低渗透油田高效开采技术与发展趋势
低渗透油田地质的开发与研究
低渗透油田地质的开发与研究低渗透油田是指地层孔隙度低、渗透率低,油气难以流出的油田。
由于储层条件差、开发难度大,低渗透油田一直被称为“石油工业的最后一块净土”。
随着石油勘探技术的不断进步,对低渗透油田地质的开发与研究也取得了重大突破。
本文将从地质特征、开发技术、研究进展三个方面探讨低渗透油田的开发与研究。
地质特征低渗透油田的地质特征主要包括储层特点、孔隙结构和岩石性质。
首先是储层特点,低渗透油田的储层通常由致密砂岩、钙质岩、页岩等组成,孔隙度低,渗透率小,储层非均质性强。
其次是孔隙结构,低渗透储层中的孔隙多为微孔和裂缝,且孔隙连通性差,储层渗流路径复杂。
再者是岩石性质,由于低渗透储层中的岩石多为致密岩石,机械性质好,导致油气固溶程度高,开采难度大。
低渗透油田的地质特征表现为储层致密、孔隙结构复杂、岩石性质良好。
开发技术针对低渗透油田的地质特征,研究人员提出了多种开发技术,包括常规开发和非常规开发。
常规开发技术主要包括水驱开采、聚合物驱、化学驱等,通过注入一定的压力和添加剂改变储层条件,增加油气渗流能力,实现低渗透油田的高效开发。
而非常规开发技术则主要包括压裂增产、水平井开采、CO2驱等,通过改变传统的开采方式和技术手段,使得低渗透油田能够更有效地释放油气资源。
随着油田开发技术的不断创新,如微观尺度的渗流研究、地震勘探技术的应用等,也为低渗透油田的开发提供了新的思路和方法。
研究进展近年来,对低渗透油田地质的研究也取得了一系列进展。
首先是在储层地质特征的研究上,通过钻井、取心等野外调查手段,对低渗透油田的储层进行了深入的分析和研究,为油田的合理开发和开采提供了有力的地质依据。
其次是在开发技术的研究上,国内外学者通过大量的实验室和现场实验,不断改进现有的开采技术,提高了低渗透油田的开采效率和资源回收率。
最后是在新技术应用方面,如水力压裂技术的优化设计、复合驱油技术的研发应用等,为低渗透油田的高效开发和生产提供了技术支持和保障。
低渗透油藏渗吸采油技术进展与展望
低渗透油藏渗吸采油技术进展与展望摘要:基于中国石油扎实推进提质增效攻坚行动的开发背景下,我国低渗致密油气资源占整体能源开发的比重不断增加。
以长庆油田、大港油田等油田区块为代表,低渗油气资源十分丰富,分布范围广泛,是能源战略中亟待开采的主力油气储层。
但是在开发过程中,由于其自身储层物性较差,存在着孔喉细小、渗流阻力大、油层泥沙交互、非均质性严重等问题,常规开发技术仅能在开发初期实现高采高产,无法建立长期稳定的生产周期,导致低渗原油最终采收率较低。
相比来说,渗吸采油技术对低渗透油藏的增油效果显著,其利用储层流体重力作用和孔隙内毛细管力作用,将地层中的原油置换出来。
关键词:低渗透油藏;渗吸采油;采油技术引言油田开发是一项具体、复杂性工程,也正因如此,因此在油田开发的过程中,针对工作的要求比较高,油田开发工作的开展将影响着全民的经济发展,在全民经济发展的过程中占据着举足轻重的位置。
由此可见,油田开发工作的重要性,而在油田开发的过程中,自然离不开采油工程技术,良好的采油工程技术的采取不仅可以提升采油工作的质量和效率,最重要的是,可以提升开采的水平,获取更多的石油资源,进而促进国民经济的发展与提升,同时也可以提升国民对于石油的需求。
由此可见,探讨采油工程技术的发展趋势的重要意义。
1低渗透油藏概述深层石油储量是这样的渗透率低的油田,其丰度往往较低,因此具有一定的特殊性。
除了渗透率低外,低附着油库的利润率也很高,这使得注入资金难以注入,可能导致开采效率低下。
一般来说,油库渗透率低限制了开采的成功率。
此外,低注入油的性质自然存在裂缝,可能导致复杂而密集的环境。
现阶段,低注入油具有较大的流量阻力,目前还没有针对性的措施加以纠正。
因此,我们必须研究如何利用低等级石油储备,以提高低效率开采的效率和能源效率。
2低渗透油藏特征由于我国的实际原因,今天很难在真正发展的过程中满足现代社会的需要。
因此,为了确保石油能源能够提供可持续的能源供应,进一步提高所生产产品的质量,需要有科学和有效的程序来促进石油开采。
(完整版)低渗透油藏开采技术
探明低渗透储量增长很快
我国低渗透储量探明状况比例图
9
特殊油气藏开采技术
第一节 概 论
1.3 我国低渗透储量探明、动用、分布状况和特点
1、低渗透储量探明和动用情况
我国低渗透储量动用状况比例图
10
近期探明储量和累积探 明未动用储量中,低渗透储 量占主要部分。
特殊油气藏开采技术
1、采出程度高 地质储量采出程度24.63%,可采储量采出程度70.7%。
2、综合含水率高 总平均达到82.98%,生产水油比4.9,产量占全国45%的最大主
力油田-大庆喇萨杏油田更高,综合含水88.8%,生产水油比为8。
4
特殊油气藏开采技术
第一节 概 论
1.1 我国当前油田开发简况
3、剩余可采储量开采速度高 2001年为8.4%,而剩余可采储量开采速度一般控制在6-7%左
唐曾熊(1994)划分的低渗透油田储层渗透率为10-100×10-3m2,小于 10×10-3m2为采技术
第一节 概 论
1.2 低渗透油田的定义
低渗透油田指储层渗透率介于0.1~50×103m2之间的油田(李道品等,1997)。
低渗透储层的典 型特征是具有启动压 力梯度,呈现出非达 西型渗流特征。
特殊油气藏开采技术
第二节 低渗透储层地质特征
2.1 低渗透储层成因和沉积特征
1、低渗透储层成因类型-①沉积成因
近源沉积物多以 三段式为主,远源沉积 物多以两段式为主。
低渗透储层多段式粒度曲线(近源沉积)
27
特殊油气藏开采技术
第二节 低渗透储层地质特征
2.1 低渗透储层成因和沉积特征
1、低渗透储层成因类型-①沉积成因
关于低渗透油田的石油开采技术研究
关于低渗透油田的石油开采技术研究发布时间:2021-09-07T07:08:10.596Z 来源:《科学与技术》2021年5月第13期作者:张怀杰周小丽姚峰王凯[导读] 通过低渗透油井的开发技术的分析和研究张怀杰周小丽姚峰王凯中石油长庆油田分公司第五采油厂陕西省定边县 718600摘要:通过低渗透油井的开发技术的分析和研究,同种可以总结出在当前的我国油田资源储存量上,接近一半上都来自于一些特殊地区的低渗透油井当中,所以说,油田开采单位需要针对低渗透油井开发技术加以重点的研究,保证低渗透油井资源的开采效率和开发质量。
关键词:低渗透油田;石油;开采技术如何提高低渗透油田的开采效率,并且在低渗油田的开采工作当中,有效的避免开采环境对开展工作所造成的影响,就必须要不断的提高低渗透油田开采技术研究,以此来提高低渗透油田开采的工作效率。
1低渗透油田石油开采概况低渗透率意味着油藏渗透率较低,单井油含量不足,油田产量较少,但低渗透油田分布广泛,含油量较大,占全国石油储量的一半以上,因此对低渗透油田的石油开发变得重要起来。
同时,低渗透生产力油田生产规模已超过全国70%的总体建设规模,并具有不容忽视的发展潜力,因此,对石油的需求越来越大今天,低渗透油田的开发具有重要意义。
目前已探明的我国低渗透油田主要分布在偏远地区,地质条件较差,比如山区、页岩和盆地,难以建立相关的技术设备,工人也很难实现良好的技术开发策略,这给我国在矿业和研究员进行低渗透油田勘探方面带来了很大的困难,低渗透油田能源开发已经成为当前建设的主战场,成为新时期能源建设的主要方向,只有积极的将低渗透石油开发技术不断进行提高,才能为解决能源问题作出积极贡献。
2低渗透油田的石油开采技术研讨 2.1采取预填充水的技术方法低渗透油田的弹性能相对较低,这也是油井产量低的重要原因。
为了避免由钻孔的注水和强制停止注水引起的地层的压力下降,可以使用预填充水的方法。
在具体过程中,可首先排出液体注入油源。
国内外低渗透油田开发技术调研
九
六
○○
年 十
二
月
设计生产井
○ 152
注:底图为96年沙三上10顶构造图
文33块沙三上采油速度—采出程度关系曲线
采 3.5
油
速3
度
2.5
%
2
ÖÖÖÖ ÖÖÖÖ
25 采
出
20 程
7.612.1
50
澳大利 亚
1967
700-800 构造 10-25
5.7
小牛塘
美国
1943
1403 构造
61.3
北斯坦利
美国
岩性
14
300
朗吉累油田
美国
1943
2042 构造 33.6
25
小溪油田 比弗溪麦迪逊 快乐泉弗朗梯尔”A
”油藏
美国 美国
美国
多林纳维果德油藏 哈西.迈萨乌德
乌克兰 阿尔及
利亚
采收率%
8828
73
0.04
46
12000
82
0.16, 0.08
30
6.1
0.16, 0.08
42
约0.06 42
20400
77.4
0.16, 0.08
52
1457
24.8 0.16
46
1000
5.1
0.2
40
42.9
1
0.18
48
0.08
43
220000 1300 1.56
32
5047 390
22.5
7
6
ÊÊúÊÊÊ*104m3
5
4
提前6个月
3
提前1个月
低渗透油田开发技术研究
低渗透油田开发技术研究低渗透油田是指储层渗透率较低(通常小于0.1 mD)的油田,储量大,但开发难度较大,一直以来都被认为是石油勘探开发的难题之一。
传统的油田开发技术在低渗透油田中往往效果不佳,研究低渗透油田开发技术对于提高油田开发水平、丰富石油资源具有重要意义。
一、低渗透油田的特点1.储层渗透率低,水驱能力差2.成本高,投资回收周期长3.目前技术手段难以实现有效开发二、低渗透油田开发技术研究现状1.常规采油技术:包括常规油井开发、水驱开采、压裂等2.非常规采油技术:CO2驱替、聚合物驱替等3.先进采油技术:水平井、多级压裂、水力压裂等三、低渗透油田开发技术研究方向1. 储层改造技术研究储层改造技术是指通过采用化学驱油、物理方法改造储层,提高储层的渗透率和油水驱能力。
目前,聚合物驱替技术、CO2驱替技术等储层改造技术已经得到了一定的应用,但依然存在着很多问题需要解决,例如聚合物驱替技术在实际应用中存在成本高、渗透率难以提高等问题,储层改造技术的研究方向主要在于降低成本、提高效率。
2. 井网优化配置技术研究井网优化配置技术是指通过对油田井网结构进行优化调整,提高采收率的技术手段。
针对低渗透油田的特点,井网优化配置技术研究主要集中于井网布置密度、井网结构等方面的优化调整,以达到提高采收率的目的。
3. 先进开采技术研究先进开采技术主要包括水平井开采技术、多级压裂技术、水力压裂技术等。
这些技术可以有效地提高低渗透油田的采收率,但需要占用较多的资金和人力,如何降低开采成本、提高技术效率也是当前研究的重点之一。
四、低渗透油田开发技术研究面临的挑战1. 技术难题:低渗透油田开发技术研究面临着一系列的技术挑战,例如储层改造技术的成本高、效率低等问题,井网优化配置技术的井网结构优化方面的难题等。
2. 资金投入:开发低渗透油田需要大量的资金投入,而目前市场上尚未形成一套完善的投资回报机制,这也是制约低渗透油田开发的一个重要因素。
国内外高含水油田、低渗透油田以及稠油开采技术发展趋势
我国公布的国家“十一五”国民经济发展规划中将“单位国内生产总值能源消耗降低20%左右”作为一项重要任务指标,这一目标要求今后5 年内我国必须依靠科技进步,在能源开发、转化、利用等各环节提高效率、节约资源。
我国一方面石油资源短缺,而石油需求量逐年大幅增加,另一方面石油采收率不高,开发过程中浪费严重。
我国陆上油田采用常规的注水方式开发,平均采收率只有33%左右,大约有2/3 的储量仍留在地下,而对那些低渗透油田、断块油田、稠油油田等来说采收率还要更低些,因而提高原油采收率是一项不容忽视的工作,也是我国从源头节约石油资源的最有效途径之一。
由此产生的对石油高效开采技术的需求也将更为强烈。
分析国内外石油开采技术的发展态势,将有助于我国发挥优势,弥补不足。
1 高含水油田开发特色技术30%左右,“三高二低”的开发矛盾突出,即综合含水率高、采出程度高、采油速度高、储采比低、采收率低,仍有约较多的剩余石油残留在地下,这些残留在地下的剩余石油储量对于增加可采储量和提高采收率是一个巨大的潜力。
据估计,如果世界上所有油田的采收率提高1%,就相当于增加全世界2~3年的石油消费量。
因而通过技术手段提高高含水油田的采收率具有重要意义。
国内外情况已开发的油田进入高含水后期开发后,随着开采程度加深,地下油水关系、剩余油分布越来越复杂,非均质性更严重,给油田稳产和调整挖潜带来的难度越来越大。
目前我国东部许多主力油田已成为高含水油田,经过一次、二次采油后,仅能采出地下总储量的1.1 在油藏精细描述和剩余油分布研究的基础上,除采取强化采油措施外,国际高含水油田开发技术主要有:井网优化技术(包括细分层系、加密调整井、井网重组)、注水调整技术(包括不稳定注水、选择性注水、优化注水压力、提高产液量、调整注采井网、注污调剖等)、特殊钻井技术(包括水平井技术、大位移多靶点定向井、侧钻井技术等)、油层深部调剖技术等。
改善高含水期油田注水开发效果一直是国外油气开采领域的研究重点,国外在不稳定注水技术、水平井技术、油层深部调剖技术等方面具有明显优势。
低渗透油田开发技术
低渗透油田开发技术低渗透油藏的开发是一个世界性难题,开发技术的推广对于提高开采效果具有重要意义。
本文分析了我国低渗透油田的开发现状,探讨并展望了油田开发技术,以期为提高我国低渗透油田开发技术的应用效果,提供一定参考。
标签:低渗透油田;开发;工艺技术;现状;展望引言低渗透油田的开发难度较大,但其储层具有丰富的油气资源,开发潜力巨大。
如渗流规律、油层孔喉、弹性能量、见注水效果、产油指数、地应力等,都是低渗透油田开发效果的影响因素。
实践表明,合理采用先进的工艺技术,能够明显提升油田采收率。
目前,研究低渗透油田的开发技術,已经成为全球采油的一个热点话题。
1.低渗透油田开发现状1.1低渗透油田的开发特征低渗透油田,具有不同于中高渗透油田的开发特征。
它自然产能低,弹性能量小,而经压裂后增产的幅度较大,天然能量开采产量则下降很快。
与此同时,注水井的吸水能力较差,注水见效缓慢。
1.2低渗透油田的开发技术问题我国在低渗透油田的开发技术方面,主要存在以下问题。
第一,对低渗透油田的剩余油分布规律,认识不清。
第二,经过长期开发的低渗透油田,注采井网会出现套损、油井高含水转注等问题,最终会形成多注少采的格局,导致一部分开发单元局部注采失衡。
第三,在部署注采井网时,往往缺少对沉积微项类型和油田分布特征的综合分析,致使井网部署缺乏地质依据,从而降低了开发方案的合理性。
第四,注采井网对裂缝分布的考虑不足,致使油田注水开发之后,注入水沿着裂缝突进,油井含水量迅速上升,造成油井产量下降。
另外,裂缝性低渗透砂岩油藏在注水时,水窜现象严重。
2.低渗透油田开发技术分析2.1低渗透油田开发技术的应用2.1.1合理部署注采井网现阶段,对我国开发效果良好的低渗透油田进行分析得知,开发低渗透油田,需要紧密结合其裂缝特征,即天然裂缝和水力压裂形成的人工裂缝。
在注采井网的部署上,应当不断优化注水驱油时的面积扫油系统,避免注入水沿油井裂缝突进。
具体来说,首先,尽量使井排与裂缝的走向一致,以此获得较大的波及面积,避免油水井发生水窜现象。
低渗油田提高采收率机理技术发展论文
探讨低渗油田提高采收率的机理与技术发展摘要:低渗透油田开发过去一直以注水为主,目前注水开发技术投资较大且与经济效益之间的矛盾十分突出,而提高采收率是油田开发工作者的最终目的,因此,研究更经济有效的开采方式是进一步提高低渗透油田开发水平的新课题,针对低渗透油田的特点,介绍了有发展潜力的注气法、微生物采油、化学驱、电动力学法、震动波法等提高低渗透油田采收率方法的原理、适用性及今后的发展方向。
关键词:低渗透油藏;机理;提高采收率;技术发展【中图分类号】te357.46低渗透油田是一个相对的概念,世界各国的划分标准和界限因不同国家、不同时期的资源状况和技术经济条件不同而各异。
目前通常把低渗透油田的上限定为50×10-3μm2。
当前低渗透油藏提高采收率方法主要有以下几种:1 化学法化学法是应用于水驱油田最早的方法,各种化学驱的应用在国外有大大下降的趋势,但化学法中的聚合物驱或聚合物+碱+表面活性剂的复合驱却有扩大应用的趋势。
化学驱可分为表面活性剂驱、聚合物驱和碱水驱。
表面活性剂驱油技术是二次采油向三次采油的过渡技术,是单纯调剖后的接替技术,是既有提高波及系数也有提高洗油效率的提高原油采收率技术,因此是在相当长时间内起作用的技术。
表面活性剂驱油技术只有在充分调剖的基础上进行。
充分调剖的结果可使少量高效的驱油剂进入含油饱和度高的中、低渗透层,将油洗下来,随后聚并为油带。
油带在向前移动中继续聚并它所遇到的分散的油,使油带不断扩大,最后从油井采出,达到提高采收率的目的。
聚合物驱中最重要的一种聚合物是聚丙烯酰胺(pam),常用于流度控制和渗透率调整。
低渗透油藏一般不适合聚合物驱,因聚合物粘度高,低渗透油层很难注进,但表面活性剂驱和复合驱在低渗透油藏中有较大的发展空间,可以考虑选定一些区块,先作室内试验和可行性研究,如果技术和经济上都可行,可进行先导性试验,成功后推广。
2 注气法现在国外对注气法改善水驱油田开发效果给予了高度重视,称之为现代气法。
关于低渗透油田提高采收率的技术研究及应用
关于低渗透油田提高采收率的技术研究及应用【摘要】随着我国经济、科技的高速发展,我国油田领域发展也得到了推动。
在低渗透油田开采过程中也遇到了一些技术难点及其他问题,本文主要结合了我国近年来低渗透油田开采情况来探讨如何帮助提高油田采收率问题。
文中介绍了在低渗透油田开采已有经验的前提下,指出了可操作性、用于提高油田采收率的新型技术措施。
【关键词】采收率低渗透油田技术研究国内低渗透油田石油储量相关比较大,而以中渗透层和高渗透层油田开采不断转变为中高含水期开采作业,因此更加凸显出了低渗透油藏具有的重要性[1]。
因此,提高对低渗透油田开采的认识及了解,对于国内石油工业的不但发展起到非常重要的作用。
1 开采低渗透油田过程中出现的技术难点及其主要矛盾在开采低渗透油田中,裂缝问题是一个技术难点,体现在裂缝处出现严重水淹以及水窜情况,并且离裂缝位置较远的生产井,其实际注水作业较差。
其中问题较突出的是采油工艺很难与实际情况相互对应。
当前,我国大部分油田还是使用杆式抽油泵,这种工艺比较落后,因此容易出现抽油效率低,泵效差、地层供液不佳等问题。
因此,开采低渗透油田时容易发生低产油井现象。
开采过程中出现的矛盾体现在平面与层内以及层与层间等方面,如果是考虑开采技术放慢,矛盾表现为吸水能力降低、产油量及采收率比较低下,并且生产能力较低等。
2 探究低渗透油田开采相关技术及其现状分析2.1 开发油田之前进行技术评价分析开始开采低渗透油田之前都需要实行油藏评价,通俗来讲就是在油田预探环节帮助计算油田储量,采用一定的技术方法及工艺将其化成能有效开发并使用这些储量的一个工作过程。
我国对于低渗透油田进行油藏评价方式有区域储层以及单井、开发等方式,选择对应的评价方法及标准来开展评价工作。
区域储层评价:帮助探寻储油多的区域,从而实现探井少但是储量高、效益高的石油开采目标,帮助提高石油企业经济效益。
单井评价方式:这种方式是从沉积相分析、含油性评价、成岩作用以及储集空间评价等来开展研究工作。
低渗油田开发技术研究现状与发展趋势
油藏工程新进展论文班级:油工08-4学号:************姓名:***低渗油田开发技术研究现状与发展趋势低渗透油田在我国油田开发中有着重要意义。
我国新发现的低渗透油田占发现的油气田的一半以上,并且其产能建设规模占到总量的70%以上,已经成为油气开发建设的主战场。
虽然低渗透油田是一个相对的概念,其的划分标准和界限因国家、时期、资源状况和技术条件的不同也不j司,但它都是指油层储层渗透率低、丰度低、单井产能低的油田。
南于其自身的特殊因素,给开发带来很大的麻烦,注定钻井作业时也会面临很大的挑战,事故也随之产生。
如何安全、经济、高效地开发低渗透油田已被引起了高度重视。
(一)低渗油田开发概念严格来讲,低渗透是针对储层的概念,一般是指渗透性能低的储层,国外一般将低渗透储层称之为致密储层。
而进一步延伸和概念拓展,低渗透一词又包含了低渗透油气藏和低渗透油气资源的概念,现在讲到低渗透一词,其普遍的含义是指低渗透油气藏。
具体来说低渗透油气田是指油层孔隙度低、喉道小、流体渗透能力差、产能低,通常需要进行油藏改造才能维持正常生产的油气田。
目前低渗透储层的岩石类型包括砂岩、粉砂岩、砂质碳酸岩、灰岩、白云岩以及白垩等,但主要以致密砂岩储层为主。
世界上对低渗透油藏并无统一的标准和界限,不同的国家是根据不同时期的石油资源状况和经济技术条件来制定其标准和界限,变化范围较大。
而在同一国家、同一地区,随着认识程度的提高,低渗透油气藏的标准和概念也在不断的发展和完善。
目前,在我国石油行业中,一般将低渗透砂岩储层分为低渗透(渗透率50~10mD)、特低渗透(渗透率10~1mD )、超低渗透(渗透率1~0. 1mD)储层。
我国陆相储层的物性普遍较差,相当一批低渗透油田储层渗透率在10mD以下。
(二)低渗油田开发现状1、低渗透油田前期评价油藏评价,就是通过在对油田的预探中算出储量,用必要的工艺技术手段,将其转化为可经济有效开发动用储量的过程。
低渗透油藏挖潜增产技术与应用
低渗透油藏挖潜增产技术与应用低渗透油藏是指地下岩石孔隙度低、渗透率小的油藏,其开发面临诸多挑战,包括产量低、开采难度大、开发成本高等问题。
为了解决低渗透油藏的这些问题,提高油田的开采效率和经济效益,油田公司采用了一系列挖潜增产技术,在实践中得到了成功应用。
一、水平井技术水平井技术是开发低渗透油藏的主要方式之一,其原理是在油层水平方向钻探,增大油井与油层的接触面积,提高采油效率。
水平井技术可分为精细定向井和侧钻井两种,前者是在一般方向钻探的油井上进行调整,将井眼转向水平方向,以增大油与岩石的接触面积;后者是在井眼线以外打侧孔,进而延伸井眼,增大开采面积。
二、增油剂技术增油剂技术是一种通过加入化学剂来改变原油物理、化学性质,促进原油流动并提高采收率的技术。
常用的增油剂包括表面活性剂、聚合物、油溶剂等,它们能够改变油藏孔隙的表面张力,减小孔隙压力,从而提高原油采收率。
增油剂技术被广泛应用于低渗透油藏的开发和优化中,取得了良好效果。
三、人工压裂技术人工压裂技术是将深层岩石通过压裂将其切断,并在岩石空隙中注入高压水,使油藏中的原油通过空隙流动,提高采收率的一种技术。
在低渗透油藏中,人工压裂技术可帮助原油穿过厚压力层和多层岩石,流到井口,提高采收率。
该技术在国内外均得到广泛应用,常见的人工压裂方式包括穿过压力层压裂、均质压裂、局限性压裂等。
四、地下水驱技术地下水驱技术是通过向油藏注入地下水或添加水驱剂,使原油温度、粘度降低,从而提高采收率的技术。
该技术适用于高粘度、低渗透或深埋油藏中,能够降低开采成本,提高经济效益。
地下水驱技术可分为天然水驱和人工水驱两种,前者指原油层天然地含有足够的水,可利用其水驱作用提高采收率,后者是通过注入非天然地下水或添加水驱剂来实现采收率的提高。
总之,针对低渗透油藏开发面临的问题,依托高新技术、创新开发方式和完善管理体系等,油田公司在实际应用中不断探索创新,取得了显著成效,为保证油气资源的可持续利用做出努力。
低渗透油藏开采方法综述和展望
低渗透 油 田在开 发过 程 中主要暴 露 出地层 压力 下 快 、 水井 注 注 水压 力上 升快等 问题 , 针对 这些 特点 和 问题 注水 对
方式进 行调 整 , 以提高 注水 压力 , 保证 注水 量 。
2 1 超 前注水 .
水、 间歇注 水 。
收 稿 日期 :0 9 I 一 2 20 一 i 8 作 者 简 介 : 岩 光 (9 3 ) 女 , 徐 18 - , 中国 石 油 大 学 ( 东 ) 油 工 程 学 院 在 读 研 究 生 , 究方 向 : 气 田 开发 工 程 。 华 石 研 油
21 年第 4 00 期
3 中 国 石 油 天然 气 勘 探 开 发 公 司 ,E . j京 103) 0 0 4
273; 5 2 7
摘 要 : 低渗透 油 田储 量在 油藏 总储量 中 占有相 当大的比 例 , 由于 其储层物 性 差 、 流机 理复 杂 , 渗 因 而单 井 产量 、 采收 率低 , 开发 难度 大 。 通过 文 献调研 , 结 了在现 有技 术 条件 下 国 内外低渗 透 油 田开 采方 总
年陕 北三 叠 系石油 勘探 取 得重 大 突破 。1 9 , 95年 在 安 塞 油 田低渗 透 油 藏开 发 技 术实 验 获得 成 功 , 投 并
入规模 开发 。而 靖安油 田后来 居上 , 2 0 于 0 5年安 塞 油 田的 原油 产量 突 破 2 0万 吨 时 , 安 油 田达 到 了 0 靖 3 0万吨 。2 0 年 在吴 旗油 田采用 矩形 井 网开展超 0 06
.
徐岩光等 低渗透油藏开采方法综述和展望
2 9
该 技 术 很 早 就 在俄 罗斯 和 美 国 开 始工 业 应 用 ,
低渗透油气田高效开发钻完井关键技术
低渗透油气田高效开发钻完井关键技术唐 波* 唐志军 唐洪林 耿应春(胜利石油管理局钻井工艺研究院 山东东营 257017)摘要:目前我国低渗透油气产能建设规模占总量的70%以上,已成为油气田开发建设的主战场,低渗透油气田的开发关键在于要高效开发,最大限度的获得经济效益,首要任务就是要解决高效钻井问题。
优化设计技术、增加泄流面积钻井技术、储层保护技术及提高水平井开发效果完井技术是实现低渗透油气田高效开发的关键技术,本文讨论了这些技术国内外发展现状、应用情况、存在的问题及发展趋势。
主题词:低渗透油气田、优化设计、泄流面积、储层保护、完井1.概述在我国剩余石油储量、探明天然气地质储量中,低渗透油气资源占50%以上,低渗透油气产能建设规模占总量的70%以上,低渗油气资源已成为主要勘探开发对象,尽管我国低渗透油气藏的储量巨大、资源丰富,但总体来说开发效果并不理想,国外大公司低渗透油田的采收率平均为35.8%,国内低渗透油田的平均采收率为23.3%,比国外低12.5%。
我国低渗透油气田之所以动用程度差、采收率低,主要是由于我国低渗油气藏普遍埋藏较深、地质条件复杂、开发难度较大,存在多项开发矛盾和问题,影响了开发效果。
低渗透油气藏的开发及钻井技术存在以下难点:(1)缺乏配套的储层描述和优化设计技术;(2)钻井技术手段相对单一,制约了整体开发效果;(3)井眼轨迹控制和有效钻穿储层难度大;(4)储层孔喉细小,压敏、水敏强,储层保护难度大;(5)完井方式单一,缺乏完井整体优化设计技术及完井系列。
2.研究现状和发展趋势国内外针对低渗透油气藏提高采收率技术进行了大量的探索和实践,但研究程度远远落后于中高渗砂岩油气藏,主要集中在对低渗透油气藏基本地质特征的描述、增加产能和提高开发效率等方面,在低渗油气田高效开发的钻井优化设计技术、高效钻井技术、储层保护技术及完井技术等方面还不成熟,急需完善配套,制约了低压低渗透油气藏的经济有效开发。
低渗透油藏挖潜增产技术与应用
低渗透油藏挖潜增产技术与应用
低渗透油藏是指地下储层渗透率较低的油藏,渗透率一般小于0.1mD。
由于地下储层
的渗透率较低,油井生产能力有限,开采效果不理想。
为了提高低渗透油藏的开采效果,
需要应用挖潜增产技术。
低渗透油藏挖潜增产技术是指通过一系列的措施和方法,提高低渗透油藏的有效渗透率,增强油藏开采能力,从而实现增产的目的。
1. 水平井技术:通过将水平井钻进低渗透油藏的稀油层,利用水平段延长油井与油
层的接触面积,增强有效渗透率,提高油井的生产能力。
水平井还可以采用人工增强采油
措施,如酸化、压裂等,进一步提高油井产能。
2. 插水增效技术:在低渗透油藏中,通过插入高压水驱使油层中的油向油井移动,
增加油井的产能。
插水增效技术可以采用常规的注水井,也可以采用注水井+抽油井的方式。
3. 低渗透油藏改造技术:通过改造低渗透油藏的储集层,提高渗透率。
常用的低渗
透油藏改造技术包括酸化、压裂、注气等。
酸化可以通过注入酸液降低储集岩的酸溶性,
增加孔隙度,提高储集层的渗透率。
4. 油藏压裂技术:通过注入高压液体使低渗透油藏的储集岩产生裂缝,从而增加油
层的渗透率。
油藏压裂技术可以采用水力压裂、气体压裂、化学压裂等不同方式进行。
低渗透油藏挖潜增产技术的应用可以大幅提高低渗透油藏的开采率,增加油井的产量。
挖潜增产技术的应用需要充分考虑地下储层的特点和条件,选择合适的技术手段,进行有
效的实施。
挖潜增产技术的应用还需要与现有的油田开采方案相协调,充分发挥技术的优势,提高整体的开采效果。
低渗透油田压裂工艺及趋势
低渗透油田压裂工艺及趋势低渗透油田是指地下储层渗透率低于0.1md的油田。
由于地下储层孔隙度小、孔隙连通性差、油气持留性高等特点,低渗透油田勘探开发难度大,生产成本高。
为了提高低渗透油田的开采率,压裂技术被广泛应用。
本文将介绍低渗透油田压裂工艺及未来发展趋势。
一、低渗透油田压裂工艺1. 压裂原理低渗透油田采用压裂技术的主要目的是通过增加地层渗透率,提高油层产能。
压裂原理是通过在井孔周围形成高压区,使压裂液进入油层裂隙并在其中扩展,最终形成人工裂隙。
这一过程能够直接增加油层有效渗透面积,提高油井产能。
2. 压裂液压裂液是进行压裂作业的关键材料。
常见的压裂液包括水基压裂液、油基压裂液和泡沫压裂液。
水基压裂液价格低廉,但对环境的影响较大;油基压裂液对环境的影响较小,但价格较高;泡沫压裂液具有低密度、高扩展性等优点,适用于低渗透油田的压裂作业。
3. 压裂工艺流程低渗透油田压裂工艺一般包括以下几个步骤:确定压裂目标层段、设计压裂参数、进行地层力学分析、选取合适的压裂液配方、进行裂缝设计和力学模拟、执行压裂作业、实施压裂效果评价等步骤。
1. 技术创新随着油价的不断上涨以及对能源安全的重视,低渗透油田的开发已成为各国石油工业的重点。
为了降低开发成本、提高开采效率,各种新型的压裂技术不断涌现。
水力压裂技术、致密砂岩压裂技术、纳米压裂技术等不断推陈出新,为低渗透油田的开发提供了新的技术手段。
2. 智能化智能化是当今油田开发的一个重要趋势。
在低渗透油田的压裂工艺中,智能化技术能够提高作业效率、降低安全风险。
智能化压裂液输送系统、智能化压裂泵技术等,都能够大大提高油田压裂作业的效率和安全性。
3. 环保化随着全球环保意识的提高,环保要求也日益严格。
在低渗透油田的压裂作业中,环保化已成为不可忽视的因素。
未来压裂液的选择将更加关注其对环境的影响,压裂废水的处理技术将更加成熟,以满足环保要求。
4. 数据化数据化已成为油田开发的新趋势。
低渗透油藏采油技术的现状及前景研究
低渗透油藏采油技术的现状及前景研究摘要:采油作用是国内绝大数低渗透油藏的主要采油机理。
渗吸采油的效果受诸多因素的影响:储层特征、采油制度、表面活性剂的物理化学性质等,其作用机理也有待进一步的研究。
指出了渗吸采油存在的问题和对未来研究方向的展望。
关键词:提高采收率;低渗透油藏;现在随着我国大多数油田开发阶段到达了中后期,提高低渗透油藏原油采收率的必要性日益凸显。
常规油藏的大规模开发,导致可采储量逐年急剧下降,低渗透油藏的勘探开发已成为石油工程师们关注的焦点。
然而,由于这些储层孔隙度低、渗透率低、非均质性强,常规的开发方法如注水开发等效率普遍较低。
此外,注水开发往往会出现水淹、地层能量递减速率快、注水井周围水资源聚集、滞留层的原油无法流动等问题。
近年来,渗吸采油因其操作简单、成本低、效率高等优点而备受关注。
采油提高采收率作用机理主要包括:降低界面张力、改善岩心表面润湿性、加强裂缝和基质之间的油水交换能力等。
尽管目前现场采油数据很少,但通过实验室实验或模拟进行的采油研究很多。
本文系统综述了渗吸采油技术的理论和实践,简述了采油作用机理,分析了储层特征、采油制度、表面活性剂的物理化学性质对采油作用的影响,报道了研究渗吸采油的实验方法技术研究进展,并提出了改善渗吸采油效果的建议。
1基本概念采油是指润湿相通过毛细管力或重力取代非润湿相的侵入过程。
油藏采油是指当油藏处于水湿时,其基质体系在毛管压力驱动下从裂缝系统中吸入水或压裂液,然后将基质体系中的油驱入裂缝系统。
根据采油方向的不同,可将油藏采油分为同向采油和逆向采油。
同向采油受重力控制,其水的吸入方向与油的排出方向相同;逆向采油是指水的吸入方向与油的排出方向相反,主要受毛管压力的控制。
根据基质与裂缝间的作用形式和规律的不同,可将油藏采油分为静态采油和动态采油。
2低渗透油藏采油技术的现状问题部分石油企业在发展过程中很少对现代化的采油工艺技术进行研发和使用,这些企业觉得其现阶段用到的采油技术已经实现其日常生产需求。
低渗透油藏注CO2提高采收率技术与应用
参考内容
低渗透油藏是一种常见的石油资源,其具有储层渗透率低、自然产能低、开采 难度大的特点。为了有效开发低渗透油藏,CO2驱提高采收率技术得到了广泛。 本次演示将介绍低渗透油藏CO2驱提高采收率技术的进展及未来展望。
一、低渗透油藏CO2驱提高采收 率技术进展
1、技术原理和基本概念
CO2驱提高采收率技术的基本原理是将CO2注入油藏,通过物理溶解和化学反 应,降低原油黏度,增加原油流动性,从而提高原油采收率。此外,CO2还可 以扩大油藏的泄油面积,提高油藏的驱替效率。
(1)加强基础研究。深入研究CO2驱提高采收率的机理和规律,为优化注入方 案提供理论支持。
(2)提高技术装备水平。研发更加高效、智能的注入设备,提高CO2的利用率 和油藏的采收率。
(3)推动绿色发展。通过提高CO2的封存率和利用效率,降低CO2驱提高采收 率技术的环境影响。
(4)加强国际合作。通过与国际同行进行交流和合作,借鉴先进技术和经验, 推动CO2驱提高采收率技术的发展。
CO2驱提高采收率技术已经在国内外多个低渗透油藏得到应用。在国内,大庆 油田、胜利油田等均开展了CO2驱提高采收率试验,并取得了良好的效果。同 时,在加拿大、美国、挪威等国家,CO2驱提高采收率技术也得到了广泛应用, 成为提高低渗透油藏采收率的重要手段之一。
二、低渗透油藏CO2驱提高采收 率技术展望
1、技术难点和挑战
尽管CO2驱提高采收率技术具有很多优点,但是在实际应用中仍存在一些技术 难点和挑战,如CO2的来源和运输、注入设备的能效、注入对储层的伤害等。 此外,由于低渗透油藏的地质条件复杂,注入方案的优化和调整也面临着困难。
2、未来发展方向和应用前景
为了更好地应用CO2驱提高采收率技术,未来的发展方向可以从以下几个方面 展开:
国内外油田提高采收率技术进展与展望
国内外油田提高采收率技术进展与展望一、本文概述随着全球能源需求的持续增长,石油作为主要的能源来源之一,其开采和利用一直受到广泛关注。
然而,随着油田开发的深入,传统的开采方法已经难以满足日益增长的能源需求。
因此,提高油田采收率成为了当前石油工业面临的重要挑战。
本文旨在概述国内外油田提高采收率技术的最新进展,分析现有技术的优缺点,并展望未来的发展方向。
通过对比分析国内外技术差异和发展趋势,为油田提高采收率技术的发展提供借鉴和参考。
本文首先介绍了提高油田采收率的重要性和紧迫性,阐述了国内外油田提高采收率技术的发展现状。
然后,从物理法、化学法、微生物法等方面详细介绍了国内外提高采收率技术的研究和应用情况。
在此基础上,对各种技术的优缺点进行了分析和比较,指出了各种技术的适用条件和限制因素。
本文展望了油田提高采收率技术的发展趋势和未来研究方向。
随着科技的不断进步和创新,油田提高采收率技术将不断得到优化和改进,为实现石油工业的可持续发展提供有力支持。
二、国内油田提高采收率技术进展近年来,随着国内油田勘探开发的不断深入,提高采收率技术已成为行业内研究的热点和难点。
在这一背景下,国内油田在提高采收率技术方面取得了显著的进展。
注水技术是国内油田提高采收率的重要手段之一。
通过优化注水方案、提高注水质量和注水效率,国内油田成功实现了油藏的有效驱动和采收率的提升。
同时,针对注水过程中出现的问题,如注水井堵塞、注水压力不足等,国内油田也积极探索了相应的解决方案,确保了注水技术的顺利实施。
化学驱油技术在国内油田得到了广泛应用。
通过向油藏中注入化学剂,改变油水界面性质和油藏流体的流动性,从而提高原油采收率。
目前,国内油田已经成功应用了多种化学驱油技术,如聚合物驱、表面活性剂驱、碱驱等,并取得了显著的增产效果。
气驱技术也是国内油田提高采收率的重要方向之一。
通过向油藏中注入气体(如氮气、二氧化碳等),形成气液混相或气水交替驱动,从而提高原油采收率。
低渗透性油藏油田开发及该技术的发展
低渗透性油藏油田开发及该技术的发展低渗透性油藏是指储层渗透率较低的油藏,其特点是油水两相的迁移速度较慢,开发难度较大。
然而,随着石油资源的逐渐枯竭,低渗透性油藏的开发变得越来越重要。
本文将重点讨论低渗透性油藏油田开发以及该技术的发展趋势。
对于低渗透性油藏的开发,一种常用的技术是水平井技术。
水平井是一种通过特殊钻井工艺在注水或采油井中钻出一段接近水平的井筒,以增加井筒和储层的接触面积,提高油气产量。
水平井技术在低渗透性油藏的开发中具有突出的优势。
它能够在较少的地质资源下获得更高的产能,延长油田的生产时间,最大限度地提高油气采收率,并减少环境影响。
近年来,随着水平井技术的不断发展,出现了一些应用于低渗透性油藏的新兴技术,如水平井分段压裂技术。
该技术是通过将水平井划分为多个段,分别进行射孔和压裂操作,以最大限度地增加储层的有效压裂面积和产能。
与传统的水平井技术相比,水平井分段压裂技术能够更好地克服低渗透性油藏开发中的难题,并提高开采效果。
另外,随着油田开发技术的不断创新和进步,一些新型工程技术也逐渐应用于低渗透性油藏的开发中,如地震预测技术和电子井壁阻挠剂技术。
地震预测技术可以通过检测地下岩石体的声波传播和反射特征,提供准确的储层参数和边界信息,为低渗透性油藏的定位和开发提供重要参考。
电子井壁阻挠剂技术是一种在水平井中注入的化学物质,可以改变储层孔隙结构和渗透性,增加油水接触面积,提高油气采收率。
此外,随着工程技术的不断发展,油藏模拟技术也在低渗透性油藏的开发中发挥着越来越重要的作用。
油藏模拟技术是通过建立数学模型来描述储层的地质特征和物理性质,以预测油藏的产能和开采方案,并为开发设计提供决策依据。
油藏模拟技术能够帮助工程师更好地了解低渗透性油藏的开发潜力,优化井网布置,减少开发成本,并最大限度地提高油气采收率。
未来,随着科学技术的不断进步,低渗透性油藏的油田开发技术将继续取得突破性的进展。
对于低渗透性油藏的开发,我们应该加强对新技术的研发和创新,提高油气采收率,同时注重环境保护和可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Davg=103.70umD50=101.30um Dmax=116.00um
2、天然裂缝伤害:残渣、冻胶
残渣堵塞天然裂缝,降低裂缝渗透率;破胶剂难 以进入天然裂缝,冻胶破胶不彻底,增加油气渗流 阻力。
3、填砂裂缝伤害:滤饼、残渣
支撑剂嵌入滤饼降低填砂裂缝导流能力; 残渣堵塞裂缝孔隙。
压裂液残渣伤害实验研究
与破胶剂,不含残渣,不会堵塞地层;
减少了砂(支撑剂)的用量及运砂的费用
所以
清水压裂与常规冻胶压裂在相同规模的作业中可节省费用
40% —60%。对于那些渗透率很低的边际油气田,清水压裂 将是开采这类油气田的重要措施,也是降低采油成本,增加
动用储量的有效途径。
压裂液排液或回排的监测常规方法
1、记录泵入水的回采率,但是此值受地层产
清水压裂增产机理-新解释 剪切膨胀扩展裂缝-基本假设
认为剪切力能使裂缝壁面从原位置上移动,从而
产生不重合并出现许多粗糙泡体表面,由于存在剪切 滑移,在裂缝延伸过程中也能使已存在的微隙裂开, 并使断层面及其它弱面张开,这些现象可以发生在水 力裂缝的端部或裂缝周围的滤失带中。
剪切膨胀扩展裂缝-物理过程
水基压裂液:
渗透率伤害率为74.8~97.6%。
压裂液进行添加剂优化后:渗透率伤害率为63.0~88.0%。
破胶液残渣粒度与孔喉直径对比
20
0.03%NH
15
10
5
破胶液残渣粒 度大于孔喉直 径,无颗粒侵 入伤害!
10.0 8.0 6.0 4.0 2.0 0.0
¿¿¿¿¿ ¿〃 ¿¿°
Percentage,%
出水的影响很大。
返排率? 2、计量排液中的聚合物浓度,此方法操作上
3、分析注入前后的聚合物溶液以确定碳水化
非常复杂,测试结果也不十分确切,由于滤失而 使聚合物浓度提高,在泵入水回采率的计算方面, 可能产生误导。 合物的总含量,从而计算水的回采率。此方法同 样受缝中滤失的影响。
问
?题
获得的水回采率都不是从作业中各个压
压裂液浓度伤害对比:Carbo Pro 20/40支撑剂
压裂液浓度伤害对比
46 44 42
250ml(0.5%压裂液残渣) 250ml(0.4%压裂液残渣) 多项式 (250ml(0.4%压裂液残渣)) 多项式 (250ml(0.5%压裂液残渣))
导流能力μ m 2 -cm
40 38 36 34 32 30 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 时间(小时)
研究方法-数值模拟方法
(地层-裂缝模型,单相与气水两相)
采用油藏—地质力学—压裂模拟的综合模型 进行拟合,拟合时的限制条件如下:
压裂压力约在81~84.5 MPa之间;
裂缝微震成像的半长约为106 —137米,垂直于缝
的宽度很大(每边可达15米--地层变形的范围!);
返排期间水产量递减很快,到生产晚期基本为常数; 不稳定试井得出的缝长较短,缝导流能力约为
平均进水深度 5-10英尺
生产10天后裂缝附近地层含水饱和度的分布
水侵入区域在井底周围已大大减少,但 在缝端部的含水饱和度仍然很高,此处 的排液程度较低,排液的初速度与井底 周围的水饱和度、滤失区的厚度有关, 并受控于随应力而变化的渗透率。
水锁和水相渗透率对产量影响
单相气与气水两相流对产 量影响不大! 因此,水锁影响并不大!
支撑剂 渗透率0.001至0.05毫达西 排量为1.6方到13方,用水量约为64方到3180方, 无论纵向上和横向上都非常不均质,纵向上
砂比3.5%,少数作业中使用砂比达到15%的尾随
前置液占40%到50% 砂-页岩交替,砂层总厚为 1000到1500英尺
新工艺-清水压裂与冻胶压裂效果比较
0 0.01
0.1
0.1 1 10 100 1000
1
10 ¿¿¿ ± ¿ ¿ um
100
1000
Pore Throat Diameter,um
Particle Diameter ¿¿〃 ¿ ¿of ¿ Unbroken ¿¿ ú ¿ ¿ Gel, um
Davg=11.59um D50=0.109um Dmax=10~100um
的影响。
新工艺 -清水压裂中水锁及岩石物性应力依赖性的影响
有 效 厚 度:169ft 孔 隙 度:8.89%
压裂施工及监测情况
滑溜水1590方
40/70目涂层砂
(RCS)50方
水平渗透率:0.0297 md 垂向渗透率:0.00297md
平均排量12方 井口平均作业压力
53 MPa
微地震成象监测
质地强硬的岩石有许多粗糙的节理,很高的抗剪程度,很好的剪切
与裂缝导流能力的耦合性,清水压裂适用(裂缝性致密砂岩、灰岩
地层等);
强度较弱的岩石如泥质砂岩就不适合清水压裂;
储层的裂缝网状分布及流体流动过程都可以用以评价是否应该采用
清水压裂。
清水压裂技术-结论
由于清水压裂
可免去制备冻胶所消耗的化学剂量,包括成胶剂、交链剂
EXT-9气井清水压裂加大量砂子压后采气曲线
EXT-15气井混合清水压裂压后采气曲线
清水压裂对致密砂岩地层伤害评价 研 究 的 目 的
在上侏罗系砂岩的博西尔地层进行了清水压 裂,施工中泵入大量清水并在裂缝扩展过程中又 毫无防滤措施,在这样致密的砂层内毛管力自吸 现象又严重地存在;同时考虑到泵入水在裂缝扩 展过程中,也会受到应力依赖的渗透率的影响。 所以采用数值模拟方法研究这些因素对气井产能
裂液段中得到,是笼统的整个作业过程 中的情况。 有时返排率很高,但压后生产动态很差! (往往是最后注入的一段液体未排出堵 塞了裂缝!)
压裂液排液或回排的监测新方法
性质各异的压裂用化学示踪剂(CFT)
特点: 方法:
示踪剂具有独特性质,各不相同:它们彼 在泵的低压部分注入,浓度是1ppm。压裂 此不起反应,与岩层或金属管类也没有化学 后返排每隔15分钟采样一次一直到有天然气 反应;不随时间或温度的变化而发生降解, 突破,可以分析到样品中1 ppb的含量。由于 示踪剂在极低浓度( 分层分液段泵入性质独特的 50ppt)下仍可被察觉。 CFT,可用物质平 无论在运输、泵入或废弃时,都是安全的。 衡方法计算分层,分液段回排效率,从而获 易溶于水,滤失后也不会浓集。 得每口井的回排效率。
低渗透油田高效开采技术与 发展趋势
主
要
内
容
制约低渗透油藏高效开采的关键因素 国外水力压裂技术的新进展
制约低渗透油藏高效开采的关键因素
建立有效的注采驱动压力体系
(井网类型、井网与裂缝方位匹配、井距、 注采压力、启动压力等)
水力压裂增产与伤害的协调
常规油藏
注 水 井 采 油 井
低渗油藏
注 水 井 采 油 井
1、基质伤害:滤液的伤害
乌审旗岩心水基压裂液伤害结果
井号 145 148 145 148 岩心号 5-67-16 3-62-6 4-67-23 1-30-4 伤害前气渗(md) 0.221 0.3999 0.458 0.234 伤害后气渗(md) 0.0449 0.018 0.011 0.059 伤害率(%) 79.67 95.49 97.59 74.78
90 年代中期安纳达柯石油公司-东得克萨斯棉花谷上侏
工艺技术-混合清水压裂法:
罗纪博西尔砂层 在工艺实践中发现,对某些储层清水压裂导 储层情况:
流能力得不到保证,采用了混合清水压裂工艺: 博西尔砂层位于棉花谷砂岩之下,是黑灰色页岩间夹有
细砂、粉细泥质砂岩的大厚层 用清水造一定的缝长及缝宽后,继以硼交链的
1.52~3dc.cm。
压裂作业拟合结果
拟合时的计算参数
1 渗 透 率:0.03-0.0107 md 2 导流能力:1.52 dc.cm 3 填砂缝长: 67 m
排液与生产时间的拟合
Qw
Qg
停泵时刻裂缝壁面附近地层含水饱和度分布
停泵时, 滤失区达 到了15英 尺
பைடு நூலகம்
停泵时井筒附近地层含水饱和度分布
的盐酸500方。
清水压裂技术应用实例1
压裂工艺: 1995年UPR公司-东得克萨斯盆地棉花谷致密、
采用大量清水与少量的化学剂(降阻剂、活性剂、 低渗砂岩地层
施工概况:泰勒段砂岩,对150口井进行了250次
储层情况:
136吨之间
防膨剂等)
20/40 目的 Ottawa 砂子,总砂用量在 2273 公斤到 的清水压裂
渗透率伤害(粘土膨胀、堵塞等) 对产量影响
因此,清水压裂也应 针对性地选择添加剂, 以减少对储层的伤害!
裂缝附近地层渗透率降低2 %,产量降低10~15%!
清水压裂增产机理-常规解释
岩石中的天然裂缝多半是表面粗糙,闭合后仍能保持 一定的缝隙,这样形成的导流能力,对低渗储层来说 已经足够了。这种情况已在实验室中观察到。 常规冻胶压裂,由于排液不完善,裂缝的导流能力受 残渣伤害等有所降低,清水压裂基本上不存在不易排 液的问题。 清水(线性胶)易于使砂子沉到垂直缝周边较细的天 然裂缝中,扩大了渗滤面积。 压裂过程中岩石脱落下来的碎屑(特别是在页岩地层 中)它们可能形成“自撑”式的支撑剂。
粘土的主要成分是绿泥石与伊利石
3.6 — 4.2 公斤/方的胍胶压裂液,带有20/40、
平均孔隙度与渗透率分别为6~10%及0.005 ~ 0.05毫达西
40/70 目砂子,从而产生较高导流能力的水力裂缝。 低渗储层的含水饱和度为 50%,高渗透率储层为5%
EXT-4气井清水压裂加少量砂子压后采气曲线