(完整版)傅里叶变换分析

合集下载

傅里叶分析报告教程(完整版)

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06Heinrich · 6 个月前作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。

转载的同学请保留上面这句话,谢谢。

如果还能保留文章来源就更感激不尽了。

我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。

但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。

老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。

(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。

所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。

至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

——————————————以上是定场诗——————————————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。

但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。

这样的例子太多了,也许几年后你都没有再打开这个页面。

无论如何,耐下心,读下去。

这篇文章要比读课本要轻松、开心得多……p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。

一、什么是频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。

经典傅里叶变换讲解ppt课件

经典傅里叶变换讲解ppt课件

)dt
t2 t1
t2 t1
f (t) sin(n1t)dt
6

f
(t )
a0 2
(an
n 1
cos n1t
bn
sin n1t)
傅里叶级数的 三角展开式
2
an t2 t1
t2 t1
f (t )cos(n1t )dt
同上式
另一种形式
f
(t )
a0 2
cn
n 1
cos(n1t
n )
t
T 4
,
Fn
T
Sa( n
T
)
1 4
Sa( n
4
)
第一个过零点为n =4 。 Fn 在 2π/ 有 4值1(谱线)
T
f (t)
1
2
o
2
谱线间隔 2π T
1 Fn
4
2
O
T
t
第一个过零点:
Sa(
2
)
0
π 2

23
情况2:
T 8
,
Fn
T
Sa( n
T
)
1 8
Sa( n
8
)
第一个过零点n=8
2
)
21
(2)双边频谱:
1
Fn T
/2
e jn1 tdt
1
e jn1 t
/2
2
sin
n1 2
b
b2 4ac
/ 2
T jn1 / 2 T n1
2a
T
sin
n1 2
n1
2
T
Sa( n1
2

(完整版)从头到尾彻底理解傅里叶变换算法

(完整版)从头到尾彻底理解傅里叶变换算法
这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 连续傅里叶变换的逆变换(inverse Fourier transform)为:
即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对:
(完整版)从头到尾彻底理解傅里叶变换算法
从头到尾彻底理解傅里叶变换算法、上 从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 前言: “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象, 尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来 命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变 换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复 杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示 成复指数函数的积分或级数形式。

傅里叶变换及其性质

傅里叶变换及其性质

αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分

别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02

4

2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4

(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:

信号课件第三章傅里叶变换

信号课件第三章傅里叶变换
• 从本章起,我们由时域分析进入频域分析,在频域分析中, 首先讨论周期信号的傅里叶级数,然后讨论非周期信号的 傅里叶变换。傅里叶变换是在傅里叶级数的基础上发展而 产生的,这方面的问题统称为傅里叶分析。
• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1

第一章 傅里叶分析

第一章 傅里叶分析
普通高等教育“十一五”国家级规划教材 《傅里叶光学•第2版》电子教案
第一章主要内容
1、常用函数
2、卷积和相关 3、空间频率及空间频谱 4、傅里叶级数 5、傅里叶变换
本章教学目标
1、本章及下一章内容都将介绍傅里叶光学中基础理论, 包括常用函数、常见的光学运算,以及傅里叶变换方 法和线性系统理论。
圆孔光瞳的非相干脉冲响应 以及圆孔的夫琅和费衍射图样
1、一些常用函数
需要特别说明的是,上面提到的常用函数有的本身就是二维函
数,而那些只给出一维形式的函数也具有二维形式,这里不再赘 述,只给出这些常用二维函数的图形化表示。 二维矩形函数
x x0 y y 0 x x0 y y0 rect ( , ) rect ( )rect ( ) b d b d
x y Circ r0
2 2
应用
1 0 x 2 y 2 r0 others
常用来表示圆孔的透过率。
1、一些常用函数 * 8)斜坡函数( Ramp function) 定义 应用
x x0 常用来表示边界透过率的灰阶变化。 0, x x0 b b ram p( ) x x0 x x0 b , b b b
( x n, y m) comb x comb y


n m


( x na, y mb)

1 x y comb comb ab a b
应用 常用二维梳状函数表示点 光源阵列或小孔阵列的透 过率函数。
1、一些常用函数
二维高斯函数
Gauss( x x0 y y0 x x0 y y0 , ) Gauss( )Gaus( ) b d b d

傅里叶变换详解

傅里叶变换详解

(7.3.2)
则上式为
的傅里叶逆变换式,记为
我们称

的傅里叶逆变换,简称傅氏逆变换
(或称为像原函数或原函数).
由(7.3.1)和(7.3.2)知傅里叶变换和傅里叶逆变换是互 逆变换,即有
(7.3.3) 或者简写为
7.3.2 多维傅氏变换
在多维( 维)情况下,完全可以类似地定义函数
的傅氏变换如下: 它的逆变换公式为:
上述变换可以写成另一种对称的傅氏变换(对)形式
(7.2.15)
7.2.3 傅里叶变换式的物理意义——频谱 傅氏变换和频谱概念有着非常密切的联系.频谱这个术语来
自于光学.通过对频谱的分析,可以了解周期函数和非周期函数的 一些基本性质.
若已知
是以 为周期的周期函数,且满足狄利
克雷条件,则可展成傅里叶级数
所以我们引入广义傅氏变换概念系指
函数及其相关函数
的傅氏变换.
在后面我们将看到, 函数的傅氏变换在求解数理方程中有
着特殊的作用.这里先介绍其有关基本定义和性质.
1.
函数定义
定义7.3.3
函数
如果一个函数满足下列条件,则称之为 函数,并记为
(7.3.4)

(7.3.5)
我们不加证明地指出与定义7.3.3等价的 函数的另一定义
函数类B中找到解的像;再经过逆变换,便可以得到原来要在A
中所求的解,而且是显式解.
另外需要说明的是,当选取不同的积分区域和核函数时, 就得到不同名称的积分变换:
(1)特别当核函数 变量 改写为变量 ),当
(注意已将积分参 ,则
称函数
为函数
的傅里叶(Fourier)变换,
简称
为函数

傅里叶变换分析

傅里叶变换分析

第二章傅立叶变换分析方法§1 引言系统(或信号)时域描述: 线性差分方程, 单位脉冲响应.频域描述: 傅立叶变换, Z变换.=→→时域特征频域特征滤波器频域特征滤波后信号§2 序列的傅立叶变换1. 定义: j jn n X e x n e()()ωω∞-=-∞∑;()j X eω称为()x n 的傅立叶变换, 也称频谱函数.简记 ()j X e ω=FT[x (n )]; 注意1当ω定时,jn eω-是n 的序列,≈≈≈∑内积投影分量注意2 结果()j X e ω是ω的连续函数. 2. x n {()}的FT 存在 n x n |()|∞=-∞⇔<∞∑;3. 傅立叶反变换:-=⎰j jn x n X ee1()()d 2πωωπωπ.简记 x (n )=IFT[()j X e ω]. 4. j X e ()ω的幅频, 相频表示:arg[()]()()j j j j X eX eX eeωωω=例1 求()n δ的FT.解 ()()1j jn n X e n eωωδ∞-=-∞==∑,ω)例2 求4()()x n R n =的傅立叶变换. 解 对任给一个[0,2]ωπ∈, 有1()()N j jn jn N n n X eR n eeωωω∞---=-∞===∑∑/2/2/2/2/2/21()1()j N j N j N j N j j j j eeeeeee eωωωωωωωω--------==--(1)/2sin(/2)sin(/2)j N N eωωω--=当N =4时, 有3/2sin(2)()sin(/2)j j X e eωωωω-=当0,,,42ππωπ=时的()j X eω各点, 见右图.其值意义为:原序列在各数字频率上的分量.由于当=ωπ时, 序列=cos jn en ωωππ-=变化最剧烈,即数字频率最高值为π.cos(npi)图: n=[-3 -2 -1 0 1 2 3 4]; stem(n,cos(n*pi));ππ-π-2ππ2πX(e jw)的程序计算说明: 对每个w 有11(1)()()[(0),(1),...,(1)]...jw jw N jw jw n n jw N e e X e x n e x x x N e -⋅-⋅--=-⋅-⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎣⎦∑对各个000,2,...,w w K w 有:0002(),(),...,()jw j w jK w X e X e X e ⎡⎤⎣⎦00000000010200112111(1)2(1)(1)[(0),(1),...,(1)],,...,.........jw jw jw K jw jw jw K jw N jw N jw K N e e e e e e x x x N e e e -⋅⋅-⋅⋅-⋅⋅-⋅⋅-⋅⋅-⋅⋅-⋅⋅--⋅⋅--⋅⋅-⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦1020011211,,...,.........1(1)2(1)(1)[(0),(1),...,(1)]()K K N N K N jw x x x N e⋅⋅⋅⎡⎤⎢⎥⋅⋅⋅⎢⎥⎢⎥⎢⎥⋅-⋅-⋅--⎣⎦=-[]011,2,...,...1[(0),(1),...,(1)]()K N jw x x x N e⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦=-%X(e jw)的作图xn=[1 1 1 1]; n=0:3;k=0:100; w=pi/50*k;xw=xn*(exp(-j*pi/50)).^(n'*k); magx=abs(xw);magx2=[magx,magx]; w2=[w-2*pi,w,]; %拼成2pi angx=angle(xw); angx2=[angx,angx];%X(e jw)的幅频图subplot(2,1,1);plot(w2,magx2);%X(e jw)的相频图subplot(2,1,2);plot(w2,angx2);%也可直接作出Xw=0:2*pi/100:2*pi;plot(w,abs(sin(2*w)./sin(w/2))); Warning: Divide by zero.ππ-π-2ππ2π§3 序列的傅立叶变换性质 1. 周期性 (关于w)(2)(2)()()()j M j M nj n X ex n eX eωπωπω∞+-+=-∞==∑2. 线性性设11()FT[()]j X e x n ω=, 22()FT[()]j X e x n ω=, 则1212FT[()()]()()j j ax n bx n aX e bX e ωω+=+.(,a b ∀). 证 按定义即得.3. 时移,频移 设()F T [()]j X e x n ω=, 则0FT[()]()j n j x n n e X eωω--=;00()FT[()]()j nj ex n X eωωω-=.证 由定义得(i) 00F T [()]()j nn x n n x n n eω∞-=-∞-=-∑()()j m j n j n j m m n n x m eeX eωωωω∞---=-∞=-=∑.(ii) 00F T [()]()j nj nj nn ex n ex n eωωω∞-=-∞=∑00()()()()j nj n x n eX eωωωω∞---=-∞==∑.例1 求40()R n n -的FT. 解 00()F T [()]F T [()]j n j N N Y eR n n e R n ωω-=-= 0()j n j eX eωω-=.4. 共轭对称(1) 时域上对称(关于n)(0) 称()x n 是对称序列: 若()();x n x n -= (i) 称()x n 是共轭对称序列: 若()*();x n x n -=(ii) 称()x n 是共轭反对称序列: 若()*();x n x n -=- (2) 频域上对称(关于w)(i')称()j X e ω是共轭对称函数: 若()()j j X eX eωω-*=;(ii')称()j X e ω是共轭反对称函数若()()j j X e X eωω-*=-;例2 分析()j nx n e ω=的对称性.解 因()()j nx n ex n ω-*-==, 故()x n 共轭对称.<1>共轭对称序列的虚实分解: 实部偶+j 虚部奇; ()()(),()()()r i r i x n x n jx n x n x n jx n =+-=-+- 由()*()x n x n -=,得()(),()()r r i i x n x n x n x n -=-=-.<2>共轭反对称序列的虚实分解: 实部奇+j 虚部偶 例3 分析()j ny n je ω=对称性.解 ()()()()j nj nj ny n jeje jey n ωωω-***-==-=-=-==> 共轭反对称, 实部奇, 虚部偶.(3) 实()x n 的FT 为共轭对称(主要) 设()=()j jn n X e x n eωω∞-=-∞∑, 则()=()()()j jn jn j n n X ex n ex n eX e ωωωω*∞∞--*=-∞=-∞⎛⎫== ⎪⎝⎭∑∑(易得, 对纯()jx n 的FT 为共轭反对称) (4) 复序列的FT 性质(介绍) 设 ()()(),r i x n x n jx n =+ 作FT 得()FT[()]FT[()]FT[()]j r i X ex n x n jx n ω==+ ()().j j e o X eX eωω+(),().j j e o X eX eωω其中共轭对称共轭反对称时域中虚实分解==>频域中共轭对称与反对称分解 5. 时域卷积 (=>频域乘积)前有 ()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑, 现有()F T[()]()()j j nn m Y ey n x m h n m eωω∞∞-=-∞=-∞==-∑∑令k n m =-,得()()()j j mj kk m Y ex m eh k eωωω∞∞--=-∞=-∞=∑∑()()j j H eX eωω=6. (时域乘积=>)频域卷积设()()()y n x n h n =, 则有()F T[()]()()j j nn Y ey n x n h n eωω∞-=-∞==∑∞--=-∞⎛⎫=⎪⎝⎭∑⎰j j nj n n x n H eee 1()()d 2πθθωπθπ∞--=-∞=∑⎰j j nj nn H e x n ee1()()d 2πθωθπθπ∞---=-∞=∑⎰j j nn H ex n e()1()()d 2πθωθπθπ--==*⎰j j j j H e X eH eX e()11()()d ()()22πθωθωωπθππ即 1()()()2j j j Y e H eX eωωωπ=*.7. 帕斯维尔(Parseval)(时频能量守恒)221()()d 2j n x n X eπωπωπ∞-=-∞=∑⎰.证 设2()()()()y n x n x n x n *== 及()()()()j nj n j j n n x n ex n e X e X e ωωωω*∞∞**--*-=-∞=-∞⎛⎫⎡⎤=== ⎪⎣⎦⎝⎭∑∑, 则有()F T [()]F T[()()]j Y ey n x n x n ω*==()()j nn x n x n eω∞*-=-∞=∑j j X eX e1()()2ωωπ*-=**---=⎰j j X eX e()1()()d 2πθωθπθπ.令=0ω,得n n x n x n x n 2()()()∞∞*=-∞=-∞=∑∑*-=⎰j j X eX e1()()d 2πθθπθπ21=()d 2j X eπθπθπ-⎰.部分性质汇总在表2.3.1中, P39. 作业P481;3; 4(1,3,5); 5; 8(1,3); 9(2).。

傅里叶变换实例分析

傅里叶变换实例分析

FFT是离散傅里叶变换的快速算法,可以将一个信号变换到频域。

有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。

这就是很多信号分析采用FFT变换的原因。

另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

FFT结果的具体物理意义。

一个模拟信号,经过ADC采样之后,就变成了数字信号。

采样定理告诉我们,采样频率要大于信号频率的两倍。

采样得到的数字信号,就可以做FFT变换了。

N个采样点,经过FFT之后,就可以得到N个点的FFT结果。

为了方便进行FFT运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。

那么FFT之后结果就是一个为N点的复数。

每一个点就对应着一个频率点。

这个点的模值,就是该频率值下的幅度特性。

具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。

而第一个点就是直流分量,它的模值就是直流分量的N倍。

而每个点的相位呢,就是在该频率下的信号的相位。

第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。

例如某点n所表示的频率为:Fn=(n-1)*Fs/N。

由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。

1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。

如果要提高频率分辨力,则必须增加采样点数,也即采样时间。

频率分辨率和采样时间是倒数关系。

假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。

傅里叶变换[FFT]详解

傅里叶变换[FFT]详解

关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。

二、傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier<1768-1830>, Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。

当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日<Joseph Louis Lagrange, 1736-1813>和拉普拉斯<Pierre Simon de Laplace, 1749-1827>,当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。

法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。

傅里叶变换详细解释

傅里叶变换详细解释

傅里叶变换详细解释傅里叶变换是一种数学工具,可以将一个函数分解成一系列正弦和余弦函数的和。

它在信号处理、图像处理、通信和物理学等领域中广泛应用。

傅里叶变换的详细解释包括其定义、数学表达式、性质和应用等方面。

首先,傅里叶变换可以将一个连续函数f(t) 分解成一系列正弦和余弦函数的和。

这些正弦和余弦函数的频率是连续的,可以覆盖整个频谱。

傅里叶变换的定义如下:F(ω) = ∫f(t) e^(-jωt) dt其中,F(ω) 是傅里叶变换后的函数,f(t) 是原始函数,ω 是频率,e 是自然常数。

傅里叶变换的数学表达式可以用复数的形式来表示。

当函数 f(t) 是实函数时,傅里叶变换F(ω) 是一个复函数,具有实部和虚部。

实部表示函数在频域中的振幅,虚部表示函数在频域中的相位。

傅里叶变换有一些重要的性质。

首先,傅里叶变换具有线性性质,即对于常数a 和 b,有 F(a*f(t) + b*g(t)) = a*F(f(t)) + b*F(g(t))。

这使得傅里叶变换在信号处理中非常有用,可以将多个信号叠加在一起进行分析。

其次,傅里叶变换具有平移性质。

如果将函数 f(t) 在时间域上平移 t0,那么它的傅里叶变换F(ω) 在频域上也会相应地平移 e^(-jωt0)。

这个性质使得我们可以通过平移信号来改变其频谱。

另外,傅里叶变换还具有对称性质。

当函数 f(t) 是实函数时,其傅里叶变换F(ω) 的实部是偶函数,虚部是奇函数。

这个对称性质使得我们可以通过傅里叶变换将实函数分解成实部和虚部的和。

傅里叶变换在许多领域中有广泛的应用。

在信号处理中,傅里叶变换可以将时域上的信号转换成频域上的信号,从而可以分析信号的频谱特性。

例如,通过傅里叶变换,我们可以将音频信号转换成频谱图,可以分析音频信号中不同频率的成分。

在图像处理中,傅里叶变换可以将图像转换成频域上的图像,从而可以对图像进行频域滤波和增强处理。

例如,通过傅里叶变换,我们可以将模糊的图像恢复成清晰的图像,或者将图像中的噪声去除。

傅里叶变换(课堂PPT)

傅里叶变换(课堂PPT)

f(t)21 2g()ejtd
F
f(t)2g()
.
46
例题4.9 求
2
1 t2
的傅里叶变换。
解:根据例题4.2,我们有,
F
e|t|
2
12
利用对偶性
2
F
2e||
1t2
.
47
利用对偶性来进一步分析和推导傅里叶变换的性质。 (1)下面将微分性质与对偶性结合,可得,
jt(xt) F d X() d
.
56
在这里,我们进一步来理解频谱 X( j) 的含义。
我们将一个信号除 [0,0] 以外的频率分量“滤掉”
x(t)
带通滤波器
x0 (t)
.
57
x0 (t) 的能量就等于
1 | 0 X(j)|2 d
2 0
可以说,| X(j0)|2 表示了信号 x (t ) 在 0 处的能量密度。
从这个意义上来说,
.
49
4.3.7 帕斯瓦尔(Parseval)定理 可以证明,对于能量有限信号
能谱密度
|x(t)|2d t1
|X(j
)|2d
2
信号在时域里面的能量
信号在频域里面的能量
.
50
对于周期信号,那么上面公式的左边将为无穷大。 我们有帕斯瓦尔定律的另一种形式
1
T0
|
T0
x(t)|2
d
t |ak
.
2
抽样函数或者称为采样函数:
Sa(x) sinx x
S(ax)S(a x) 偶函数
通过罗必塔法则,可以得到
Sa(0) 1
Sa()0
x 抽样函数右边的第一个过零点在

傅里叶变换及其性质课件

傅里叶变换及其性质课件
若 $f(t)$ 的傅里叶变换为 $F(omega)$,则 $f(at)(a>0)$ 的傅里叶变换为 $aF(frac{omega}{a})$。
应用
频移性质在信号调制和解调中非常有 用,例如在通信系统中的振荡器设计 和频率调制。
共轭性质
共轭性质
若 $f(t)$ 的傅里叶变换为 $F(omega)$,则 $f(-t)$ 的傅里叶 变换为 $overline{F(-omega)}$。
05
傅里叶变换的扩展
离散傅里叶变换
定义
离散傅里叶变换(DFT)是一种将离散时间信号转换为频域表示的方法。它将一个有限长 度的离散时间信号序列通过数学运算转换为复数序列,表示信号的频域特征。
性质
离散傅里叶变换具有线性、时移性、频移性、共轭对称性和周期性等性质。这些性质使得 离散傅里叶变换在信号处理、图像处理、数字通信等领域得到广泛应用。
度和相位信息。
02 03
信号处理
傅里叶变换在信号处理中有着广泛的应用,如滤波、去噪、压缩等。通 过对信号进行傅里叶变换,可以提取出信号中的特征信息,实现信号的 分类、识别和分类。
图像处理
傅里叶变换在图像处理中也有着重要的应用,如图像滤波、图像增强、 图像压缩等。通过对图像进行傅里叶变换,可以提取出图像中的特征信 息,实现图像的分类、识别和分类。
傅里叶变换的分类
离散傅里叶变换(DFT)
对时间域或空间域的信号进行离散采样,然后对离散的采样值进行傅里叶变换 。DFT广泛应用于数字信号处理和图像处理等领域。
快速傅里叶变换(FFT)
一种高效计算DFT的算法,能够在 $O(Nlog N)$ 的时间内计算出 $N$ 个采样 值的 DFT,大大提高了计算效率。FFT广泛应用于信号处理、图像处理等领域 。

傅里叶变换详细讲述

傅里叶变换详细讲述

第三章傅里叶变换3-1 概述对于一件复杂的事情,人们总是从简单的一步开始做起,富丽堂皇的高楼大厦,是人们一块砖一块砖垒起来的。

为了简化问题的求解,人们往往也使用“变换分析”这种技巧,所起“变换”大家可能会感到陌生,其实我们在中学时已经运用了“变换分析”技巧,大家一定还记得对数运算,它实际上也是一种数学变换,我们知道两个数的乘积的对数等于两个数的对数和,两个数的商的对数等于这两个数的对数差,利用对数这个运算规则我们可以将数的乘积运算转换(准确地说变换)为数的加法运算,可以将数的除法运算转换(变换)为数的减法运算,可见“变换分析”给我们解决问题带来了方便,傅里叶变换就是给我们分析问题和解决问题极为方便的数学工具。

线性非时变系统的卷积分析实际上是基于将输入信号分解为一组加权延时的单位冲激(或样值)激励的线性组合。

本章将讨论信号和系统的另一种表示,其基本观点还是将信号分解为一组简单函数的线性组合,但是这里用的简单函数不是单位冲激(或样值)而是三角函数(或复指数函数)。

用“三角函数和”表示信号的想法至少可以追溯到古代巴比伦时代,当时他们利用这一想法来预测天体运动。

这一问题的近代研究始于1748年,欧拉在振动弦的研究中发现:如果在某一时刻振动弦的形状是标准振动(谐波)模的线性组合,那么在其后任何时刻,振动弦的形状也是这些振动模的线性组合。

另外,欧拉还证明了在该线性组合中,其后的加权系数可以直接从前面时间的加权系数中导出。

欧拉的研究成果表明了:如果一个线性非时变系统输入可以表示为周期复指数或正弦信号的线性组合,则输出也一定能表示成这种形式。

现在大家已经认识到,很多有用的信号都能用复指数函数的线性组合来表示,但是在18世纪中期,这一观点还进行着激烈的争论。

1753年D.伯努利(D.Bernoulli)曾声称:一根弦的实际运动都可以用标准(谐波)振荡模的线性组合来表示。

而以J.L.拉格朗日(grange)为代表的学者强烈反对使用三角级数来研究振动弦运动的主张,他反对的论据就是基于他自己的信念,即不可能用三角级数来表示一个具有间断点的函数。

傅里叶变换超详细总结

傅里叶变换超详细总结

“周期信号都可表示为谐波关系的正弦信号的加权”——傅里叶的第一个主要论点——“非周期信号都可用正弦信号的加权积分表示”——傅里叶的第二个主要论点——频域分析:傅里叶变换,自变量为 j Ω复频域分析:拉氏变换,自变量为 S = σ +j ΩZ域分析:Z 变换,自变量为z傅立叶级数是一种三角级数,它的一般形式是)sin cos (10t n b t n a A n n n ωω++∑∞=将周期性的(非正弦的)波,用一系列的正弦波的迭加来表示,然后对每一项正弦波进行分析,因此提出了把周期函数 f(x) 展开成三角级数01()sin()n n n f t A A n t ωϕ∞==++∑01(cos sin )n n n A a n t b n t ωω∞==++∑为了讨论如何把周期函数展开成三角级数,首先考虑三角函数系的正交性。

{}1,cos ,sin ,cos 2,sin 2,,cos ,sin ,t t t t n t n t ωωωωωω⋯⋯正交性:不同的基本单位向量的点积(内积)等于零,而相同的基本单位向量不等于零傅里叶变换•周期信号的傅里叶级数分析(FS)•非周期信号的傅里叶变换(FT)•周期序列的傅里叶级数(DFS)•非周期的离散时间信号的傅里叶变换(DTFT)•离散傅里叶变换(DFT)1 周期信号的傅里叶级数分析(FS)三角函数集是最重要的基本正交函数集,正、余弦函数都属是三角函数集。

优点:(1)三角函数是基本函数;(2)用三角函数表示信号,建立了时间与频率两个基本物理量之目的联系;(3)单频三角函数是简谐信号,简谐信号容易产生、传输、处理;(4)三角函数信号通过线性时不变系统后,仍为同频三角函数信号,仅幅度和相位有变化,计算方便。

由于三角函数的上述优点,周期信号通常被表示(分解)为无穷多个正弦信号之和。

利用欧拉公式还可以将三角函数表示为复指数函数,所以周期函数还可以展开成无穷多个复指数函数的之和,其优点是与三角函数级数相同。

《傅里叶变换详解》课件

《傅里叶变换详解》课件
单击添加标题
原理:利用信号的稀疏性,通过测量矩阵将高维信号投影到低维空间,再 利用优化算法重构出原始信号。
单击添加标题
应用:在图像处理、通信、雷达、医学成像等领域有广泛应用,能够实现 高分辨率和高帧率成像,降低数据采集成本和存储空间。
单击添加标题
展望:随着压缩感知技术的不断发展,未来有望在人工智能、物联网、无 人驾驶等领域发挥重要作用,为信号处理领域带来更多创新和突破。
应用:傅里叶逆变换在信号处理、图像处理等领域有着广泛的应用
逆变换的应用场景
信号处理:用于信号的滤波、去噪、压缩等 图像处理:用于图像的增强、去噪、边缘检测等 音频处理:用于音频的滤波、去噪、压缩等 通信系统:用于信号的调制、解调、编码、解码等
06
傅里叶变换的计算机实现
离散傅里叶变换(DFT)
傅里叶变换的分类
连续傅里叶变换:适用于连续信号,将信号分解为不同频率的正弦波
离散傅里叶变换:适用于离散信号,将信号分解为不同频率的正弦波
快速傅里叶变换:适用于快速计算傅里叶变换,通过FFT算法实现 短时傅里叶变换:适用于分析非平稳信号,将信号分解为不同频率的正弦 波,同时考虑时间因素
03
傅里叶变换的性质
04
傅里叶变换的应用
在信号处理中的应用
滤波器设计:设计滤波器以 消除或增强特定频率的信号
信号分解:将信号分解为不 同频率的谐波
信号压缩:通过傅里叶变换 进行信号压缩,减少数据量
信号分析:分析信号的频率 成分,了解信号的特性和变
化规律
在图像处理中的应用
傅里叶变换可以用于图像的平滑处理,去除噪声 傅里叶变换可以用于图像的锐化处理,增强图像的细节 傅里叶变换可以用于图像的频域滤波,去除图像中的特定频率成分 傅里叶变换可以用于图像的压缩和编码,减少图像的数据量

23傅里叶变换性质及定理(精)

23傅里叶变换性质及定理(精)

e



f x e jx dx
F je jt0
时延(移位)性说明波形在时间轴上时延,不改变信号
振幅频谱,仅使信号增加一 t0 线性相位。
例2.3-1 求如图2-15所示信号 f1 t 的频谱函数 F1 ,
并作频谱图。

f1 t 与门函数的关系为
0



f t e j0t e jt dt



f t e j 0 t dt F 0
j0t 相乘, e 频移(调制)特性表明信号在时域中与复因子
则在频域中将使整个频谱搬移 0 。通信技术中的调制 是将频谱在 0 附近的低频信号乘以e j0t ,使其频谱


f u t e jt dt d
f
1 j e d j
j



f e
d

1 j f e d j
利用积分特性可以简化由折线组成的信号频谱的求解。
例2-6 求如图2-21(a)所示 f t 的频谱函数 F 。
f t
E
/ 2
0
/2
t
(a)
解:
2 E 1 t f t 0
t t

2 2
2E / f1 t f t 2 E /
f1 t Ef t
f1 t

2
E
由上节门函数的变换
f t F Sa
0

t

2

2
再由线性与时移性,得到

第三章傅里叶变换90页PPT

第三章傅里叶变换90页PPT

• 例题:已知信号f(t)=cos100t,求其频谱Fn。
Fn
0.5
解:
f(t)1(ej10t0ej10t0)
所以
2 F1
F1
1 2
,
其F余 n0, n1
-w1
w1
nw1
• 例题:已知信号f(t)的频谱Fn如图所示,求信号f(t)。
解: F 0 2 ,F 1 F 1 2 ,F 2 F 2 1
三角形式的傅里叶级数也可表示成:
f(t)c0 cncos(n1tn)
其中 c n 2 a n 2 b n 2
n1n a rc ta n ( a b n n)
(2)
c 0 a 0
an为 n 1 的偶函数, b n 为 n 1 的奇函数
cn为 n 1 的偶函数, n为 n 1 的奇函数
例题 求题图所示的周期矩形信号的三角形式傅里叶级数。
其中
aan0 n 1T21T11tt00tt0T 01Tf1(tf)c(t)odnst1tdt•角级f(函数t)分数。解线为性不组同合频的率无三穷
推导
2
bn
T1
t0T1 t0
f(t)s
in1tdt
基波,二次谐波….n次谐波
傅里叶级数表明信号中各次谐波的分布。
f(t)a0 (anco ns1tbnsinn 1t) n1
(2)谐波性 -------- 谱线出现在基波频率 1 的整数倍上。
(1)
n 1
f(t)c0 cncon s1(tn)
(2)
n1
f (t)
Fnejn1t
n
f(t) →Fn建立一一对应关系。
(3)
不同时域信号对应的Fn不同,因此可以通过研究Fn来研究 信号的特性。Fn是频率的函数,它反映了组成信号的各次谐波的幅 度和相位变化规律称为频谱函数。可直观地看出各频率分量的相对 大小和相位情况,这样的图就称为信号的幅度频谱和相位频谱。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 信号与系统的基本概念1.信号、信息与消息的差别?信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。

2.什么是奇异信号?函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。

例如:单边指数信号 (在t =0点时,不连续),单边正弦信号 (在t =0时的一阶导函数不连续)。

较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。

3.单位冲激信号的物理意义及其取样性质?冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。

它表达的是一类幅度很强,但作用时间很短的物理现象。

其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰ 4.什么是单位阶跃信号?单位阶跃信号也是一类奇异信号,定义为:10()00t u t t >⎧=⎨<⎩它可以表示单边信号,持续时间有限信号,在信号处理中起着重要的作用。

5.线性时不变系统的意义同时满足叠加性和均匀性以及时不变特性的系统,称为线性时不变系统。

即:如果一个系统,当输入信号分别为1()x t 和2()x t 时,输出信号分别是1()y t 和2()y t 。

当输入信号()x t 是1()x t 和2()x t 的线性叠加,即:12()()()x t ax t bx t =+,其中a 和b 是任意常数时,输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+;且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。

其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性;如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。

线性时不变系统是最基本的一类系统,是研究复杂系统,如非线性、时变系统的基础。

6.线性时不变系统的意义与应用?线性时不变系统是我们本课程分析和研究的主要对象,对线性时不变性进行推广,可以得到线性时不变系统具有微分与积分性质,假设系统的输入与输出信号分别为()x t 和()y t ,则 当输入信号为()dx t dt 时,输出信号则为()dy t dt; 或者当输入信号为()t x d ττ-∞⎰时,输出信号则为()ty d ττ-∞⎰。

另外,线性时不变系统对信号的处理作用可以用冲激响应(或单位脉冲响应)、系统函数或频率响应进行描述。

而且多个系统可以以不同的方式进行连接,基本的连接方式为:级联和并联。

假设两个线性时不变系统的冲激响应分别为:1()h t 和2()h t ,当两个系统级联后,整个系统的冲激响应为:12()()*()h t h t h t =;当两个系统并联后,整个系统的冲激响应为:12()()()h t h t h t =+;当0t <时,若()0h t =, 则此系统为因果系统;若|()|h t dt ∞-∞<∞⎰, 则此系统为稳定系统。

第二章 连续时间系统的时域分析1.如何获得系统的数学模型?数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。

不同的系统,其数学模型可能具有不同的形式和特点。

对于线性时不变系统,其数学模型通常由两种形式:建立输入-输出信号之间关系的一个方程或建立系统状态转换的若干个方程组成的方程组(状态方程)。

对于本课程研究较多的电类系统而言,建立系统数学模型主要依据两个约束特性:元件特性约束和网络拓扑约束。

一般地,对于线性时不变连续时间系统,其输入-输出方程是一个高阶线性常系数微分方程,而状态方程则是一阶常系数微分方程组。

在本章里,主要讨论系统的输入-输出方程。

2.系统的起始状态和初始状态的关系?起始状态:通常又称0-状态,它是指系统在激励信号加入之前的状态,包含了全部“过去”的信息(一般地,我们认为激励信号都是在零时刻加入系统的)。

初始状态:通常又称0+状态,它是指系统在激励信号加入之后的状态。

起始状态是系统中储能元件储能情况的反映。

一般用电容器上的电压(0)c v -和电感中的电流(0)L i -来表示电路的储能情况。

若电路的输入信号中没有冲激电流或阶跃电压,则0时刻状态转换时有:(0)(0)c c v v +-= 和 (0)(0)L L i i +-=3.零输入响应和零状态响应的含义?零输入响应和零状态响应是根据系统的输入信号和起始状态的性质划分的。

如果系统无外加输入信号(即输入信号为零)时,由起始状态所产生的响应(也可以看作为由起始状态等效的电压源或电流源----等效输入信号所产生的响应), 称为零输入响应, 一般用()zi y t 表示;如果系统起始无储能,系统的响应只由外加信号所产生,称为零状态响应, 一般用()zs y t 表示。

根据等效原理,系统的起始储能也可以等效为输入信号,根据系统的线性性质,系统的响应就是零输入响应与零状态响应之和。

4.冲激响应与阶跃响应的关系和意义?冲激响应与阶跃响应都属于零状态响应,而且分别是特殊激励条件下的零状态响应。

冲激响应:是系统在单位冲激信号()t δ激励下的零状态响应。

对线性时不变系统,一般用()h t 表示,而且利用()h t 可以确定系统的因果性和稳定性。

当0t <时,若()0h t =, 则此系统为因果系统;反之,系统是非因果的。

若|()|h t dt ∞-∞<∞⎰, 则此系统为稳定系统。

反之,系统是不稳定的。

阶跃响应:是系统在单位阶跃信号()u t 激励下的零状态响应。

对线性时不变系统,一般用()g t 表示。

根据 ()()t u t d δττ-∞=⎰, 有()()tg t h d ττ-∞=⎰ 或: 根据()()du t t dt δ=,有()()dg t h t dt= 5.卷积积分的意义?卷积积分定义为: ()()*()()()y t x t h t x h t d τττ+∞-∞==-⎰其意义在于:将信号分解为冲激信号之和,借助系统的冲激响应()h t ,求解线性时不变系统对任意激励信号的零状态响应()zs y t 。

在数学计算时,一般分为5个步骤:Step1:变量代换, 将给定信号的自变量t 转换为τ ;例如:()(),()()x t x h t h ττ→→Step2:反褶,把两个参与卷积运算的信号中的一个信号反褶;例如:()()h h ττ→-Step3:平移,把反褶后的信号沿横轴(时间轴)τ 位移t ;例如:()()h h t ττ-→-Step4:乘积,把变换后的两信号相乘; 例如:()()x h t ττ-Step5:积分,根据位移不同导致的信号乘积的不同结果,在非零区间进行积分运算; 即21()()t t x h t d τττ-⎰。

第三章 傅里叶变换分析1.什么是频谱?如何得到信号的频谱?目前我们熟悉的是信号幅度随着时间变化而变化的常见表示方式,比如正弦信号的幅度随着时间按正弦函数的规律变化;另一方面,对于正弦信号,如果知道其振幅、频率和相位,则正弦信号的波形也惟一确定。

根据这个原理和傅里叶级数理论,满足一定条件的周期信号都可以分解为不同频率的正弦分量的线性组合,从而我们用各个正弦分量的频率-幅度、频率-相位来表示周期信号的描述方式就称为周期信号的频谱表示,随着对信号研究的深入,我们将周期信号的频谱表示又推广到非周期信号的频谱表示,即通常的傅里叶变换。

对于周期信号,其频谱一般用傅里叶级数表示,而傅里叶级数的系数就称为信号的频谱:()0110111()cos sin cos()T n n n n n n f t a a n t b n t c c n t ωωωϕ∞∞===++=++∑∑或 1()jn t T n n f t F e ω∞=-∞=∑其中: 122001() 0,1,2,...,1() 1,2, (2)Tjn t T n T n n n F f t e dt n T F a jb n F a ω--==±±±∞=-=∞=⎰对于非周期信号,其频谱一般用傅里叶变换表示:1()()2j t f t F j e d ωωωπ∞-∞=⎰ 其中: ()() j t F j f t e dt ωω∞--∞=⎰2.周期信号和非周期信号的频谱有何不同?周期信号的频谱可以用傅里叶级数表示,它是离散的、非周期的和收敛的。

而非周期信号的频谱用傅里叶变换表示,它是连续的、非周期的和收敛的。

若假设周期信号为()T f t , 非周期信号为0() ()220 otherwiseT T T f t t f t ⎧-<≤⎪=⎨⎪⎩,并假设周期信号()T f t 的傅里叶级数的系数为n F ,非周期信号0()f t 的傅里叶变换为()F j ω,则有如下的关系:1211()|()|n n n TF F j F j T T ωωπωωω====3.吉伯斯现象是如何产生的?当周期信号存在不连续点时,如果用傅里叶级数逼近,则不论用多少项傅里叶级数,只要不是所有项,则在不连续点必然有起伏,且其起伏的最大值将趋近于一个常数,大约等于不连续点跳变值的8.95%, 我们称这种现象为吉伯斯现象。

4.傅里叶变换的对称性如何应用?傅里叶变换的对称性是指:若 ()() ()|()|j f t F j F j e ϕωωω↔=则 ()() ()|()|j f t F j F j e ϕωωω--↔-=-;**()() ()|()|j f t F j F j e ϕωωω--↔-=-**()() ()|()|j f t F j F j e ϕωωω--↔=从而应用傅里叶变换的线性性质:实信号的傅里叶变换具有共轭对称性,即实信号的幅度谱具有偶函数的特点,而相位谱具有奇函数的特点。

实际中我们应用的基本都是实信号和实系统, 因而在频域分析时基本上都用到这一特性。

例如:某实系统的频响特性是:()()|()|h j H j H j e ϕωωω=;输入的是实信号,具有频谱:()()|()|x j X j X j e ϕωωω= 从而输出的也是实信号,且频谱为:[()()]()|()||()|h x j Y j H j X j e ϕωϕωωωω+=5.傅里叶变换的对偶性有何意义?傅里叶变换的对偶性建立了信号的时域表示波形和频域表示波形之间的对偶特点,即信号的表示形式不论是哪一种,在对信号的信息表示方面是等价的。

相关文档
最新文档