x) 2x3 5x2 3x2,求g(3),
h(x) | 4x|,求h(8),h(a) x2
1 r(x) 3
x5,求r(3),r(6)
x
已知函数
x 2
f
(x)


x
2

2
x
(1)求 f ( 2 ) , f的( 1值);
2
集合B中有唯一元素和A中某个元素对应
开平方
B
A
3
300
-3
2
450
-2 1
600
-1
900
求正弦
A
一对多不是映射
求平方
B
1
1
-1
一对一是映射
A
乘以2
1
2
4
-2
2
3 -3
9
3
多对一是映射
一对一是映射
集合A中任何一个元素都在B中有对应
乘以2加1
A
1
3
5
1B
2 3 4 5 6 7
集合A中的元素5在集合B中没有元素与之对 应,不能称为映射。

高中数学 第一章 集合与函数概念 函数的概念课件 新人教A必修1

高中数学 第一章 集合与函数概念 函数的概念课件 新人教A必修1

❖ 本节重点:函数的概念、定义域、值域的求 法.
❖ 本节难点:(1)函数概念的理解.
❖ (2)实际应用问题中函数的定义域和复合函数 定义域.
❖ (一)对函数y=f(x)涵义的理解,应明确以 下几点:
❖ ①“A,B是非空数集”,若求得自变量取 值范围为∅,则此函数不存在.
❖ ②定义域、对应法则和值域是函数的三要 素,实际上,值域是由定义域和对应法则 决定的,所以看两个函数是否相等,只要 看这两个函数的定义域与对应法则是否相 同.
❖ (1)当每辆车的月租金定为3600元时,能租 出多少辆车?
❖ (2)当每辆车的月租金定为多少元时,租赁
[解析] (1)当每辆车的月租金为 3600 元时,未租出的 车辆数为:(3600-3000)÷50=12,所以这时租出了 88 辆车.
(2)设每辆车的月租金为 x 元,则租赁公司的月收益为: f(x)=(100-x-530000)(x-150)-x-530000×50,整理得:f(x) =-5x02 +162x-2100=-510(x-4050)2+307050.所以当 x= 4050 元时,f(x)最大,其最大值为 307050.即当每辆车的月租 金为 4050 元时,租赁公司的月收益最大,最大值为 307050 元.
❖ [分析] (1)据函数的定义:“对于集合A中的 任意一个元素,在集合B中有唯一确定的元素 与之对应”进行判断.
❖ (2)给定函数的解析式,也就给定了由定义域 到值域的对应法则,只要将自变量允许值代 入,就可以求得对应的函数值.
[解析] (1)①由 x2+y2=2 得 y=± 2-x2,因此由它不能 确定 y 是 x 的函数,如当 x=1 时,由它所确定的 y 的值有两 个±1.
②由 x-1+ y-1=1,得 y=(1- x-1)2+1,所以当 x 在{x|x≥1}中任取一个值时,由它可以确定唯一的 y 值与之 对应,故由它可以确定 y 是 x 的函数.

高中数学第一章集合与函数概念1.2.1函数的概念课件新人教A版必修1

高中数学第一章集合与函数概念1.2.1函数的概念课件新人教A版必修1
.
(2){x|x>1,且 x≠2}用区间表示为
解析:(1){x|2<x≤4}用区间表示为(2,4].
(2){x|x>1,且 x≠2}用区间表示为(1,2)∪(2,+∞).
答案:(1)(2,4] (2)(1,2)∪(2,+∞)
第七页,共29页。
思考辨析
判断下列说法是否正确,正确的在后面(hòu mian)的括号内画“√”,
非正数
y
1
-1
A.
x
0
奇数
偶数
y
1
0
-1
B.
x
有理数
无理数
y
1
-1
C.
x
自然数 整数
有理数
y
1
0
-1
D.
第二十四页,共29页。
2
3
4
5
1
2
3
4
5
解析:A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、
有理数之间存在(cúnzài)包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A,B,D
即(x-2)(x+3)≠0,
所以 x-2≠0 或 x+3≠0,即 x≠2 或 x≠-3.
故所求函数的定义域为{x|x≠2,或 x≠-3}.
第二十一页,共29页。
探究(tànjiū)

探究(tànjiū)

探究(tànjiū)

思维辨析
第二十二页,共29页。
探究(tànjiū)

探究
(tànjiū)二

-1 ≠ 0,
≤ 4,

数学:1.2.1《函数的概念(1)》课件(新人教A版必修1)

数学:1.2.1《函数的概念(1)》课件(新人教A版必修1)

1 例1:已知函数 f ( x) x 3 x2 (1)求函数的定义域;
2 (2)求 f (3), f ( ) 的值; 3 (3) a 0时,求f (a), f (a 1)的值。 当
1.定义域是使函数有意义的x的集合; 2.求f(a)的值,只需将a代入解析式即可。
练习 1 求下列函数的定义域
这里的实数a与b都叫做相应区间的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作 “无穷大”。
{x| x≥ a }= [a, +∞);
{x| x ≤b}=(-∞,b];
{x| x> a}= (a, +∞);
{x| x <b}=(-∞,b);
注意:①区间表示实数集上的一段连续的数集;
②定义域、值域经常用区间表示;
3、请同学们考虑以下两个问题:
(1) y 1是函数吗? x2 ( )y x与y 2 是同一个函数吗? x
显然,仅用初中函数的概念很难回答这些 问题。因此,需要从新的高度认识函数。
我们如何从集合的观点认识函数?
二、通过实例引入函数概念
(1)一枚炮弹发射后,经过26s落到地面击 中目标,炮弹的射高为845m,且炮弹距地面的 高度h(单位:m)随时间t(单位:s)变化的规律是: h=130t-5t2 (*)
初中各类函数的对应法则、定义域、值 域分别是什么?
函数
对应法则
定义 域
值域
正比例 函数
反比例 函数
y kx( k 0)
R
R
{ y | y 0}
k y ( k 0) {x | x 0} x
y kx b ( k 0)
一次函数

高一数学必修一课件1.2.1函数的概念

高一数学必修一课件1.2.1函数的概念
2.y = ax2 + bx + c(a 0)
定义域是R,值域是集合B,当a>0时,B={y︱ y≥ 4ac - b2},当a<0时,B={y︱y≤ 4ac - b}2. 对于R4中a 的任意一个数x,在B中都有4a唯一确定的
y = a素x2是+定b构x义+成c域函(a、数0对的) 和应三它关要对应.
3.y 系= k和(值k 域 0. ) x
定义域是A={ xR︱x≠0 },值域是R.
对于集合A中的每一个x,在R中都有唯一确定的 值 y = k (k 0) 与它对应.
x
用实心点表示包括在区 与函数相间关内的的概端念点—,—用区空间心点表示
不包括在区间内的点.
定义 {x︱a≤x≤b} {x︱a<x<b}
域就是{x︱x<0}.
(2)使根式 x + 2 有意义的实数的集合是{x︱x≥-2}, 使分式 1 成立的实数的集合是{x︱x≠10}.所以,这
10 - x
个函数的定义域就是
{x︱x≥-2} {x︱x≠10}={x︱x ≥-2,且x≠10} .
例2 已知函数 f(x) = 3 - x + x + 1 - 1 (1)求f(-1),f(0)的值; (2)当-1≤a ≤ 3时,求f(a)的值.
x
A. f ( x) ln x B. f (x) 1
x
C. f (x) | x | D. f ( x) e x
1
解析:y = x的定义域为{x|x>0},而 f ( x) ln x
的定义域也为{x|x>0}.
3.(2008 山东)设函数
f
(
x
)

必修1课件1.2.1-1 函数的概念 (一)

必修1课件1.2.1-1 函数的概念 (一)

知识探究(三)
国际上常用恩格尔系数反映一个国家人民生活质 量的高低,恩格尔系数越低,生活质量越高.下表是 “八五”计划以来我国城镇居民恩格尔系数变化情况.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 时间 (年)
恩格尔 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9 系数
练习1、下列说法中正确的有( A ) (1)y=f(x)与y=f(t)表示同一个函数 (2) y=f(x)与y=f(x+1)不可能是同一个函数 (3) f(x)=1与g(x)=x0是同一函数 (4)定义域和值域都相同的两个函数是同一个函数 A、1个 B、2个 C、3个 D、4个
练习2、下列各组函数表示同一函数的是(D )
求定义域的几种情况:
(1)如果f(x)是整式,那么函数的定义域是实数R
(2)如果f(x)是分式,那么函数的定义域是使分母不等 于0的实数的集合
(3)如果f(x)是二次根式,那么函数的定义域是使根号 内的式子大于或等于0的实数的集合 (4)如果f(x)是由几个部分的数学式子构成的,那么函 数的定义域是使各部分式子都有意义的实数集合. (即求各集合的交集)
1 而 x 2 时,分式 有意义 x2
∴这个函数的定义域是:
x | x 2
例2.求下列函数的定义域:
(2) f ( x) 3x 2
②解:要使函数有意义,则:
3x 2 0
2 x 3
∴这个函数的定义域是{x|
2 x 3
}.
1 例2.求下列函数的定义域:(3) f ( x) x 1 2 x

人教版高一数学必修一区间的概念课件PPT

人教版高一数学必修一区间的概念课件PPT
[a,+∞),(a,+∞), (-∞,a],(-∞,a).
思考3:将实数集R看成一个大区间,怎样用区间 表示实数集R?
(-∞,+∞)
思考4:一次函数y=kx+b(k≠0),二次函数 y=ax2+bx+c(a≠0),反比例函数 的定义域、值域分别是什么?怎样用区间表示?
理论迁移
例1 将下列集合用区间表示出来:
上述知识内容总结成下表:
定义
名称
符号
{x|a≤x≤b} 闭区间 [ a, b ]
数轴表示 ab
{x|a<x<b} 开区间 ( a, b )
ab
{x|a≤x<b} 半开半闭 [ a, b ) 区间
{x|a<x≤b} 半开半闭 ( a, b ] 区间
ab ab
这里的实数a与b都叫做相应区间的端点.
知识探究(二)
4.每次在课堂上给学生布置任务时,要事先想好如何应对 那些很快就完成任务的学生。同时,要注意提醒那些动作 缓慢,迟迟没有动手的学生。
5.做好准备。备课时就要准备妤课堂材料。这样,在讲 课的时候,才能顺利地从一个主题过渡到下一个主题,不会 因冷场而出现空闲时间。
教师在管理课堂时,遇到的很大一个问题就是时间管理。优 秀的课堂管理者会努力避免在课堂上出现令学生感到无所事事 的情形。从上课铃到下课铃的整个课堂时间里,他们会保证学生 的注意力一直在学习上,从开始上课直到下课离开,都不会有人 闲下来。
管好课堂时间的五点建议 1.计划充分。教师要为课堂教学准备出足够的内容(要有意义
例2 已知
..
,求函数 的解析式.
例3 求下列函数的值域:
高一年级 数学 第一章 1.2.1 函数的概念
课题: 区间的概念

人教版数学必修一1.2.1函数的概念精品课件(共21张PPT)

人教版数学必修一1.2.1函数的概念精品课件(共21张PPT)
A={t|0≤t≤26} B={h|0≤h≤845}
§1.2.1函数的概念
(2) 近几十年来,大气层中的臭氧迅速减少, 因而出现了臭氧层空洞问题.下图中的曲线显 示了南极上空臭氧空洞的面积从1979~2001年 的变化情况:
§1.2.1函数的概念
根据上图中的曲线可知,时间t的变化范围是 数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化 范围是数集B ={S|0≤S≤26}.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
恩格尔系数( % ) 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001} B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
实例2(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞 问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.
A={t|1979≤t≤2001}
B ={S|0≤S≤26}
实例3 (3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔 系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表 明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
记作: y=f(x),xA
其中, x叫做自变量, x的取值范围A叫做函数的定义域 (domain);与x的值相对应的y值叫做函数值,函数值的集合 {f(x)|x∈A}叫做函数的值域(range).

人教版高中数学必修1课件:1.2.1函数的概念14

人教版高中数学必修1课件:1.2.1函数的概念14
℃ 20 15 10
5 0
6 12 18 24
2. 函数的三要素: 定义域A; 值域{f(x)|x∈R}; 对应法则f.
2. 函数的三要素: 定义域A; 值域{f(x)|x∈R}; 对应法则f.
(1)函数符号y=f (x) 表示y是x的函数, (2) f (x)不是表示 f 与x的乘积;
1.一般情况下,应使函数解析式有意义,如 (1)分母不为零; (2)偶次根式的被开方数非负; (3)若有 x0 ,x≠0;
5.求函数定义域应注意的问题:
1.一般情况下,应使函数解析式有意义,如 (1)分母不为零; (2)偶次根式的被开方数非负; (3)若有 x0 ,x≠0; (4)以上式子构成的函数定义域是使各部分 式子都有意义的实数集合.
y=f (x),xA
1. 定义 其中,x叫做自变量,
1. 定义 其中,x叫做自变量,x的取值范围
A叫做函数的定义域;
1. 定义
其中,x叫做自变量,x的取值范围 A叫做函数的定义域;
与x值相对应的y的值叫做函数值,
1. 定义
其中,x叫做自变量,x的取值范围 A叫做函数的定义域;
与x值相对应的y的值叫做函数值, 函数值的集合{ f (x) | x A}叫做函数 的值域.
示例2:近几十年来,大气层中的臭氧迅 速减少,因而出现了臭氧层空沿问题. 下 图中的曲线显示了南极上空臭氧层空泛 的面积从1979~2001年的变化情况.
示例3:国际上常用恩格尔系数反应一个 国家人民生活质量的高低,恩格尔系数 越低,生活质量越高,下表中恩格尔系 数随时间(年)变化的情况表明,“八五” 计划以来,我国城镇居民的生活质量发 生了显著变化.
“八五”计划以来我国城镇居民 恩格尔系数变化情况

人教版A版必修一《函数的概念及其表示》课件ppt

人教版A版必修一《函数的概念及其表示》课件ppt

自主诊断 2.(多选)(2023·南宁质检)下列图象中,是函数图象的是



在函数的对应关系中,一个自变量只对应一个因变量,在图象中, 图象与平行于y轴的直线最多有一个交点,故选项B中的图象不是函 数图象.
自主诊断
3.(多选)下列选项中,表示的不是同一个函数的是
A.y= x3+-3x与 y=
x+3 3-x
(4)若对任意实数x,均有f(x)-2f(-x)=9x+2,求f(x)的解析式.
0
(解方程组法)∵f(x)-2f(-x)=9x+2,

∴f(-x)-2f(x)=9(-x)+2,

由①+2×②得-3f(x)=-9x+6,
∴f(x)=3x-2(x∈R).
思维升华
函数解析式的求法 (1)配凑法.(2)待定系数法.(3)换元法.(4)解方程组法.
√B.y=x2 与 y=(x-1)2 √C.y= x2与 y=x
√D.y=1 与 y=x0
自主诊断
对于 A 选项,y= x3+-3x的定义域是[-3,3), y= x3+-3x的定义域是[-3,3), 并且 x3+-3x= x3+-3x,所以两个函数的定义域相同,对应关系相同, 所以是同一个函数;
√C.f(x)=x-,xx,≥x0<,0, g(t)=|t|
D.f(x)=x+1,g(x)=xx2--11
对于 A,f(x)= x2的定义域为 R,g(x)=( x)2 的定义域为[0,+∞), 不是同一个函数; 对于B,f(x)的定义域为{x|x≠0},g(x)的定义域为{x|x≠1},不是同一 个函数; 对于C,两个函数的定义域、对应关系均相同,是同一个函数; 对于 D,f(x)=x+1 的定义域为 R,g(x)=xx2--11的定义域为{x|x≠1}, 不是同一个函数.

人教版高中数学必修一1.2.1函数的概念ppt课件

人教版高中数学必修一1.2.1函数的概念ppt课件

编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
例2、求下列函数的定义域。
(1)
f (x)
1
(12x)(x1)
(2) f(x) x4 x2 1
(3) ;f(x) x1 2- x
例3、 已知: f =(xx2)x+3 求:f(-1), f(a),
f(x+1), f(
1 ),f(x2),f(f(x)), x
注意: 1在 y f中(xf)表示对应法则,不同 的函数其含义不一样。
初中已经学过:正比例函数、反比例函数、 一次函数、二次函数等。
1.[引例1](P15)一枚炮弹发射后,经过26s落到地面击
中目标。炮弹的射高为845m,且炮弹距地面的高度h
(单位:m)随时间t(单位:s)变化的规律是
h13t 05t2 (﹡)
提出以下问题: (1) 炮弹飞行1秒、8秒、15秒、25秒时距地面多高? (2) 炮弹何时距离地面最高? (3) 你能指出变量t和h的取值范围吗?分别用集合A和 集合B表示出来。 (4) 对于集合A中的任意一个时间t,按照对应关系
• 1930 年库拉托夫斯基(Kuratowski)用集合概念给出现代函数定义为“若对 集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上 定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1《函数的概念》
初中函数的概念:
在某变化过程中,有两个变量x、y,如果给定 一个x ,相应地有唯一确定的一个y 值。那么就称 y是x 的函数,其中x是自变量,y是因变量。
从上面概念知道:可以用函数描述变量x, y之间的依赖关系。下面我们将进一步的 学习函数及其构成要素。 首先请看这几例子:
x≤b
x<b
(-∞,b)
[a,+∞)
区间注意点:
1、区间是集合 2、区间的左端点必小于右端点 3、区间中的元素都是点,可以用数字表示 4、任何区间均可在数轴上表示出来 5、以 - 或 为区间的一端时,这一端 必须是小括号
作业布置:
教材P24 4、5
引例一
一枚炮弹发射后,经过26s落到地面击中目标。炮 弹的射高为845m,且炮弹距地面的高度h(单位: m)随时间t(单位:s)变化的规律是 h=130t-5t2 思考以下问题: (1) 炮弹飞行1秒、5秒、10秒、1000秒时距地面多高? (2) 炮弹何时距离地面最高? (3) 你能指出变量t和h的取值范围吗?分别用集合A和集 合B表示出来。 (4)对于集合A中的任意一个时间t,按照对应关系,在B中 是否都有唯一确定的高度h和它对应?

引例三
“八五”计划以来我国城镇居民恩格尔系数变化情 况如下表:
年份 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 家庭 恩格 53.8 尔系 数%
52.9
50.1
49.9
49.9
48.6
46.4
44.5
41.9
39.2
37.9
食物支出金额 恩格尔系数 支出总金额
2 4 ac b } 当a 0时,B { y | y 4a 2 4 ac b } 当a 0时,B { y | y 4a
x
y a x2 bx c(a 0)
(3)反比例函数
定义域为{x|x 0}
k y k 0 x
值域为{y|y 0}
定义 {x|a≤x ≤b} {x|a<x < b} {x|a≤x < b}
名称 闭区间 开区间 半开半闭区间
符号 [a,
{x|a<x ≤ b}
半开半闭区间
(a,b]
a
b
实数集R可以表示为(-∞,+ ∞)
x≥a x >a
( -∞ ,b] (a,+∞)
y f x , xA

x叫做自变量,x的取值范围A叫做函数的定义域,
与x的值对应的y值叫做函数值。 函数值的集合{f x | x A}叫做函数的值域。
值域是集合B的子集
初中接触过的一些函数
(1)一次函数y=ax+b(a≠0) 值域为R 定义域为R y=ax+b (a≠0) x (2)二次函数 y a x2 bx c(a 0) 定义域为R 值域为B
x
k y k 0 x
设a,b是两个实数,而且a<b,我们规定:
⒈满足不等式a≤x≤b的实数x的集合叫做闭区间, 表示为[a,b] ⒉满足不等式a<x<b的实数x的集合叫做开区间, 表示为(a,b)
⒊满足不等式a≤x<b或a<x≤b的实数x的集合叫做 半开半闭区间,表示为[a,b)或(a,b] 这里的实数a,b叫做相应区间的端点
思考: (1)恩格尔系数与年份之间的关系是否和前两个 事例中的两个变量之间的关系相似?
(2)如何用集合与对应的语言来描述这个关系?
以上三个实例有那些公共的特点?
都涉及两个数集 对于数集A中的每一个x,按照某种对应 关系f,在数集B中都有唯一确定的y和它 对应。
函数的概念:
设A和B是两个非空集合,如果按照某种对应关 系f,使对于集合A的任何一个x,在B中都有唯 一确定的f(x)和它对应,那么就称 f:A B为 从集合A到集合B的一个函数。记作:

引例二
近几十年来,大气层中的臭氧迅速减少,因而出 现了臭氧层空洞问题.下图中的曲线显示了南极上 空臭氧层空洞的面积从1979~2001年的变化情况
思考: (1)能从图中看出哪一 年臭氧层空洞的面积 最大? (2)哪些年的臭氧层空 洞的面积大约为1500 万平方千米? (3)变量t的取值范围是 多少?
相关文档
最新文档