第6章 土的孔隙水压力

合集下载

土力学知识点总结归纳

土力学知识点总结归纳

不均匀系数:反映土颗粒粒径分布均匀性的系数定义为限制粒径d60与有效粒径d10之比塑限:可塑状态与半固体状态间的分界含水量称为塑限。

液限:指粘性土从流塑状态过度到可塑状态时的界限含水量。

基底压力:建筑物荷载由基础传递给地基,基础底面传递给地基表面的压力。

基底附加应力:由于建筑物产生的基底压力与基础底面处原来的自重应力之差称为附加应力,也就是在原有的自重应力的基础上新增的应力。

渗透固结:饱和土在受到外荷载作用时,孔隙水从空隙中排除,同时土体中的孔隙水压减小,有效应力增大,土体发生压缩变形,这一时间过程称为渗透固结。

固结:饱和黏质土在压力作用下,孔隙水逐渐排出,土体积逐渐减小的过程。

固结度:指地基在外荷载作用下,经历时间t产生的沉降量St与基础的最终沉降量S的比值。

库伦定律:在一般的荷载范围内,土的抗剪强度与法向应力之间呈直线关系,即τf=c+tanφ式中c,φ分别为土的粘聚力和内摩擦角。

粒径级配:各粒组的质量占土粒总质量的百分数。

静止土压力:当挡土结构物在土压力作用下无任何移动或转动,墙后土体由于墙背的侧限作用而处于弹性平衡状态时,墙背所受的土压力称为静止土压力。

主动土压力:若挡土墙受墙后填土作用离开土体方向偏移至土体达到极限平衡状态时,作用在墙背上的土压力称为主动土压力。

被动土压力:挡土墙在外力作用下向后移动或转动,达到一定位移时,墙后土体处于极限平衡状态,此时作用在墙背上的土压力。

土的颗粒级配:土中各粒组相对含量百分数。

土体抗剪强度:土体抵抗剪切破坏的极限能力。

液性指数:是粘性土的天然含水量和塑限的差值与塑性指数之比,用符号IL表示。

基础埋深:指从室外设计地坪至基础底面的垂直距离。

角点法:角点法的实质是利用角点下的应力计算公式和应力叠加原理推求地基中任意点的附加应力的方法压缩系数:表示土的压缩性大小的主要指标,压缩系数大,表明在某压力变化范围内孔隙比减少得越多,压缩性就越高。

土的极限状态:土体中的剪应力等于土的抗剪强度时的临界状态称之为土的极限平衡状态。

第六章土压力讨论

第六章土压力讨论
6)土被压实时,形成类似的楔体,于是由于内摩擦角的影响,当上部压力卸掉后,水平向应力形成了“自锁效应”,历史产生的最大应力条件下的“侧压力”随着最大主应力较小,不完全消散,之后就是在小应力下解锁了。
第九题【88A-闽-借我一生】
关于静止土压力计算中,静止土压力系数K0的取值疑惑:
从上述公式和表格分析,静止土压力系数K0随着无黏性土的密实度增加及黏性土越来越硬,K0取值反而越来越小,到底是什么原理?
极限平衡理论是研究土体处于理想塑性状态时的应力分布和滑动面轨迹的理论。在经典土力学中,假定土体为弹性-理想塑性体,屈服准则采用莫尔库伦准则,根据静力平衡条件和极限平衡条件建立的理论,只考虑处于极限平衡条件下或土体处于破坏时的终极条件下的情况,而不计土体的变形和应力变形过程。对于土体,滑移线理论、极限分析理论与力的极限平衡理论都属于极限状态理论范畴。郎肯、库伦土压力理论都属于极限平衡理论,郎肯,库伦都是达到破坏时的极限平衡状态的应力或静力分析得到的,不同的是郎肯是一点应力状态,而库仑是楔形土体整体极限破坏。为简化计算,郎肯、库伦土压力理论采取了种种假设,因此也导致了其与严格的极限平衡理论之间的误差。
严格的挡土墙土压力解,土体内的滑面是由一段平面和一段对数螺线曲面组成的复合滑动面。
《土压力》(第二版):郎肯理论假设墙背竖直、完全光滑( )(具体适用条件见第十一题),库伦理论假设滑动面为过墙踵的平面。
对于郎肯理论,假设墙背竖直、完全光滑( ),实际上墙背不可能是完全光滑的,由于墙背摩擦力的存在,相当于破坏包络线更向上倾斜。达到破坏切线对应的最小主应力更小,因此导致郎肯主动土压力偏大;同样,郎肯被动土压力偏小。见下图示意。
要注意的是,基坑规范中的水土分算公式中的前半部分 中的抗剪强度指标要按基坑规范3.1.14执行。

土力学

土力学

第一章土的组成1土的定义:土是岩石风化的产物。

常见的化学风化作用:水解作用,水化作用,氧化作用。

2土是由固体颗粒,水,和气体组成的三相体系。

3固体颗粒:岩石风化后的碎屑物质简称土粒,土粒集合构成土的骨架4土具有三个重要特点:散体性;多相性;自然变异性5粒组:介于一定粒度范围内的土粒。

土粒的大小叫做粒度。

6采用粒径累计曲线表示土的颗粒级配;不均匀系数Cu:反映大小不同粒组分布的均匀程度,Cu越大,越不均匀。

曲率系数Cc:反映了d10、d60之间各粒组含量的分布连续情况。

Cc过大或过小,均表明缺少中间粒组。

7土粒大小:也称为粒度,以粒径表示;8土体:9粘土矿物10液相11强结合水是指紧靠土粒表面的结合水膜,亦称吸着水弱结合水紧靠强结合水的外围而形成的结合水膜,也称薄膜水。

12自由水指土粒表面引力作用范围之外的水.自由水分为:重力水,毛细水。

重力水是存在于地下水位以下的透水土层中的自由水。

毛细水存在于地下水位以上,受水与空气交界面处表面张力作用的自由水。

13土的构造:指同一土层中的物质成分和颗粒大小都相近的各部分之间的相互关系的特征。

有层理构造,裂隙构造,分散构造14土的结构:指土粒大小、形状、相互排列及其联结关系、土中水性质及孔隙特征等因素的综合特征。

有单粒结构,蜂窝结构,絮状结构15承压水16潜水:17排水距离18双面排水19电泳:在电场作用下向阳极移动;电渗:水分子在电场作用下向负极移动,因水中含有一定量的阳离子(K+,Na+等),水的移动实际上是水分子随这些水化了的阳离子一起移动。

20双电层:反离子层与土粒表面负电荷层组成双电层。

第二章土的物理性质及分类1重度:单位体积土的重量,用γ表示密度:单位体积土的质量,用ρ表示2干密度ρd干容重γd:单位体积内土粒的质量或重量饱和密度ρsat与饱和容重γsat :土中孔隙完全被水充满,土处于饱和状态时单位体积土的质量或重量浮密度与浮容重:单位体积内土粒质量与同体积水质量之差3土粒相对密度:土的质量与同体积4℃时纯水的质量之比4土的含水率w :土中水的质量与土粒质量之比.测定方法:烘干法。

土力学 第6章抗剪强度

土力学 第6章抗剪强度

4、直剪试验的优缺点
优点:直接剪切仪构造简单,操作方便等 缺点:
①限定的剪切面; ②剪切面上剪应力分布不均匀; ③在计算抗剪强度时按土样的原截面积计算的; ④试验时不能严格控制排水条件,不能量测孔隙水
压力
二、三轴试验
1. 三轴压缩仪组成
压力室
周围压力系统 轴向加荷系统
有机玻璃罩
孔压量测系统
c
摩尔圆与抗剪强度包线之间的关系
摩尔应力圆与抗剪强度包线之间的关系有三种:
(1)整个摩尔圆位于抗剪强度包线的下方——平衡状态 (2)摩尔圆与抗剪强度包线相切(切点为A)——极限平衡状态 (3)摩尔圆与抗剪强度包线相割——破坏状态
2、摩尔—库仑破坏准则
根据Mohr-Coulomb破坏理论,破坏时的 Mohr应力圆必定与破坏包线相切。
3. 强度包线
分别作围压为100 kPa 、 200kPa 、300 kPa的三轴试验, 得到破坏时相应的(1-)f
1- 3
绘制三个破坏状态的应力摩尔圆, 画出它们的公切线——强度包线, 得到强度指标 c 与

1 =15% 1
强度包线

c
(1-)f (1-)f
• 四、土的强度理论
• 滑裂面上的剪应力达到极限值。 (注:与最大剪应力理论不同)
土的抗剪强度定义
土体抵抗剪切破坏的极限能力。
剪切破坏时滑动面上的剪应力。
工程应用
边坡的稳定性由强度控制; 土压力的计算; 地基的承载力需通过强度确定。
土力学研究内容
基础 物理性质
先导 土中 应力
核心 渗透特性 变形特性 强度特性
试验装置——应变控制式和应力控制式


2、试验分类

《土力学》课后习题及详细解答

《土力学》课后习题及详细解答

《土力学》课后习题答案第一章1-1:已知:V=72cm3m=129.1g m s=121.5g G s=2.70则:129.1121.56.3%121.5ssm mwm--===3333 129.1*1017.9/72121.5452.77245271.0*27121.5*1020.6/72sssV ssat w V ssat satmg g KN mvmV cmV V V cmm V mg g g KN mV Vγρρργρ========-=-=++=====3320.61010.6/121.5*1016.9/72sat wsdsat dKN mmg KN mVγγγγγγγγ'=-=-===='>>>则1-2:已知:G s=2.72 设V s=1cm3则33332.72/2.722.72*1016/1.72.720.7*1*1020.1/1.720.11010.1/75%1.0*0.7*75%0.5250.52519.3%2.720.525 2.721.sssd ds V wwrw w V rwsw sg cmm gmg g KN mVm Vg g KN mVKN mm V S gmwmm mg gVργρργργγγργρ======++===='=-=-========++===当S时,3*1019.1/7KN m=1-3:3477777331.70*10*8*1013.6*1013.6*10*20%2.72*1013.6*10 2.72*10850001.92*10s d w s s wm V kg m m w kg m m V m ρρ======++==挖1-4: 甲:33334025151* 2.72.7*30%0.81100%0.812.70.811.94/10.8119.4/2.71.48/1.8114.8/0.81p L P s s s s w r wV ws w s w s d s w d d vsI w w V m V g m g S m V m m g cm V V g KN m m g cm V V g KN m V e V ρρργρργρ=-=-=======∴==++===++=====+====设则又因为乙:3333381 2.682.68*22%0.47960.47962.680.47962.14/10.47962.14*1021.4/2.681.84/1.47961.84*1018.4/0.4796p L p s s s s w s V s w s V s d s w d d VsI w w V m V g m m w g V cm m m g cm V V g KN m m g cm V V g KN m V e V ρργρργρ=-========++===++======+=====设则则γγ∴<乙甲 d d γγ<乙甲 e e >乙甲 p p I I >乙甲则(1)、(4)正确1-5:1s w d G eρρ=+ 则2.7*1110.591.7022%*2.7185%0.59s wds r G e wG S e ρρ=-=-====>所以该料场的土料不适合筑坝,建议翻晒,使其含水率降低。

第六章 土压力

第六章 土压力

课程辅导 >>> 第七章、土压力第七章土压力一、内容简介土压力是指土体作用在支挡结构上的侧向压力。

土压力的大小与支挡结构位移的方向和大小有密切的关系,其中静止土压力、主动土压力和被动土压力是实际工程中最常用到的三种土压力。

静止土压力的计算方法由弹性半无限体的计算公式演变而来,而主动土压力和被动土压力所对应的都是土体处于破坏(或极限平衡)状态时的土压力,因此其计算公式的建立与土的强度理论密切相关。

主动和被动土压力的常用计算方法主要是 Rankine 土压理论和 Coulomb 土压理论计算,前者由土中一点的极限平衡条件即 Mohr-Coulomb 准则建立计算公式,后者则利用滑动土楔的静力平衡条件推得,其中土体滑面上法向和切向力之间的关系所反映的实际就是 Coulomb 定律。

二、基本内容和要求1 .基本内容( 1 )土压力的概念;( 2 )土压力的分类及与挡土墙位移的关系;( 3 )静止土压力的计算;( 4 ) Rankine 土压力理论及计算;( 5 ) Coulomb 土压力理论及计算。

2 .基本要求★ 概念及基本原理【掌握】静止土压力;主动土压力;被动土压力;墙体位移与墙后土压分布的关系;静止土压理论基本假设; Rankine 土压理论基本假设; Coulomb 土压理论基本假设。

★ 计算理论及计算方法【掌握】静止土压计算公式及计算;墙背垂直、土面水平且作用有均匀满布荷载、墙后土由不同土层组成时 Rankine 土压计算公式及公式推导、计算;墙背及土面为平面时的 Coulomb 土压计算。

【理解】墙背及土面为平面时 Coulomb 土压力计算公式及推导过程。

三、重点内容介绍1 .土压力与位移的关系及土压力的类型土压力是指土体作用在支挡结构上的侧向压力,其大小及分布规律受多种因素影响,对同一结构及土体,土压力的大小主要取决于支挡结构位移的方向和大小。

图 7-1 所示为土压力与刚性挡墙位移(移动或转动)之间的关系。

土力学习题

土力学习题

习题第一章 土的物理性质及工程分类 选择题1.土颗粒的大小及其级配,通常是用颗粒级配曲线来表示的。

级配曲线越平缓表示: A .土颗粒大小较均匀,级配良好 B.土颗粒大小不均匀,级配不良 C. 土颗粒大小不均匀,级配良好2.作为填土工程的土料,压实效果与不均匀系数uC的关系:A .uC大比uC小好 B.uC小比uC大好 C.uC与压实效果无关3.有三个同一种类土样,它们的含水率w 都相同,但是饱和度r S 不同,饱和度rS 越大的土,其压缩性有何变化?A.压缩性越大B. 压缩性越小C. 压缩性不变4.有一非饱和土样,在荷载作用下,饱和度由80%增加至95%。

试问土样的重度γ和含水率w 怎样改变? A .γ增加,w 减小 B. γ不变,w 不变 C. γ增加,w 增加5.土的液限是指土进入流动状态时的含水率,下述说法哪种是对的? A .天然土的含水率最大不超过液限 B. 液限一定是天然土的饱和含水率C. 天然土的含水率可以超过液限,所以液限不一定是天然土的饱和含水率 判断题6.甲土的饱和度大与乙土的饱和度,则甲土的含水率一定高于乙土的含水率7.粘性土的物理状态是用含水率表示的,现有甲、乙两种土,测得它们的含水率乙甲ww ,则可以断定甲土比乙土软 8.土的液性指数LI会出现LI>0或LI<0的情况9.土的相对密实度r D 会出现r D >1或r D <1的情况 10.土的天然重度越大,则土的密实性越好第二章 土中水的运动规律 选择题1. 1. 已知土体比重sG=2.7,孔隙比e=1,则该土的临界水力坡降为多少A.1.70B.1.35C.0.852.下列有关于影响土体渗透系数的因素中描述正确的为①粒径大小和级配;②结构与孔隙比;③饱和度;④矿物成分;⑤渗透水的性质A.①②对渗透系数有影响B. ④⑤对渗透系数无影响C. ①②③④⑤对渗透系数均无影响3.下述关于渗透力的描述正确的为:①其方向与渗透方向一致;②其数值与水头梯度成正比;③是一种体积力.A.①②正确B. ①③正确C. ①②③都正确4.下列哪一种土更容易发生流砂?A.粗砂或砾砂B.细砂或粉砂C.粉土5.在9cm 厚的粘性土层上进行开挖,下面为砂层,砂层顶面具有7.5m 高的水头.问:开挖深度为6m 时,基坑中的水深h 至少多大才能防止发生流砂现象? A.3.12m B.4.38m C.1.38m 计算题6.已知土体比重sG=2.7,孔隙比e=1,求该土的临界水力坡降。

油气田地下地质学-第六章 地层温度与压力

油气田地下地质学-第六章 地层温度与压力

③ 判断水动力系统--对制定开发方案、分析开发动态十分重要。
水动力系统--在油气层内流体具有连续性流动的范围。
◆ 同一水动力系统内,原始地层压力等值线分布连续; ◆ 不同水动力系统,原始地层压力等值线分布不连续:
--因断层或岩性尖灭等因素被分割。
④ 计算油层的弹性能量
▲ 油层的弹性能量--指油层弹性膨胀时能排出的流体量。
绘制方法与构造图相同--在目的层构造图上进行: 根据各井原始油层压力,选择压力间隔值, 在相邻两井间进行线性内插 、圆滑曲线 等。
原始油层压力分布主要受构造因素影响→
▲ 油层厚度均匀,压力等值线与构造等高线基本平行; ▲ 若两类等值线形态差异较大,必须检查原因--
地层厚度不均,或因测量、计算导致数据不准等。
原始油层压力在背斜构造油藏上的分布特点: ★★
A、原始油层压力随油层埋藏深度的增加而加大;
B、流体性质对原始油层压力分布有着极为重要的影响: 井底海拔高度相同的各井:
井内流体性质相同→原始油层压力相等; 井内流体性质不同→流体密度大,原始油层压力小
流体密度小,原始油层压力大
C、气柱高度变化对气井压力影响很小。
当油藏平缓、含气面积不大时,油-气或气-水界面上 的原始油层压力可以代表气顶内各处的压力。
2、原始油层压力的确定方法
常用方法主要有4种:
⑴ 实测法--油井完井后关井,待井口压力表上压力稳定 后,把压力计下入井内油气层中部所测得的压力→油气层 的原始地层压力。---关井测压
★ 勘探和开发中,把油层中流体所承受的所有压力统称 为油层压力。一般情况下,油层压力与静岩压力关系不大
第一节 地层压力 ★★★
一、相关概念 二、原始油层压力 三、目前油层压力 四、油层折算压力 五、异常地层压力

土力学 课后习题与答案

土力学 课后习题与答案

土力学课后习题与答案土力学课后习题与答案第一章思考题11-1 什么叫土,土是怎样形成的,粗粒土和细粒土的组成有何不同, 1-2 什么叫残积土,什么叫运积土,他们各有什么特征,1-3 何谓土的级配,土的粒径分布曲线是怎样绘制的,为什么粒径分布曲线用半对数坐标, 1-4 何谓土的结构,土的结构有哪几种类型,它们各有什么特征, 1-5 土的粒径分布曲线的特征可以用哪两个系数来表示,它们定义又如何, 1-6如何利用土的粒径分布曲线来判断土的级配的好坏, 1-7 什么是吸着水,具有哪些特征,1-8 什么叫自由水,自由水可以分为哪两种, 1-9 什么叫重力水,它有哪些特征, 1-10 土中的气体以哪几种形式存在,它们对土的工程性质有何影响, 1-11 什么叫的物理性质指标是怎样定义的,其中哪三个是基本指标, 1-12 什么叫砂土的相对密实度,有何用途,1-13 何谓粘性土的稠度,粘性土随着含水率的不同可分为几种状态,各有何特性, 1-14 何谓塑性指数和液性指数,有何用途, 1-15 何谓土的压实性,土压实的目的是什么,1-16 土的压实性与哪些因素有关,何谓土的最大干密度和最优含水率, 1-17土的工程分类的目的是什么,1-18 什么是粗粒土,什么叫细粒土,习题11-1有A、B两个图样,通过室 1.土样A的密度比土样B的大; 2.土样A的干密度比土样B的大;?干密度3?湿密度…-?浮密度1-8 在图中,A土的液限为16.0%,塑限为13.0%;B土的液限为24.0%,塑限为14.0%,C土为无粘性土。

图中实线为粒径分布曲线,虚线为C土的粗粒频率曲线。

试按《土的分类标准》对这三种土进行分类。

1-9 某碾压土坝的土方量为20万方,设计填筑干密度为1.65限为20.0%,土粒比重为2.72。

问:?为满足填筑土坝需要,料场至少要有多少方土料,?如每日坝体的填筑量为3000?土坝填筑的饱和度是多少,g/cm3。

料的含水率为12.0%,天然密度为1.70 g/cm3,液限为32.0%,塑m3,该土的最优含水率为塑限的95%,为达到最佳碾压效果,每天共需要加多少水, 第二章思考题22-1 土中的应力按照其起因和传递方式分哪几种,怎么定义,2-2 何谓自重应力,何谓静孔隙水应力,计算自重应力应注意些什么,2-3 何谓附加应力,空间问题和平面问题各有几个附加应力分量,计算附加应力时对地基做了怎样的假定,2-4 什么叫柔性基础,什么叫刚性基础,这两种基础的基底压力有何不同,2-5 地基中竖向附加应力的分布有什么规律,相邻两基础下附加应力是否会彼此影响,2-6 附加应力的计算结果与地基中实际的附加应力能否一致,为什么,2-7 什么是有效应力,什么是孔隙应力,其中静孔隙应力如何计算,2-8 你能熟练掌握角度法和叠加原理的应用吗,会计算各种荷载条件下地基中任意点的竖向附加应力吗,习题22-1 如图所示为某地基剖面图,各土层的重度及地下水位如图,试求土的自重应力和静孔隙水应力,并绘出它们的分布图。

河海大学_土力学_课后习题答案

河海大学_土力学_课后习题答案

河海大学_土力学_课后习题答案思考题2 2-1土体的应力,按引起的原因分为自重应力和附加应力两种;按土体中土骨架和土中孔隙(水、气)的应力承担作用原理或应力传递方式可分为有效应力和孔隙应(压)力。

有效应力是指由土骨架传递(或承担)的应力。

孔隙应力是指由土中孔隙流体水和气体传递(或承担)的应力。

自重应力是指由土体自身重量所产生的应力。

附加应力是指由外荷(静的或动的)引起的土中应力。

2-2 自重应力是指由土体自身重量所产生的应力。

由静水位产生的孔隙水应力称为静孔隙水应力。

土体自重应力应由该点单位面积上土柱的有效重量来计算,如果存在地下水,且水位与地表齐平或高于地表,则自重应力计算时应采用浮重度,地下水位以下的土体中还存在静孔隙水应力。

2-3 附加应力是指由外荷(静的或动的)引起的土中应力。

空间问题有三个附加应力分量,平面问题有两个附加应力分量。

计算地基附加应力时,假定地基土是各向同性的、均匀的、线性变形体,而且在深度和水平方向上都是无限的。

2-4 实际工程中对于柔性较大(刚度较小)能适应地基变形的基础可以视为柔性基础。

对于一些刚度很大不能适应地基变形的基础可视为刚性基础。

柔性基础底面压力的分布和大小完全与其上的荷载分布于大小相同;刚性基础下的基底压力分布随上部荷载的大小、基础的埋深和土的性质而异。

2-5 基地中心下竖向附加应力最大,向边缘处附加应力将减小,在基底面积范围之外某点下依然有附加应力。

如果该基础相邻处有另外的荷载,也会对本基础下的地基产生附加应力。

2-6 在计算地基附加应力时,假定地基土是各向同性的、均质的、线性变形体,而且在深度的水平方向上都是无限的,这些条件不一定同时满足,因而会产生误差,所以计算结果会经常与地基中实际的附加应力不一致。

2-7 有效应力是指由土骨架传递(或承担)的应力。

孔隙应力是指由土中孔隙流体水和气体传递(或承担)的应力。

静孔隙水应力:习题22-1 解:根据图中所给资料,各土层交界面上的自重应力分别计算如下:cz0 0urhwwcz1 1h1 18.5'cz2 1h1 cz2 1h1 cz3 1h1 cz4 1h1 2-2解:23kPa7kPa55 (2 03h 37 1 8 122h 'h2' 55 222h 'h2 '2 'h3 221 0 )1kPa65 (1 946 5 10 )3kPa9 22kPa1 11h 'h2 '2 'h3 3'h 2249 2(1 9.5 10 )土的最大静孔隙水应力为:u0 rwhw 10 6 60kPa FV P G P GAd 2106基底压力:2 0 63 __ 3(1 62kN46 6pmpmaxinFvl b(16el)0.3178.k1Pa) 95.k9Pa6基底静压力:pn pmin r0d 95.9 17 1.0 78.9kPa pt pmaxpmin178.1 95. 98k2P.2 a只有前两章的,不过包括所有的思考题① 求O点处竖向附加应力由:m lzo12 n z 0 0 KS 0.250 0bb.5 4KSpn 4 0.25 78.9 78.9kPa b 1.5 0.5 n zb 0.5pt2由:m l0 Kt1 0 Kt2 0.2500 2 0.2582.2220.55kPazo2 2Kt1由:m lpt20 zo3 2Kt2bzo4 2KS4pt22 n z 2 0.25b82.22.50 KS4 0.250 020.55kPaz0 z01 z02 z03 z04 120kPa②求A点下4m处竖向附加应力由:m lzA16 4 n z 4 2.7 KS 0.103 6bb.52KSpn 2 0.1036 78.9 16.35kPa0.67 Kt 0.0695b662Ktpt 2 0.0695 82.2 11.4258kPa1.50.25 n z4由:m lzA2③zA zA1 zA2 16.35 11.4258 27.78kPa求B点下4m处竖向附加应力由:m l zB11.33 KS 0.1412b3b32KSpn 2 0.1412 78.9 22.28kPapt20.141282.225.80kPa3 1 n z 4zB2 KS由:m lzB3 Kt1pt2pt231 n z82.2282.221.33 Kt1 0.058 5Kt2 0.08260.0585 0.08262.39kPa3.39kPazB2 Kt2zB zB1 zB2 zB3 zB4 33.86kPa2-3 解:2-4 解:① 求自重应力zM 1h1 1'h2 19 4 (20 9.8) 1 86.19kPa zN zM 3'h3 86.19 (18.5 9.8) 3 112.26kPa 第三章思考题3 3-1水在土中的渗透速度与试样两端水平面间的水位差成正比,而与渗径长度成反比,即:v khLki 即为达西定律。

土的压缩性

土的压缩性

.土的压缩性:土体在压力作用下体积减小的性质答:概念:建筑物荷载作用或者其它原因引起土中应力增加,会使地基土体产生变形,变形的大小与土体的压缩性有直接的关系。

土在压力的作用下,体积缩小的特性为土体的压缩性。

土的压缩变形原因:土的压缩变形主要是由于外荷载增加,导致地基土中附加应力增加,导致地基土中产生附加的有效应力,有效应力导致土颗粒之间相互错动而发生压缩变形,孔隙水压力不引起压缩变形,但孔隙水压力转化为有效应力后会产生压缩变形。

2.答:土的压缩量的组成土中固体颗粒的压缩和土中水的压缩土中孔隙水和孔隙气体的排出土体压缩的实质:土体在外荷载作用下被压缩,土粒产生相对移动并重新排列,与此同时土体孔隙中部分水和气体被排出,从而引起孔隙体积减小。

3.答:压缩曲线反映土体受压后的压缩特性,压缩曲线愈陡,土体的压缩性愈高,压缩曲线愈平缓,土体的压缩性愈低。

压缩系数:利用单位压力增量所引起的孔隙比的改变,即压缩曲线的割线斜率来表征土体压缩性高低,压缩曲线的斜率即为压缩系数。

压缩系数表示单位压力增量作用下土的孔隙比的减小量,因此压缩系数越大,土的压缩性就越大,但土的压缩系数不是常数,而是随割线位置的变化而不同。

4.答:压缩模量Es:指土在侧限条件下受压时压应力σz与相应的应变εz之间的比值。

变形模量E0:指土在无侧限压缩条件下,压应力与相应的压缩应变的比值。

两者之间存在如下的换算关系:E0=βEs,其中0≤β≤11.答:计算建筑物基础中心下的地基变形量,假设这时土层只在垂直方向发生压缩变形,而不发生侧向变形,属于一维压缩问题。

因而在求得地基中的垂直应力后,可利用室内压缩试验曲线成果,计算地基变形量。

分层总和法就是采用土层一维压缩变形量的基本计算公式,利用室内压缩曲线成果,分别计算基础中心点下地基中各分土层的压缩变形量,最后将各分土层的压缩变形量总和起来。

2.答(1)地基中各薄层受荷载作用下只产生竖向压缩变形,无侧向膨胀,即在侧限条件下发生变形;(2)地基沉降量按基础中心点下土柱所受的附加应力进行计算;(3)地基沉降量等于基础底面下某一深度范围内(即压缩层内)各土层压缩量的总和。

《土力学与地基基础》学习指导书-第6章

《土力学与地基基础》学习指导书-第6章

第6章土的抗剪强度6.1 学习要求学习要点:掌握库伦定律及强度理论;掌握抗剪强度的测定方法。

了解饱和粘性土的抗剪强度及应力路径。

重点和难点:土的抗剪强度指标的测定,土的强度理论。

6.2 学习要点1. 土的抗剪强度理论★库伦公式土的抗剪强度表达式(库伦公式)为:无黏性土 ϕστtan f = (6-1) 黏性土 ϕστtan f +=c (6-2) 式中 f τ——土的抗剪强度(kPa) ;σ——剪切滑动面上的法向总应力(kPa);c ——土的黏聚力(kPa) ;ϕ——土的内摩擦角(°)。

c 、ϕ统称为土的抗剪强度指标(参数)。

在στ-f 坐标中(图6-1),库伦公式为一条直线,称为抗剪强度包线。

ϕ为直线与水平土力学与地基基础学习与考试指导·2· 轴的夹角,c 为直线在纵轴上的截距。

土的抗剪强度不仅与土的性质有关,还与试验时的排水条件、剪切速率、应力状态和应力历史等许多因素有关,其中最重要的是试验时的排水条件。

★抗剪强度的总应力法和有效应力法根据太沙基的有效应力概念,土体内的剪应力只能由土的骨架承担,因此,土的抗剪强度f τ应表示为剪切破坏面上的法向有效应力σ'的函数,即ϕσϕστ'-+'=''+'=tan )(tan f u c c(6-3) 式中 c '、ϕ'——分别为有效黏聚力和有效内摩擦角,统称为有效应力强度指标,对无性土,c '=0;σ'——剪切滑动面上的法向有效应力;u ——孔隙水压力。

因此,土的抗剪强度有两种表达方法,一种是以总应力σ表示剪切破坏面上的法向应力,其抗剪强度表达式为式(6-1)和式(6-2),称为抗剪强度总应力法,相应的c 、ϕ称为总应力强度指标(参数);另一种则以有效应力σ'表示剪切破坏面上的法向应力,其表达式为式(6-3),称为抗剪强度有效应力法, c '、ϕ'称为有效应第6章 土的抗剪强度 ·3·力强度指标(参数)。

06.注册岩土--土力学重点知识笔记整理 第六章

06.注册岩土--土力学重点知识笔记整理 第六章

第六章挡土结构物上的土压力1、静止土压力:墙在墙后填土的推力作用下,不产生任何移动或转动时,墙体背后的土压力称为静止土压力。

(1)静止土压力计算:(2)静止侧压力系数:对于无粘性土或正常固结黏土:(经验公式);对于超固结黏土:;式中:为超固结黏土的,为正常固结黏土的;为超固结比;为经验系数,一般取值为0.4~0.5,塑性指数小的取大值;存在问题:超固结黏土的上式如何推导的?超固结土具体是如何影响土体的侧压力的和值的、?2、主动土压力:墙体在土压力的作用下向远离填土方向移动,墙后土体所受约束放松有下滑的趋势,为阻止其下滑,潜在滑动面上剪应力增加。

当剪应力增大至抗剪强度时,墙后土体达到极限平衡状态,此时作用在墙上的土压力达到最小值,称为主动土压力。

3、被动土压力:墙体在外力的作用下向着填土方向移动,墙后土体所受挤压有向上滑动趋势,为阻止其上滑,潜在滑动面上剪应力增加(与主动土压力为反方向),使得墙体背后的土压力逐渐增加。

当剪应力增大至抗剪强度时,墙后土体达到极限平衡状态,此时作用在墙上的土压力达到最大值,称为被动土压力。

4、朗肯土压力:--核心为假设墙背为光滑的,认为墙背与土之间无剪应力(1)朗肯主动土压力:假定墙背与土之间无剪应力,作用任意Z深度处土单元上的竖向应力应是最大主应力,而作用在墙背的水平土压力应是最小主应力。

因此,此时的主应力满足极限平衡条件:由上式可得:①无粘性土:此时:②粘性土:即;令:得:;③上式说明粘性土的主动土压力由两部分组成:一部分为土重产生的土压力;是正值;第二部分为粘聚力产生的抗力,表现为负土压力,起减小土压力的作用,其值为常量不随深度变化。

若,此时;因为土体不能受拉,此时的,此时的;③粘性土:滑动面与水平面夹角为;为有效内摩擦角;(2)朗肯被动土压力:当墙推土,使墙后土体达到被动极限状态时,水平压力比竖向大,此时竖向应力应是最小主应力,而作用在墙背的水平土压力应是最大主应力。

土力学(清华大学出版社)课后习题及答案

土力学(清华大学出版社)课后习题及答案

第一章1-1:已知:V=72cm 3 m=129.1g m s =121.5g G s =2.70 则: 129.1121.56.3%121.5s s m m w m --===3333129.1*1017.9/72121.5452.7724527 1.0*27121.5*1020.6/72s s s V s sat w V s sat sat m g g KN m v m V cm V V V cm m V m g g g KN m V V γρρργρ========-=-=++=====3320.61010.6/121.5*1016.9/72sat w s d sat d KN m m g KN m V γγγγγγγγ'=-=-===='>>>则 1-2:已知:G s =2.72 设V s =1cm 3则33332.72/2.72 2.72*1016/1.7 2.720.7*1*1020.1/1.720.11010.1/75% 1.0*0.7*75%0.5250.52519.3%2.720.525 2.721.s s s d d s V w w r w w V r w s w s g cm m gm g g KN m V m V g g KN m V KN m m V S g m w m m m g g V ργρργργγγργρ======++===='=-=-========++===当S 时,3*1019.1/7KN m =1-3:3477777331.70*10*8*1013.6*1013.6*10*20%2.72*1013.6*10 2.72*10850001.92*10s d w s s wm V kg m m w kg m m V mρρ======++==挖1-4:甲:33334025151* 2.72.7*30%0.81100%0.812.70.811.94/10.8119.4/2.71.48/1.8114.8/0.81p L P s s s s w r wV ws w s w s d s w d d vsI w w V m V g m g S m V m m g cm V V g KN m m g cm V V g KN m V e V ρρργρργρ=-=-=======∴==++===++=====+====设则又因为乙:3333381 2.682.68*22%0.47960.47962.680.47962.14/10.47962.14*1021.4/2.681.84/1.47961.84*1018.4/0.4796p L p s s s s w s V s w s V s d s w d d VsI w w V m V g m m w g V cm m m g cm V V g KN m m g cm V V g KN m V e V ρργρργρ=-========++===++======+=====设则则γγ∴<乙甲 d d γγ<乙甲 e e >乙甲 p p I I >乙甲则(1)、(4)正确 1-5:1s w d G eρρ=+ 则2.7*1110.591.7022%*2.7185%0.59s wds r G e wG S e ρρ=-=-====>所以该料场的土料不适合筑坝,建议翻晒,使其含水率降低。

第六节固结、沉降、筑坝用土石料及填筑标准

第六节固结、沉降、筑坝用土石料及填筑标准

23
2019/10/26
压实度
2)对于I、II级坝和高坝的压实度P应取 98%~100%,III—V级坝和中、低坝 应取0.95~0.98,V级坝和低坝取小值, 设计地震烈度为8~9度时取最大值。
3)对混凝土防渗墙顶部的高塑性土、湿 陷性黄土,需根据工程实际情况确定合 适的压实度.
24
2019/10/26
2019/10/26
二、应力分析
(一)土的本构模型
8
2019/10/26
(三) 高坝的应力和变形特性
9
2019/10/26
竖直位移
心墙的竖直位移一般比坝壳部分大[图5 -28 a], 这是因为心墙土料的压缩性 比较大,同时水库水压力主要由心墙承 受。最大竖直位移发生在下部 H/3处(H 为坝高)。一般计算的土石坝最大竖直位 移多发生在 H/2~H/3范围内,原型观测 结果也基本上证实了这一点。
③土粒和水本身的压缩性可以忽略,土 体变形主要由孔隙水排出和超静孔隙水 压力(超过稳定渗流的孔隙水压力)的 消散而引起。
3
2019/10/26
土的压缩曲线
4
2019/10/26
(二) 沉降分析
1、概念:固结过程中孔隙水压力消散, 导致土体被压缩产生沉降。
2、目的:在于确定竣工时坝顶应预留的 超高,以及预估各个部位的不均匀沉降 和不均匀沉降梯度,以初步判断发生裂 缝的可能性,并据以研究是否需要和如 何采取防止裂缝的工程措施。
21
2019/10/26
二、土料填筑标准的确定
土料的填筑标准:较高密实度、均匀性、强 度和较小的压缩性,在满足渗流条件和坝坡 稳定要求下,取得经济合理的坝体剖面。
确定填筑标准时,应考虑下的压实特性、参数

岩土工程渗流:第6章 地下水渗流理论计算

岩土工程渗流:第6章 地下水渗流理论计算
3
6.1 概 述
6.1.2 基本假定及计算条件简化 渗流所研究的一般是地下水中的重力水 一般作如下的规定:
(1)渗流服从达西(Darcy)定律。 (2)不考虑土体和水的压缩性,渗透时土体的空隙 大小和孔隙率不变。 (3)土体的饱和度不变。
4
本章渗流计算内容
闸、坝基渗流问题 ——按一维简化,考虑成层土层
ln
a0
H2 a0
(6.4.18)
按流量相同,迭代可求q,h0或a0
32
33
坝下游有排水 设备的情况
水平排水体
坝体内的自由水面线 为一条抛物线。 抛物线焦点在排水体伸入坝体的端点,坐标原点设在焦 点。上游三角形仍用宽度等于ΔL的矩形代替。
L
m1 2m1 1
H1
(6.4.7)
上游垂直面bc和y轴截面间水平长度为L0,两截面间的 水头差为H1-h0,平均过水断面面积为(H1+h0)/2,通过 该坝段的渗流量为:
《地下水渗流力学 》
第6章 地下水渗流理论计算
第6章 地下水渗流理论计算
6.1 概 述 6.2 均值透水地基的渗流计算 6.3 多层透水地基渗流计算 6.4 不透水地基上土坝渗流计算 6.5 不透水地基上心墙坝渗流计算 6.6 库水位下降时心墙坝渗流计算(不讲) 补充:均质地基复杂地下轮廓线的渗流近似
m
由(3.3.7)式在 K相同条件下
2H x2
H H1
2
0
M m (M m)m
(6.2.2)
边界条件: x , H H1
x L, H H2
9
第一区段:
x L
2H x2
H
H1
2
0
M m (M m)m

孔隙水压力

孔隙水压力
应力和孔隙水压力 u
• 总应力 wh(64)
• 孔隙水压力 u 5w
.
10
(2)确定水深h • 当发生流土时,O点处的有效应力 =0,
即 u w h 2 5 w 2 ( 5 h )w 0
取 1k8/N m 3 ,w 9 .8 k/N m 3
• 代入上式,解得
h1.3m 3
a12p e1 2 ep 2100 .9 .2 10 0..8 1 50.6M 0a 1p
a120.6M 0a 1 p0.5M 0a 1p
该土为高压缩性
.
35
小结
1. 土的压缩性概念:压缩性、固结、土的 弹塑性变形、土的固结状态等;
2. 侧限压缩试验:研究土的压缩性
建立压缩曲线 e~ p
3. 压缩性指标: 压缩系数 a v
3. 固结:土体压缩变形随时间增长的过程。
.
19
(二)侧限压缩试验
1. 侧限压缩仪 • 试样只能产生竖直 方向变形。
2. 测读各种压力下
稳定之后变形量 si
3. 压缩试验成果表示:
• s ~ p 关系曲线
• e~ p 关系曲线
• e ~ lg p 关系曲线
.
20
4.各级压力下孔隙比e的推求
加荷前
压缩指数 c c
压缩模量 E s
.
36
思考题
1. 何谓土的压缩性?引起土体压缩的主要 原因有哪些?
2. 一种土的压缩系数是否为常量?为什么? 如何判断土的压缩性?
.
37
1
2.75 9.8(10.3)81 1.82
1.04
• •
根据公式 ei e0(1e0)H 0si
计算压缩稳定后的孔隙比 e i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 ∆e = mv ∆p′ = mv (∆p − ∆u ) 1+ e
(6.14)
如果我们假定在荷载变化过程中∆p 0 则有
cv ( ∂ 2u ∂x
2)=
∂u ∂t
(6.15)
式中 mv 为土的压缩系数 这里假定 Kx = Ky= K 则
cv = K γ w mv
(6.16)
用微分方程式(6.15)和初始条件式(6.1)解渗流场 称为太沙基(Terzaghi)理论 这一理论 的核心是假定荷载变化过程中总应力不变 2. 太沙基有限元程序 FECP2D−1 程序 FECP2D−1 是一个可用于计算二维土坝和基础孔隙水压力消散的太沙基固结有限 元程序 它是在二维热传导问题基础上开发的 使用有限元固结程序 FECP2D−1 的主要特 点如下
土质边坡稳定分析 原理 ⋅ 方法 ⋅ 程序
对于饱和粘性土 如果在应力发生变化时 假定无体积变化 那么 在知道了土的应力 应变关系的条件下 系数 A 理应通过理论分析得到 例如 假定土体为遵守广义虎克定律的 弹性体 那么土体的体积变化∆V 和 ∆p ′ 之间存在着唯一的对应关系
∆p ′ = K s ∆V V
心墙的固结系数 cv 为 50ft2/月 孔压系数 B 为 0.5 图 6.4 给出了不同方案在竣工时中央 心墙的孔压分布图
图 6. 4
不同方案在竣工时中央心墙的孔压分布图
从图中可以看出 不同的荷载转移对产生坝体内的孔压的影响是明显不同的 计算结果 方案 2)和 3)差异最大 表明荷载转移在心墙料和坝壳料的杨氏模量较小比率时差异较大 同时 当 E 坝壳>5E 心墙时 心墙中的总应力减小得较慢 因此方案 3)和 4)的结果差别较小 6. 3. 3 比奥固结理论 1. 基本原理 上面提到 太沙基理论的核心是假定荷载变化过程中总应力不变 如果不作这一假定 则式(6.11)右边孔隙比的变化需要引入应力应变关系来确定 这一项是由有效应力的增量导 致的 然而 此值在不知道式(6.11)左侧的孔隙水压力变化的条件下 是无法确定的 在岩 土工程数值计算中 这类将土的应力应变分析和渗流分析 耦合 的问题称为比奥(Biot)的 理论 通常采用有限元法来求解这类问题 可参阅有关论文(Sandhu and Wilson, 1969; Hwang, and Morgenstern, 1971 陈祖煜 1985) 本节简要介绍其基本理论 在第 9 章中将介绍采用 有限元求解这类问题的数值方法 有关渗流 固结和应力应变有限元方法的全面论述将在其 它专著中介绍 陈祖煜 2003
γ =140lb/ft3
泊松比ν′ = 0.35
为了对比由不同的荷载转移引起的孔压分布 制定了如下 4 种方案
Ο
本例原文使用的单位为英制 1ft=0.305m, 1lb=4.448N
第6章
土的孔隙水压力
155
1) 心墙中大主应力等于上覆压力增量即 ∆σ 1 = γ∆h 2) 坝壳料和心墙料采用相同的弹性模量 3) 坝壳的弹性模量是心墙的 5 倍 4) 坝壳的弹性模量是心墙的 10 倍
第6章
土的孔隙水压力
157
(1) 静力许可的应力场 在弹性力学中已经熟知
[∂ ]{σ } = { fb }
其中
{σ }T = (σ x , σ y , τ xy )
∂ ∂h ∂ ∂h (K x )+ (K y )=0 ∂x ∂x ∂y ∂y
(6.13)
式(6.13)为稳定渗流或骨架不可压缩土体非稳定渗流的拉普位斯方程 结合相应边界条 件 可用有限元法确定坝体各点的孔隙水压力 这方面 有许多成熟的方法和程序 对于粘 性土 则应考虑式(6.11)的右项 这就是以下第 6.3.2 和 6.3.3 节要讨论的内容 6. 3. 2 太沙基固结理论 1. 基本原理 由于
(6.12)
Kx 和 Ky 为 x 和 y 方向的渗透系数 y 为垂直方向坐标值 γw 为水容重 e 为孔隙比 e 的变化是由有效应力的增量导致的 而应力增量需要通过求解反映静力平衡的微分方程式获 得 此时的问题 本质上是个固结问题 严格地求解静力和流量平衡 称为比奥理论 如果 对式(6.11)引入一些简化条件 可得到以下简化情况 如果骨架的体积压缩模量较大 可以认为不变形 则孔隙水压力主要是由水的自重引起 坝体内的渗流场确定的 这一类情况相应于稳定渗流期 或半透水的砂壳在库水位骤降期 此时 式(6.11)右边为零 对于满足达西定律的渗流场 反映流量平衡的微分方程式为
154
土质边坡稳定分析 原理 ⋅ 方法 ⋅ 程序
1) 施工的任何阶段坝的横断面任何点上的大主总应力σ1 变化都能由有限元总应力分析 法求出 2) 对于出现孔隙水压力的坝体部分 固结分析和总应力分析可以使用相同的有限单元 网格 3) 在分析中 很容易模拟复杂的几何 边界条件和非均匀材料分布 4) 由于计算初始孔隙水压力的总应力取决于有限元应力分析 因而不需要对总应力的 分布作简化假定 程序 FECP2D−1 由一个主程序和四个子程序组成 主程序和每个子程序逻辑的功能简 单介绍如下 (1) 主程序 调用子程序 读每个施工和停工阶段所需要的数据 并输出计算结果 (2) 子程序 GENER 读单元和节点数据 并形成所有的有限元网格 计算方程数和半 带宽 (3) 子程序 ASEMB 形成流动向量 调子程序 ELMAT 获得单元传导矩阵并组装成 总传导矩阵 修正的总流动向量和总传导矩阵使其满足特定的孔隙水压力边界条件 (4) 子程序 ELMAT 形成每个单元的传导矩阵 并返回到 ASEMB 子程序 本程序使 用具有线性孔隙水压力函数的三角形单元 (5) 子程序 SOLVE 采有标准的高斯消去法求解方程 如果几何条件 时间间隔和 cv 保持不变 利用相同的减化总传导矩阵可求解不同的流动向量的方程 这一过程会节省大量 的计算时间 下面通过两个例题对程序进行考核 [例 6.1] 与 Koppula and Mogenstern (1972)算例比较 为了验证程序的可靠性和计算精度 应用如图 6.1 所示的模型和 Koppula and Mogenstern 的有限差分法进行对比(Eisenstein, 1976) 所用参数 初始边界条件见图 6.1 所需其它参数 通过前面和下面关系得到
mv = (1 + ν ′)(1 − 2ν ′) E ′(1 − ν ′) (1 − ν ′) E′ (1 + ν ′)
(6.17) (6.18)
E=
式中 mv 为一维压缩系数 cv 为固结系数 [例 6.2] 与 Gibson(1958)算例比较
E 为关于总应力的杨氏模量 泊松比ν′= 0.49
不同时段的固结度计算结果和有限差分法对比如图 6.2 所示 可见结果精确度较高 某水坝的平面计算有限元模型如图 6.3 所示(Eisenstein, 1976) 所作假定为 坝高 300ftΟ 分为厚度相等的 10 层单元 坝体分层连续填筑 速率为 10ft/月 坝壳料和心墙料具有不同 的弹性模量和相同的容重
力 p ′ 和偏差应力 q (或称八面体法向应力和剪应力)为
p′ = 1 ′) (σ 1′ + 2σ 3 3
(6.2) (6.3)
q = σ 1 −σ 3
如 5.3.1 节所述
p ′ 的增量 ∆p ′ 为 1 ∆p ′ = ∆p − ∆u = ( − A)(∆σ 1 − ∆σ 3 ) 3
(6.4)
152
′} 设某一土体在自重 包括土体中的水重 作用下 在初始时刻 t = 0 时处于有效应力场{ σ 0
和孔压 u0 状态 此时土体的位移和应变作为计算参照点 设为零 如果此时受到外荷载的 作用 则土体将产生附加位移 同时还将产生附加的有效应力和孔隙水压力 新建立的孔压 场将改变原有的渗流流速 一部分水从土中挤出 随着时间推移 孔隙水压力和有效应力不 断变化直至最后形成一个与外荷平衡的稳定的{ σ ′ }和 u 建立一个 y 坐标向上的坐标系 在 此过程中的任一时刻 t 土体应同时满足静力平衡 变形相容和渗流平衡 其微分方程和相 应边界条件描述如下
* 2
*
A=
(6.7)
土体的孔隙水压力虽然可以通过上述理论途径确定 但是考虑到各种复杂的因素 从工 程实用角度看 系数 A 和 B 仍需通过试验来确定 黄文熙 1989 年) 对式(6.1)可作如下变换
∆u = B ∆σ 1
(6.8)
其中
B = B[ K 0 + A(1 − K 0 )]
(6.9)
K0 为静止侧压力系数
该方案无需总应力分析
即 E 坝壳=E 心墙=1000 ksf
即 E 坝壳=5E 心墙=5000 ksf 即 E 坝壳=10E 心墙=10000 ksf
图 6. 1
两边排水的矩形粘土心墙
图 6. 2
矩形粘土心墙的固结计算结果
图 6. 3
分区坝有限元模型
156
土质边坡稳定分析 原理 ⋅ 方法 ⋅ 程序
K 0 = ∆σ 3 / ∆σ 1
(6.10)
在土石坝中 可以近似地看作∆σ1 和∆σ3 同步增加或减少 ∆σ3/∆σ1 基本保持不变 这样
B 可视为常数
其值可通过类似应力途径的室内试验测定
6. 3 确定孔隙水压力的理论和方法
6. 3. 1 基本方程 土石坝各运用期的孔隙水压力的确定 属于渗流和固结分析的专门问题 这里仅回顾一 些基本的概念 在二维问题中 反映流量平衡的微分方程式为
第6章
土的孔隙水压力
153
∂ ∂h ∂ ∂h 1 ∂e )+ (K y )=− (K x ∂x ∂x ∂y ∂y 1+ e ∂ t
(6.11)
式中 h 为水头 u 为孔隙水压力 t 为时间 e 为孔隙比 式(6.11)中左边为单位时间流进土体的水量 右边为单位时间该土体的体积变形
h= u +y γw
第6章
6. 1 概述
相关文档
最新文档