【VIP专享】离散数学--6.5 平面图
离散数学——图论PPT课件
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。
离散数学中的图的平面图与平面图的着色
图是离散数学中的重要概念,而平面图和平面图的着色是图论中的两个关键概念。
平面图是指在平面上绘制的图形,使得图中的边不会相交。
平面图的着色是指对平面图中的顶点进行染色,且相邻的顶点不会被染成相同的颜色。
平面图的概念最早由欧拉在1736年提出。
他发现,如果一个图是可以在平面上绘制而不会边相交的,那么这个图是一个平面图。
欧拉还引入了一个重要的公式,即欧拉定理,它描述了平面图中的顶点、边和面的关系:V - E + F = 2,其中V代表顶点数,E代表边数,F代表面数。
对于平面图的着色问题,四色定理是一个非常重要的结果。
四色定理指出,任何一个平面图,在不考虑多重边和自环的情况下,最多只需要使用四种颜色就能够对图的顶点进行染色,使得相邻的顶点不会有相同的颜色。
这个定理在1976年被由英国数学家Tomás Oliveira e Silva使用计算机辅助证明,被认为是图论史上的一大突破。
对于平面图的着色,有一种特殊的染色方法叫做四色标号。
四色标号是指对于任意一个平面图,都可以给图中的每个顶点赋予一个自然数,使得相邻的顶点之间的差值不超过3。
这种染色方法保证了相邻的顶点不会被染成相同的颜色,同时最多只需要使用四种颜色。
平面图的着色不仅在图论中有着重要的应用,同时在现实生活中也有很多实际的应用。
比如,考虑地图上的城市,如果我们希望将城市标记成不同的颜色,以表示它们的关系,那么可以利用平面图的着色来实现。
另外,平面图的着色还有很多其他的实际应用,比如在工程规划中用于规划电路的布线、在计算机科学中用于处理图像等等。
总之,离散数学中的图的平面图与平面图的着色是图论中的两个重要概念。
平面图是指在平面上绘制的图形,使得边不会相交;平面图的着色是指对平面图中的顶点进行染色,且相邻的顶点不会被染成相同的颜色。
四色定理是平面图着色的重要结果,它指出任意一个平面图可以使用最多四种颜色进行着色。
平面图的着色在现实生活中有着广泛的应用,是离散数学中的一个重要研究领域。
离散数学平面图课件ppt
i 1
i 1
i 1
i 1
经整理得 n-m+r = k+1。
2、 与欧拉公式有关的定理
定理17.8 设G为连通的平面图,且每个面的次数至少为 l(l3),则 G的边数与顶点数有如下关系:
m l (n 2) l2
证明
由定理17.3(面的次数之和等于边数的2倍)及欧拉公式得
r
2m deg(Ri ) l r l(2 m n)
由于n3, 又G必为简单平面图,可知,G每个面的次数均3。
因为G为平面图,又为极大平面图。可证G不可能存在次数>3 的面。
假设存在面Ri的次数deg(Ri)=s≥4, 如图所示。
s
S-1
在G中,若v1与v3不相邻,在Ri内加边(v1,v3)不破坏平面性,这 与G是极大平面图矛盾,因而v1与v3必相邻,由于Ri的存在, 边(v1,v3)必在Ri外。
Microsoft Office PowerPoint,是微 软公司的演示文稿软件。用户可以在投影仪 或者计算机上进行演示,也可以将演示文稿 打印出来,制作成胶片,以便应用到更广泛 的领域中。利用Microsoft Office PowerPoint不仅可以创建演示文稿,还可 以在互联网上召开面对面会议、远程会议或 在网上给观众展示演示文稿。 Microsoft Office PowerPoint做出来的东西 叫演示文稿,其格式后缀名为:ppt、pptx ;或者也可以保存为:pdf、图片格式等
(u,v),称为在G中消去2度顶点w。
2、图之间的同胚 若两个图G1与G2同构,或通过反复插入或消去2度顶点后
是同构的,则称G1与G2是同胚的。
上面两个图分别与K3,3, K5同胚 。
复旦大学计算机科学与工程系 吴永辉 离散数学 平面图
平面图G嵌入平面后将Ğ分成若干 个连通闭区域,每一个连通闭区域称为G 的一个面。
恰有一个无界的面,称为外部面。 其余的面称为内部面。
6.1 平面图与欧拉公式
2 欧拉公式 (1)定理6.1
若连通平面图G有n个顶点,e条边和f 个面,则
n-e+f=2 称为欧拉公式。 证明方法:归纳法
球面等,如果图G能画在曲面S上使得它 的边仅在端点处相交,则称G可嵌入曲面 (embeddable in the surface) S。
2. 定理6A.
图G可嵌入球面S
面P。
G可嵌入平
/*证明基于球极平面射影。*/ /*图嵌入平面与球面是一回事。*/
二、平面图
1 边界和度数
1)定义6A:
证明:
(1)归纳基础:一条边,欧拉公式成立;
(2)归纳步骤:假设m-1条边,欧拉公式成立;
考察m条边的连通平面图:
1)若有度数为1的顶点,则删去该顶点及其关联边, 便得到连通平面图G’,G’满足欧拉公式,再将删去 的点和边加回G’得到G也满足欧拉公式;
2)若没有度数为1的顶点,则删去有界面边界上的 任一边,便得到连通平面图G’, G’满足欧拉公式, 再将删去的边加回G’得到G也满足欧拉公式。
设G是有n个顶点,e条边,f个面的连 通平面图;又设G的几何对偶G*有n*个 顶点,e*条边,f*个面,则n*=f, e*=e, f*=n。
证明方法:前两个关系式直接由G*的定义 给出,第3个关系式由欧拉公式推出。
3 定理6.5 G是连通平面图G**同构于G。
6.1 平面图与欧拉公式(补充)
一、球面与平面 1. 嵌入曲面 设S是一个给定的曲面,比如平面,
离散数学 第四章平面图与图【完全免费,强烈推荐】.ppt
f (Tn , t ) t (t 1)n1.
这由 (Tn ) 2即可得证。当 t 2时,f (Tn ,t) 2.
色数与色数多项式
定理 4.6.7
设i,j是G的不相邻结点,则
_
0
—0
f (G, t) f (Gij , t) f (Gij , t). 其中Gij ,Gij 由定义4.6.3给出
d0
,因此
(G' ) d0
1.即
d0
1 种颜
色可以对G '的结点着色,放回结点 vi 恢复成G,由
于d (vi ) d0 ,所以比有一种与 vi邻点都不同的颜色可
对vi 着色.
色数与色数Байду номын сангаас项式
定理 4.6.3 对于任意一个图G. γ(G) <= 1 + maxδ(G’) 其中δ(G’)是G的导出子图G’中结点的最小度, 极大是对所有的G’而言.
定理 4.5.4 若任何一个3-正则平面图的域可四着色,则任何 一个平面的域也可以四着色.
4.6 色数与色数多项式
定义 4.6.1 给定图G,满足相邻点结点着以不同颜色的最少 颜色数为G的色数,记为γ(G).
定义 4.6.2 给定图G,满足相邻边着以不同颜色的最少颜色 数目称为G的边色数,记为β(G).
色数与色数多项式
定理 4.6.1 一个非空图,γ(G) = 2,当且仅当它没有奇回路.
证明:充分性:在G中确定一个林 T ',其每个连通子
图都是树T, (T ) 2.由于每个回路都是偶回路.所
以加入每一条余树边都不会使结点着色发生变化,因
此 (G) 2.
必要性:如果G中有奇回路,则 (G) 3 .矛盾.
离散数学PPT课件 9平面图(ppt文档)
v1 v2 v7 v6 v10 v5
v8 v9
v3
v4
v1 v2 v7 v6 v10 v5
v8 v9
v3
v4
v1 v3 v8 v2v7 v6
v9 v10 v4
v5
本节要求掌握: 平面图的概念, 平面图的边界, 欧拉公式及其应用 平面图的判定.
面的边界中出现, 所以所有面的边界总数=2e, 所以有:
2e=(r个面边界总数)≥ 3r, 即2e≥3r 所以r≤
2 3
e
由欧拉公式: v-e+r=2
得
v-e+
2 3
e≥2
整理得 e≤3v-6
用此定理可以判定一个图不是平面图, 例如证明K5不是
平面图: K5中有v=5 e=10 3v-6=3×5-6=9 不满足e≤3v-6,
K5
e条边的连通简单平面图, 若v≥3, 则e≤3v-6.
证明:⑴ 当e=2 时, 因为G是简单连通图, 所以v=3, 显然有
2≤3×3-6 即e≤3v-6
⑵当e>2时, (通过计算每个面的边界来证明)
设G有r个面, 因为G是简单图, 所以每个面至少由三条边
围成, 所以r个面的总边界数≥3r, 另外由于每条边在两个
例如右图.就是
v1
可平面化的图. v2
v3
下面是两个
重要的非平面图: v4
v5
K5和K3,3
v1
v2
v3
v4
v5
1 3 5 2 4 6
a b
c
f e
d
v1
v2
v3
v4
离散数学平面图
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,
离散数学--6.5 平面图
13
同Hale Waihona Puke 与收缩消去2度顶点v 如图从(1)到(2) 插入2度顶点v 如图从(2)到(1) G1与G2同胚: G1与G2同构, 或 经过反复插入、或消去2度顶 点后同构 收缩边e 如图从(3)到(4)
10
欧拉公式(续)
推论 设平面图G有 p (p2) 个连通分支, 则 nm+r=p+1 其中n, m, r 分别是G的阶数, 边数和面数. 证 设第 i 个连通分支有 ni个顶点, mi 条边和 ri 个面. 对各 连通分支用欧拉公式, ni mi + ri = 2, i = 1, 2, … , p 求和并注意 r = r1+…+rp p+1, 即得 nm+r=p+1
R3 R2 R1
(2)
说明: (1) 一个平面图可以有多个不同形式的平面嵌入, 它们都同构. (2) 可以通过变换(测地投影法)把平面图的任何一面作为 外部面
5
平面图的面与次数(续)
定理6.13 平面图各面的次数之和等于边数的2倍 证 一条边或者是2个面的公共边界, 或者在一个面的边界 中出现2次. 在计算各面的次数之和时, 每条边恰好被计算 2次.
与K5同胚 也可收缩到K5
16
对偶图
定义6.28 设平面图G有n个顶点, m条边和r个面, G的对偶 图G*=<V*,E*>构造如下: 在G的每一个面Ri中任取一个点vi*作为G*的顶点, V*= { vi*| i=1,2,…,r }. 对G每一条边ek, 若ek在G的面Ri与Rj的公共边界上, 则作边
离散数学中的图的平面图与图的染色
在离散数学中,图是一种用于描述对象之间关系的数学模型。
它由一组顶点和连接这些顶点的边组成。
图的理论在许多领域中都得到了广泛的应用,如计算机科学、物理学、社会学等。
本文将重点讨论图的平面图和图的染色。
首先,我们来了解一下图的平面图。
一个平面图是指可以画在二维平面上,使得边不相交的图。
换句话说,平面图可以在纸上用线条表示,且不会发生交叉。
简单来说,平面图就是可以被画在一个平面上而不会出现边交叉的图。
平面图的研究起源于欧拉在1736年所提出的著名的“柯尼斯堡七桥问题”。
欧拉通过研究柯尼斯堡的七座桥的布局问题,引入了欧拉定理,该定理指出:一个无向图是平面图,当且仅当它没有割边(割边是指当移除一个边时,图会被分为两个独立的部分)。
欧拉定理揭示了平面图的基本特性,为后来的研究提供了理论基础。
与平面图相关的是图的染色问题。
图的染色问题是指给图的每个顶点分配一个颜色,使得任意两个相邻顶点具有不同的颜色。
这个问题源于地图染色问题,即如何将地图上的区域用不同颜色进行染色,使得任意两个相邻区域颜色不同。
图的染色问题在实际应用中具有重要意义,如频道分配、时间表设计、DNA测序等。
对于一般的图,图的染色是一个NP-完全问题,很难找到有效的算法。
但是对于平面图,有一个非常重要的定理——四色定理。
四色定理指出:任何平面图都可以用四种颜色对顶点进行染色,使得任意两个相邻顶点具有不同的颜色。
四色定理是图论中的一个重要突破,它的证明历经了200多年的努力,在1976年由Kenneth Appel和Wolfgang Haken首次给出了一个检查过程,使用了计算机的辅助。
以“四色定理”为基础,图的染色问题在实际中也有许多应用。
例如,在地图着色中,四色定理告诉我们任何地图只需要用四种颜色就可以在每两个相邻区域之间使用不同的颜色进行染色。
这在地理信息系统中有着广泛的应用。
另一个例子是频道分配,可以使用图的染色算法来确保无线电频段之间没有干扰。
离散数学课件17平面图共48页
本章的主要内容
–平面图的基本概念 –欧拉公式 –平面图的判断 –平面图的对偶图
本章所涉及到的图均指无向图。
17.1 平面图的基本概念
17.2 欧拉公式
17.3 平面图的判断
17.4 平面图的对偶图
本章小结
习题
作业
17.1 平面图的基本概念
一、关于平面图的一些基本概念 1、 平面图的定义 定义17.1 G可嵌入曲面S——如果图G能以这样的方式画在曲面S上,
类似地,v2与v4也必相邻,且边(v2,v4)也必在Ri外部,于是必 产生(v1,v3)与(v2,v4)相交于Ri的外部,这又矛盾于G是平面图, 所以必有s=3,即G中不存在次数大于或等于4的面,所以G的
每个面为3条边所围,也就是各面次数均为3。
只有右边的图为极大平面图。 因为只有该图每个面的次数都为3。
K5和K3,3都不是平面图。 定理17.1 设GG,若G为平面图,则G也是平面图。
设GG,若G为非平面图,则G也是非平面图。
由定理可知, Kn(n5)和K3,n(n3)都是非平面图。
定理17.2 若G为平面图,则在G中加平行边或环所得图还是 平面图。 即平行边和环不影响图的平面性。
二、平面图的面与次数(针对平面图的平面嵌入) 1、 定义 定义17.2 设G是平面图, G的面——由G的边将G所在的平面划分成的每一个区域。 无限面(外部面)——面积无限的面,记作R0。 有限面(内部面)——面积有限的面 ,记作R1, R2, …, Rk。 面Ri的边界——包围面Ri的所有边组成的回路组。 面Ri的次数——Ri边界的长度,记作deg(Ri)。
2、极大平面图的主要性质
定理17.4 极大平面图是连通的,并且n(n3)阶极大平面图 中不可能有割点和桥。
《离散数学课件图论》PPT课件
,m3n6为真. 否则G中含圈,每个面至少由l(l3)条边围成
,又
l 1 2
l 2 l 2
在l=3达到最大值,由定理17.11可知m3n6.
定理17.13 设G为n(n3)阶m条边的极大平面图,则m=3n6. 证明:由定理17.4, 欧拉公式及定理17.7所证。
定理17.14 设G 为简单平面图,则 (G)5. 证明: 阶数 n6,结论为真。 当n7 时,用反证法。否则会 推出2m6n m3n,这与定理17.12矛盾.
如上面的例子。
18
精选PPT
平面图与对偶图之间的关系
定理17.17 设G*是连通平面图G的对偶图,n*, m*, r*和n, m, r分别为G*和G的顶点数、边数和面数,则 (1) n*= r (2) m*=m (3) r*=n (4) 设G*的顶点v*i位于G的面Ri中,则d(v*i)=deg(Ri) 证明: (1)、(2)平凡 (3) 应用欧拉公式 (4) 的证明中注意,桥只能在某个面的边界中,非桥边在两
20
精选PPT
自对偶图
定义:设G*是平面图G的对偶图,若G*G,则称G为自 对偶图. 概念: n阶轮图( Wn )、奇阶轮图、偶阶轮图 轮图都是自对偶图。 画出W6和W7的对偶图,并说明它们都是自对偶图。
21
精选PPT
第十七章 小结
❖ 主要内容 ▪ 平面图的基本概念 ▪ 欧拉公式 ▪ 平面图的判断 ▪ 平面图的对偶图
22
精选PPT
练习1
1. 设G是连通的简单的平面图,面数r<12,(G)3. (1) 证明G中存在次数4的面 (2) 举例说明当r=12时,(1) 中结论不真.
解 设G的阶数、边数、面数分别为n, m, r.
离散数学(Ch15平面图及色数)
定理15.4 设G为任一平面图, 则(G)≤5. (五色定理)
用第一数学归纳法对G的顶点数n进行归纳: 显然, 当n≤5时, 有(G)≤5. 假设 n–1 (n≥6)时, (G)≤5成立.
显然, 平面图G中必有度数小于6的顶点u0. (因m≤3n-2) 将顶点u0从G中去掉(含u0邻接的边), 得G0=G – u0, 则G0仍是平面图且顶点数为n-1, 根据假设, 有(G0)≤5. 再从G0加入顶点u0及邻接的边, 还原为G. ⑴如果d(u0)≤4, 则与u0邻接顶点最多涂4色, 有(G)≤5成立. ⑵如果d(u0)=5, 令与u0邻接的顶点按顺时钟排为u1,u2,u3,u4,u5. 并设这5个顶点涂色为C1,C2,C3,C4,C5.
3
定义15.2 设G是一个平面图, 如果连接G的任意两个 不邻接顶点u和v, 都会使G+(u,v)变成非平 面图, 则称G为极大平面图. (边数极大)
极大平面图
K5非平面图
K3
定理15.2 设G是至少具有三个顶点的极大平面图, 则G的任何一个面都是K3.
假设G是极大平面图, 但有一个面不是K3面, 不妨设为{u1,u2,u3,u4,…,u1}, 考察: ⑴ (u1,u3)邻接, (u2,u4)邻接 两边会在圈外相交 ⑵ (u1,u3)不邻接 可加边(u1,u3), 仍是平面图 ⑶ (u2,u4)不邻接 可加边(u2,u4), 仍是平面图
6
§15.2 色数
1. 对偶图 定义15.3 设G是一个平面图, 具有k个面F1,F2,…,Fk, 其中包括无限面, 构造对偶图G*: ⑴ 在G的每个面Fi的内部取一点fi, 作为G*的顶点; ⑵ 对应于G的任意一条边e,
如果e是Fi和Fj的公共边, 则与e交叉连接fi和fj, 使(fi, fj)G* 如果e仅是Fj的悬挂边或桥, 则连一个自环, 使(fj, fj)G*
离散数学及其应用课件:特殊图
特殊图
图6-7 基于用户的协同过滤
特殊图
基于物品的协同过滤算法与基于用户的协同过滤算法类 似,只是将商品和用户互换。通过计算不同用户对不同物品 的评分获得物品间的关系,基于物品间的关系对用户进行相 似物品的推荐。举个例子:若用户A 购买了商品a 和b,那么说 明a 和b 的相关度较高。当用户B 也购买了商品a,就可以推 断用户 B 也有购买商品b 的需求。该算法可描述如图 6-8所示。
特殊图
图6-6-题设对应的二部图
特殊图
基于用户的协同过滤算法是通过用户的历史行为(如商 品购买、收藏、内容评价或分享)数据发现用户对商品或内 容的喜欢程度,并对这些喜好进行度量和打分,然后根据不同 用户对相同商品或内容的偏好程度计算用户之间的关系,在 有相同喜好的用户之间进行商品推荐。比如:若A,B 两个用户 都购买了x,y,z 三本图书,并且给出了5星好评,那么A,B 属于同 一类用户,可以将A 看过的书w 推荐给用户B,也可以将B 买过 的商品β推荐给用户A。该算法可描述如图6-7所示。
特殊图
特殊图
解 表6-1中的关系可以用一个二部图G=<V1,V2,E>表示, 如图6-6所示,其中V1={A1,A2,A3,A4,A5}表示5名应届毕业 生,V2={C1,C2,C3,C4,C5}表示五座西部城市。因为A1、A2、A3、 A4、A5 关联的边数分别为2、2、2、3、3,所以每个顶点至少 关联t=2条边,而C2、C3 关联了4条边,4>2,所以不满足t条件,于 是找不到合适的匹配,使得每个人都能去到自己想去的城市。
特殊图 例6.6-考虑图6-16,判断它们是否是欧拉图或半欧拉图,为
什么?
图6-16-有向图的欧拉图判定
特殊图
【精选文档】离散数学图论课件PPT资料
若V1 V,E1 E,则称G1是G的子图,记为G1 G;
deg(v3)=5,deg+(v3)=2,deg-(v3)=3;
无自回路的线图称为简单图。
于是|V1|为偶数(因为V1中的结点v之deg(v)都为奇数),即奇度数的结点个数为偶数。
(o)
(p)
二、度数
定义 在无向图G=<V,E>中,与结点v(vV)关联的边的条 数,称为该结点的度数,记为deg(v);
3) 在一个图中,关联结点vi和vj的边e,无论是有向的还是无 向的,均称边e与结点vi和vj相关联,而vi和vj称为邻接点, 否则称为不邻接的;
4) 关联于同一个结点的两条边称为邻接边; 5) 图中关联同一个结点的边称为自回路(或环); 6) 图中不与任何结点相邻接的结点称为孤立结点; 7) 仅由孤立结点组成的图称为零图; 8) 仅含一个结点的零图称为平凡图;
离散数学图论课件
(优选)离散数学图论课件
离散数学
2
图的术语
1) 若边e与结点无序偶(u,v)相对应,则称边e为无向边,记为 e=(u,v),这时称u,v是边e的两个端点;
2) 若边e与结点有序偶<u,v>相对应,则称边e为有向边(或 弧),记为e=<u,v>,这时称u是边e的始点(或弧尾),v是 边e的终点(或弧头),统称为e的端点;
δ(G)最小度,Δ(G)最大度
定义 在图G=<V,E>中,对任意结点vV,若度数deg(v)为 奇数,则称此结点为奇度数结点,若度数deg(v)为偶数, 则称此结点为偶度数结点。
例:
例:
deg(v )=3,deg (v )=2,deg (v )=1; 例:如下图所示,图(a)、图(b)、图(c)和图+ (d)所表示的图形实际上都是-一样的。
离散数学教学图论【共58张PPT】
一 、图的基本概念
• 邻接和关联 • 无向图和有向图 • 零图和平凡图 • 简单图 • 完全图(无向完全图和有向完全图) • 有环图
一 、图的基本概念
• 有限图和无限图 设图G为< V,E,Ψ>
(l)当V和E为有限集时,称G为有限图,否则称G为无限图。 (2)当ΨG为单射时,称G为单图;当ΨG为非单射时,称G为重图,又称满足
二、生成树
1、生成树定义:
若无向图的一个生成子图T是树,则称T 为G的生 成树,T中的边称为树枝,E(G)-E(T)称为树T 的补,其中的每一边称为树T 的弦。
在任何图中,结点v的度(degree)d(v)是v所关联边的数目。
第三节 生成树、最短路径和关键路径 由结点a和它所有的后代导的子图,称为T的子树.
∴ T连通且具有m=n-1的图
{e5,e4,e8} , {e7,e6,e5,e2,e4} 第四节 欧拉图和哈密顿图
第四节 特殊图(欧拉图和哈密顿图等)
第五节 树、二叉树和哈夫曼树
离散数学教学图论
(优选 欧拉图和哈密顿图
(3)2=>3 ∴W(T)≤W(T1) ∴W(ei+1)≥W(f) 二. 哈密顿图的由来—周游世界问题:
第二节 图的矩阵表示 第四节 欧拉图和哈密顿图
证明:若G中一个边割集和一生成 树无公共边,则表示该边割集所分离的结点不在生成树中,这导致与生成树的定义矛盾。 哈密顿图的由来—周游世界问题: c)对新图向下旋转45度。 ei之后将取f而不是ei+1
为该顶点的度,列之和一定为2. • 有向图的关联矩阵 ----- 以节点数为行,边数为列.节点与边无关系,为0,有关系,则起点为1,
终点为-1;列之和一定为0,每行绝对值之和等于该节点的度数;其 中1的个数为该节点的出度,-1的个数为对应节点的入度;所有元 素的和为0,1的个数等于-1的个数,都等于边数m.
离散数学-图论-平面图
13
例:对偶图
对偶图的性质
性质1:若G是平面图,则G必有对偶图G*,且G*是 唯一的.
可平面图的不同平面嵌入可有不同构的对偶图. 即使G不连通.
性质2: G*是连通图.
性质3:若G是连通平面图,那么(G*)* G. 性质4:对连通平面图G及其对偶图G*: m m*, n d *, d n*
原图与加细图称为同胚.
定理(Kuratowski):G是可平面图 G没有同胚 于K5和K3,3的子图.
9
极大可平面图u和v之间加 入边(u,v)都会使G + (u,v)成为不可平面图,则称 G是极大可平面图.
注意:这里指的是加入边(u,v)在本质上破坏了图的可 平面性. 可能在一种平面表示下不能加,但在另一种表示下可 以加.
不可平面图
定理:设G是简单连通平面图.若每个面的度k, 则 kr/2 m (n – 2)k/(k – 2) 例: K5是不可平面图.
K5是结点数最少的不可平面图. K3,3是n6时边数最少的不可平面图.
例: K3,3是不可平面图.
8
Kuratowski定理
加细:在图的边上任意增加一些度为2的顶点.
12
对偶图
定义:给定图G,如下构造的图G*,称为G的对偶 图(dual graph). 1.G中每个面Ri内放一个G*顶点v*i ; 2.对应面Ri和Rj的公共边e,作一条仅与e相交一 次的边e* (v*i,v*j) E(G*); 3.若割边e在面Ri的边界上,则作v*i上仅与e相交 一次的环e*.
趣题:Gardner的愚人节地图
离散数学PPT【共34张PPT】
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
平面图的面与次数
设G是一个平面嵌入 G的面: 由G的边将平面划分成的每一个区域 无限面(外部面): 面积无限的面, 用R0表示 有限面(内部面): 面积有限的面, 用R1, R2,…, Rk表示 面Ri的边界: 包围Ri的所有边构成的回路组 面Ri的次数: Ri边界的长度,用deg(Ri)表示
K3,3 : n=6, m=9, l=4 不满足定理6.15的条件
例4 设简单连通平面图有n(n3)个顶点、m条边, 则 m3n-6
证 不难证明3阶以上的简单连通平面图每个面的次数至 少为3, 由定理6.15立即得到要证的结论.
13
同胚与收缩
消去2度顶点v 如图从(1)到(2) 插入2度顶点v 如图从(2)到(1)
5
平面图的面与次数(续)
定理6.13 平面图各面的次数之和等于边数的2倍 证 一条边或者是2个面的公共边界, 或者在一个面的边界 中出现2次. 在计算各面的次数之和时, 每条边恰好被计算 2次.
6
极大平面图
定义6.24 若G是简单平面图, 且在任意两个不相邻的顶点 之间加一条新边所得图为非平面图, 则称G为极大平面图
nm+r=p+1
11
欧拉公式(续)
定理6.15 设G为n阶连通平面图, 有m条边, 且每个面的次 数不小于l (l 3), 则
m l (n 2) l2
证 由各面次数之和等于边数的2倍及欧拉公式得 2m lr = l (2+m-n)
可解得所需结论.
12
实例
例3 证明 K5 和 K3,3不是平面图 证 K5 : n=5, m=10, l=3
15
实例
例5 证明下面2个图均为非平面图.
与K3,3同胚 也可收缩到K3,3
与K5同胚 也可收缩到K5
16
对偶图
定义6.28 设平面图G有n个顶点, m条边和r个面, G的对偶 图G*=<V*,E*>构造如下: 在G的每一个面Ri中任取一个点vi*作为G*的顶点, V*= { vi*| i=1,2,…,r }. 对G每一条边ek, 若ek在G的面Ri与Rj的公共边界上, 则作边 ek*=(vi*,vj*), 且与ek相交; 若ek只在面Ri的边界上, 则作环 ek*=(vi*,vi*). E*={ ek*| k=1,2, …,m }.
8
极小非平面图
定义6.25 若G是非平面图, 并且任意删除一条边所得图都 是平面图, 则称G为极小非平面图 例如 K5, K3,3都是极小非平面图 下述4个图也都是极小非平面图
9
欧拉公式
定理6.14 设G为n阶m条边r个面的连通平面图, 则 nm+r=2
证 对边数m做归纳证明. m=0, G为平凡图, 结论成立. 设m=k(k0)时结论成立, 对m=k+1, 若G中无圈, 则G必有一个度数为1的顶点v, 删除v及关联的 边, 记作G. G连通, 有n-1个顶点, k条边和r个面. 由归纳假 设, (n-1)-k+r=2, 即n-(k+1)+r=2, 得证m=k+1时结论成立. 否则, 删除一个圈上的一条边,记作G. G连通, 有n个顶点,k 条边和r-1个面. 由归纳假设, n-k+(r-1)=2, 即n-(k+1)+r=2. 得 证m=k+1时结论也成立. 证毕.
17
实例
(1)
(2)
(3)
性质
• G*是平面图,而且是平面嵌入. • G*是连通的. • 若e为G中的环, 则G*中e*为桥; 若e为桥, 则G*中e*为环. • 同构的平面图的对偶图不一定同构. 如(1)和(3)
18
对偶图(续)
定理6.18 设G*是连通平面图G的对偶图, n*, m*, r*和n, m, r分别为G*和G的顶点数、边数和面数,则 (1) n*= r (2) m*=m (3) r*=n (4) 设G*的顶点vi*位于G的面Ri中, 则d(vi*)=deg(Ri)
说明: 构成一个面的边界的回路组可能是初级回路, 简单回 路, 也可能是复杂回路, 甚至还可能是非连通的回路之并.
3
实例
例1 右图有 4 个面
R1的边界: a R2的边界: bce R3的边界: fg R0的边界: abcdde, fg
deg(R1)= 1 deg(R2)= 3 deg(R3)= 2 deg(R0)= 8
10
欧拉公式(续)
推论 设平面图G有 p (p2) 个连通分支, 则 nm+r=p+1
其中n, m, r 分别是G的阶数, 边数和面数. 证 设第 i 个连通分支有 ni个顶点, mi 条边和 ri 个面. 对各 连通分支用欧拉公式,
ni mi + ri +…+rp p+1, 即得
例如 K1, K2, K3, K4都是极大平面图 (1)是K5删去一条边, 是极大平面图. (2)、(3)不是.
(1)
(2)
(3)
7
极大平面图的性质
• 极大平面图是连通的 • 设G为n(n3)阶简单图, G为极大平面图的充分必要条
件是, G每个面的次数均为3.
例如
极大平面图
外部面的次数为4 非极大平面图
6.4.4 平面图
–平面图与平面嵌入 –平面图的面及其次数 –极大平面图 –极小非平面图 –欧拉公式 –库拉图斯基定理 –平面图的对偶图
1
平面图与非平面图
定义6.22 如果能将图G除顶点外边不相交地画在平面上, 则称G是平面图. 这个画出的无边相交的图称作G的平面 嵌入. 没有平面嵌入的图称作非平面图. 例如 下图中(1)~(4)是平面图, (2)是(1)的平面嵌入,
G1与G2同胚: G1与G2同构, 或 经过反复插入、或消去2度顶 点后同构
收缩边e 如图从(3)到(4)
(3)
(4)
14
库拉图斯基(Kuratowski)定理
定理6.16 一个图是平面图当且仅当它既不含与K5同胚的 子图, 也不含与K3,3同胚的子图. 定理6.17 一个图是平面图当且仅当它既无可收缩为K5的 子图, 也无可收缩为K3,3的子图.
4
实例
例2 右边2个图是同一
平面图的平面嵌入. R1在(1)中是外部面,
R1
R3 R2
R2
在(2)中是内部面;
(1)
R2在(1)中是内部面, 在(2)中是外部面.
R3 R1 (2)
说明: (1) 一个平面图可以有多个不同形式的平面嵌入, 它们都同构. (2) 可以通过变换(测地投影法)把平面图的任何一面作为 外部面