二重积分习题及答案

合集下载

数学分析21.1二重积分的概念(含习题及参考答案)

数学分析21.1二重积分的概念(含习题及参考答案)

第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。

第九章-二重积分-复习题答案

第九章-二重积分-复习题答案

第九章 二重积分 复习题答案一、单项选择题1、设D 是由曲线x y x 422=+围成的闭区域,则()⎰⎰+Dd y x f σ22=( C )A.()dr rf d ⎰⎰πθ012B. ()rdr r f d ⎰⎰-22sin 402ππθθC.()rdr rfd⎰⎰-22cos 402ππθθ D.()dr r f d ⎰⎰-22cos 402ππθθ2、设f 是连续函数,D 是由0,122≥≤+y y x 确定的区域,则=+⎰⎰σd y x f D)(22( A )。

A 、 10()d rf r dr πθ⎰⎰ B 、2100()d rf r dr πθ⎰⎰C 、10()d f r dr πθ⎰⎰ D 、210()d f r dr πθ⎰⎰3、设22:14, D x y ≤+≤则2Ddxdy =⎰⎰( D ) A.3π B.4π C.30π D.6π 4、设D 是由直线,2,1y x y x y ===围成的闭区域,则Ddxdy =⎰⎰( A 、12 B 、14 C 、1 D 、325、设积分区域D 是由圆22x y Ry +=围成,则二重积分22()Df xy d σ+=⎰⎰( D )A 、2sin ()00R d f r dr πθθ⎰⎰B 、22sin ()00R d f r rdr πθθ⎰⎰ C 、2sin ()00R d f r dr πθθ⎰⎰D 、2sin ()00R d f r rdr πθθ⎰⎰6、若{}22(,)12D x y x y =≤+≤,则二重积分Dd σ⎰⎰=( C )A.2π B. 2πC. πD. 3π二、填空题:1、变换二次积分⎰⎰⎰⎰-+=21201),(),(yy dx y x f dy dx y x f dy I 的积分次序,则=I ⎰⎰-=12),(xxdy y x f dx I ;2、改变二次积分210(,)y y dy f x y dx ⎰⎰的积分次序,则I = ⎰⎰1),(xxdy y x f dx ;3、改变二次积分210(,)x dx f x y dy ⎰⎰的积分次序,可得21(,)x dx f x y dy ⎰⎰=_______⎰⎰11),(ydx y x f dy ;4、若D 是由直线 1,1,1,1=-==-=y y x x 围成的矩形区域,则⎰⎰=Ddxdy 25、交换二次积分1(,)00yI dy f x y dx =⎰⎰的积分次序,则I =⎰⎰11),(xdy y x f dx ___;三、计算题:1、求⎰⎰+Ddxdy y x )2(,其中D 是由曲线2x y =和0=+y x 围成的闭区域. 101|)1022()2223(|)22()2()2(:0154314320120122-=---=⋅---=⋅+=+=+------⎰⎰⎰⎰⎰⎰x x x dx x x x dxy xy dy y x dx dxdy y x xx Dxx解2、求σd y x D⎰⎰+22,其中D 是由圆周x y x 222=+所围成的闭区域。

数学分析21.2直角坐标系下二重积分的计算(含习题及参考答案)

数学分析21.2直角坐标系下二重积分的计算(含习题及参考答案)

第二十一章 重积分 2直角坐标系下二重积分的计算定理21.8:设f(x,y)在矩形区域D=[a,b]×[c,d]上可积,且对每个x ∈[a,b], 积分⎰dc dy y x f ),(存在,则累次积分⎰⎰dc ba dy y x f dx ),(也存在,且⎰⎰Dd y x f σ),(=⎰⎰dc b ady y x f dx ),(.证:令F(x)=⎰dc dy y x f ),(, 分别对区间[a,b]与[c,d]作分割: a=x 0<x 1<…<x r =b, c=y 0<y 1<…<y s =d, 按这些分点作两组直线x=x i (i=1,2,…,r-1), y=y j (j=1,2,…,s-1), 它们把矩形D 分为rs 个小矩形, 记△ij 为小矩形[x i-1,x i ]×[y j-1,y j ] (i=1,2,…,r; j=1,2,…,s); 设f(x,y)在△ij 上的上确界和下确界分别为M ij 和m ij .在区间[x i-1,x i ] 中任取一点ξi , 于是有m ij △y j ≤⎰-jj y y i dy y f 1),(ξ≤M ij △y j ,其中△y j =y j -y j-1. ∴j sj ij y m ∆∑=1≤F(ξi )=⎰dc i dy y f ),(ξ≤j sj ij y M ∆∑=1,∑∑==∆∆r i i j sj ijx y m11≤∑=∆r i i i x F 1)(ξ≤∑∑==∆∆r i i j sj ij x y M 11, 其中△x i =x i -x i-1.记△ij 的对角线长度为d ij 及T =ji ,max d ij , 由于二重积分存在,由定理21.4,当T →0时,∑∆∆ki i j ij x y m ,和∑∆∆ki i j ij x y M ,有相同的极限,且极限值等于⎰⎰Dd y x f σ),(,∴∑=→∆ri i i T x F 1)(lim ξ=⎰⎰Dd y x f σ),(. 又当T →0时,必有i ri x ∆≤≤1max →0, 由定积分定义得∑=→∆ri i i T x F 1)(limξ=⎰b adx x F )(=⎰⎰d cb ady y x f dx ),(,∴⎰⎰Dd y x f σ),(=⎰⎰dcb a dy y x f dx ),(.定理21.9:设f(x,y)在矩形区域D=[a,b]×[c,d]上可积,且对每个y ∈[c,d],积分⎰badxyxf),(存在,则累次积分⎰⎰b adcdxyxfdy),(也存在,且⎰⎰Ddyxfσ),(=⎰⎰b adcdxyxfdy),(.注:特别地,当f(x,y)在矩形区域D=[a,b]×[c,d]上连续时,有⎰⎰Ddyxfσ),(=⎰⎰d cbadyyxfdx),(=⎰⎰b adcdxyxfdy),(.例1:计算⎰⎰Ddxdyxyy)sin(, 其中D=[0,π]×[0,1].解:⎰⎰Ddxdyxyy)sin(=⎰⎰π01)sin(dxxyydy=⎰-1)]cos(1[dyyπ=1.注:对一般区域,通常可以分解为如下两类区域来进行.称平面点集D={(x,y)|y1(x)≤y≤y2(x),a≤x≤b}为x型区域(如图1)称平面点集D={(x,y)|x1(y)≤x≤x2(y),c≤y≤d}为y型区域(如图2)如图3,区域D可分解成三个区域,I, III为x型区域,II为y型区域.定理21.10:若f(x,y)在x型区域D上连续,y1(x), y2(x)在[a,b]上连续,则⎰⎰Dd y x f σ),(=⎰⎰)()(21),(x y x y ba dy y x f dx .即二重积分可化为先对y ,后对x 的累次积分.证:∵y 1(x), y 2(x)在[a,b]上连续,∴存在R=[a,b]×[c,d]⊃D(如上图1), 记定义在R 上的函数F(x,y)=⎩⎨⎧∉∈D y x ,Dy x ,y x f ),(0),(),(, 则F 在R 上可积,且⎰⎰Dd y x f σ),(=⎰⎰Rd y x F σ),(=⎰⎰dcbadyy x F dx ),(=⎰⎰)()(21),(x y x y ba dy y x F dx =⎰⎰)()(21),(x y x y ba dy y x f dx .注:同理可证f(x,y)在y 型区域D 上连续,x 1(y), x 2(y)在[c,d]上连续, 则⎰⎰Dd y x f σ),(=⎰⎰)()(21),(y x y x dc dx y x f dy .例2:设D 是直线x=0,y=1及y=x 围成的区域(如图), 试计算:I=⎰⎰-Dy d e x σ22的值.解:∵D={(x,y)|0≤x ≤y,0≤y ≤1}, ∴I=⎰⎰-Dy d ex σ22=⎰⎰-yy dx e x dy 02102=⎰-103231dy e y y =e3161-.注:若取D={(x,y)|x ≤y ≤1,0≤x ≤1},则I=⎰⎰-12102x y dy e x dx =⎰⎰-11022x y dy e dx x ,∵2y e -的原函数无法用初等函数形式表示,∴无法直接求积.例3:计算二重积分⎰⎰Dd σ, 其中D 为由直线y=2x, x=2y 及x+y=3所围的三角形区域(如图).解:(如图)D 1={(x,y)|2x ≤y ≤2x,0≤x ≤1}, D 2={(x,y)|2x ≤y ≤3-x,1≤x ≤2}, ∴⎰⎰1D d σ=⎰⎰xx dy dx 2210=⎰1023xdx =43; ⎰⎰2D d σ=⎰⎪⎭⎫ ⎝⎛-21233xdx =493-. ⎰⎰Dd σ=⎰⎰1D d σ+⎰⎰2D d σ=23.例4:求两个底面半径相同的直交圆柱所围立体的体积V. 解:设圆柱底面半径为a, 两个圆柱底面方程为 x 2+y 2=a 2与x 2+z 2=a 2.第一封限部分的立体是曲顶柱体, 以z=22x a -为曲顶,以四分之一圆域D={(x,y)|0≤y ≤22x a -,0≤x ≤a}为底. ∴V=8⎰⎰-Dd x a σ22=8⎰⎰--220220x a ady x a dx =8⎰-adx x a 022=3316a .习题1、设f(x,y)在区域D 上连续,试将二重积分⎰⎰Dd y x f σ),(化为不同顺序的累次积分:(1)D 是由不等式y ≤x, y ≥a,x ≤b(0<a<b)所确定的区域; (2)D 是由不等式x 2+y 2≤1, x+y ≥1所确定的区域; (3)D 是由不等式y ≤x, y ≥0,x 2+y 2≤1所确定的区域;(4)D={(x,y)||x|+|y|≤1}.解:如图,(1)⎰⎰Dd y x f σ),(=⎰⎰xa ba dy y x f dx ),(=⎰⎰by b a dx y x f dy ),(.(2)⎰⎰Dd y x f σ),(=⎰⎰--21110),(x xdy y x f dx =⎰⎰--2111),(y ydx y x f dy .(3)⎰⎰D d y x f σ),(=⎰⎰xdy y x f dx 0220),(+⎰⎰-210122),(x dy y x f dx =⎰⎰-21220),(y ydx y x f dy .(4)⎰⎰Dd y x f σ),(=4⎰⎰-xdy y x f dx 1010),(=4⎰⎰-ydx y x f dy 1010),(.2、在下列积分中改变累次积分的顺序: (1)⎰⎰x x dy y x f dx 220),(;(2)⎰⎰----221111),(x x dy y x f dx ;(3)⎰⎰-axx ax ady y x f dx 22202),(;(4)⎰⎰2010),(x dy y x f dx +⎰⎰-)3(3131),(x dy y x f dx.解:如图,(1)⎰⎰xx dy y x f dx 220),(=⎰⎰y y dx y x f dy 220),(+⎰⎰2242),(y dx y x f dy .(2)⎰⎰----221111),(x x dy y x f dx =⎰⎰----221101),(y y dx y x f dy +⎰⎰---yydx y x f dy 1110),(.(3)⎰⎰-axx ax a dyy x f dx 22202),(=⎰⎰--22220),(y a a ayadx y x f dy +⎰⎰-+ay a a adx y x f dy 2022),(+⎰⎰aay a adx y x f dy 2222),(.(4)⎰⎰2010),(x dy y x f dx +⎰⎰-)3(3131),(x dy y x f dx =⎰⎰-y ydx y x f dy 2310),(.3、计算下列二重积分:(1)⎰⎰Dd xy σ2,其中D 是由抛物线y 2=2px 与直线x=2p(p>0)所围成的区域;(2)⎰⎰+Dd y x σ)(22,其中D={(x,y)|0≤x ≤1, x ≤y ≤x 2};(3)⎰⎰-Dxa d 2σ(a>0),其中D 为图中阴影部分;(4)⎰⎰Dd x σ,其中D={(x,y)|x 2+y 2≤x}.(5)⎰⎰Dd xy σ||,其中D=为圆域x 2+y 2≤a 2.解:(1)方法一:⎰⎰Dd xy σ2=⎰⎰-pxpx p dy y xdx 22220=⎰2025324pdx x p p =215p .方法二:⎰⎰Dd xy σ2=⎰⎰-2222p py pp xdx dy y =⎰-⎪⎪⎭⎫⎝⎛-p p dy p y p y 242281=215p . (2)⎰⎰+Dd y x σ)(22=⎰⎰+xxdy y x dx 22210)(=⎰⎪⎪⎭⎫ ⎝⎛+10232537dx x x =105128. (3)⎰⎰-Dxa d 2σ=⎰⎰----22)(002a x a a axa dy dx =⎰----ax a a x a a 0222)(=233822a ⎪⎭⎫⎝⎛-.(4)⎰⎰Dd x σ=⎰⎰---2210x x x x dy x dx =2⎰-11dx x x =158.(5)方法一:⎰⎰Dd xy σ||=⎰⎰adr r d 032cos sin 4θθθπ=⎰204cos sin πθθθd a=24a .方法二:⎰⎰Dd xy σ||=⎰⎰-22004x a aydy xdx =⎰-adx x a 0222)(=24a.4、求由坐标平面及x=2, y=3, x+y+z=4所围的角柱体的体积. 解:如图,V=⎰⎰--Dd y x σ)4(=⎰⎰--2020)4(dx y x dy +⎰⎰---ydx y x dy 4032)4(=⎰-20)26(dy y +⎰⎥⎦⎤⎢⎣⎡+---32222)4(816dy y y y=12-4+16-20-67+319=-591.5、设f(x)在[a,b]上连续,证明不等式2)(⎥⎦⎤⎢⎣⎡⎰ba dx x f ≤(b-a)⎰b a dx x f )(2, 其中等号仅在f(x)为常量函数时成立.证:2)(⎥⎦⎤⎢⎣⎡⎰ba dx x f =⎰⎰⋅b a b a dy y f dx x f )()(=⎰⎰D dxdy y f x f )()(≤⎰⎰+Ddxdy y f x f )]()([2122=⎰⎰⋅b a b a dx x f dy )(2=(b-a)⎰b a dx x f )(2.其中D={(x,y)|a ≤x ≤b, a ≤y ≤b}.若等号成立,则对任何(x,y)∈D ,有f 2(x)+f 2(y)=2f(x)f(y),即 [f(x)-f(y)]2=0,∴f(x)=f(y),即f(x)为常数函数.6、设平面区域D 在x 轴和y 轴的投影长度分别为l x 和l y ,D 的面积为S D ,(α,β)为D 内任一点,证明:(1)⎰⎰--Dd y x σβα))((≤l x l y S D ; (2)⎰⎰--Dd y x σβα))((≤41l x 2l y 2.证:设D 在x 轴和y 轴上的投影区间分别为[a,b]和[c,d],则 l x =b-a, l y =d-c ,且|x-α|≤l x , |y-β|≤l y.(1)⎰⎰--Dd y x σβα))((≤⎰⎰--D d y x σβα||||≤l x l y ⎰⎰Dd σ≤l x l y S D .(2)⎰⎰--Dd y x σβα))((≤⎰⎰-⋅-dc ba dy y dx x ||||βα.令x l a x -=t (0≤t ≤1), 记ρ=xl l(α-a) (0≤ρ≤1). |x-α|=|x-a+a-α|=|l x t-l x ρ|=l x |t-ρ|.⎰-b adx x ||α=l x ⎰-badx t ||ρ=l x2⎰-1||dtt ρ=l x 2⎥⎦⎤⎢⎣⎡-+-⎰⎰ρρρρ1)()(dt t dt t= l x 2⎥⎦⎤⎢⎣⎡--)1(21ρρ.∵0≤ρ≤1, ∴ρ(1-ρ)≥0,∴⎰-ba dx x ||α≤21l x 2. 同理可证,⎰-dc dy y ||β≤21l y 2. ∴⎰⎰--Dd y x σβα))((≤41l x 2l y 2.7、设D=[0,1]×[0,1],f(x,y)=⎪⎩⎪⎨⎧+中非有理点为当中有理点为当D y x ,D y x ,q q yx ),(0),(11, 其中q x 表示有理数x 化成既约分数后的分母.证明:f(x,y)在D 上的二重积分存在而两个累次积分不存在.证:∀ε>0, 只有有限个点使f(x,y)>2ε, ∴存在分割T ,使得S(T)-s(T)<ε, ∴二重积分存在且等于0.当y 取无理数时,f(x,y)≡0,∴⎰10),(dx y x f =0; 而当y 取有理数时,在x 为无理数处f(x,y)=0, 在x 为有理数处f(x,y)=y x q q 11+, 故函数f 在任何区间上振幅总大于yq 1, 即函数f(x,y)在x ∈[0,1]上关于x 的积分不存在.∴不存在先x 后y 的累次积分. 同理可证先y 后x 的累次积分不存在.8、设D=[0,1]×[0,1],f(x,y)=⎩⎨⎧=中其他点时为当时且中有理点为当D y x ,q q ,D y x ,y x ),(0),(1,其中q x 表示有理数x 化成既约分数后的分母. 证明:f(x,y)在D 上的二重积分不存在而两个累次积分存在.证:在正方形的任何部分内, f 的振幅等于1,∴二重积分不存在. 对固定的y ,若y 为无理数,则f 恒为0,若y 为有理数,则 函数仅有有限个异于0的值,因此⎰10),(dx y x f =0, ∴累次积分存在且⎰⎰110),(dx y x f dy =0,同理可证累次积分⎰⎰110),(dy y x f dx =0.。

高等数学第八章二重积分试题及答案

高等数学第八章二重积分试题及答案

第八章 多元函数积分学一、二重积分的概念与性质1.定义设()y x f ,是定义在有界闭区域D 上的有界函数,如果对任意分割D 为n 个小区域,,,,21n σσσ∆∆∆ 对小区域()n k k ,,2,1 =∆σ上任意取一点()k k ηξ,都有()k nk k kd f σηξ∆∑=→1,lim存在,(其中k σ∆又表示为小区域k σ∆的面积,k d 为小区域k σ∆的直径,而k nk d d ≤≤=1max ) 则称这个极限值为()y x f ,在区域D 上的二重积分 记以()⎰⎰Dd y x f σ,,这时就称()y x f ,在D 上可积。

如果()y x f ,在D 上是有限片上的连续函数,则()y x f ,在D 上是可积的。

2.几何意义当()y x f ,为闭区域D 上的连续函数,且()0,≥y x f ,则二重积分()⎰⎰Dd y x f σ,表示以曲面()y x f z ,=为顶,侧面以D 的边界曲线为准线,母线平行于z 轴的曲顶柱体的体积。

当封闭曲面S 它在xy 平面上的投影区域为D ,上半曲面方程为()y x f z ,2=,下半曲面方程为()y x f z ,1=,则封闭曲面S 围成空间区域的体积为()()[]σd y x f y x f D⎰⎰-,,123.基本性质 (1)()()⎰⎰⎰⎰=DDd y x f k d y x kf σσ,,(k 为常数)(2)()()[]()()σσσd y x g d y x f d y x g y x f DDD⎰⎰⎰⎰⎰⎰±=±,,,,(3)()()()⎰⎰⎰⎰⎰⎰+=12,,,D D Dd y x f d y x f d y x f σσσ 其中21UDD D =,除公共边界外,1D 与2D 不重叠。

(4)若()()y x g y x f ,,≤,()D y x ∈,,则()()⎰⎰⎰⎰≤DDd y x g d y x f σσ,,(5)若()M y x f m ≤≤,,()D y x ∈,,则()⎰⎰≤≤DMS d y x f mS σ, 其中S 为区域D 的面积。

高数二重积分习题解答

高数二重积分习题解答

第9章 重积分及其应用1.用二重积分表示下列立体的体积:(1) 上半球体:2222{(,,)|;0}x y z x y z R z ++≤≥;(2) 由抛物面222z x y =--,柱面x 2+y 2=1及xOy 平面所围成的空间立体解答:(1) 222d ,{(,)|}DV x y D x y x y R ==+≤;(2) 2222(2)d d ,{(,)|1}DV x y x y D x y x y =--=+≤⎰⎰所属章节:第九章第一节 难度:一级2.根据二重积分的几何意义,确定下列积分的值: (1),其中D 为222x y a +≤; (2) ,其中D 为222,0x y a b a +≤>>解答:(1)32π3Da σ=;(2)232(ππ3Db a b a σ=-⎰⎰所属章节:第九章第一节难度:一级3.一带电薄板位于xOy 平面上,占有闭区域D ,薄板上电荷分布的面密度为(,)x y μμ=,且(,)x y μ在D 上连续,试用二重积分表示该板上的全部电荷Q .解答:所属章节:第九章第一节 难度:一级4.将一平面薄板铅直浸没于水中,取x 轴铅直向下,y 轴位于水平面上,并设薄板占有xOy 平面上的闭区域D ,试用二重积分表示薄板的一侧所受到的水压力 解答:所属章节:第九章第一节 难度:一级5.利用二重积分性质,比较下列各组二重积分的大小(1)与,其中D 是由x 轴,y 轴及直线x +y =1所围成的区域; (2)与222ln(1)d DI x y σ=++⎰⎰,其中D 是矩形区域:0≤x ≤1,0≤y ≤1;(3)与,其中D 是任一平面有界闭区域;(4)与,其中D 是矩形区域:–1≤x ≤0,0≤y ≤1; 解答:(1) 在区域D 内部,1x y +<,所以I 1>I 2;(2)在区域D 内部,22,x x y y <<,故22ln(1)ln(1)x y x y ++<++,所以 I 1>I 2;? (3)由于22sin ()()x y x y +<+,所以I 1<I 2;(4)在区域D 内部,0xy <,故2xy xy e e >,所以I 1>I 2 所属章节:第九章第一节 难度:一级6.利用二重积分性质,估计下列二重积分的值 (1) d ,{(,)|04,08}ln(4)DI D x y x y x y σ==≤≤≤≤++⎰⎰;(2) 2222π3πsin()d ,(,)44D I x y D x y x y σ⎧⎫=+=≤+≤⎨⎬⎩⎭⎰⎰;(3) 221d ,{(,)|||||1}100cos cos DI D x y x y x y σ==+≤++⎰⎰; (4) 22221e d ,(,)4xy DI D x y x y σ+⎧⎫==+≤⎨⎬⎩⎭⎰⎰解答:(1)由于{(,)|04,08}D x y x y =≤≤≤≤的面积为32,在其中111ln16ln(4)ln 4x y ≤≤++,而等号不恒成立,故;(2)由于22π3π(,)44D x y x y ⎧⎫=≤+≤⎨⎬⎩⎭的面积为212π,在其中,而等号不恒成立,故;(3) 由于{(,)|||||1}D x y x y =+≤的面积为2,在其中22111102100100cos cos x y ≤≤++,而等号不恒成立,故;注:原题有误?还是原参考答案有误?如将{(,)|||||1}D x y x y =+≤改为{(,)|||||10}D x y x y =+≤,则区域面积为200,结论为(4)由于221(,)4D x y x y ⎧⎫=+≤⎨⎬⎩⎭的面积为14π,在其中12241sin()x y e ≤+≤,而等号不恒成立,故.所属章节:第九章第一节 难度:二级7.设f (x ,y )是连续函数,试求极限:22221lim (,)d πr x y r f x y r σ+→+≤⎰⎰解答:先用积分中值定理,再利用函数的连续性,即得222220011lim (,)lim (,)lim (,)(0,0)r r r x y r f x y d f f f r rσξησξηππ+++→→→+≤=⋅==⎰⎰. 所属章节:第九章第一节难度:二级8.设f (x ,y )在有界闭区域D 上非负连续,证明: (1) 若f (x ,y )不恒为零,则; (2) 若,则f (x ,y )≡0解答:(1) 若f (x ,y )不恒为零,则存在00(,)x y D ∈,00(,)0f x y >,利用连续函数的保号性,存在00(,)x y 的一个邻域1D D ⊂,在其上恒有(,)0f x y >,于是,而,所以11(,)d (,)d (,)d 0DD D D f x y f x y f x y σσσ-=+>⎰⎰⎰⎰⎰⎰;(2) 假若f (x ,y )不恒为零,则由上题知,矛盾,故f (x ,y )≡0.所属章节:第九章第一节 难度:二级9.计算下列二重积分: (1) πsin d ,(,)12,02Dx y D x y x y σ⎧⎫=≤≤≤≤⎨⎬⎩⎭⎰⎰; (2) {}22(e )d ,(,)11,01x y Dxy D x y x y σ++=-≤≤≤≤⎰⎰; (3) {}2e d ,(,)01,01xyDxy D x y x y σ=≤≤≤≤⎰⎰;(4) 22πsin()d ,(,)0,022Dx y xy D x y x y σ⎧⎫=≤≤≤≤⎨⎬⎩⎭⎰⎰; (5){}2222d ,(,)2,2Dx D x y x y x y x σ=+≥+≤⎰⎰解答:(1)222113sin d sin 2Dx y dx x ydy xdx πσ===⎰⎰⎰⎰⎰; (2)22111112222221111(1)(e)d ()(1)22x yx yx yxD e xydx xy edy dx edy e e dx eσ+++----+=+==-=⎰⎰⎰⎰⎰⎰⎰; (3)2211101d )(1)122xy xyx Dexye dx xye dy e dx σ==-=-⎰⎰⎰⎰⎰; (4)22222222001sin()d sin()(cos 4)216D xy xy dx x y xy dy x x x dx πππσ==-=⎰⎰⎰⎰⎰;(5)11112Dxd dy πσ--===⎰⎰⎰⎰.所属章节:第九章第二节难度:一级10.画出下列各题中给出的区域D ,并将二重积分化为两种次序不同的二次积分: (1) D 由曲线y =ln x ,直线x =2及x 轴所围成; (2) D 由抛物线y =x 2与直线2x +y =3所围成; (3) D 由y =0及y =sin x (0≤x ≤π)所围成; (4) D 由曲线y =x 3,y =x 所围成;(5) D 由直线y =0,y =1,y =x ,y =x –2所围成 解答:本题图略,建议画出 (1)2ln ln 22100(,)(,)y xe dxf x y dy dy f x y dx =⎰⎰⎰⎰;(2)231321931(,)(,)(,)y xxdx f x y dy dy f x y dx dy f x y dx ---=+⎰⎰⎰⎰⎰;(3)sin 1arcsin 000arcsin (,)(,)xyydx f x y dy dy f x y dx ππ-=⎰⎰⎰⎰;(4)3301111(,)(,)(,)(,)x xyxxydx f x y dy dx f x y dy dy f x y dx dy f x y dx --+=+⎰⎰⎰⎰⎰⎰;注:原题有误?还是原参考答案有误?如将“D 由曲线y =x 3,y =x 所围成”改为“D 由曲线3,1,1y x y x ===-所围成”,则答案为原参考答案3111111d (,)d d (,)d xx f x y y y f x y x ---=⎰⎰⎰;(5)1213112122d (,)d d (,)d d (,)d d (,)d x y x yx f x y y x f x y y x f x y y y f x y x +-++=⎰⎰⎰⎰⎰⎰⎰⎰所属章节:第九章第二节难度:一级11.计算下列二重积分:(1),D 由曲线x =2,y =x ,xy =1所围成;(2),D 由点(0,0),(π,0),(π,π)为顶点的三角形区域; (3),D由抛物线y =y =x 2围成; (4),D 由抛物线y 2=x 与直线y =x –2所围成; (5) ,D 由直线y =x ,y =2和曲线x =y 3所围成解答:(1) 22223122119()4x x Dx x d dx dy x x dx y y σ==-=⎰⎰⎰⎰⎰;(2)0003cos()cos()(sin 2sin )2xDx x y dxdy dx x x y dy x x x x dx ππ+=+=-=-⎰⎰⎰⎰⎰;(3)2711440026()355xD dx x x dx σ==-=⎰⎰⎰⎰;(4)22222411145(44)28y yDxydxdy dy xydx y y y y dx +--==++-=⎰⎰⎰⎰⎰; (5) 3222113cos1sin1sin 4sin()sin()(cos1cos )2y y Dx x d dy dx y y y dy y y σ+-==-=⎰⎰⎰⎰⎰.所属章节:第九章第二节难度:二级12.画出下列各题中的积分区域,并交换积分次序(假定f (x ,y )在积分区域上连续): (1) ; (2) 2122001d (,)d d (,)d x xx f x y y x f x y y -+⎰⎰⎰⎰;(3)2122d (,)d yyy f x y x --⎰⎰;(4); (5)(6)1320d (,)d y y f x y x -⎰解答:本题图略,建议画出 (1)21(,)xxdx f x y dy ⎰⎰;(2)120(,)y dy f x y dx -⎰;(3) 1 4 2 0 1(,)(,)xdx f x y dy dx f x y dy -+⎰⎰⎰⎰;(4) 11 1 20 01 1 0(,)(,)(,)dy f x y dx dy f x y dx dy f x y dx ++⎰⎰⎰⎰⎰;(5)0111000(,)(,)y dy f x y dx dy f x y dx +-+⎰⎰⎰;(6)2313201(,)(,)x x dx f x y dy dx f x y dy -+⎰⎰⎰⎰所属章节:第九章第二节 难度:一级13.计算下列二次积分:(1) 110d yy x ⎰⎰;(2)23211d e d y x x y --⎰⎰;(3) ; (4) 2220d 2sin()d xx y xy y ⎰⎰;(5)π12arcsin d cos yy x ⎰⎰;(6)24212ππd d d d 22xx xx y x y y y+⎰⎰解答:(1) 31/111116x ydy dx x ===⎰⎰⎰⎰⎰; (2)2223221241101(1)2y y y y x dx e dy dy e dx ye dy e +-----===-⎰⎰⎰⎰⎰;(3) 22220000sin sin sin 1x y xx dy dx dx dy xdx x xππππ===⎰⎰⎰⎰⎰; (4) 222222202sin()2sin()[22cos()]4sin 4yxdx y xy dy dy y xy dx y y y dy ==-=-⎰⎰⎰⎰⎰;(5)1sin 2220arcsin 0cos cos sin cos xydy dx x πππ==⎰⎰⎰⎰⎰3222011(1cos )1)33x π=-+=; (6)22422231211284sincos2222xy yxxxdx dy dx dy dy dx y ydy yyyπππππππ++==-=⎰⎰⎰⎰⎰.所属章节:第九章第二节 难度:二级14.利用积分区域的对称性和被积函数关于x 或y 的奇偶性,计算下列二重积分:(1) 222||d ,:Dxy D x y R σ+≤⎰⎰; (2) 2322(tan 4)d d ,:4Dx x y x y D x y +++≤⎰⎰; (3) 2222(1)arcsin d ,:()Dyx x D x R y R Rσ++-+≤⎰⎰; (4)(||||)d d ,:||||1Dx y x y D x y ++≤⎰⎰解答:(1) 设2221:,0,0D x y R x y +≤≥≥,则14320||4||4sin cos 2RDD R xy d xy d d r dr πσσθθθ===⎰⎰⎰⎰⎰⎰; (2)23(tan 4)416DDx x y dxdy dxdy π++==⎰⎰⎰⎰; (3) 由于积分区域关于x 对称,被积函数是关于y 的奇函数,故2(1)arcsind 0Dyx x Rσ++=⎰⎰; (4) 设1:1,0,0D x y x y +≤≥≥,则11104(||||)2||883xDDD x y dxdy x dxdy xdxdy dx xdy -+====⎰⎰⎰⎰⎰⎰⎰⎰. 所属章节:第九章第二节 难度:二级15.利用极坐标化二重积分为二次积分,其中积分区域D 为: (1) 22:,(0)D x y ax a +≤>; (2) 22:14D x y ≤+≤; (3) :01,01D x y x ≤≤≤≤-; (4) 22:2()D x y x y +≤+ (5) 22:24D x x y ≤+≤ 解答:(1)πcos 2π02d (cos ,sin )d a f r r r r θθθθ-⎰⎰;(2)2π21d (cos ,sin )d f r r r r θθθ⎰⎰;(3) π12cos sin 0d (cos ,sin )d f r r r r θθθθθ+⎰⎰;(4)3π2(cos sin )4π04d (cos ,sin )d f r r r r θθθθθ+-⎰⎰;(5)π3π2222ππ2cos 022d (cos ,sin )d d (cos ,sin )d f r r r r f r r r r θθθθθθθ-+⎰⎰⎰⎰所属章节:第九章第二节 难度:一级16.利用极坐标计算下列二重积分:(1) 22d ,:Dx y D x y Rx +≤;(2) 22222222()d d ,:()()Dx y x y D x y a x y ++≤-⎰⎰; (3) 22arctan d d ,:14,0,Dy x y D x y y y x x ≤+≤≥≤⎰⎰; (4)2222d d ,:2,2Dx x y D x y x y x +≥+≤⎰⎰;(5)arctan22,:14,yxDD x y x y σ≤+≤≤≤(6) ,D :第一象限中由圆22222,4x y y x y y +=+=及直线,x y =所围成. 解答:(1)cos 33322022114d (1sin )()333R Dx y d R d R ππθππθθθπ--==-=-⎰⎰⎰;(2)223424440()4cos 28Dx y dxdy d dr ad a πππθθθ+===⎰⎰⎰⎰⎰;(3) 224013arctan d d 64Dy x y d rdr x ππθθ==⎰⎰⎰⎰;(4)2cos 2444448cos (cos cos )332Dxdxdy d r dr d ππθπππθθθθθ--==-=⎰⎰⎰⎰;注:本小题与第9大题第(5)小题相同.(5)arctan 233414yx Dd e dr e e πππθπσθ==-⎰⎰;(6)4sin 2234332sin 6615()d d 60sin (28Dx y x y d r dr d ππθππθθθθπ+===⎰⎰⎰⎰⎰. 所属章节:第九章第二节 难度:二级17.设r ,θ为极坐标,在下列积分中交换积分次序: (1) πcos 2π02d (,)d (0)a f r r a θθθ->⎰⎰;(2) π20d (,)d (0)f r r a θθ>⎰⎰;(3) 0d (,)d (02π)af r r a θθθ<<⎰⎰;(4)π4cos 0d (,)d (0)a f r r a θθθ>⎰⎰;解答:(1) ; (2) ; (3) 0d (,)d aarr f r θθ⎰⎰;(4)ππ44arccosd (,)d d (,)d aa rr f r r f r θθθθ+⎰⎰⎰.所属章节:第九章第二节 难度:一级18.计算下列二次积分: (1) ;(2)d d yyy x x; (3) ;(4)1223/201d )d x x x y y --+⎰.解答:(1)22211221(1)24x y r e e dx dy d e rdr d πππθθ+--===⎰⎰⎰⎰;(2)21242000011264yy dy dx d rdr d x ππθθθθπ===⎰⎰⎰;(3)22cos 232200816cos 39dx d r dr d ππθθθθ===⎰⎰⎰⎰;(4)11223/22221010sin cos )(sin cos 1)22xdx x y dy d r dr d ππθθπθθθθ---++==+-=-⎰⎰⎰⎰所属章节:第九章第二节 难度:二级19.计算下列二重积分: (1) 22max(,)e d d ,:{(,)|01,01}x y Dx y D x y x y ≤≤≤≤⎰⎰;(2) 2222|4|d d ,:{(,)|9}Dx y x y D x y x y +-+≤⎰⎰; (3) ππ|cos()|d d ,:{(,)|0,0}22Dx y x y D x y x y +≤≤≤≤⎰⎰;(4)d ,:{(,)|11,02}Dx y D x y x y -≤≤≤≤.解答:(1)222211max(,)1xyxy x y De dxdy dx e dy dy e dx e =+=-⎰⎰⎰⎰⎰⎰;(2)22232222221|4|(4)(4)2Dx y dxdy d r rdr d r rdr ππθθπ+-=-+-=⎰⎰⎰⎰⎰⎰; (3)222202|cos()|cos()cos()2xxDx y dxdy dx x y dy dx x y dy ππππππ--+=+-+=-⎰⎰⎰⎰⎰⎰;(4)2211152223x xDdx dx π=+=+⎰⎰⎰⎰ 所属章节:第九章第二节 难度:三级20.选择适当坐标计算下列各题:(1) ,其中D 是由双曲线xy =1与直线y =x ,x =2围成; (2) ,其中22{(,)|1,0,0}D x y x y x y =+≤≥≥;(3) ,其中D 是直线y =x ,y =x +a ,y =a ,y =3a (a >0)围成; (4) ,其中2222{(,)|0,1,2}D x y y x y x y x =≥+≥+≤.解答:(1) 22223122119()4x x Dx x d dx dy x x dx y y σ==-=⎰⎰⎰⎰⎰;注:本小题与第11大题第(1)小题重复.(2)222000(2)28DDx d d y ππππσσθ-===⎰⎰⎰⎰⎰;(3)3222220()()14a xx aDxy dxdy dy x y dx a ++=+=⎰⎰⎰⎰;(4)2cos 353301019sin cos (4cos sin sin cos )416Dxydxdy d r dr d ππθθθθθθθθθ==-=⎰⎰⎰⎰⎰.所属章节:第九章第二节难度:二级21.用适当的变量变换,计算下列二重积分:(1) ,中D 是椭圆形闭区域22941x y +≤位于第一象限内的部分;(2) ,D 是由双曲线xy =1,xy =2与直线x =y ,x =4y 所围成的在第一象限内的闭区域; (3) ,D 是椭圆形闭区域; (4) ,D 是闭区域|x |+|y |≤1; (5)32()cos ()d d Dx y x y x y +-⎰⎰,其中D 是以(π,0),(3π,2π),(2π,3π),(0,π)为顶点的平行四边形;参考答案:(1) (提示:作变换11cos ,sin 32x r y r θθ==);(2) (提示:作变换);(3) (提示:作变换cos ,sin x ar y br θθ==); (4) 1e e --(提示:作变换,x y u x y v +=-=); (5) 78π5(提示:作变换,x y u x y v +=-=)解答:(1) 作变换11cos ,sin 32x r y r θθ==,则,12222001sin(94)d d sin (1cos1)624Dx y x y d r rdr ππθ+=⋅=-⎰⎰⎰⎰; (2) 作变换,则,2122211417d d ln 223Dx y x y du u dv v ==⎰⎰⎰⎰; (3) 作变换cos ,sin x ar y br θθ==,则J abr =,2221322001()d d 2Dx y x y d abr dr ab a b πθπ+==⎰⎰⎰⎰; (4) 作变换,x y u x y v +=-=,则,111111e d d 2x y uDx y du e dv e e +---==-⎰⎰⎰⎰; (5) 作变换,x y u x y v +=-=,则52323251()cos ()d d cos 392Dx y x y x y du u v dv πππππ+-=⋅=⎰⎰⎰⎰. (原参考答案有误?)所属章节:第九章第二节 难度:三级22.利用二重积分求下列平面区域的面积: (1) D 由曲线e ,e x x y y -==及x =1围成; (2)D 由曲线y =x +1,y 2= –x –1围成; (3)D 由双纽线22222()4()x y x y +=-围成; (4) {(cos ,sin )|24sin }D r r r θθθ=≤≤; (5) 1{(cos ,sin )|1cos }2D r r r θθθ=≤≤+; (6) D 由曲线2223()2(0)x y ax a +=>围成;(7)D 由曲线y =x 3,y =4x 3,x =y 3,x =4y 3所围成的第一象限部分参考答案:(1)1e e 2-+-;(2)16;(3)4;(4);(5);(6);(7)18解答:(1)1110()2xx e x x eDA dxdy dx dy e e dx e e ---===-=+-⎰⎰⎰⎰⎰;(2)20121111()6y y DA dxdy dy dx y y dx -----===--=⎰⎰⎰⎰⎰; (3)双纽线22222()4()x y x y +=-用极坐标表示24cos2r θ=,44048cos24DA dxdy d d ππθθθ====⎰⎰⎰⎰⎰;(4)4sin 222662(48cos2)DA dxdy d rdr d ππθππθθθ===-=⎰⎰⎰⎰⎰;(5)221cos 331252(4cos cos2)2DA dxdy d rdr d ππθθθθθ+===++=⎰⎰⎰⎰⎰;(6)曲线2223()2(0)x y ax a +=>用极坐标表示32cos r a θ=,32cos 2622024cos a DA dxdy d rdr ad ππθθθθ====⎰⎰⎰⎰⎰;(7)4sin 222662(48cos2)DA dxdy d rdr d ππθππθθθ===-=⎰⎰⎰⎰⎰18?所属章节:第九章第二节 难度:二级23.利用二重积分求下列各题中的立体Ω的体积:(1)Ω为第一象限中由圆柱面y 2+z 2=4与平面x =2y ,x =0,z =0所围成;(注:象限应为卦限?) (2)Ω由平面y =0,z =0,y =x 及6x +2y +3z =6围成;(3)22{(,,)|1x y z x y z Ω=+≤≤+; (4)222{(,,)|1,11x y z x y z z Ω=+≤+-≤≤; 参考答案:(1)163;(2)14;(3)7π6;(4)8π3解答:(1)2221623DV dy ====⎰⎰⎰; (2)21(22)34DV x y dxdy =--=⎰⎰;(3)2122207[(1()](1)6DV x y dxdy d r rdr ππθ=-+==⎰⎰⎰⎰;(4)220822423xyD V d rdr πππθπ=⋅-=-=⎰所属章节:第九章第二节 难度:二级24.设f (x )在[0,1]上连续,D 由点(0,0)、(1,0)、(0,1)为顶点的三角形区域,证明:1()d ()d Df x y uf u u σ+=⎰⎰⎰解答:将二重积分化为二次积分,再用积分变换u =x +y ,然后交换积分顺序111111()d ()()()()d xu xDf x y dx f x y dy dx f u du du f u dx uf u u σ-+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰.所属章节:第九章第二节 难度:三级25.设f (x )连续,证明:221()d d (x y f x y x y f u u +≤+=⎰⎰解答:作变量变换11(),()22x u v y u v =-=+,则,22221211()()()(22x y u v f x y dxdy f u dudv f u dv f u +≤+≤+===⎰⎰⎰⎰. 所属章节:第九章第二节 难度:三级26.设f (x )在[a ,b ]上连续,证明:()22()d ()()d bbaaf x xb a f x x ≤-⎰⎰解答:设区域{(,)|,}D x y a x b a y b =≤≤≤≤,则2(())()()()()bb b b baaaaaf x dx f x dx f x dx f x dx f y dy =⋅=⋅⎰⎰⎰⎰⎰2222()()11()()222DD Df x f y dxdy f x dxdy f y dxdy +≤=+⎰⎰⎰⎰⎰⎰222()()()()bbbaaaDf x dxdy dx f x dy b a f x dx ===-⎰⎰⎰⎰⎰.所属章节:第九章第二节难度:三级27.设f (x )在[a ,b ]上连续,f (x )>0,证明:21()d d ()()bb a af x x x b a f x ≥-⎰⎰解答:设区域{(,)|,}D x y a x b a y b =≤≤≤≤,则11()()()()()()bbb b aaa a D f x f x dx dx f x dx dy dxdy f x f y f y ==⎰⎰⎰⎰⎰⎰,11()()()()()()b bb b a aa a Df y f x dx dx f y dy dx dxdy f x f x f x ==⎰⎰⎰⎰⎰⎰,所以211()()()()()()2()()b baaD Df x f x f x dx dx dxdy dxdy b a f x f y f y =+≥=-⎰⎰⎰⎰⎰⎰. 所属章节:第九章第二节难度:三级28.在曲线族y =c (1–x 2)(c>0)中试选一条曲线,使这条曲线和它在(–1,0)及(1,0)两点处的法线所围成的图形面积最小解答:曲线在(1,0)处的法线为,由对称性知所围图形面积为21(1)1102241232c x x c cA dx dy c c --==+⎰⎰, 令,得唯一驻点(负值舍去)又由于该实际问题的最小值存在,故当时,所围图形面积最小,为所属章节:第九章第二节 难度:三级29.设f (x )是连续函数,区域D 由y =x 3,y =1,x = –1围成,计算二重积分22[1()]d d Dx yf x y x y ++⎰⎰ 解答:将D 分成两块,记为{}{}3312(,)1,(,),10D x y x y D x y x y x x =≤≤≤≤=≤≤--≤≤, 则由函数的奇偶性与积分区域的对称性得12222222[1()][1()][1()]DD D x yf x y dxdy x yf x y dxdy x yf x y dxdy ++=+++++⎰⎰⎰⎰⎰⎰321225x D xdxdy dx xdy --===-⎰⎰⎰⎰.所属章节:第九章第二节 难度:三级30.设f (x )、g (x )在[0,1]上连续且都是单调减少的,试证:111()()d ()d ()d f x g x x f x x g x x ≥⎰⎰⎰解答:设{(,)|01,01}D x y x y =≤≤≤≤,则111()()()()()()()()DDI f x g x dx f x dx g x dx f x g x dxdy f x g y dxdy =-=-⎰⎰⎰⎰⎰⎰⎰()[()()]Df xg x g y dxdy =-⎰⎰,类似地有()[()()]DI f y g y g x dxdy =-⎰⎰,两式相加,并利用条件f (x )、g (x )在[0,1]上连续且都是单调减少的,就有2[()()][()()]0DI f x f y g x g y dxdy =--≥⎰⎰,所以0I ≥,即111()()d ()d ()d f x g x x f x x g x x ≥⎰⎰⎰.所属章节:第九章第二节 难度:三级31.设f (x )在[0,1]上连续,并设1()d f x x A =⎰,求11d ()()d xx f x f y y ⎰⎰解答:设{(,)|01,01}D x y x y =≤≤≤≤,则11110()()()()()()y xxdx f x f y dy dy f x f y dx dx f x f y dy ==⎰⎰⎰⎰⎰⎰1110001[()()()()]2x x dx f x f y dy dx f x f y dy =+⎰⎰⎰⎰112001()()()()2Df x f y dxdy f x dx f y dy A ==⋅=⎰⎰⎰⎰. 所属章节:第九章第二节难度:三级32.至少利用三种不同的积分次序计算三重积分,其中Ω=[0,2]×[–3,0]×[–1,1] 解答:212222220313()()2616x yz dv dx dy x yz dz dx x dy x dx Ω---+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰,类似0212231()()16x yz dv dy dx x yz dz Ω--+=+=⎰⎰⎰⎰⎰⎰,1222130()()16x yz dv dz dy x yz dx Ω--+=+=⎰⎰⎰⎰⎰⎰.所属章节:第九章第三节难度:一级33.将三重积分化为累次积分(三次积分),其中积分区域Ω分别是: (1)2222:,0x y z R z Ω++≤≥;(2)Ω由x 2+y 2=4,z =0,z =x +y +10所围成; (3)22222:2,x y z z x y Ω++≤≥+(4)Ω:由双曲抛物面z =xy 及平面x +y –1=0,z =0所围成的闭区域解答:(1) 22222220d d (,,)d RR x R x y RR x x y f x y z z ------⎰⎰⎰;(2) 222410240d d (,,)d x x y x x y f x y z z -++---⎰⎰⎰;(3) 22222211211d d (,,)d x x y x x y x y f x y z z ------+⎰⎰⎰;(4)110d d (,,)d xxy x y f x y z z -⎰⎰⎰双曲抛物面所属章节:第九章第三节 难度:二级34.计算下列三重积分:(1) ,其中Ω是在平面z=x+2y下放,xOy平面上由y=x2、y=0及x=1围成的平面区域上方的立体;(2) ,其中Ω是在平面x+y+z=1与三个坐标面围成;(3) ,其中π{(,,)|0}2x y z x z yΩ=≤≤≤≤-(4),其中Ω是第一象限中由曲面y2+z2=9与平面x=0、y=3x和z=0所围成的空间立体;(5)222d d d1xyzx y zx y zΩ+++⎰⎰⎰,其中222{(,,)|0,0,1}x y z x z x y zΩ=≥≥++≤;(6) ,其中Ω是由抛物面x=4y2+4z2与平面x=4围成参考答案:(1)528;(2)e12-;(3);(4)278;(5)0;(6)16π3解答:(1)528;(2)e12-;(3);(4)278;(5)0;(6)16π3所属章节:第九章第三节难度:二级35.用截面法(先算二重积分后算单积分)解下列三重积分问题:(1) 计算三重积分,其中Ω是由锥面z=和平面z=π围成;(2) 设Ω是由单叶双曲面x2+y2–z2=R2和平面z=0,z=H围成,试求其体积;(3) 已知物体Ω的底面是xOy平面上的区域222{(,)|}D x y x y R=+≤,当垂直于x轴的平面与Ω相交时,截得的都是正三角形,物体的体密度函数为,试求其质量;(4)试求立体2222(,,)1x yx y z za bΩ⎧⎫=+≤≤⎨⎬⎩⎭的形心坐标参考答案:(1)π2–4π;(2);(3);(4)解答:(1)2300sin d sin sin4zDz v zdz dxdy z z dzππΩπππ==⋅=-⎰⎰⎰⎰⎰⎰⎰;与原参考答案不同(2)2223001()3zH HDV dv dz dxdy R z dz R H HπππΩ===+=+⎰⎰⎰⎰⎰⎰⎰;(3)223(,,)(1)(1))xRR R R D x x m x y z dv dx dydz R x dx R R ρ--Ω==+=+-=⎰⎰⎰⎰⎰⎰⎰;(4)由对称性,0x y ==,110012zD V dv dz dxdy abzdz ab ππΩ====⎰⎰⎰⎰⎰⎰⎰,1120011123zD z zdv zdz dxdy abz dz V V V πΩ====⎰⎰⎰⎰⎰⎰⎰,即所求形心坐标为.所属章节:第九章第三节难度:二级36.利用柱面坐标计算下列三重积分: (1),其中22{(,,)|4,12}x y z x y z Ω=+≤-≤≤;(2),其中Ω由柱面x 2+(y –1)2=1及平面z =0,z =2所围成; (3),其中22{(,,)|09}x y z z x y Ω=≤≤--; (4),其中22{(,,)|14,02}x y z y z x z Ω=≤+≤≤≤+; (5),其中Ω为z ≥0上平面y =0、y =z 及柱面x 2+z 2=1围成 解答:(1)2222222301()d 2324x y v d rdr r dz r dr πΩθππ-+===⎰⎰⎰⎰⎰⎰⎰;(2) 由于被积函数、积分区域关于x 为奇,故32()d d d 0x xy x y z Ω+=⎰⎰⎰;(3)223932403242(9)5r v d rdr rdz r r dr πΩπθπ-==-=⎰⎰⎰⎰; (4) ; (5)所属章节:第九章第四节 难度:三级37.利用球面坐标计算下列三重积分: (1) ,其中2222:x y z a Ω++≤;(2) ,其中Ω是第一象限中球面2221x y z ++=与球面2224x y z ++=之间的部分;卦限? (3) ,其中Ω是单位球体在第五象限部分;(4) 222222sin(1)d 1x y z v x y z Ω++++++⎰⎰⎰,其中Ω是0z ≤≤(5) ,其中Ω是锥面上方与上半球面ρ=2所围立体 解答:(1)22220sin 44(22)8a ar r a v d d e r dr r e dr e a a ππΩθϕϕπππ===-+-⎰⎰⎰⎰⎰⎰⎰;(2)222242()22201ed sin cos sin x y z r x v d d re r dr ππΩθϕϕθϕ++=⋅⎰⎰⎰⎰⎰⎰161622200cos sin 416e e e e d d ππθθϕϕπ--==⎰⎰; (3) 1222222322000221d sin sin sin sin sin 530y v d d r r dr d d ππππππΩπθϕϕθϕθθϕϕ=⋅=⋅=⎰⎰⎰⎰⎰⎰⎰⎰;(4) 222321222222000ln(1)d ln(1)sin cos 11z x y z r v d d r dr x y z r ππΩθϕϕϕ+++=+++++⎰⎰⎰⎰⎰⎰ 220112(ln 2ln 2)sin cos 24d ππϕϕϕ=--⎰;(5)223660sin 8sin 4(2v d d r dr d πππΩθϕϕπϕϕπ===⎰⎰⎰⎰.所属章节:第九章第四节 难度:三级38.将下列三次积分化为柱面坐标或球面坐标下的三次积分,再计算积分值,并画出积分区域图:(1)222212223/21d ()d x y x yx y x y z ---++⎰⎰;(2)22100d d x y y x z +⎰;(3)33d x y z -⎰;(4)322200d )d y x x y z z ++⎰;参考答案:(1)8π35;(2)196;(3);(4) 解答:本题图略 (1) 用柱面坐标,222222122121223/234618d ()d 4()35x y r x y rx y x y z d rdr r dz r r dr πθππ----++==-=⎰⎰⎰⎰⎰⎰; (2) 用柱面坐标,22211222000011d d sin cos sin cos 4896rx y r y x z d rdr r dz d ππθθθθθθ+===⎰⎰⎰⎰⎰;(3) 用球面坐标,3234223000243243d sin cos sin 255x y z d d r dr d πππθϕϕϕπϕϕπ-===⎰⎰⎰⎰⎰;(4) 用球面坐标,32224240d )d sin y x x y z z d d dr ππθϕϕ++==⎰⎰⎰⎰. 所属章节:第九章第四节 难度:三级39.选择适当坐标计算下列三重积分:(1) ,其中Ω由柱面x 2+y 2=8,椭圆锥面z =z =0所围成; (2),其中{(,,)|11x y z z Ω=≤≤+;(3) ,其中Ω由曲面22222222,()z x y x y x y =++=-及平面z =0所围成;(4)2221d v x y z Ω⎫⎪++⎭⎰⎰⎰,其中Ω由曲面222222,33z x y z x y =+=+及平面z =1所围成;(5) ,其中Ω是两个球体2222x y z R ++≤与2222x y z Rz ++≤的公共部分 解答:(1) 用柱面坐标,22202d 16(1sin )48z v d zdz d ππΩθθθπ==+=⎰⎰⎰⎰⎰⎰⎰;(2) 用柱面坐标,21101()d (sin cos )0x y v d rdr dz πΩθθθ+=+=⎰⎰⎰⎰⎰⎰;(3) 用柱面坐标,2142041d 238r z v d zdz ππΩθ-==⎰⎰⎰⎰⎰; (4) 用球面坐标,1224cos222200611d[]sinv d d r r drx y z rππϕπΩθϕϕ⎫=+⋅⎪++⎭⎰⎰⎰⎰⎰⎰(ln3ln2)π=+-;(5) 用柱面坐标,两球面的公共部分在xOy面上的投影,在柱面坐标下积分区域可表示为2222,230,20:ρρρπθ-≤≤--≤≤≤≤ΩRRzRRR,所以22200Rz dv d d dzπθρρΩ=⎰⎰⎰⎰523322232248059])()[(312RdRRRRπρρρρπ=----=⎰.注:本题也可用截面法来计算,分上下两部分,22222dz zRRRD Dz v dz z dxdy dz z dxdyΩ=+⎰⎰⎰⎰⎰⎰⎰⎰⎰2222222(2)()RRRz Rz z dz z R z dzππ=-+-⎰⎰5551475940480480R R Rπππ=+=.所属章节:第九章第四节难度:三级40.利用三重积分求所给立体Ω的体积:(1)Ω由柱面x=y2和平面z=0及x+z=1围成的立体;(2)Ω由抛物面z=x2+y2和z=18–x2–y2围成的立体;(3)Ω为圆柱体r≤a cosθ内被球心在原点、半径为a的球所割下的部分解答:(1)13111220008(22)15xV dv dx dz x x dz-Ω===-=⎰⎰⎰⎰⎰⎰;(2)2223180081rrV dv d rdr dzπθπ-Ω===⎰⎰⎰⎰⎰⎰;(3)cos333220000424(1sin)(34)39aV dv d rdr a d aππθθθθπΩ===-=-⎰⎰⎰⎰⎰⎰.所属章节:第九章第四节难度:二级41.设Ω是Oxyz坐标系中体积为V=5的有界闭区域,Ω*为Ω在变换u =4x +4y +8z ,v =2x +7y +4z ,w =x +4y +3z下的有界闭区域,试求Ω*的体积V *解答:在变换u =4x +4y +8z ,v =2x +7y +4z ,w =x +4y +3z 下,448(,,)27420(,,)143u v w x y z ∂==∂,所以V *=20V =100. 所属章节:第九章第四节 难度:二级42.计算三重积分222222d d x y z ab c x y z ++≤⎰⎰⎰解答:作变换sin cos ,sin sin ,cos x a y b z c ρϕθρϕθρϕ===,则2sin J abc ρϕ=,222222220008d d sin 9x y z a b c x y z abc d d d abc ππθϕρϕρπ++≤==⎰⎰⎰⎰⎰⎰.所属章节:第九章第四节 难度:三级43.计算三重积分2222222()()()()d d d x a y b z c R I x y z x y z -+-+-≤=++⎰⎰⎰解答:作变换sin cos ,sin sin ,cos x a y b z c ρϕθρϕθρϕ=+=+=+,则2sin J ρϕ=,222220(2sin cos 2sin sin 2cos )sin RI d d a b c a b c d ππθϕρϕθρϕθρϕρϕρ=+++++⎰⎰⎰5322244()53R R a b c ππ=+++. 所属章节:第九章第四节 难度:三级44.计算平面6x +3y +2z =12在第一象限中的部分的面积 参考答案:14解答:平面方程,:6312,0,0D x y x y +≤≥≥,投影面积4,,7741422DA d σ==⨯=⎰⎰.所属章节:第九章第五节 难度:二级45.求球面2222x y z a ++=含在圆柱面22x y ax +=内部的曲面面积解答:由对称性,设z =22:,0D x y ax y +≤≥,则dA =,cos 220442(2)a DA d a πθθπ===-⎰⎰⎰⎰.所属章节:第九章第五节 难度:二级46.计算旋转抛物面2z =x 2+y 2被柱面(x 2+y 2)2= x 2–y 2所截下部分的曲面面积解答:柱面投影曲线方程化为r =dA σθ==,442093DA d πππθθ-===-⎰. 所属章节:第九章第五节 难度:二级47.求双曲抛物面z =y 2–x 2夹在圆柱面x 2+y 2=1和x 2+y 2=4之间部分的曲面面积 解答:曲面方程22z y x =-,投影区域为圆环域22:14D x y ≤+≤,dA σθ==,2016DA d ππθθ===⎰⎰.所属章节:第九章第五节 难度:二级48.计算由球面22223(0)x y z a z ++=>和旋转抛物面222(0)x y az a +=>所围成立体的表面积 参考答案:解答:上半曲面方程z =投影区域为圆环域222:2D x y a +≤,dAσθ==,221002(3DA d aπθθπ===⎰;类似,下半曲面面积,2220012)3DA rdrd d r dr aa aπθθπ===⎰⎰⎰;所以所求总的曲面面积为.所属章节:第九章第五节难度:二级49.求由圆柱面229x y+=、平面4y+3z=12和4y–3z=12所围成立体的表面积解答:该立体表面可分成两块来计算面积,一块为上下底,在两个平面上,由于对称,只计算上底面积1A,另一块为侧面,面积记为2A,整个立体的表面积122A A A=+.先计算1A,由于对应曲面方程为,,xyD为投影区域,53dA dσ==,所以15591533xy xyD DA dA dσππ===⋅=⎰⎰⎰⎰,再计算2A,由于对应曲面方程之一为y=,,xzD为投影区域,dAσ==,所以382302248xzDA dA dxπ-===⎰⎰⎰⎰,于是,总面积为122304878A A Aπππ=+=+=.所属章节:第九章第五节难度:三级50.设两个圆柱半径相等,轴相互垂直,求它们所围立体的表面积解答:设两个圆柱面的方程为222222,x y R x z R+=+=,由对称性,只要计算出立体在第一卦限部分上面部分面积1A,再乘以16即可,由于z dA ===,所以121016161616RD A A dx R ====⎰.所属章节:第九章第五节 难度:二级51.设平面薄片所占的闭区域D 是由直线x +y =2,y =x 和x 轴所围成,它的面密度ρ(x )=x 2+y 2,求该薄片的质量解答:122204(,)()3y yDm x y dxdy dy x y dx ρ-==+=⎰⎰⎰⎰所属章节:第九章第五节 难度:二级52.求占有下列区域D 的平面薄片的质量与重心(质心):(1)D 是以(0,0),(2,1),(0,3)为顶点的三角形区域,ρ(x ,y )=x +y ; (2)D 是第一象限中由抛物线y =x 2与直线y =1围成的区域,ρ(x ,y )=xy ; (3)D 由心脏线r =1+sin θ所围成的区域,ρ(x ,y )=2; (4)22{(,)|(1)1},(,)|1|D x y x y x y y y ρ=+-≤=+- 解答:(1)23102(,)()6xxDm x y dxdy dx x y dy ρ-==+=⎰⎰⎰⎰,23210211(,)3()46D x x dx x xy d x x x y dxdy m y ρ-===+⎰⎰⎰⎰, 23210211(,)3()26D x x dx xy y d y y x y dxdy m y ρ-=+==⎰⎰⎰⎰,即所求平面薄片的质量为6,质心坐标为; (2)211150011(,)()26xDm x y dxdy dx xydy x x dx ρ===-=⎰⎰⎰⎰⎰, 2111226004163((),)7x D dx x ydy x x x x y dxd m x x y d ρ=-===⎰⎰⎰⎰⎰,211201(,63)4D x dx y y x y dxd y m xy y d ρ===⎰⎰⎰⎰, 即所求平面薄片的质量、质心坐标分别为、;(3)1sin 22202(,)44(1sin )3Dm x y dxdy d rdr d ππθπρθθθπ+-===+=⎰⎰⎰⎰⎰,由对称性知,1(,)0Dx x x y dxdy m ρ==⎰⎰, 1sin 2242202485sin (3sin sin 1(,))396D d r d y y x y dxdy r m d ππθπθθθθθπρπ+-=+===⎰⎰⎰⎰⎰, 即所求平面薄片的质量、质心坐标分别为;(4)将区域分为两个部分,记为221{(,)|(1)1,1}D x y x y y =+-≤≤,此处(,)1x y ρ=,222{(,)|(1)1,1}D x y x y y =+-≤≥,此处(,)21x y y ρ=-,故 124(,)(21)3D D D m x y dxdy dxdy y dxdy ρπ==+-=+⎰⎰⎰⎰⎰⎰,1(,)0Dx x x y dxdy m ρ==⎰⎰, 121516121111(,)(621)D D D y y x y dxdy ydxdy y y dxdy m m m ππρ==+++-=⎰⎰⎰⎰⎰⎰, 即所求平面薄片的质量、质心坐标分别为415π16π,(0,)312π16m +=++. 所属章节:第九章第五节 难度:二级53.求均匀平面薄片{(cos ,sin )|2sin 4sin }D r r r θθθθ=≤≤绕极轴的转动惯量解答:4sin 22262202sin 0752sin 60sin 4DI y d d r rdr d ππθθπμμσμθθμθθ====⎰⎰⎰⎰⎰ 所属章节:第九章第五节 难度:二级54.求底长为a ,高为h 的等腰三角形薄片,绕其高的转动惯量(设密度为1)解答:将高放在y 轴上,以底的中心为原点建立坐标系,问题转化为求密度为1、占有区域{(,)|0,()()}22a a D x y y h h y x h y h h=≤≤--≤≤-的物体绕y 轴的转动惯量,即 33()2232302()1248ah h y h h y Da a h I x d dy x dx h y dy h σ-===-=⎰⎰⎰⎰⎰.。

经济数学(二重积分习题及答案)

经济数学(二重积分习题及答案)

经济数学(二重积分习题及答案)第九章二重积分习题 9-11.设0),(≥y x f ,试阐述二重积分(,)d Df x y σ的几何意义.解当0),(≥y x f 时,二重积分(,)d D f x y σ??表示的是以xy 平面上的有界闭区间为底,以曲面),(y x f z =为顶,母线平行于z 轴,准线为区域D 的边界的一个曲顶柱体的体积.2.试确定下列积分的符号并说明理由:221(1)ln()d d x y x y x y+<+??224(2)d x y x y*+≤??解 (1) 因1x y +<,则将此式两边平方,得220121x y xy ≤+<-<于是 0)ln(22<+y x 故221ln()d d 0.x y x y x y +<+(2)因为224d x y x y+≥??222222221122343d d d d x y x y x y x y x y x y x y x y+≤<+≤<+≤<+≤=+++当221x y +≤1,且此区域面积为π,则21d x y x y π+≤≤??当2212x y <+≤0,且此区域面积为π,则2212d 0xy x y <+≤≤??当2223x y <+≤1-,且此区域面积为π,则2223d x y x y π<+≤≤-??当2234x y <+≤且此区域面积为π,则22d x y x y <+≤≤??故 224d 00x y x y ππ+≤≤+--=3.试用二重积分的定义证明: (1) d DDS σ=??(其中D S 为D 之面积)(2) (,)d (,)d DDkf x y k f x y σσ=(k 为常数)证 (1) 由二重积分的定义,有.1(,)d lim (,)n i i ii Df x y f λσεησ→==?∑??则当1),(≡y x f 时,上式变为0 1d lim lim ni D Di DS S λλσσ→→==?==∑??.(2) 由二重积分的定义,有,1,101(,)d lim () lim () lim (,)n i iioi Dni i ioi ni i ii kf x y kf k f k f λλλσξησξησξησ→=→=→==?=?=?∑??∑∑(,)d .Dk f x y σ=??4.根据二重积分的性质,比较下列积分的大小. ()2(1) d Dx y σ+??与3()d Dx y σ+??,其中D 由x 轴、y 轴及直线1x y +=围成;(2) d Dx y σ+??与3()d Dx y σ+??,其中D 由圆2(2)x -+ 2(1)2y -=围成.解 (1) 积分区域D 如图9-1 所示.因在所围区域内有10≤+≤y x ,所以 32)()(y x y x +≥+故 ()23d ()d D D x y x y σσ+≥+. 图9-1 (2) 积分区域D 如图9-2 所示.因圆22(2)(1)2x y -+-=的参数方程为21x y θθ?=+??=+??则3cos )32sin()4x y πθθθ+=+=++ 图9-2 min ()321,1,x y x y +=-=+≥而且于是32)()(y x y x +≤+故 ()2d ()d .D D x y x y σσ+≤+5.利用二重积分的性质,估计下列积分的值.(1) ()d DI xy x y σ=+??,:01,01D x y ≤≤≤≤22(2) sin sin d DI x y σ=??,:0,0D x y ππ≤≤≤≤(3) (1)d DI x y σ=++??,:01,02D x y ≤≤≤≤22(4) (49)d DI x y σ=++??,22:4D x y +≤ 解 (1) 因01,01x y ≤≤??≤≤?则0102xy x y ≤≤??≤+≤?故00d 2d 2d 2 2.D DDDI S σσσ=≤≤===(2) 因0,0x y ππ≤≤??≤≤?则0sin 10sin 1x y ≤≤??≤≤?于是 220sin sin 1x y ≤≤ 故200d d .D DDI S σσπ=≤≤==(3)因0102x y ≤≤??≤≤?,则411≤++≤y x故d (1)d 4d DDDx y σσσ≤++≤即28.I ≤≤(4) 因4022≤+≤y x ,则22229494()925x y x y ≤++≤++≤于是99d 25d 25D DDDS I S σσ=≤≤=而 24D S r ππ== 故36100.I ππ≤≤习题 9-21.计算下列二重积分:22(1) ()d ,Dx y σ+??其中D 是矩形区域:1,1x y ≤≤; 22(2) ()d ,Dx y x σ+-??其中D 由直线22y y x y x ===、与所围成; 2(3) d ,Dxy σ??其中D 2y x y x ==由抛物线和直线所围成;211(4) d .y x ?解 (1)9-3 所示.11222211()d d ()d Dx y x x y y σ--+=+12128(2)d .33x x -=+=? 图9- 3(2)积分区域D 如图9-4所示.22222102 ()d d ()d yyDx y x y x y x xσ+-=+-232019313()2486y y dy =-=?图9-4(3)积分区域D 如图9-5所示.2112232001 d d d ()d 3xx D xxy x xy y x y xx σ== 1470111()d 3340x x x =-=?图9-5(4)积分区域D 如图9-6所示.2211110110sin d d d sin d sin1cos1.x x y x x yx x x x +===-?图9-62.积分区域}{(,),D x y a x b c y d =≤≤≤≤,且被积函数为()(),f x g y ?求证:()()d d ()d ()dbdacDf xg y x y f x x g y y ?=??.证积分区域D 如图9-7所示.()()d d d ()()d b dacDf xg y x y x f x g y y=??()[()d ]d ()d ()d ()d ()d b dacd bcab dacf xg y y xg y y f x xf x xg y y ==?=??图9-73.设(,)f x y 在D 上连续且D 由y x y a x b b a ===>、与()围成,求证:d (,)d d (,)d .bx b baa a y x f x y y y f x y x =?证积分区域D 如图9-8 所示. 交换等式左边二次积分的积分顺序有d (,)d d (,)d bx b baaayx f x y y y f x y x=?图9-84.下列条件下,将(,)d DI f x y σ=??按不同积分顺序化为二次积分:2(1) 4D y x y x ==由与所围成;(2) D x 由轴与半圆周()2220x y r y +=≥所围成. 解 (1) 由24y x =和y x =,得交点为(0,0),(4,4).积分区域D 如图9-9 所示.于是将I 化为先对y 后对x 的二次积分,得40d (,)d xI x f x y y=??将I 化为先对x 后对y 的二次积分,得24104d (,)d .y y I y f x y x =??(2)积分区域D 如图9-10 所示. 图9-9 将I 化为先对y 后对x 的二次积分,得d (,)d rrI x f x y y-=?将I 化为先对x 后对y 的二次积分,得d (,)d rI y f x y x=? 图9-105.更换下列二次积分的积分顺序:10(1) d (,)d y y f x y x10(2) d (,)d yy f x y x1(3) d (,)d e ln xx f x y y10(4) d (,)d y f x y x2113(3)2001(5) d (,)d d (,)d x x x f x y y x f x y y-+??解 (1)因为原积分区域{(,)01,D x y y y x =≤≤≤≤为Y 型区域, 其图形如图9-11 所示. 交换积分次序区域D 应视为X 型区域.故2110d (,)d d (,)d .xyxy f x y x x f x y y =?(2) 因为原积分区域{}(,)01,0D x y y x y =≤≤≤≤为Y 型区域, 其图形如图9-12 所示. 交换积分次序区域D 应视为X 型区域. 故111d (,)d d (,)d .y oxy f x y x x f x y y =(3)因为原积分区域{}(,)1,0ln D x y x e y x=≤≤≤≤为X 型区域, 其图形如图9-13 所示. 交换积分次序区域D 应视为Y 型区域.图9-11 图9-12故ln 11d (,)d d (,)d .x exeex f x y y y f x y x =??(4)因为原积分区域{(,)01,D x y y x =≤≤为Y 型区域, 其图形如图9-14 所示. 交换积分次序区域D 应视为X 型区域.故1101d (,)d d (,)d .y f x y x x f x y y -=??图9-13 图9-14(5)因为原积分区域{}2121,(,)01,0D D D D x y x y x =+=≤≤≤≤其中21(,)13,032D x y x y x ??=≤≤≤≤??(-)为X 型区域, 其图形如图9-15 所示. 交换积分次序区域D 应视为Y 型区域.图9-15 图9-16 2113(3)20011320d (,)d d (,)d d (,)d .故x x y x f x y y x f x y yy f x y x --+=??6.求由平面0011x y x y ====、、、所围成的柱体被平面0z =与2x + 3y + z = 6所截得的立体的体积.解该曲顶柱体如图9-16所示.习题 9-31.作适当变换,计算下列二重积分:()22(1) ()sin d d Dx y x y x y-+??.D 是顶点为(,0)(2,)(,2)πππππ、、、(0,)π的四边形;22(2) d d ,Dx y x y ??1240D xy xy y x y x x ====>由、、和所围成且、0y >;(3) d d ,yx yDex y +?? D 由x 轴,y 轴和直线1x y +=所围成; ()()1100623d d 7d 623d .2DV x y x yx x y y =--=--=2222(4) ()d d ,Dy x x y a b +2222:1y x D a b +≤.解 (1) 积分区域D 如图9-17所示.令x y ux y v -=??+=?,解得()()1212x u v y v u ?=+=-?? 于是原积分区域D 的边界x y π+=、3x y π+=、x y π-=、x y π-=-与图9-17 新积分区域D’的边界3v π=、v π=、u π=、u π=-相对应. 其积分区域D’的图形如图9-18所示.因为11(,)12211(,)222xx x y u v J yy u v u v====-??故()()22sin d d Dx y x y x y -+??22'322321sin d d 21d sin d 231sin 2324D u v u vu u v v u v v ππππππππ-=?==?- ? ? ? ?- 图9-183431().3223ππππ=?-=(2) 积分区域D 如图9-19所示.令 x y u yv x ==??,解得x y ?==?则新积分区域D’由u = 1,u = 2,v = 1,v = 4围成. 其积分区域D’的图形如图9-20所示. 图9-19 因为(,)(,)x xx y u v J y yu v u v ==2)12u v v -==22'2'1d d d d 211 d d 2DD D u x y x y uv u v v v u u v v=??=故图9-2024211117d d ln 2.23u u v v ==?? (3)积分区域D 如图9-21所示.令x y u y v +=??=?,解得x u vy v =-??=?则新积分区域D’由u = v 、v = 0和u = 1围成. 图9-21 其积分区域D’的图形如图9-22所示.因为11(,)101(,)xxx y u v J y y u v u v-====图9-22故 10'd d 1d d d dy vv x yuuuoDD ex y e u v u ev +=??=()1011d 2e u e u -=-=.(4)积分区域D 如图9-23所示.令cos sin x ar y br θθ=??=?则新积分区域为(){}',02,01D r r θθπ=≤≤≤≤ 图9-23 因为(,)(,)xxx y r J yyr r θθθ==cos sin sin cos a ar abrb br θθθθ-==22222'21300 ()d d d d 1d d .2DD y x x y r abr r abab r r ab πθθπ+===故2.用变量替换,求下列区域D 的面积:(1)334851500.D xy xy xy xy x y ====>>由曲线、、和所围成且、(2)D 由曲线333344y x y x x y x y ====、、、所围成且00.x y ≥≥、解 (1) 令3u xy v xy =??=?,解得x y ==则新积分区域D’由 u = 4、u = 8、v = 5、v = 15围成.因为(,)(,)x xx y u v J y yu v u v ==12v==81515545' d d 111 d d d d 4ln 2ln 3.222D DD S x yu v u v v v v ====?=故图9-24(2) 令33y u x x v y ?==?,解得x y ?==??则新积分区域D’由u = 1、u = 4、v = 1和v = 4围成. 其积分区域D’的图形如图9-25所示.因为(,)(,)xx y u v J yyu v u v ==图9-251113988883293111888831188()81388u v u v uv u v v u -----------= =--故d d D DS x y=??()33442211342111d d d ()d 881 1d .88D uv u v u uv vuu-====’100D x y x y +===3.设由直线、与所围成,求证:1cos()d d sin1.2D x y x y x y -=+??证积分区域D 如图9-26所示.令x y vx y u +=??-=?,解得()()1212x v u y v u ?=+=-??则新积分区域'D 由v = 1,v = -u , 及v = u 围成. 图9-26因为11(,)12211(,)222xx x y u v J yy u v u v====-??'1cosd d cos d d 2DD x y u x y u v x y v -=?+故图9-27 101d cos d 2vv uv uv -=??101[s i n ]d 21s i n 1d s i n 1.2v v u v v v v v =-==4.选取适当变换,求证:()()11d d d , : 1.Df x y x y f u u D x y -+=+≤??证积分区域D 如图9-28所示.令x y ux y v +=??-=?, 解得()()1212x u v y u v ?=+=-??则新积分区域'D 由u = 1, u = -1,v = 1及v = -1所围成其积分区域D’的图形如图9-29所示. 图9-28 因为 11(,)12211(,)222x x x y u v J y y u v u v ====--?? 故'1()d d ()d d2DD f x y x y f u u v +=-??1111111d ()d ()d .2u f u v f u u ---==习题 9-41.画出下列积分区域D 并把积分(),d d Df x y x y ??化成极坐标形式:()22222(1) 0 (2) 2x y a a x y x +≤>+≤()2222(3)0 (4) 0101a x yb a b y x x ≤+≤<<≤≤-≤≤且解积分区域D 如图9-30所示.(1)令cos sin x r y r θθ=??=?则积分区域D 被夹在0θ=与2θπ=之间,且远近极点的边界方程分别为0r a r ==与,故图9-30()20,d d d (cos ,sin )d .aDf x y x y f r r r r πθθθ=(2) 积分区域D 如图9-31所示.令cos sin x r y r θθ=??=?则远近极点的边界方程分别为r=2cos θ与r = 0.由r ≥0和2cos 0θ≥得22ππθ-≤≤图9-31 则D 被夹在22ππθθ==-和之间, 故2cos 202(,)d d d (cos ,sin )d Df x y x y f r r r rπθπθθθ-=??.(3) 积分区域D 如图9-32所示.令cos sin x r y r θθ=??=?则远近极点的边界方程分别为r a r b ==与,图9-32 而D 被夹在02θθπ==与之间, 故20(,)d d d (cos ,sin )d .baDf x y x y f r r r r πθθθ=??(4) 积分区域D 如图9-33所示.令cos sin x r y r θθ=??=?则远近极点的边界方程分别为图9-331cos sin r θθ=+0r =与,而D 被夹在02πθθ==和之间,故12cos sin 0(,)d d d (cos ,sin )d .Df x y x y f r r r r πθθθθθ+=2.将下列二次积分化为极坐标形式:2222001122222000(1) d )d (2) d (3) d ()d (4) d )d aaxa xx x y y x y x x y y yx y x-+++解 (1)积分区域D 如图9-34所示. 令cossin x ry rθ==则y2cos,r aθ=而D被夹在2πθθ==与之间, 故图9-3422cos22320000d)d d d.a ax x y y r r πθθ+=(2) 积分区域D如图9-35所示. 令cossinx ry rθθ==则0x a x==与的极坐标方程分别为图9-26 cosarθ=与0;r=0y x y==与的方程分别为04π==与,故sec240000d d d.a ax y r rπθθ=(3) 积分区域D如图9-36所示. 令cossinx ry rθθ==2y x y x==与的极坐标方程分别为图9-36 tan sec rθθ=4πθ=与,故211tan sec2224000d()d d d.xxx x y y rπθθθ-+=(4) 积分区域D如图9-37所示.令cossiny rθθ==则222x y a+=上方程为, r a=而D被夹在2πθθ==与之间, 故22320000d)d d d.a ay x y x r r π+=图9-37 3.用极坐标计算下列各题:22(1) d,x yDeσ+D由圆周224x y+=所围成;(2) ,Dσ{}2222(,);D x y a x y b=≤+≤(3) arctan d,Dyxσ2222D x y x y y y x+=+===由、、和所围成的第I象限部分;224 , :.DD x y Rx σ+≤()解 (1) 积分区域D 如图9-38所示.令cos sin x r y r θθ=??=?{}(,)02,02D r r θθπ=≤≤≤≤则,故222220d d d x y r De e r rσθ+=图9-382224012d (1)2re r e ππ==-?.(2) 积分区域D 如图9-39所示.令cos sin x r y r θθ=??=?(){},,02D r a r b θθπ=<<≤≤则,故图9-39223333d d 22().33baDr rb a b a πσθππ=-=?=?-?(3) 积分区域D 如图9-40所示.令cos sin x r y r θθ=??=?(),12,04D r r πθθ??=≤≤≤≤??则,故图9-40 2224401013arctan d d d d d .64D y r r r r x ππσθθθθπ===(4) 积分区域D 如图9-41所示.令cos sin x r y r θθ=??=?(),0cos ,22D r r R ππθθθ??=≤≤-≤≤??则, 故图9-41 ()cos 202cos 20322220 d d 2d d cos 2 d 03R DR r rr rR R r πθππθπσθθθθ-==??=--33332024 (sin )d ()333R R R πθθπ=--=-?.4.选择适当的坐标系,计算下列各题:()22(1) ()d d 30Dx y x y D y x y x a y a y a a +==+==>??,由、、、所围成;222(2) d d :,00;D y x y D x y a x y +=≥≥??,、 (3) d d 212D x y x y D y x y x x y x y ====??,由、、与围成 ()2(4) d d :1,2,,2.Dx xy x y D x y x y y x y x ++=+===??,解 (1) 令,y x u y v -=??=?得变换式x v uy v =-??=?则新积分区域D’由u = 0、u = a 、v = a 及v = 3a 所围成. D ’如图9-42所示.因为11(,)101(,)x y J u v -?===-?()22222'322032230 ()d d 1d d d (22)d 2(1882)d 14.3DD aaa x y x y v u u u vu v vu u va a u au u u a ??+=-+?-??=-+=-+-=故图9-42(2)积分区域D 如图9-43所示.令cos sin x r y r θθ=??=?(),0,02D r r a πθθ??=≤≤≤≤??则,故32d d d sin d .3aDa y x y r r r πθθ==图9-43(3)令y u xxy v ?==?.得变换式x y ?==?则新积分区域D’由u = 1、u = 2、v =1、 v = 2所围成.D’如图9-44所示.因为()(,)1,2x y J u v u===-图9-44故'2211113d d d d d d ln 2.224DD v xy x y v u v u v u u =-=?=(4)令x y u y v x +==??,得变换式11u x vuv y v ?=??+??=?+? 则新积分区域D’由u = 1、u = 2、v = 1、v =2所围成. D’如图9-44所示.因为 ()()()()()222111,,111uv v x y uJ v u u v v v v -++?===+++()'22()d d d d 11D D u ux xy x y u u v v v +=??++故 () 322233111525d d d .72961u u v u u v ===+ 5.试求区域D 的面积,其中D 为()()12,.r ?θ?θαθβ≤≤≤≤解积分区域D 如图9-45所示.21()()d d d d .D DS x y r r βθαθθ==图9-45习题 9-51.计算下列广义二重积分:{}()20(1) d d . (,),0 (2)d d x yy Dx yxe x y D x y y x x e x y-+-≤≤=≥≥解(1)积分区域D 如图9-46所示.2200 d d d d 1 d .2y y xDx xe x y x xe yxe x +∞+∞--+∞-===故(2)积分区域D 如图9-47所示. 图9-46 ()()020d d d d 1 d .2x yx y xDx e x y x e ye x +∞+∞-+-++∞-===故2.用极坐标计算下列广义积分:(){}2222()()22221224(1) d d (2) cos()d d d d (3) ,1.()x y x y De x y e x y x y x y D x y xy x y +∞+∞-+-∞-∞+∞+∞-+-∞-∞+=+≤+,图9-47解 (1)cos sin x r y r θθ=??=?令(){},0,02D r r θθπ=≤≤+∞≤≤则,故22222()1d d d d d .2x y re x y e r r ππθθπ+∞+∞+∞-+--∞-∞===(2)cos sin x r y r θθ=??=?令(){},0,02D r r θθπ=≤≤+∞≤≤则,故2222()222200222020cos()d d d cos d 1 sin cos d 041 d .42x y r r e x y x ye r r re r r πππθθπθ+∞+∞-+-∞-∞+∞--+=+∞=-==??(3) 积分区域D 如图9-48所示.cos sin x r y r θθ=??=?令(){},01,02D r r θθπ=≤≤≤≤则,故图9-4821210224d d 24 d d d 33()Dx yr r x y ππθθπ=?==+??.3.计算下列广义积分:()()224452(1) d (2)1d x x x ex x x e x+∞+∞-++--∞-∞++?解()()22445214(1) d d x x x ex ex+∞+∞-++-+--∞-∞=()2221441d(21)2121d ()212x t e e x t x e e t e +∞-+--∞+∞---∞-=+=+=??由普阿松积分()222222222212332 (2) 1d d d d d ,d ,d 0.x x x x x x x x x e x x e x xe x e x I x e x I xe x I exI I +∞+∞+∞+∞-----∞-∞-∞-∞+∞+∞+∞----∞-∞-∞++=++=====?。

高数二重积分习题解答

高数二重积分习题解答
f (x, y)dx
2 dy
4y2 f (x, y)dx ;
0
0
0
1 1y2
1
0
(5)
0
y1
1
dy f (x, y)dx dy
1y 2 f (x, y)dx ;
1 0
0
0
(6)
1
x2
3
3 x
dx f (x, y)dy dx 2 f (x, y)dy
0
0
1
0
所属章节:第九章第二节
(5)
sin( x )d
2
dy
y3
sin(
x
)dx
2
(
y
cos1
y
cos
y
2)dy
3cos1 sin1 sin 4 .
D
y
1
y
y
1
2
所属章节:第九章第二节
难度:二级
12.画出下列各题中的积分区域,并交换积分次序(假定 f(x,y)在积分区域上连续):
(1)
1
dy
y f (x, y)dx ;
1
4
的面积为
1 4
,在其中1
sin( x2
y2)
1
e4
,而等号不恒成
1
立,故 π I πe4 .
4
4
所属章节:第九章第一节
难度:二级
7.设
f(x,y)是连续函数,试求极限: lim r 0
1 πr 2
x2 y2 r2
f ( x,
y)d
解答:先用积分中值定理,再利用函数的连续性,即得
lim
D D1
D
D1

二重积分习题答案精编WORD版

二重积分习题答案精编WORD版

二重积分习题答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】第八章二重积分习题答案练习题8.11.设D :0y ≤,0x a ≤≤,由二重积分的几何意义计算d Dx y解:d Dx y =20d πθ⎰⎰=22201()2r d a r πθ=--⎰⎰2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =⎰⎰ 解:2dxdy =⎰⎰22126d rdr πθπ=⎰⎰练习题8.21.2d Dx σ⎰⎰其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域.解:2d Dx σ⎰⎰=22222301001515cos [cos2]84d r dr d d πππθθθθθπ=+=⎰⎰⎰⎰ 2计算二重积分σd yx D)341(--⎰⎰,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。

解:σd yx D)341(--⎰⎰= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--⎰⎰⎰=222(1)84xdx --=⎰3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.解:22242202320(42)28(2)|33x x xDA dxdy dx dy x x x x -===-=-=⎰⎰⎰⎰⎰4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积解: 222222(4)(4)48DV x y d d r rdr d ππσθθπ=--=-==⎰⎰⎰⎰⎰习 题 八一.判断题1.d Dσ⎰⎰等于平面区域D 的面积.(√)2.二重积分 100f(x,y)d ydy x ⎰⎰交换积分次序后为11f(x,y)d xdx x ⎰⎰ (×)二.填空题1.二重积分的积分区域为2214x y ≤+≤,则4dxdy =⎰⎰12π12π.2.二重积分d d Dxy x y ⎰⎰的值为112,其中2:0D y x ≤≤,01x ≤≤.1123.二重积分10(,)ydy f x y dx ⎰⎰交换积分次序后为11(,)xdx f x y dy⎰⎰. 11(,)xdx f x y dy ⎰⎰4.设区域D 为1x ≤,1y ≤,则⎰⎰(sin x x -)d d x y =0.05.交换积分次序1d (,)y f x y dx ⎰=211(,)(,)x dx f x y dy f x y dy+⎰⎰⎰⎰.211(,)(,)x dx f x y dy f x y dy +⎰⎰6.设D 是由221x y +≤所确定的区域。

二重积分习题解答

二重积分习题解答

二重积分习题解答(一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1.12200I dy x y dx =⎰,则交换积分次序后得 C 。

(A)1220I dy x y dy =⎰; (B)12203I x y dy =⎰;(C )2112203x I dx x y dx -=⎰⎰; (D )2112203x I dx x y dy +=⎰⎰。

2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则x yDedxdy +=⎰⎰ D. .(A)2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ;3. 设积分域D 由直线,2,2y x x y x =+==围成,则(,)D f x y dxdy =⎰⎰ C(A)120(,)xx dx f x y dy -⎰⎰, (B) 21(,)yydyf x y dx -⎰⎰, (C) 212(,)xxdx f x y dy -⎰⎰, (D) 1(,)xdx f x y dy ⎰⎰.;4.22x y DI e dxdy --=⎰⎰,D :221x y +≤,化为极坐标形式是 D 。

(A )221[]r I e dr d πθ-=⎰⎰;(B )2124[]r I e dr d πθ-=⎰⎰;(C )21202[]r I e rdr d πθ-=⎰⎰;(D )221[]r I e rdr d πθ-=⎰⎰。

5. 2DI xy d σ=⎰⎰, 其中22:1D x y +≤的第一象限部分,则 C 。

(A)120I dy dy =⎰; (B )1120I dx xy dy =⎰⎰;(C)12I dx dy =⎰;(D )1232cos sin I d r dr πθθθ=⎰⎰。

填空题1.交换二次积分次序,1(,)xI f x y dy =⎰= 。

故211(,)(,)yxy I dx f x y dy dy f x y dx ==⎰⎰⎰2.设积分域D 由11,22,x y -≤≤-≤≤围成,则3(2)Dx y dxdy +=⎰⎰ 0 3.设积分域为22{(,)|14,}D x y x y y x =≤+≤≥,则积分22()Df xy dxdy +=⎰⎰在极坐标下的二次积分为 。

二重积分习题及答案

二重积分习题及答案

在第一象限部分.
y
解: (1) 作辅助线 y x2 把与D 分成
1 D1
D1, D2 两部分, 则
1 o 1 x
I D1 dxdy D2 dxdy
D2
1
dx
1
1
x2 dy
1 dx
1
x2
dy
0
2 3
(2) 提示:
I D ( x2 y2 2xy 2) dxdy
y
作辅助线 y x 将D 分成 D1 , D2 两部分
1 求 x2e y2dxdy ,其中 D 是以(0,0),(1,1),
D
(0,1)为顶点的三角形.
解 e y2dy 无法用初等函数表示
积分时必须考虑次序
x2e y2dxdy
1
dy
y x2e y2 dx
00
D
e1 y2 y3dy e1 y2 y2dy2 1 (1 2).
1
yx
D1
D2
o
1x
2D2 (x y)dxdy 2D dxdy
2 ( 2 1)
3
2
说明: 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算 ( x y )dxdy, D : x2 y2 1
D
分析 积分区域D关于x、y轴均对称, 被积函数
f ( x, y) x y 关于x,y均是偶函数,利用对称性
去掉绝对值符号.
解 采用直角坐标
1
( x y )dxdy 4 dx
1 x2 ( x y)dy 8
D
0
0
3
【注】在利用对称性计算二重积分时,要同时考虑被积
函数的奇偶性和积分区域的对称性,不能只注意积分区域

二重积分的计算方法例题及解析

二重积分的计算方法例题及解析

二重积分的计算方法例题及解析一、利用直角坐标计算二重积分1. 例题- 计算∬_D(x + y)dσ,其中D是由直线y = x,y = x^2所围成的闭区域。

2. 解析- (1)首先确定积分区域D的范围:- 联立方程<=ft{begin{array}{l}y = x y = x^2end{array}right.,- 解得<=ft{begin{array}{l}x = 0 y = 0end{array}right.和<=ft{begin{array}{l}x = 1 y = 1end{array}right.。

- 所以在x的范围是0≤slant x≤slant1,对于每一个x,y的范围是x^2≤slant y≤slant x。

- (2)然后将二重积分化为累次积分:- ∬_D(x + y)dσ=∫_0^1dx∫_x^2^x(x + y)dy。

- (3)先计算内层积分:- ∫_x^2^x(x + y)dy=∫_x^2^xxdy+∫_x^2^xydy。

- ∫_x^2^xxdy=x<=ft(y)<=ft.rve rt_x^2^x=x(x - x^2)=x^2-x^3。

- ∫_x^2^xydy=(1)/(2)y^2<=ft.rvert_x^2^x=(1)/(2)(x^2-x^4)。

- 所以∫_x^2^x(x + y)dy=x^2-x^3+(1)/(2)(x^2-x^4)=(3)/(2)x^2-x^3-(1)/(2)x^4。

- (4)再计算外层积分:- ∫_0^1((3)/(2)x^2-x^3-(1)/(2)x^4)dx=(3)/(2)×(1)/(3)x^3-(1)/(4)x^4-(1)/(2)×(1)/(5)x^5<=ft.rvert_0^1。

- =(1)/(2)-(1)/(4)-(1)/(10)=(10 - 5 - 2)/(20)=(3)/(20)。

二重积分练习题(一)

二重积分练习题(一)
2
1 y
f ( x, y )dx
四、计算下列二重积分
1、
6 55
2、 5、
64 15
3、
9 4
4、 2
1 (π 2) 4
二重积分
13
五、交换下列二次积分的顺序 1. ∫ dy ∫
0 1 y 1 1 y 2
f ( x , y ) dx
2. ∫
1
0
dy ∫ y f ( x , y ) dx
e
e
3. ∫ dx∫
y = x, x = π围成
π ,其中 其中D由 ,其中 由 0 ≤ x ≤ 1, 0 ≤ y ≤ 围成 2
二重积分
9
五、交换下列二次积分的顺序 1. ∫
0 1
dx ∫
1 x 2
x +1
f ( x , y ) dy
2. ∫1 dx ∫0 3. ∫1 dy ∫1 4. ∫ dx∫
0 2
e
ln x
f ( x, y )dy
化为先x 后 y 的二次积分为 5.将二次积分 5.将二次积分∫1 dx∫2x 应为 6.将二次积分 6.将二次积分 ∫e
1
2
2
2 x x2
f ( x, y)dy 改换积分次序, 改换积分次序,
dy∫
2
ln y
f ( x, y)dx + ∫
1+ 2
1
dy∫
2
( y 1)2
f ( x, y)dx
改换积分次序应为
2

f ( x, y)dy
f ( x, y )dx
D
1
2x
B.1 dx ∫x . ∫
2
2

第九章 二重积分 复习题答案

第九章 二重积分 复习题答案

第九章 二重积分 复习题答案一、单项选择题1、设D 是由曲线x y x 422=+围成的闭区域,则()⎰⎰+Dd y x f σ22=( C )A.()dr rf d ⎰⎰πθ012B.()rdr r f d ⎰⎰-22sin 402ππθθC.()rdr rf d ⎰⎰-22cos 42ππθθ D. ()dr r f d ⎰⎰-22cos 402ππθθ2、设f 是连续函数,D 是由0,122≥≤+y y x 确定的区域,则=+⎰⎰σd y x f D)(22( A )。

A 、 10()d rf r dr πθ⎰⎰ B 、210()d rf r dr πθ⎰⎰C 、10()d f r dr πθ⎰⎰ D 、210()d f r dr πθ⎰⎰3、设22:14, D x y ≤+≤则2Ddxdy =⎰⎰( D )A.3πB.4πC.30πD.6π 4、设D 是由直线,2,1y x y x y ===围成的闭区域,则Ddxdy =⎰⎰( B )A 、12 B 、14 C 、1 D 、325、设积分区域D 是由圆22x y Ry +=围成,则二重积分22()Df x y d σ+=⎰⎰( D )A 、2sin ()00R d f r dr πθθ⎰⎰ B 、22sin ()00R d f r rdr πθθ⎰⎰C 、2sin ()00R d f r dr πθθ⎰⎰D 、2sin ()00R d f r rdr πθθ⎰⎰ 6、若{}22(,)12D x y x y =≤+≤,则二重积分Dd σ⎰⎰=( C )A.2π B. 2πC. πD. 3π二、填空题:1、变换二次积分⎰⎰⎰⎰-+=2120100),(),(yydx y x f dy dx y x f dy I 的积分次序,则=I ⎰⎰-=12),(xx dy y x f dx I ;2、改变二次积分21(,)yydy f x y dx ⎰⎰的积分次序,则I = ⎰⎰1),(xxdy y x f dx ;3、改变二次积分210(,)x dx f x y dy ⎰⎰的积分次序,可得21(,)x dx f x y dy ⎰⎰=_______⎰⎰101),(ydx y x f dy ;4、若D 是由直线 1,1,1,1=-==-=y y x x 围成的矩形区域,则⎰⎰=Ddxdy 25、交换二次积分1(,)00y I dy f x y dx =⎰⎰的积分次序,则I =⎰⎰11),(xdy y x f dx ___;三、计算题:1、求⎰⎰+Ddxdy y x )2(,其中D 是由曲线2x y =和0=+y x 围成的闭区域. 101|)1022()2223(|)22()2()2(:0154314320120122-=---=⋅---=⋅+=+=+------⎰⎰⎰⎰⎰⎰x x x dx x x x dxy xy dy y x dx dxdy y x xx Dxx解2、求σd y x D⎰⎰+22,其中D 是由圆周x y x 222=+所围成的闭区域。

二重积分的习题答案

二重积分的习题答案

二重积分的习题答案二重积分的习题答案二重积分是高等数学中的一个重要概念,它在许多领域中都有着广泛的应用。

在学习二重积分的过程中,我们经常会遇到各种各样的习题。

本文将针对一些常见的二重积分习题,给出详细的解答。

1. 计算二重积分∬D(x^2 + y^2)dxdy,其中D为单位圆盘。

解答:首先,我们需要确定积分的区域D。

单位圆盘可以表示为D={(x,y)|x^2+y^2≤1}。

接下来,我们将积分区域D分解为极坐标系下的积分区域。

在极坐标系下,我们可以将x和y表示为x=r*cosθ,y=r*sinθ。

根据极坐标系下的面积元素dA=rdrdθ,我们可以将原积分转化为极坐标下的二重积分。

∬D(x^2 + y^2)dxdy = ∫∫D(r^2)rdrdθ对于极坐标下的积分区域D,r的取值范围为0到1,θ的取值范围为0到2π。

因此,我们可以得到:∫∫D(r^2)rdrdθ = ∫0^1∫0^2π(r^3)drdθ计算这个二重积分,我们可以得到:∫0^1(r^3)dr * ∫0^2πdθ = (1/4) * 2π = π/2因此,二重积分∬D(x^2 + y^2)dxdy的结果为π/2。

2. 计算二重积分∬Dxydxdy,其中D为由y=x^2和y=2x的曲线所围成的区域。

解答:我们可以通过绘制图像来确定积分区域D。

根据题目给出的曲线方程y=x^2和y=2x,我们可以发现它们的交点为(0,0)和(2,4)。

通过计算两条曲线的交点,我们可以确定积分区域D的边界。

在x轴上,积分区域D的边界为x=0和x=2。

在y轴上,积分区域D的边界为y=0和y=4。

因此,积分区域D可以表示为D={(x,y)|0≤x≤2, x^2≤y≤2x}。

接下来,我们可以计算二重积分∬Dxydxdy。

首先,我们需要确定积分的次序。

由于积分区域D可以表示为0≤x≤2和x^2≤y≤2x,因此我们可以选择先对y进行积分,再对x进行积分。

∬Dxydxdy = ∫0^2∫x^2^2xxydydx对于y的积分,我们可以得到:∫x^2^2xxydy = [1/2xy^2]x^2^2x = [1/2x(2x)^2]x^2^2x = 2x^5 - 1/2x^3接下来,我们对x进行积分,得到:∫0^2(2x^5 - 1/2x^3)dx = [1/3x^6 - 1/4x^4]0^2 = (1/3(2)^6 - 1/4(2)^4) -(1/3(0)^6 - 1/4(0)^4)计算这个二重积分,我们可以得到:(1/3(2)^6 - 1/4(2)^4) - (1/3(0)^6 - 1/4(0)^4) = 128/3 - 4/3 = 124/3因此,二重积分∬Dxydxdy的结果为124/3。

练习104(二重积分的计算(极坐标)) - 答案

练习104(二重积分的计算(极坐标)) - 答案

练习册 104 二重积分的计算(极坐标)(答案)1、计算σd y x xy D⎰⎰+++2211,其中(){}0 ,1 ,22≥≤+=x y x y x D 。

解:画出积分区域D (如右图所示),考虑到()221,y x xy y x f ++=关于y 是奇函数,()2211,y x y x f ++=关于y 是偶函数,且积分区域D 关于x 轴对称,设D 在第一象限的部分为1D ,因为1D 可以用不等式表示成: 10,20≤≤≤≤r πθ, 所以,σσσσd y x d y x xy d y x d y x xy DD D D ⎰⎰⎰⎰⎰⎰⎰⎰++=+++++=+++222222********* dr r r d ⎰⎰⋅+=10220112πθ()[]2ln 21ln 21221 02ππ=+⋅⋅=r 。

2、化二次积分()dy y x f dx ⎰⎰1010 , 为极坐标的二次积分。

解:因为二次积分的积分区域(){}10,10 ,≤≤≤≤=y x y x D ,画出积分区域D ,把积分区域分成两部分1D 和2D (如右图所示),显然满足21D D D ⋃=且1D 和2D 的公共面积为0。

令θcos r x =, sin θr y =,所以,直线1=x 在极坐标下的方程是θcos 1r =,即θcos 1=r , 直线1=y 在极坐标下的方程是θsin 1r =,即θsin 1=r , 所以,()⎭⎬⎫⎩⎨⎧≤≤≤≤=θπθcos 10 ,40 ,1r y x D ,()⎭⎬⎫⎩⎨⎧≤≤≤≤=θπθπsin 10 ,24 ,1r y x D 。

()=∴⎰⎰dy y x f dx 1010 , ()+⋅⎰⎰θπθθθcos 1040sin ,cos rdr r r f d ()⎰⎰⋅θππθθθsin 1024sin ,cos rdr r r f d 。

3、化二次积分()dy y x f dx x x ⎰⎰320 , 为极坐标的二次积分。

二重积分练习题答案

二重积分练习题答案
11
8、 ∫∫ x − y dxdy , D : x = 0, y = 0, x = 1, y = 1 y
D
1
解: 原式 = ∫∫ ( y − x)dxdy + ∫∫ ( x − y )dxdy
D1 D2
D1
D2
0
1
x
= ∫ dx
0
1
∫x ( y − x)dy + ∫ dx
1 0
1
∫0 ( x − y) 2 y
f ( x, y )dx
D
.
( -1,-1)
⎞ ⎛ 1 ⎜ - ,-1⎟ ⎝ 2 ⎠
1
高等数学——Copyright©2012 by Samw. All rights reserved.
3、 D : x 2 + y 2 ≥ ax , 2 + y 2 ≤ 2 ax ( a > 0) 将 ∫∫ f ( x, y ) dxdy 设 x
二重积分练习题
一、填空
x2 1、设 D : x = 2, y = x, xy = 1, ∫∫ 3 dxdy = y D
2 x x 2 x2 ∫∫ y3 dxdy = ∫1 dx ∫1x y 3 dy D
13 5
.
(2, 2)
(1,1)
1 (2, ) 2
2、设 D : y = x, y = 2 x, y = −1,将 ∫∫ f ( x, y )dxdy 化为累 次积分 =
D1 D2
0
1
x
= ∫ dθ
4 0
π

sec θ
0
f (r cosθ , r sin θ )rdr f (r cosθ , r sin θ )rdr

数学分析21.8反常二重积分(含习题及参考答案)

数学分析21.8反常二重积分(含习题及参考答案)

数学分析21.8反常⼆重积分(含习题及参考答案)第⼆⼗⼀章重积分 8 反常⼆重积分⼀、⽆界区域上的⼆重积分:定义1:设f(x,y)为定义在⽆界区域D 上的⼆元函数. 若对于平⾯上任⼀包围原点的光滑封闭曲线γ, f(x,y)在曲线γ所围的有界区域E γ与D 的交集 D ∩E γ=D γ上恒可积. 令d γ=min{22y x +|(x,y)∈γ}. 若极限σγγd y x f Dd ??∞→),(lim存在且有限,且与γ的取法⽆关,则称f(x,y)在D 上的反常⼆重积分收敛,并记σd y x f D),(=σγγd y x f Dd ??∞→),(lim,否则称f(x,y)在D 上的反常⼆重积分发散,或简称σd y x f D),(发散.定理21.17:设在⽆界区域D 上f(x,y)≥0, γ1, γ2,…, γn ,…为⼀列包围原点的光滑封闭曲线序列,满⾜:(1)d n =inf{22y x +|(x,y)∈γn }→+∞, (n →∞);(2)I=σd y x f nD n),(sup <+∞, 其中D n 为γn 所围的有界区域E n 与D 的交集,则反常⼆重积分σd y x f D),(收敛,且有σd y x f D),(=I.证:设γ’为任何包围原点的光滑封闭曲线,这曲线所围的区域记为E ’, 并记D ’=E ’∩D. ∵∞→n lim d n =+∞, ∴存在n, 使得D ’?D n ?D. 由f(x,y)≥0,有σd y x f D ??'),(≤σd y x f n),(sup , ?ε>0, ?n 0, 使得σd y x f nD ??0),(>I-ε. 对充分⼤的d ’, 区域D ’⼜可包含D 0n, 使得σd y x f D ??'),(>I-ε. 由I-ε<σd y x f D ??'),(≤I, 知f(x,y)在D 上的反常⼆重积分存在,且σd y x f D),(=I.定理21.18:若在⽆界区域D 上f(x,y)≥0, 则反常⼆重积分σd y x f D),(收敛的充要条件是:在D 的任何有界⼦区域上f(x,y)可积,且积分值有上界.例1:证明反常⼆重积分σd eDy x ??+-)(22收敛,其中D 为第⼀象限部分,即D=[0,+∞)×[0,+∞).证:设D R 是以原点为圆⼼, 半径为R 的圆与D 的交集,即该圆第⼀象限部分. ∵) (22y x e +->0,∴⼆重积分σd e Dy x ??+-)(22关于R 递增.⼜σd eRD y x ??+-)(22=dr r e d Rr ??-0202πθ=)1(4D y x R ??+-+∞→)(22lim =)1(4lim 2R R e -+∞→-π=4π. 即对D 的任何有界⼦区域D ’, 总存在⾜够⼤的R ,使得D ’?D R , ∴σd e D y x ??' +-)(22≤σd e RD y x ??+-)(22≤4π.由定理21.18知,反常⼆重积分σd e Dy x ??+-)(22收敛,⼜由定理21.17有,σd e Dy x ??+-)(22=4π.注:由例1结论,可推出反常积分?+∞-02dx e x 的值(常⽤于概率论). 考察S a =[0,a]×[0,a]上的积分σd eaS y x ??+-)(22=??--ay ax dy edx e22x dx e .由D a ?S a ?aD2(如图)知σd eaD y x ??+-)(22≤σd eaS y x ??+-)(22=202??? ???-ax dx e ≤σd e aDy x ??+-222)(. 令a →+∞, 则得202lim ??? ???-+∞→a x a dx e =σd e D y x ??+-)(22=4π, ∴?+∞-02dx e x =2π.例2:证明:若p>0, q>0, 则B(p,q)=)()()(q p q p +ΓΓΓ.证:令x=u 2, 则dx=2udu, Г(p)=?+∞--01dx e x x p =2?+∞--0122du e u u p , 从⽽ Г(p)Г(q)=4?+∞--+∞--?0ydx exy q x p =4??----+∞→?Ry q Rx p R dy e y dx ex1201222lim.令D R =[0,R]×[0,R], 由⼆重积分化为累次积分计算公式有σd eyxy x D q p R)(121222+---??=??----?Ry q Rx p dy e y dx ex1201222.∴Г(p)Г(q)= 4σd e y x y x D q p R R)(121222lim +---+∞2+---??, 其中D 为平⾯上第⼀象限部分. 记D r ={(x,y)|x 2+y 2≤r 2, x ≥0, y ≥0}. 于是有 Г(p)Г(q)=4σd e y x y x Dq p )(121222+---??=4σd e y x y x D q p r r)(121222lim +---+∞→??,应⽤极坐标变换,有Г(p)Г(q)=4??----++∞→rr q p q p r rdr e r d 012122)(2202sin cos lim θθθπ=4??--+--+∞→rr q p q p r dr e r d 01)(22012122sin cos lim πθθθ=2?+Γ?--201212)(sin cos πθθθq p d q p =B(p,q)Г(p+q). ∴B(p,q)=)()()(q p q p +ΓΓΓ.定理21.19:函数f(x,y)在⽆界区域D 上的反常⼆重积分收敛的充要条件是|f(x,y)|在D 上的反常⼆重积分收敛.证:[只证充分性]设σd y x f D|),(|收敛,其值为A. 作辅助函数f +(x,y)=2),(|),(|y x f y x f +, f -(x,y)=2),(|),(|y x f y x f -, 则0≤f +(x,y)≤|f(x,y)|, 0≤f -(x,y)≤|f(x,y)|.∴在D 的任何有界⼦区域σ上, 恒有σd y x f D+),(≤σd y x f D|),(|=A,σd y x f D即f +(x,y)与f -(x,y)在D 上的反常⼆重积分收敛. ⼜f(x,y)=f +(x,y)-f -(x,y), ∴f(x,y)在D 上的反常⼆重积分也收敛.定理21.20:(柯西判别法)设f(x,y)在⽆界区域D 的任何有界⼦区域上⼆重积分存在, r 为D 内的点(x,y)到原点的距离r=22y x +. (1)若当r ⾜够⼤时, |f(x,y)|≤p rc, 其中常数c>0, 则当p>2时,反常⼆重积分σd y x f D),(收敛;(2)若f(x,y)在D 内满⾜|f(x,y)|≥p rc,其中D 是含有顶点为原点的⽆限扇形区域, 则当p ≤2时,反常⼆重积分σd y x f D),(发散.⼆、⽆界函数的⼆重积分定义2:设P 为有界区域D 的⼀个聚点,f(x,y)在D 上除点P 外皆有定义,且在P 的任何空⼼邻域内⽆界,△为D 中任何含有P 的⼩区域,f(x,y)在D-△上可积. ⼜设d 表⽰△的直径,即 d=sup{221221)()(y y x x -+-|(x 1,y 1),(x 2,y 2)∈△}. 若极限-→D d d y x f σ),(lim存在且有限,且与△的取法⽆关,则称f(x,y)在D 上的反常⼆重积分收敛. 记作-D d y x f σ),(=-→D d d y x f σ),(lim 0,否则称f(x,y)在D 上的反常⼆重积分??Dd y x f σ),(发散.定理21.21:(柯西判别法)设f(x,y)在有界区域D 上除点P(x 0,y 0)外处处有定义, 点P(x 0,y 0)为瑕点,则: (1)若在点P 附近有|f(x,y)|≤a rc, 其中c 为常数, r=2020)()(y y x x -+-, 则当a<2时,反常⼆重积分σd y x f D),(收敛; (2)若在点P 附近有|f(x,y)|≥a rc, 且D 含有以点P 为顶点的⾓形区域, 则当a ≥2时,反常⼆重积分σd y x f D),(收敛.习题1、试讨论下列⽆界区域上⼆重积分的收敛性: (1)??≥++1σ?d y x y x y p≤≤++1022)1(),(, (0解:(1)令x=rcos θ, y=rsin θ, 则≥++12222)(y x m y x d σ=??+∞12201rdr r d m πθ=??+-+∞→d m d dr r d 11220lim πθ=-2π?+-+∞→d m d dr r 11 2lim . ∵?+-+∞→dm d dr r 112lim 当2m-1>1时, 收敛;当2m-1≤1时, 发散;∴≥++12222)(y x m y x d σ当m>1时, 收敛;当m ≤1时, 发散. (2)由区域的对称性和被积函数关于x,y 的偶性得原积分=4??+∞+∞++001111dy ydx x q p . ∵?+∞+011dx x p当p>1时, 收敛;当p ≤1时, 发散. ∴原积分当p>1, q>1时收敛,其它情况发散.(3)∵0y x y x )1(),(22++?≤p x M)1(2+,∴当p>21时, 由σd x My p ??≤≤+102)1(收敛,得原积分收敛;当p<21时, 由σd x my p ??≤≤+1∞-+-+∞∞-+dx y x e dy y x )cos(22)(22. 解:令x=rcos θ, y=rsin θ, 则+∞∞-+-+∞∞-+dx y x e dy y x)cos(22)(22=??+∞-0220cos 2dr r re d r πθ=π?-+∞→du d udu e 0cos lim=2π.3、判别下列积分的收敛性: (1)≤++12222)(y x m y x d σ;(2)??≤+--12222)1(y x m y x d σ. 解:令x=rcos θ, y=rsin θ, 则(1)??≤++12222)(y x m y x d σ=??102201rdr r d m πθ=2π?+-→1120lim d m d dr r . ∵?+-→1 120lim dm d dr r 当2m-1<1时, 收敛;当2m-1≥1时, 发散;∴??≤++1 2222)(y x m y x d σ2222)1(y x m y x d σ =??-10220)1(rdr r d d m σθπ=π?-→-d m d du u 01)1(lim . ∴当m<1时, 由?-→-dmd du u 01)1(lim 收敛知,原积分收敛;当m ≥1时, 由?-→-dm d du u 01)1(lim 发散知,原积分发散.。

数学分析21.1二重积分的概念(含习题及参考答案)

数学分析21.1二重积分的概念(含习题及参考答案)

第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


4. 计算二重积分
(1) I = ∫∫ sgn( y − x )dxdy, D : −1 ≤ x ≤1, ≤ y ≤1 0 D
2
(2) I = ∫∫ ( x2 + y2 − 2xy + 2) dxdy, 其中 为圆域 其中D
D
在第一象限部分. 在第一象限部分 解: (1) 作辅助线 y = x 把与 分成 把与D
作辅助线 y = x 将D 分成
D , D2 两部分 1
= 2∫∫
D2
(x − y)dxdy + 2∫∫ dxdy
D
D 1 D2 o 1 x
y=x
2 π =L= ( 2 −1) + 3 2 说明: 说明 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算
( x + y )dxdy , D : x 2 + y 2 ≤ 1 ∫∫
3
x 2 + y 2 = 4 y ⇒ r = 4 sinθ
6 x 2 + y 2 = 2 y ⇒ r = 2 sinθ
x − 3y = 0 ⇒ θ1 =
π
∫∫ ( x + y )dxdy = ∫ dθ∫
2 2 D
π 6
π 3
π r 2 ⋅ rdr = 15( − 3 ). 2 sin θ 2
4 sin θ
b
a
a
b
7
写出积分 ∫∫ f ( x, y)dxdy的极坐标二次积分形
D
式,其中积分区域
D = {( x, y) | 1 − x ≤ y ≤ 1 − x2 , 0 ≤ x ≤ 1}.

x = r cosθ 在极坐标系下 y = r sinθ 所以圆方程为 r = 1, 1 , 直线方程为 r = sinθ + cosθ
x
3. 计算二重积分 (1) D为圆域 (2) D由直线
I = ∫∫ (x + xye
2 D
x2 + y2
) dxdy , 其中:
围成 .
x2 + y2
解: (1) 利用对称性.
I = ∫∫ x d x d y + ∫∫ xye
2 D
D
d xd y
1 2 2 = ∫∫ ( x + y ) dxdy + 0 2 D 1 3 π 1 2π = ∫ dθ ∫ r d r = 0 4 2 0
D
1
1− x 2 0
0
( x + y )dy = 8 3
在利用对称性计算二重积分时, 【注】在利用对称性计算二重积分时,要同时考虑被积 函数的奇偶性和积分区域的对称性, 函数的奇偶性和积分区域的对称性,不能只注意积分区域 关于坐标轴的对称性, 关于坐标轴的对称性,而忽视了被积函数应具有相应的奇 偶性. 偶性
6
b a
证明
∫ dx∫

x
a
( x − y)
xLeabharlann n−21 b f ( y)dy = (b − y)n−1 f ( y)dy. n − 1∫a
b

b
a
dx∫ ( x − y)n−2 f ( y)dy
a b b a y
y= x
D
= ∫ dy∫ ( x − y)n−2 f ( y)dx
1 ( x − y)n−1 ]b = ∫ f ( y)dy[ y a n −1 1 b (b − y)n−1 f ( y)dy. = n − 1∫a
D
积分区域D关于 关于x 轴均对称 轴均对称, 分析 积分区域 关于 、y轴均对称 被积函数
f ( x , y ) = x + y 关于 均是偶函数,利用对称性 关于x,y均是偶函数 均是偶函数,
去掉绝对值符号. 去掉绝对值符号 解 采用直角坐标 ∫∫ ( x + y )dxdy = 4 ∫ dx ∫
x2 + y2 = 1
x+ y =1
∫∫ f ( x , y )dxdy = ∫0 dθ ∫
2
π
1
D
1 sin θ + cosθ
f ( r cosθ , r sinθ )rdr .
8
计算 ∫∫ ( x + y )dxdy,其 D 为由圆
2 2 D
x2 + y2 = 2 y, x2 + y2 = 4 y及直线 x − 3y = 0, 所围成的平面闭区域. y − 3x = 0 所围成的平面闭区域 π 解 y − 3x = 0 ⇒ θ 2 =
y
D
o
1x
(2) 积分域如图: 添加辅助线 y = −x,将D 分为 D1, D2, 利用对称性 , 得
+ ∫∫ xye
D 1
x2 + y2
dxdy
+ ∫∫
D2
xyex
2
+y
2
y y=x o D2 1 x D1 −1 y = −x
dxdy
=∫
1 2 x x d x dy + 0 + 0 −1 −1
1
2
3
2
2
计算积分 I = ∫ dy∫ e dx + ∫ dy∫ e dx.
1 4 1 2 1 2
1 2
y
y x
1
y
y x
y
解 Q ∫ e dx 不能用初等函数表示
先改变积分次序. ∴先改变积分次序.
原式 = I = 1dx
2
y x
y= x
y = x2
∫ ∫
1
x
2
x
e dy
y x
=∫
1
1 2
3 1 x (e − e )dx = e − e. 8 2
2
D1, D2两部分 则 两部分,
I = ∫∫ dxdy − ∫∫ dxdy
D 1 D2
1 D 1 −1
y
o D2
1x
= ∫ d x ∫ 2 dy − ∫ d x∫
−1 x
−1
1
1
1
x2
0
2 dy = 3
(2) 提示 提示:
I = ∫∫ ( x + y − 2xy + 2) dxdy
2 2 D
y 1
1 求 ∫∫ x e
D
2 − y2
dxdy,其中 D 是以(0,0),(1,1),
(0,1)为顶点的三角形. 为顶点的三角形.
解 Q∫ e
− y2
dy 无法用初等函数表示
∴ 积分时必须考虑次序
∫∫ x e
D
2 − y2
dxdy = ∫ dy ∫ x e
0 0
1
y
2 − y2
dx
=∫ e
0
1
−y
2
2 y y 2 1 −y ⋅ dy = ∫ e ⋅ dy = (1 − ). 0 6 e 3 6
相关文档
最新文档