几何综合题(题型概述)

合集下载

九年级数学几何综合题

九年级数学几何综合题

中考数学专题复习之十五:几何综合题【中考题特点】:几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。

解这类几何综合题,应该注意以下几点: (1)注意观察、分析图形,把复杂的图形分解成几个基本图形,或通过添加辅助线补全或构造基本图形;(2)灵活运用数学思想与方法.【范例讲析】:例1:已知:如图,直线PA 交⊙O 于A 、E 两点,PA 的垂线DC 切⊙O 于点C ,过A 点作⊙O 的直径AB 。

(1)求证:AC 平分 DAB ;(2)若DC =4,DA =2,求⊙O 的直径。

例2:已知:如图,以Rt △ABC 的斜边AB 为直 径作⊙O ,D 是⊙O 上的点,且有AC=CD 。

过点C 作⊙O 的切线,与BD 的延长线交于点E ,连结CD 。

(1)试判断BE 与CE 是否互相垂直?请说明理由;(2)若CD=52,tan ∠DCE=21,求⊙O 的半径长。

例3:如图矩形ABCD 中,过A ,B 两点的⊙O 切CD 于E ,交BC 于F ,AH ⊥BE 于H ,连结EF 。

(1) 求证:∠CEF =∠BAH (2) 若BC =2CE =6,求BF 的长。

例4:如图,AB 是⊙O 的直径,点C 在BA 的延长线上,CA=AO ,点D 在⊙O 上, ∠ABD=30°.⑴求证:CD 是⊙O 的切线;⑵若点P 在直线AB 上,⊙P 与⊙O 外切于点B ,与直线CD 相切于点E ,设⊙O 与⊙P 的半径分别为r 与R ,求Rr的值.例5:已知直线L 与⊙O 相切于点A ,直径AB=6,点P 在L 上移动,连接OP 交⊙O 于点C ,连接BC 并延长BC 交直线L 于点D. (1)若AP=4,求线段PC 的长;(2)若ΔPAO 与ΔBAD 相似,求∠APO 的度数和四边形OADC 的面积。

(答案要求保留根号) 例6:如图1:⊙O 的直径为AB ,过半径OA 的中点G 作弦CE ⊥AB ,在⋂CB 上取一点D ,分别作直线CD 、ED 交直线AB 于点F 、M 。

高考解析几何大题题型归纳

高考解析几何大题题型归纳

高考解析几何大题题型归纳
高考解析几何大题主要分为以下几类:
1. 平面向量问题:涉及向量加减、点积(数量积)、叉积(向量积)及其性质,例如线段长度、平行四边形面积、点到直线距离等等。

2. 空间几何问题:涉及空间中点、线、面的位置关系、相交情况、垂直或平行关系、大小关系等问题,例如两平面夹角、直线与平面的交点、平面方程等。

3. 三角形问题:涉及三角形内部、外部、垂心、垂足、中线、中心、外心、内心等概念,例如三角形的外接圆、内切圆、垂心定理等。

4. 圆锥曲线问题:涉及圆、椭圆、抛物线、双曲线等曲线的定义、性质、焦点、方程、参数等问题,例如椭圆离心率、抛物线焦点、双曲线渐近线等。

5. 空间向量问题:涉及空间中平行六面体、四面体的体积、重心、外接球、内切球等问题。

以上是高考解析几何大题的主要题型归纳,但具体涉及哪些内容还是要根据题目的情况来确定的。

初中数学中考几何综合题

初中数学中考几何综合题

中考数学复习--几何综合题Ⅰ、综合问题精讲:几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点:⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.⑵ 掌握常规的证题方法和思路.⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法伯数形结合、分类讨论等).Ⅱ、典型例题剖析【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长.解:(1)证明:连接OD ,AD . AC 是直径,∴ AD⊥BC. ⊿ABC 中,AB =AC ,∴ ∠B=∠C,∠BAD=∠DAC.又∠BED 是圆内接四边形ACDE 的外角,∴∠C =∠BED .故∠B =∠BED ,即DE =DB .点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径,即∠DAC =∠BAD =∠ODA .故OD ⊥DF ,DF 是⊙O 的切线.(2)设BF =x ,BE =2BF =2x .又 BD =CD =21BC =6, 根据BE AB BD BC ⋅=⋅,2(214)612x x ⋅+=⨯.化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).则 BF 的长为2.点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行.【例2】(重庆,10分)如图,在△ABC 中,点E 在BC 上,点D在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。

【复习专题】中考数学复习:几何综合题

【复习专题】中考数学复习:几何综合题

几何综合题(旋转为主的题型)一、知识梳理二、教学重、难点三、作业完成情况四、典题探究例1 已知:如图,点P 是线段AB 上的动点,分别以AP 、BP 为边向线段AB 的同侧作正△APC和正△BPD ,AD 和BC 交于点M.(1)当△APC 和△BPD 面积之和最小时,直接写出AP : PB 的值和∠AMC 的度数; (2)将点P 在线段AB 上随意固定,再把△BPD 按顺时针方向绕点P 旋转一个角度α,当α<60°时,旋转过程中,∠AMC 的度数是否发生变化?证明你的结论.(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC 的大小是否会发生变化?若变化,请写出∠AMC 的度数变化范围;若不变化,请写出∠AMC 的度数.例2 探究:(1)如图1,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,试判断BE 、DF 与EF 三条线段之间的数量关系,直接写出判断结果: ;(2)如图2,若把(1)问中的条件变为“在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF=21∠BAD ”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF 绕点A 逆时针旋转,当点分别E 、F 运动到BC 、CD 延长线上时, 如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明..例3 已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ;(2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.DCB AEMMEABCD图1 图2例4 在ABCD 中,A DBC ∠=∠,过点D 作DE DF =,且EDF ABD =∠,连接EF ,EC ,N 、P 分别为EC ,BC 的中点,连接NP . (1)如图1,若点E 在DP 上,EF 与DC 交于点M ,试探究线段NP 与线段NM 的数量关系及ABD ∠与MNP ∠满足的等量关系,请直接写出你的结论;(2)如图2,若点M 在线段EF 上,当点M 在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M 的位置,并证明(1)中的结论.五、演练方阵A 档(巩固专练)1.(1)如图1,△ABC 和△CDE 都是等边三角形,且B 、C 、D 三点共线,联结AD 、BE相交于点P ,求证: BE = AD .(2)如图2,在△BCD 中,∠BCD <120°,分别以BC 、CD 和BD 为边在△BCD 外部作等边三角形ABC 、等边三角形CDE 和等边三角形BDF ,联结AD 、BE 和CF 交于点P ,下列结论中正确的是 (只填序号即可)①AD=BE=CF ;②∠BEC=∠ADC ;③∠DPE=∠EPC=∠CPA =60°; (3)如图2,在(2)的条件下,求证:PB+PC+PD=BE .2. 已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧. (1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.3. 如图,△ABC 中,∠ACB=90°,AD=AC,AB=AN,连结CD 、BN,CD 的延长线交BN 于点F . (1)当∠ADN 等于多少度时,∠ACE=∠EBF,并说明理由;(2)在(1)的条件下,设∠ABC=α,∠CAD =β,试探索α、β满足什么关系时,△ACE ≌△FBE ,并说明理由.4. 在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.图2AFAB 图1C 1C BA 1A图2A 1C 1ABC图1图3A5. 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,若∠MBN =12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.6. 如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动.(1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 __; (2)如图2,当11D D A 、、三点共线时,请直接写出11CD DD = _________; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是______________,请借助图3证明你的猜想.B 档(提升精练)1. 如图,△ABC 中,∠90ACB =︒, 2=AC ,以AC 为边向右侧作等边三角形ACD . (1)如图24-1,将线段AB 绕点A 逆时针旋转︒60,得到线段1AB ,联结1DB ,则与1DB 长度相等的线段为 (直接写出结论);(2)如图24-2,若P 是线段BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,求ADQ ∠的度数; (3)画图并探究:若P 是直线BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,是否存在点P ,使得以 A 、 C 、 Q 、 D 为顶点的四边形是梯形,若存在,请指出点P 的位置,并求出PC 的长;若不存在,请说明理由.2. 如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边上,此时BD=CF ,BD ⊥CF 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗? 若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G . ①求证:BD ⊥CF ; ②当AB=4,AD=时,求线段BG 的长.3. 已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB .(1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ; (2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点.请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.4. 在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC ,求OE OF的值.5. 如图1,四边形ABCD ,将顶点为A 的角绕着顶点A 顺时针旋转,若角的一条边与DC 的延长线交于点F ,角的另一条边与CB 的延长线交于点E ,连接EF . (1)若四边形ABCD 为正方形,当∠EAF=45°时,有EF=DF -BE .请你思考如何证明这个结论(只思考,不必写出证明过程);(2)如图2,如果在四边形ABCD 中,AB=AD ,∠ABC=∠ADC=90°,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论); (3)如图3,如果四边形ABCD 中,AB=AD ,∠ABC 与∠ADC 互补,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式并给予证明.(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF 的周长(直接写出结果即可).C 档(跨越导练)1. 已知:正方形ABCD 中,45MAN ∠=,绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N . (1)如图1,当M A N ∠绕点A 旋转到BM DN =时,有BM DN MN +=.当M A N ∠ 绕点A 旋转到BM DN ≠时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间有怎样的等量关系?请写出你的猜想,并证明.2. 如图,已知四边形ABCD 是正方形,对角线ACBD 相交于O .(1) 如图1,设 E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设 E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.3. 问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE 是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.4. 在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。

几何综合(解析版)--中考数学抢分压轴题秘籍(全国通用)

几何综合(解析版)--中考数学抢分压轴题秘籍(全国通用)

几何综合--中考数学抢分秘籍(全国通用)几何综合问题在中考中以填空题和解答题的形式出现,考查难度较大.此类问题在中考中多考查面积平分、面积最值和几何变换的综合问题,一般要用到特殊三角形、特殊四边形、相似三角形、圆、锐角三角函数、勾股定理、图形变换的性质和二次函数的最值等相关知识,以及分类讨论、数形结合、转化与化归等数学思想.此类题型常涉及以下问题:①几何图形中的线段最值问题②探究图形面积的分割问题;③探究图形面积的最值问题.右图为几何综合问题中各题型的考查热度.题型1:线段最值问题①动点路径问题②“胡不归”问题③“将军饮马”问题④“造桥选址”问题解题模板:1.(2021秋•白云区校级月考)如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切,则点A到⊙O上的点的距离的最大值为()A.B.C.D.【分析】由题意画出符合题意的图形,当⊙O与BC,CD相切时,点A到⊙O上的点的距离取得最大值,利用勾股定理即可求得结论.【解答】解:由题意,当⊙O与BC,CD相切时,点A到⊙O上的点的距离取得最大值,如图,由对称性可知:圆心O在AC上.AC==4.∵BC与⊙O相切于点E,∴OE⊥EC.∵四边形ABCD是正方形,∴∠ACB=45°.∴△OEC为等腰直角三角形.∴OC=OE=.∴CG=OC﹣OG=﹣1.∴AG=AC﹣CG=4﹣(﹣1)=3+1.故选:C.【点评】本题主要考查了切线的性质,正方形的性质,直线和圆的位置关系,勾股定理,连接OE,利用切线的性质得到OE⊥EC是解题的关键.【变式1-1】(2020•遵义)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.【分析】(1)要证明EF=DE,只要证明△DME≌△ENF即可,然后根据题目中的条件和正方形的性质,可以得到△DME≌△ENF的条件,从而可以证明结论成立;(2)根据勾股定理和三角形相似,可以得到AG和CG、CE的长,然后即可得到GE的长.【解答】(1)证明:∵四边形ABCD是正方形,AC是对角线,∴∠ECM=45°,∵MN∥BC,∠BCM=90°,∴∠NMC+∠BCM=180°,∠MNB+∠B=180°,∴∠NMC=90°,∠MNB=90°,∴∠MEC=∠MCE=45°,∠DME=∠ENF=90°,∴MC=ME,∵CD=MN,∴DM=EN,∵DE⊥EF,∠EDM+∠DEM=90°,∴∠DEF=90°,∴∠DEM+∠FEN=90°,∴∠EDM=∠FEN,在△DME和△ENF中,∴△DME≌△ENF(ASA),∴EF=DE;(2)解:如图1所示,由(1)知,△DME≌△ENF,∴ME=NF,∵四边形MNBC是矩形,∴MC=BN,又∵ME=MC,AB=4,AF=2,∴BN=MC=NF=1,∵∠EMC=90°,∴CE=,∵AF∥CD,∴△DGC∽△FGA,∴,∴,∵AB=BC=4,∠B=90°,∴AC=4,∵AC=AG+GC,∴AG=,CG=,∴GE=GC﹣CE==;如图2所示,同理可得,FN=BN,∵AF=2,AB=4,∴AN=1,∵AB=BC=4,∠B=90°,∴AC=4,∵AF∥CD,∴△GAF∽△GCD,∴,即,解得,AG=4,∵AN=NE=1,∠ENA=90°,∴AE=,∴GE=GA+AE=5.综上所述:GE的长为:,5.【点评】本题考查正方形的性质、全等三角形的判定与性质、三角形相似,解答本题的关键是明确题意,利用数形结合的思想解答.2.(2022春•广陵区期末)如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=2,点P为线段BD上的一个动点,则MP+PB的最小值是4.【分析】过P点作PH⊥BC于H,过M点作MN⊥BC于N,如图,根据菱形的性质得到AB=BC,BO 平分∠ABC,AO⊥BD,再判断△ABC为等边三角形得到∠ABC=∠ACB=60°,则∠OBC=30°,所以PH=BP,则MP+PB=MP+PH,所以MP+PH的最小值为MN的长,然后利用含30度角的直角三角形三边的关系求出MN即可.【解答】解:过P点作PH⊥BC于H,过M点作MN⊥BC于N,如图,∵四边形ABCD为菱形,∴AB=BC,BO平分∠ABC,AO⊥BD,∵AB=AC=10,∴AB=AC=BC=10,∴△ABC为等边三角形,∴∠ABC=∠ACB=60°,∴∠OBC=30°,∴PH=BP,∴MP+PB=MP+PH,当M、P、H共线时,MP+PH的值最小,即MP+PH的最小值为MN的长,∵AM=2,∴CM=10﹣2=8,在Rt△MNC中,∵∠MCN=60°,∴CN=CM=4,∴MN=CN=4,即MP+PB的最小值为4.故答案为:.【点评】本题考查了胡不归问题:利用垂线段最短解决最短路径问题,把PB转化为PH是解决问题的关键.也考查了菱形的性质和等边三角形的性质.【变式2-1】(2021•郴州)如图,在△ABC中,AB=5,AC=4,sin A=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为.【分析】过点P作PE⊥AB于点E,过点C作CH⊥AB于点H,首先得出BD=4,AD=3,根据sin∠ABD=,得EP=,则PC+PB的最小值为PC+PE的最小值,即求CH的长,再通过等积法即可解决问题.【解答】解:过点P作PE⊥AB于点E,过点C作CH⊥AB于点H,∵BD⊥AC,∴∠ADB=90°,∵sin A==,AB=5,∴BD=4,由勾股定理得AD=,∴sin∠ABD=,∴EP=,∴PC+PB=PC+PE,即点C、P、E三点共线时,PC+PB最小,∴PC+PB的最小值为CH的长,=,∵S△ABC∴4×4=5×CH,∴CH=.∴PC+PB的最小值为.故答案为:.【点评】本题主要考查了锐角三角函数,垂线段最短、勾股定理等知识,将PC+PB的最小值转化为求CH的长,是解题的关键.3.(2022秋•朝阳区校级月考)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的纵坐标为.【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E (0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.【解答】解:∵∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,则,解得:,∴直线EC的解析式为y=x+2,解,得,∴P(,),故答案为:.【点评】本题考查了轴对称﹣最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.【变式3-1】(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x 轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为(﹣,0).【分析】在BC上截取BH=3,可证四边形BHEF是平行四边形,可得BF=EH,由对称性可得DE=D'E,则四边形BDEF的周长=EH+ED'+BD+EF,由EF和BD是定值,则当EH+D'E有最小值时,四边形BDEF 的周长有最小值,即当点E,点H,点D'共线时,EH+D'E有最小值,利用待定系数法可求HD'解析式,即可求解.【解答】解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).【点评】本题考查了轴对称﹣最短路线问题,坐标与图形,平行四边形的判定和性质,一次函数的性质等知识,确定点E的位置是解题的关键.4.如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是.【分析】根据题意得出作EF∥AC且EF=,连接DF交AC于M,在AC上截取MN=,此时四边形BMNE的周长最小,进而利用相似三角形的判定与性质得出答案.【解答】解:作EF∥AC且EF=,连接DF交AC于M,在AC上截取MN=,延长DF交BC于P,作FQ⊥BC于Q,作出点E关于AC的对称点E′,则CE′=CE=1,将MN平移至E′F′处,则四边形MNE′F′为平行四边形,则当BM+EN=BM+FM=BF′时四边形BMNE的周长最小,由∠FEQ=∠ACB=45°,可求得FQ=EQ=1,∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,∴=,∴=,解得:PQ=,∴PC=,由对称性可求得tan∠MBC=tan∠PDC==.故答案为.【点评】此题主要考查了正方形的性质以及相似三角形的判定与性质,得出M,N的位置是解题关键.【变式4-1】如图,已知四边形ABCD四个顶点的坐标为A(1,3),B(m,0),C(m+2,0),D(5,1),当四边形ABCD的周长最小时,m的值为.【分析】因为AD,BC的长度都是固定的,所以求出AB+CD的长度就行了.问题就是AB+CD什么时候最短.把D点向左平移2个单位到D′点;作D′关于x轴的对称点D″,连接AD″,交x轴于P,从而确定C点位置,此时AB+CD最短.设直线AD″的解析式为y=kx+b,待定系数法求直线解析式.即可求得m的值.【解答】解:将C点向左平移2单位与B重合,点D向左平移2单位到D′(3,1),作D′关于x轴的对称点D″,根据作法知点D″(3,﹣1),设直线AD″的解析式为y=kx+b,则,解得k=﹣2,b=5.∴直线AD″的解析式为y=﹣2x+5.当y=0时,x=,即B(,0),m=.故答案为:.【点评】考查了轴对称﹣最短路线问题,关键是熟悉关于x轴的对称点,两点之间线段最短等知识.题型2:面积平分问题解题模板:技巧精讲1:利用中线平分图形面积的方法2.利用对称性平分图形面积的方法5.(1)问题提出:如图(1),在直角△ABC中,∠C=90°,AC=8,BC=6,点D为AC上一点且AD=2,过点D作直线DE交△ABC于点E,使得△ABC被分成面积相等的两部分,则DE的长为2.(2)类比发现:如图(2),五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O(0,0),C (4,0),D(4,2)请你找出一条经过顶点A的直线,将五边形ABOCD分为面积相等的两部分,求出该直线对应的函数表达式.(3)如图(3),王叔叔家有一块四边形菜地ABCD,他打算过D点修一条笔直的小路把四边形菜地ABCD 分成面积相等的两部分,分别种植不同的农作物,已知AB=AD=200米,BC=DC=200米,∠BAD =90°过点D是否存在一条直线将四边形ABCD的面积平分?若存在,求出平分该四边形面积的线段长:若不存在,请说明理由.【分析】(1)如图1中,取AC的中点F,连接BF,BD,作FE∥BD交BC于E,连接DE交BF于O.证明DE平分△ABC的面积,利用平行线分线段成比例定理求出CE即可解决问题.(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,求出点M的坐标即可解决问题.(3)先求出四边形ABCD的面积,即可得出四边形ABQD的面积,从而求出QM,再用平行线分线段成比例定理求出BM,即可得出DM,最后用勾股定理即可.【解答】解:(1)如图1中,取AC的中点F,连接BF,BD,作FE∥BD交BC于E,连接DE交BF 于O.∵AF=FC,=S△BFC,∴S△AFB∵BD∥EF,=S△BDF,∴S△BDE=S△BOE,∴S△DFO=S四边形ABED,∴S△ECD∴DE平分△ABC的面积,∵AC=8,AD=2,∴AF=CF=4,DF=2,∵EF∥BD,∴=,∴=,∴CE=4,∴DE===2,故答案为2.(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,∵直线AO的解析式为y=x,∴直线BE解析式为y=x+2,∴点E坐标(﹣,0),∵直线AC的解析式为y=﹣4x+16,∴直线DF的解析式为y=﹣4x+18,∴点F坐标为(,0)∴EF的中点M坐标为(,0),∴直线AM的解析式为:y=x﹣4.(3)如图3中,连接BD,AC交于点O.在BC上取一点Q,过Q作QM⊥BD,∵AB=AD=200、BC=CD=200,∴AC是BD的垂直平分线,在Rt△ABD中,BD=AB=200,∴DO=BO=OA=100,在Rt△BCO中,OC==300,=S△ABD+S△CBD=BD×(AO+CO)=×200×(100+300)=80000,∴S四边形ABCD∵在一条过点D的直线将筝形ABCD的面积二等分,=S四边形ABCD=40000,∴S四边形ABQD=×BD×OA=20000,∵S△ABD=BD×QM=×200×QM=100QM=S四边形ABQD﹣S△ABD=20000,∴S△QBD∴QM=100,∵QM∥CO.∴=,∴=,∴BM=,∴DM=BD﹣BM=,在Rt△MQD中,DQ===.【点评】此题是一次函数综合题,主要考查了等腰三角形的性质,三角形的中线,几何作图,勾股定理,等积问题等知识,解题的关键是把多边形转化为三角形是解决问题的关键,记住三角形的中线把三角形分成面积相等的两个三角形.【变式5-1】(2022•江北区模拟)新知学习:若一条线段把一个平面图形分成面积相等的两部分,我们把这条线段叫做该平面图形的二分线.解决问题:(1)①三角形的中线、高线、角平分线中,一定是三角形的二分线的是三角形的中线;②如图1,已知△ABC中,AD是BC边上的中线,点E,F分别在AB,DC上,连接EF,与AD交于=S△DGF,则EF是(填“是”或“不是”)△ABC的一条二分线.点G.若S△AEG(2)如图2,四边形ABCD中,CD平行于AB,点G是AD的中点,射线CG交射线BA于点E,取EB 的中点F,连接CF.求证:CF是四边形ABCD的二分线.(3)如图3,在△ABC中,AB=CB=CE=7,∠A=∠C,∠CBE=∠CEB,D,E分别是线段BC,AC上的点,且∠BED=∠A,EF是四边形ABDE的一条二分线,求DF的长.【分析】(1)①由平面图形的二分线定义可求解;②由面积的和差关系可得S△BEF=S△ABD=S△ABC,可得EF是△ABC的一条二分线;=S△CEF,由AB∥DC,G是AD的中点,证明△CDG≌△EAG,所(2)根据EB的中点F,所以S△CBF=S△CEF,所以S四边形AFCD=S△CBF,可得CF是四边形ABCD的二分线;以S四边形AFCD=S△DEC=S△ABE,可得S△HED=(3)延长CB使BH=CD,连接EH,通过全等三角形的判定可得S△BEHS四边形ABDE,即可得DF=DH=.【解答】解:(1)∵三角形的中线把三角形分成面积相等的两部分;∴三角形的中线是三角形的二分线,故答案为三角形的中线②∵AD是BC边上的中线=S△ACD=S△ABC,∴S△ABD=S△DGF,∵S△AEG+S△AEG=S四边形BDGE+S△DGF,∴S四边形BDGE=S△ABD=S△ABC,∴S△BEF∴EF是△ABC的一条二分线故答案为:是(2)∵EB的中点F,=S△CEF,∴S△CBF∵AB∥DC,∴∠E=∠DCG,∵G是AD的中点,∴DG=AG,在△CDG和△EAG中,∴△CDG≌△EAG(AAS),=S△DCG,∴S△AEG=S△CEF,∴S四边形AFCD=S△CBF,∴S四边形AFCD∴CF是四边形ABCD的二分线.(3)如图,延长CB使BH=CD,连接EH,AB=CB=CE=7,∠A=∠C,∠CBE=∠CEB,D,E分别是线段BC,AC上的点,且∠BED=∠A,∵BC=7∴BD+CD=7∴BD+BH=7=HD∵∠BED=∠A,∠BED+∠DEC=∠A+∠ABE∴∠ABE=∠CED,且AB=CE=7,∠A=∠C∴△ABE≌△CED(ASA)=S△EDC,∴AE=CD,BE=DE,∠AEB=∠EDC,S△ABE∴AE=BH,∵∠CBE=∠CEB∴∠AEB=∠EBH∴∠EBH=∠EDC,且BE=DE,BH=CD∴△BEH≌△DEC(SAS)、=S△DEC,∴S△BEH=S△DEC=S△ABE,∴S△BEH=S四边形ABDE,∴S△HED∵EF是四边形ABDE的一条二分线,=S四边形ABDE=S△HED,∴S△DEF∴DF=DH=【点评】本题是三角形综合题,考查了全等三角形的判定和性质,三角形中线的性质,平行线的性质,理解新定义是本题的关键.【变式5-2】(2021•西安一模)问题提出(1)如图①,在Rt△ABC中,∠A=90°,AB=3,AC=4,在BC上找一点D,使得AD将△ABC分成面积相等的两部分,作出线段AD,并求出AD的长度;问题探究(2)如图②,点A、B在直线a上,点M、N在直线b上,且a∥b,连接AN、BM交于点O,连接AM、BN,试判断△AOM与△BON的面积关系,并说明你的理由;解决问题(3)如图③,刘老伯有一个形状为筝形OACB的养鸡场,在平面直角坐标系中,O(0,0)、A(4,0)、B(0,4)、C(6,6),是否在边AC上存在一点P,使得过B、P两点修一道笔直的墙(墙的宽度不计),将这个养鸡场分成面积相等的两部分?若存在,请求出直线BP的表达式;若不存在,请说明理由.【分析】(1)当点D是BC的中点时,AD将△ABC分成面积相等的两部分,根据直角三角形斜边中线等于斜边的一般,可求出AD的长度;(2)根据同底等高的三角形面积相等,再减去相等的部分,就可以得出△AOM与△BON的面积相等;(3)连接AB,过点O作AB的平行线,交CA的延长线于点F,交OA于点G,则△OBG的面积等于△AFG的面积,则四边形OACB的面积转化为△BCF的面积,取CF的中点P,求出点P的坐标,即可求出直线BP的表达式.【解答】解:(1)如图①,取BC边的中点D,连接AD,则线段AD即为所求.在Rt△ABC中,∠BAC=90°,AB=3,AC=4,∴BC=,∵点D为BC的中点,∴AD=BC=.=S△BON,理由如下:(2)S△AOM=S△ABM﹣S△AOB,S△BON=S△ABN﹣S△AOB,由图可知,S△AOM如图②,过点M作MD⊥AB于点D,过点N作NE⊥AB于点E,∴MD∥NE,∠MDE=90°,又∵MN∥DE,∴四边形MDEN是矩形,∴MD=NE,=,S△ABN=,∵S△ABM=S△ABN,∴S△ABM=S△BON.∴S△AOM(3)存在,直线BP的表达式为:y=x+4.如图③,连接AB,过点O作OF∥AB,交CA的延长线于点F,交OA于点G,=S△AFG,由(2)的结论可知,S△OBG=S△BCF,∴S四边形OACB取CF的中点P,作直线BP,直线BP即为所求.∵A(4,0),B(0,4),C(6,6),∴线段AB所在直线表达式为:y=﹣x+4,线段AC所在直线的表达式为:y=3x﹣12,∴直线OF的表达式为:y=﹣x,联立,解得,∴F(3,﹣3),∵点P是CF的中点,∴P(,),∴直线BP的表达式为:y=x+4.【点评】主要考查了勾股定理,中点的性质,面积转化以及待定系数法求一次函数表达式等内容,熟练掌握勾股定理的内容,中点性质的应用,作出辅助线,进行面积的转化是解答本题的关键.题型3:面积最值问题6.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.得到BM=CM=2,易证△AMB∽△CGB,求得GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG,EH=DG=8﹣x,所以S△BDE===,当x=4时,△BDE面积的最大值为8.【解答】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,BC=4,∴△AMB∽△CGB,∴,∴GB=8,设BD=x,则DG=8﹣x,∵ED=DC,∠EHD=∠DGC,∠HED=∠GDC,∴△EDH≌△DCG(AAS),∴EH=DG=8﹣x,===,∴S△BDE当x=4时,△BDE面积的最大值为8.故答案为8.【点评】本题考查了正方形,熟练运用正方形的性质与相似三角形的判定与性质以及全等三角形的判定与性质是解题的关键.;【变式6-1】(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC;(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC(3)如图③,四边形ABCD,AC=m,BD=n,对角线AC交于O点,他们所成锐角为β,求四边形ABCD .的面积S四边形ABCD【分析】(1)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(2)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(3)过A作AE⊥BD于E,过C作CF⊥BD于F,解直角三角形求出AE、CF,根据三角形面积公式求出即可.【解答】解:(1)如图①,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=60°,AC=4,∴AM=AC×sin60°=4×=2,∵BC=6,=×BC×AM=×6×2=6;∴△ABC的面积S△ABC(2)如图②,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=α,AC=b,∴AM=AC×sinα=b×sinα=b sinα,∵BC=a,=×BC×AM=×a×b sinα=ab sinα;∴△ABC的面积S△ABC(3)如图3,过A作AE⊥BD于E,过C作CF⊥BD于F,BD=n,OA+OC=m,∵AC、BD夹角为β,∴AE=OA•sinβ,CF=OC•sinβ,=S△ABD+S△BDC∴S四边形ABCD=BD•AE+BD•CF=BD•(AE+CF)=BD•(OA•sinβ+OC•sinβ)=BD•AC•sinβ=mn sinβ.=mn sinβ.即四边形ABCD的面积S四边形ABCD【点评】本题考查了解直角三角形,三角形的面积的应用,此题比较难,解题时关键要找对思路,即原四边形的高已经发生了变化,只要把高求出来,一切将迎刃而解.【变式6-2】如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动的速度为每秒1个单位,运动的时间为x秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.【分析】(1)由正方形的性质得出AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,证出∠ADE=∠CDG,由SAS证明△ADE≌△CDG,得出∠DCG=∠DAE=90°,证出∠DCG+∠DCB=180°,即可得出结论;(2)分情况讨论:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,则AC∥EK∥AD,证明△ADE∽△BEH,由相似三角形的性质得出=,求出BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积,即可得出结果;②当点E在BC边上时,S=△DEC的面积=4﹣x;(3)由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;由勾股定理求出BD,即可得出结果.【解答】(1)证明:∵四边形ABCD与四边形DEFG都是正方形,∴AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠DCG=∠DAE=90°,∵∠DCB=90°,∴∠DCG+∠DCB=180°,∴点G在直线BC上;(2)解:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,如图1所示:则AC∥EK∥AD,∴∠HEK=∠EHB,∠DEK=∠EDA,∵∠EHB+∠BEH=90°,∠EDA+∠AED=90°,∠HEK+∠DEK=90°,∴∠EDA=∠BEH,∠AED=∠EHB,∴△ADE∽△BEH,∴=,即=,∴BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积=2×2﹣×2×x﹣×(2﹣x)×=;②当点E在BC边上时,S=△DEC的面积=×2×(4﹣x)=4﹣x;(3)解:由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∵BD===2,∴BF+FG=2BD=4,∴点F运动的路径长为4.【点评】本题是四边形综合题目,考查了正方形的性质、平行线的判定与性质、三角形面积的计算、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解决问题的关键.1.如图,在边长为6的菱形ABCD中,∠BCD=60°,连接BD,点E、F分别是边AB、BC上的动点,且AE=BF,连接DE、DP、EF.(1)如图①,当点E是边AB的中点时,求∠EDF的度数;(2)如图②,当点E是边AB上任意一点时,∠EDF的度数是否发生改变?若不改变,请证明;若发生改变,请说明理由;(3)若点P是线段BD上一动点,求PF+DP的最小值.【分析】(1)由菱形的性质可得AB=BC=CD=AD=6,∠BCD=∠BAD=60°,可证△ABD,△BCD 是等边三角形,由等边三角形的性质可证DE=DF,∠EDF=60°,可得结论;(2)证明△ADE≌△BDF(SAS),根据全等三角形的性质得∠ADE=∠BDF,由角的和差即可得∠EDF =∠ADB=60°;(3)过点P作PG⊥AD于点G,连接PF,过点F作FG′⊥AD于点G′,交BD于点P′,可得GP=DP•sin60°=DP,则PF+DP=PF+GP,当点F、P、G三点共銭,且FG⊥AD时,PF+GP有最小值,最小值为FG′的长,过点D作DH⊥BC于点H,则DH=FG',PF+DP的最小值即为DH的长,由△BDC是等边三角形可得DH=CD•sin60°=3,即可求得PF+DP的最小值.【解答】解:(1)∵四边形ABCD是菱形,边长为6,∴AB=BC=CD=AD=6,∠BCD=∠BAD=60°,∴△ABD,△BCD是等边三角形,∵点E是边AB的中点,AE=BF,∴点F是边BC的中点,∴∠ADE=∠BDE=∠BDF=∠CDF=30°,∴∠EDF=∠BDE+∠BDF=60°;(2)∠EDF的度数不改变,证明:△ABD,△BCD是等边三角形,∴AD=BD,∠DAB=∠DBC=60°,∵AE=BF,∴△ADE≌△BDF(SAS),∴∠ADE=∠BDF,∴∠EDF=∠ADB=60°;(3)如图,过点P作PG⊥AD于点G,连接PF,过点F作FG′⊥AD于点G′,交BD于点P′,∵∠ADB=60°,∴GP=DP•sin60°=DP,∴PF+DP=PF+GP,∴当点F、P、G三点共銭,且FG⊥AD时,PF+GP有最小值,最小值为FG′的长,过点D作DH⊥BC于点H,∵四边形ABCD是菱形,∴DH=FG',∴PF+DP的最小值即为DH的长,∵DH⊥BC,△BDC是等边三角形,∴DH=CD•sin60°=3,∴PF+DP的最小值为3.【点评】本题考查了四边形的综合应用,掌握菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,最短路径等知识,添加恰当辅助线构造构造在直角三角形是解本题的关键.2.(2022•连云港)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM+PN的最小值.【分析】(1)先证明四边形DBCE是平行四边形,再由BE⊥DC,得四边形DBCE是菱形;(2)作N关于BE的对称点N',过D作DH⊥BC于H,由菱形的对称性知,点N关于BE的对称点N'在DE上,可得PM+PN=PM+PN',即知MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,可得DH=DB•sin∠DBC=,即可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DE=AD,∴DE=BC,∵E在AD的延长线上,∴DE∥BC,∴四边形DBCE是平行四边形,∵BE⊥DC,∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,∴PM+PN=PM+PN',∴当P、M、N'共线时,PM+PN'=MN'=PM+PN,∵DE∥BC,∴MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,∴DH=DB•sin∠DBC=2×=,∴PM+PN的最小值为.【点评】本题考查平行四边形性质及应用,涉及菱形的判定,等边三角形性质及应用,对称变换等,解题的关键是掌握解决“将军饮马”模型的方法.3.(2014•海南)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式;(2)首先求出四边形MEFP面积的表达式,然后利用二次函数的性质求出最值及点P坐标;(3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x 轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.【解答】方法一:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.方法二:(1)略.(2)连接MF,过点P作x轴垂线,交MF于点H,有最大值时,四边形MEFP面积最大.显然当S△PMF当a=1时,E(1,0),F(2,0),∵M(0,1),∴l MF:y=﹣x+1,设P(t,﹣t2+4t+5),H(t,﹣t+1),=(P Y﹣H Y)(F X﹣M X),∴S△PMF=(﹣t2+4t+5+t﹣1)(2﹣0)=﹣t2+t+4,∴S△PMF最大值为,∴当t=时,S△PMF=EF×MY=×1×1=,∵S△MEF的最大值为+=,∴S四边形MEFP∴P(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,∴﹣x2+4x+5=0,解得:x=2±,∵点P在第一象限,∴P(2+,3),PM、EF长度固定,当ME+PF最小时,PMEF的周长取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),∵四边形MEFM1为平行四边形,∴ME=M1F,作点M1关于x轴的对称点M2,则M2(1,﹣1),∴M2F=M1F=ME,当且仅当P,F,M2三点共线时,此时ME+PF=PM2最小,∵P(2+,3),M2(1,﹣1),F(a+1,0),∴K PF=K M1F,∴,∴a=.【点评】本题是二次函数综合题,第(1)问考查了待定系数法;第(2)问考查了图形面积计算以及二次函数的最值;第(3)问主要考查了轴对称﹣最短路线的性质.试题计算量偏大,注意认真计算.4.(2021•靖江市校级一模)如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,若AE=2,则求EF的长.(请从“线段的长度或线段的位置关系”的方向设计条件及问题,并解答)【分析】过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB=6,∠B=60°,可得BG=3,AG=3=EH,由题意可得,FH=FC﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.【解答】若AE=2.则求EF的长.解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3=EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,EF经过菱形对角线交点,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得:EF===2.【点评】本题考查了菱形的性质,勾股定理,矩形的性质,解决本题的关键是掌握菱形的性质.5.(2012•新密市自主招生)如图,菱形ABCD的边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,且AE+CF=4,则△DEF面积的最大值为.【分析】首先过点F作FG⊥AD,交AD的延长线于点G,由菱形ABCD的边长为4,∠BAD=60°,即=DE•FG)=﹣(x﹣2)2+,可求得AD=CD=4,∠FDG=60°,然后设AE=x,即可得S△DEF然后根据二次函数的性质,即可求得答案.【解答】解:过点F作FG⊥AD,交AD的延长线于点G,∵菱形ABCD边长为4,∠BAD=60°,∴AD=CD=4,∠ADC=180°﹣∠BAD=120°,∴∠FDG=180°﹣∠ADB=60°,设AE=x,∵AE+CF=4,∴CF=4﹣x;∴DE=AD﹣AE=4﹣x,DF=CD﹣CF=4﹣(4﹣x)=x,在Rt△DFG中,FG=DF•sin∠GDF=x,=DE•FG=×(4﹣x)×x=﹣x2+x=﹣(x2﹣4x)=﹣(x﹣2)2+,∴S△DEF∴当x=2时,△DEF面积的最大,最大值为.故答案为:.【点评】此题考查了菱形的性质、三角函数的性质以及二次函数的最值问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与函数思想的应用.6.(2022•杭州模拟)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为等腰直角三角形,连接BD,BB′与CE的数量关系是BB'=CE.(2)当0°<α<360°且a≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点E,C,D,B′为顶点的四边形是平行四边形时,请直接写出BE与B′E的数量关系.。

第48课 几何型综合问题

第48课 几何型综合问题

【例 1】 (2013·常德 )已知两个共一个顶点的等腰Rt△ABC、 Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连 接MB、ME. (1)如图1,当CB与CE在同一直线上时,求证:MB∥CF; (2)如图1,若CB=a,CE=2a,求BM、ME的长; (3)如图2,当∠BCE=45°时,求证:BM=ME.
答图2a
第 48 课 几何型综合问题
解法二:
如答图 1b 所示,延长 BM 交EF 于D ,
∵CB =a,CE =2a,
∴BE =CE -CB =2a-a=a,
∵△ ABM ≌△ FDM ,
∴BM =DM , 又∵△ BED 是等腰直角三角形,
答图1b
∴△ BEM 是等腰直角三角形,
第 48 课 几何型综合问题
的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结
论错误的是
( )
A.∠C=2∠A
B.BD平分∠ABC
C.S△BCD=S△BOD D.点D为线段AC的黄金分割点
B .∵OD 是AB 的垂直平分线, ∴AD =BD , ∴∠A =∠ABD =36°, ∴∠DBC =72°-36°=36°=∠ABD , ∴BD 是∠ABC 的角平分线,正确,故本选项错误;
第 48 课 几何型综合问题
助学微博
四个注意 解几何型综合题,还应注意以下几点: (1)注意数形结合,多角度、全方位观察图形,挖掘隐
含条件,寻找数量关系和相等关系; (2)注意推理和计算相结合,力求解题过程的规范化; (3)注意掌握常规的证题思路,常规的辅助线添法; (4)注意灵活地运用数学的思想方法.
第 48 课 几何型综合问题
基础自测
2.(2013·乌鲁木齐 )如图,半圆O与等腰直角三角形两腰CA、 CB分别切于D、E两点,直径FG在AB上,

几何综合题

几何综合题

角形、 四边形、 圆为背景, 全等、 似为 以 相 载体, 探究相关图形的形状、 位置和大小.

几何综合题
B 的 长 . 后 根 据 相 似 、 股 定 理 和 F 然 勾
(0 O 2 1四川 成 者 ) 图 1 如
昕 示 , BC 接 于 网 0, △A 内 AB为 直 径 ,
G 9 o 以 = 0_所
连结AD, 别交C BC 点尸, . 分 E, 于 Q () 证 : i求 点陧 △ C 的外 心. Q ( ) a LAB =4 , F 8求 C 2  ̄tn C  ̄ C =, Q
的长.
≤《
() 为 点 c是 弧 AD的 1因
LDA B G,袄 以 Rt = AAF  ̄Rt GF . P- A B
( ) @tn 2 a LAB =3 c 8 知 C 可

: ,得 Ac :

局 部 入 手 . 整 体 思 维 . 在 掌 握通 再 即
音 c0易 R ABR A B=. 知t tQ , 1 △c AC
性 通法 的 同时 , 应 只形 成 一个 一个 不
枷{ , 47 T 谨 辅峙
( ) 为 AB O O的 直 径 , 以 3因 是 所
ADB= 0 .所 以 L DAB 4日D= 0 9 o 十 9 。
弦C ELAB于 点F, 是 弧AD的 中 点 , C
连 结B D并 延 长交 E 的 延 长 线 于 点 G, C
又C J F_ AB. 以 厶 4 ( 所 B
的难 度 , 强 探 索 性训 练 , 成 为 几 加 将 何综 合题命 题 的新 趋势.
值 得一提 的是 , 在近 两年 的各地
压轴 题 型

立体几何大题题型总结

立体几何大题题型总结

立体几何大题题型总结
立体几何大题包括以下几种题型:
1. 体积计算题:给定一个几何体的形状和尺寸,求其体积。

2. 表面积计算题:给定一个几何体的形状和尺寸,求其表面积。

3. 三视图综合题:给定一个几何体的三视图,通过推理和计算求出其体积和表面积。

4. 截面综合题:给定一个几何体的各个截面的形状和尺寸,通过推理和计算求出其体积和表面积。

5. 相似几何体综合题:给定多个几何体的形状和尺寸,在它们之间应用相似性质,求出它们各自的体积和表面积。

6. 空间几何关系题:给定多个几何体之间的位置关系,例如相切、相交、包含等,求出它们各自的体积和表面积。

7. 作图求解题:通过构造一些几何形状,例如放射形、圆锥、圆台等,求出特定几何体的体积和表面积。

8. 混合几何体综合题:将以上多种题型进行综合,考查学生的综合运用能力。

初中数学几何图形综合题

初中数学几何图形综合题

初中数学几何图形综合题必胜中学2018—01-30 15:15:15题型专项几何图形综合题【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质。

一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等。

【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题。

这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。

解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。

【提醒】几何论证型综合题以知识上的综合性引人注目。

值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势。

为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题。

类型1操作探究题1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA.①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.解:(1)证明:由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°.∴∠BAC=∠BAD=45°.∵∠ACB=90°,∴∠ABC=45°.∴AC=BC。

【中考冲刺】2020中考数学题型专项(十二)几何综合题

【中考冲刺】2020中考数学题型专项(十二)几何综合题

题型专项(十二)几何综合题几何综合题是近年来中考的热点题型,2019年云南中考(全省统考)第23题,2018年云南中考第23题,2018年昆明中考第23题,2017年云南中考(全省统考)第23题,都是几何综合题作为压轴题.几何综合题通常把三角形、四边形、圆、方程和函数等知识综合起来,辅以平移、旋转、轴对称等变换,或实践操作探究,或类比探究,对有关数学问题进行证明和计算,考查同学们应用所学数学知识解决综合问题的能力.题目往往综合性较强,计算量较大,很容易造成同学们丢分,复习时应予以重视.类型1 与“三点定圆”有关的几何综合题【例1】 (2019·云南T23·12分)如图,AB 是⊙C 的直径,M ,D 两点在AB 的延长线上,E 是⊙C 上的点,且DE 2=DB ·DA.延长AE 至F ,使AE =EF ,设BF =10,cos ∠BED =45.(1)求证:△DEB ∽△DAE ;【思路点拨】 由∠D =∠D ,DE 2=DB ·DA ,根据“两边对应成比例且夹角相等,两三角形相似”,证得△DEB ∽△DAE.证明:∵DE 2=DB ·DA , ∴DE DA =DBDE.1分 又∵∠BDE =∠EDA , ∴△DEB ∽△DAE.3分 (2)求DA ,DE 的长;【思路点拨】 先利用圆周角定理的推论、线段垂直平分线的性质、三角函数的概念等,求出AB ,AE ,BE 的长,然后根据△DEB ∽△DAE 得出对应边成比例而列出关于DA ,DE 的方程组求解.解:∵AB 是⊙O 的直径,E 是⊙C 上的点, ∴∠AEB =90°,即BE ⊥AF.又∵AE =BF ,BF =10,∴AB =BF =10. ∵△DEB ∽△DAE ,cos ∠BED =45,∴∠EAD =∠BED ,cos ∠EAD =cos ∠BED =45.在Rt △ABE 中,由AB =10,cos ∠EAD =45,得AE =AB ·cos ∠EAD =8, ∴BE =AB 2-AE 2=6.5分 ∵△DEB ∽△DAE , ∴DE DA =DB DE =EB AE =68=34. ∵DB =DA -AB =DA -10,∴⎩⎪⎨⎪⎧DE DA =34,DA -10DE =34,解得⎩⎪⎨⎪⎧DA =1607,DE =1207.经检验,⎩⎪⎨⎪⎧DA =1607,DE =1207是⎩⎪⎨⎪⎧DE DA =34,DA -10DE =34的解.∴⎩⎪⎨⎪⎧DA =1607,DE =1207.8分【一题多解】 解法2:∵AB 是⊙C 的直径,E 是⊙C 上的点, ∴∠AEB =90°,即BE ⊥AF. 又∵AE =EF ,BF =10, ∴AB =BF =10.∵△DEB ∽△DAE ,cos ∠BED =45,∴∠EAD =∠BED.∴cos ∠EAD =cos ∠BED =45.在Rt △ABE 中,由AB =10,cos ∠EAD =45,得AE =AB ·cos ∠EAD =8,BE =AB 2-AE 2=6.连接CE ,设ED 与BF 交于点G.∵∠DBF =∠A +∠AFB =2∠A ,∠DCE =2∠A , ∴∠DBF =∠DCE.∴BF ∥CE.∵∠CED =∠CEB +∠BED =∠CEB +∠A =∠CEB +∠AEC =90°,∴∠BGE =∠CED =90°. 在Rt △BEG 中,sin ∠BED =sin ∠EAD =BG BE =BE AB =610=35,∴BG =185.∵BF ∥CE ,∴△DBG ∽△DCE.∴BG CE =DB DC ,即1855=DB DB +5.解得DB =907. 经检验,DB =907是1855=DBDB +5的解.∴DA =907+10=1607.∴DE 2=907×1607.∴DE =1207.(3)若点F 在B ,E ,M 三点确定的圆上,求MD 的长.【思路点拨】 由于点F 在B ,E ,M 三点确定的圆上,所以F ,B ,E ,M 四点共圆,而∠BEF =90°,所以可知B ,E ,F 三点在以BF 为直径的圆上,所以M 也在以BF 为直径的圆上.要求MD 的长,由于MD =AD -AM ,需先求AM ,这可通过解Rt △AMF 得出.解:连接FM.∵BE ⊥AF ,即∠BEF =90°,∴BF 是B ,E ,F 三点确定的圆的直径.∵点F 在B ,E ,M 三点确定的圆上,即四点F ,E ,B ,M 在同一个圆上. ∴点M 在以BF 为直径的圆上. ∴FM ⊥AB.10分在Rt △AMF 中,由cos ∠FAM =AMAF,得AM =AF ·cos ∠FAM =2AE ·cos ∠EAB =2×8×45=645.11分∴MD =DA -AM =1607-645=35235.∴MD =35235.12分(1)求线段长度的方法有:①将线段放到直角三角形中利用勾股定理和三角函数概念求解;②将线段放到相似三角形中求解;③通过设未知量构造方程(组)求解.(2)“三点定圆”问题:①不在同一直线上的三点确定一个圆,圆心为顺次连接三点所形成的三角形三边垂直平分线的交点.锐角三角形外接圆的圆心在三角形内部,直角三角形外接圆的圆心在斜边中点处,钝角三角形外接圆的圆心在三角形外部;②解决“三点定圆”问题,通常先根据已知三点确定圆的圆心和直径(或半径),再由第四点也在该圆上用圆周角定理及其推论,以及其他知识解决问题.1.(2018·云南)如图,在▱ABCD 中,点E 是CD 的中点,点F 是BC 边上的点,AF =AD +FC ,▱ABCD 的面积为S ,由A ,E ,F 三点确定的圆的周长为l.(1)若△ABE 的面积为30,直接写出S 的值; (2)求证:AE 平分∠DAF ;(3)若AE =BE ,AB =4,AD =5,求l 的值.解:(1)S =60.(2)证明:延长AE 与BC 的延长线交于点H. ∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠ADE =∠HCE ,∠DAE =∠CHE. ∵点E 为CD 的中点,∴CE =ED. ∴△ADE ≌△HCE (AAS ).∴AD =HC ,AE =HE.∴AD +FC =HC +FC ,即AF =FH. ∴∠FAE =∠CHE. 又∵∠DAE =∠CHE ,∴∠DAE =∠FAE.∴AE 平分∠DAF. (3)连接EF. ∵AE =BE ,AE =HE , ∴AE =BE =HE.∴∠BAE =∠ABE ,∠HBE =∠BHE. ∵∠DAE =∠CHE ,∴∠BAE +∠DAE =∠ABE +∠HBE ,即∠DAB =∠CBA. ∵∠DAB +∠CBA =180°.∴∠CBA =90°.∴AB 2+BF 2=AF 2,即16+(5-FC )2=(FC +AD )2=(FC +5)2,解得FC =45.∴AF =FC +AD =45+5=295.∵AE =HE ,AF =FH ,∴FE ⊥AH. ∴AF 是△AEF 的外接圆的直径. ∴△AEF 的外接圆的周长l =29π5. 2.如图,在矩形ABCD 中,AB =4,BC =8,E ,F 分别为AD ,BC 边上的点,将矩形ABCD 沿EF 折叠,使点A 落在BC 边的点G 处,点B 落在点H 处,AG 与EF 交于点O.(1)如图1,求证:以A ,F ,G ,E 为顶点的四边形是菱形;(2)如图2,当△ABG 的外接圆与CD 相切于点P 时,求证:点P 是CD 的中点; (3)如图2,在(2)的条件下,求AGEF的值.解:(1)证明:连接AF.由折叠性质可知,OA =OG ,EA =EG ,FA =FG ,∠AOE =∠GOF =90°. ∵四边形ABCD 是矩形, ∴AD ∥BC.∴∠AEO =∠GFO. 在△AEO 和△GFO 中, ⎩⎪⎨⎪⎧∠AEO =GFO ,∠AOE =∠GOF =90°,OA =OG ,∴△AEO ≌△GFO (AAS ).∴EA =FG. ∴EA =EG =FA =FG.∴四边形AFGE 是菱形. (2)证明:连接OP.∵四边形ABCD 是矩形, ∴∠B =∠D =∠C =90°.∵OA =OG ,∴点O 是Rt △ABG 的外接圆圆心. ∵⊙O 与CD 相切于点P ,∴OP ⊥CD. ∴ED ∥OP ∥FC.∴OE OF =PD PC .∵△AEO ≌△GFO ,∴OE =OF. ∴PD =PC ,即点P 是CD 的中点.(3)延长PO 交AB 于点Q ,则AQ =QB =12AB =2,∠AQO =90°.设⊙O 的半径为x ,则OG =OA =OP =x ,OQ =8-x. 在Rt △AQO 中,AQ 2+OQ 2=OA 2, ∴22+(8-x )2=x 2.解得x =174.∴OA =OG =OP =174,AG =172,OQ =154.∵OP ∥FC ,∴∠AOQ =∠FGO.又∵∠AQO =∠FOG =90°,∴△AQO ∽△FOG.∴AQ OF =OQ OG .∴2OF =154174,解得OF =3415. ∴EF =6815.∴AG EF =158.3.【发现】如图1,∠ACB =∠ADB =90°,那么点D 在经过A ,B ,C 三点的圆上.【思考】如图2,如果∠ACB =∠ADB =α(α≠90°)(点C ,D 在AB 的同侧),那么点D 还在经过A ,B ,C 三点的⊙O 上吗?我们知道,如果点D 不在经过A ,B ,C 三点的圆上,那么点D 要么在⊙O 外,要么在⊙O 内,以下该同学的想法说明了点D 不在⊙O 外.请结合图4证明点D 也不在⊙O 内.【结论】综上可得结论,如果∠ACB =∠ADB =α(点C ,D 在AB 的同侧),那么点D 在经过A ,B ,C 三点的圆上,即A ,B ,C ,D 四点共圆.【应用】利用上述结论解决问题:如图5,已知△ABC 中,∠C =90°,将△ACB 绕点A 顺时针旋转α(α为锐角)得△ADE ,连接BE ,CD ,延长CD 交BE 于点F.(1)用含α的代数式表示∠ACD 的度数; (2)求证:点B ,C ,A ,F 四点共圆; (3)求证:点F 为BE 的中点.解:【思考】证明:如图,假设点D 在⊙O 内,延长AD 交⊙O 于点E ,连接BE ,则∠AEB =∠ACB ,∵∠ADB 是△BDE 的外角,∴∠ADB >∠AEB. ∴∠ADB >∠ACB ,这与条件∠ACB =∠ADB 矛盾.∴点D 也不在⊙O 内.∴点D 即不在⊙O 内,也不在⊙O 外,点D 在⊙O 上. 【应用】(1)由题意可知,AC =AD ,∠CAD =α, ∴∠ACD =90°-12α.(2)证明:∵AB =AE ,∠BAE =α, ∴∠ABE =90°-12α.∴∠ACD =∠ABE.∴B ,C ,A ,F 四点共圆.(3)证明:∵B ,C ,A ,F 四点共圆, ∴∠BFA +∠BCA =180°.又∵∠ACB =90°,∴∠BFA =90°.∴AF ⊥BE. ∵AB =AE ,∴BF =EF ,即点F 为BE 的中点.类型2 与图形变换有关的几何综合题【例2】 (2019·昆明模拟)在矩形ABCD 中,AB =8,P 是AB 边上一点,把△PBC 沿直线PC 折叠,顶点B 的对应点是点G ,CG 交AD 于点E ,且BE ∥PG ,BE 交PC 于点F.(1)如图1,若点E 是AD 的中点,求证:△AEB ≌△DEC ;【思路点拨】 由AB =DC ,∠A =∠D =90°,AE =DE ,即可证明△AEB ≌△DEC. 【自主解答】 证明:∵四边形ABCD 为矩形, ∴AB =DC ,∠A =∠D. 又∵E 为AD 的中点, ∴AE =DE.∴△AEB ≌△DEC (SAS ).(2)如图2,请判断△PBF 的形状,并说明理由;【思路点拨】 结论:△PBF 为等腰三角形,证明∠BPF =∠BFP. 【自主解答】 解:△PBF 为等腰三角形.理由如下: 在矩形ABCD 中,∠ABC =90°, ∵△BPC 沿PC 折叠得到△GPC , ∴∠BPF =∠GPF .∵BE ∥PG , ∴∠GPF =∠BFP. ∴∠BPF =∠BFP. ∴BP =BF.∴△PBF 为等腰三角形.(3)如图2,①当AD =20时,求BP 的长;②当BP =5时,求BE ·EF 的值.【思路点拨】 ①根据△ABE ∽△DEC 得出比例式,列方程求出AE ,DE 的长,继而求出CE ,BE 的长,再由△ECF ∽△GCP 得出比例式,列方程求出BP 的长.②连接FG ,证出△GEF ∽△EAB ,得出比例式EF GF =ABBE ,从而把求BE ·EF转化为求AB ·GF.【自主解答】 解:①∵BE ∥PG ,∴∠BEC =∠PGC =90°. ∴∠AEB +∠CED =90°.∵∠AEB +∠ABE =90°,∴∠CED =∠ABE. 又∵∠A =∠D =90°,∴△ABE ∽△DEC. ∴AB AE =DE DC. 设AE =x ,则DE =20-x.∴8x =20-x8.解得x 1=4,x 2=16.经检验,x 1=4和x 2=16是原方程的解. ∵P 在AB 上,当P 与A 重合时AE 最大为11.6. 当G 在AD 上时,G 与E 重合,AE 最小为20-421, ∴AE =4,DE =16. ∴CE =85,BE =4 5. 由折叠的性质得,BP =PG , ∴BP =BF =PG.∵BE ∥PG ,∴△ECF ∽△GCP. ∴EF PG =ECGC. 设BP =BF =PG =y ,∴45-y y =8520.∴y =205-40.∴BP =205-40. ②连接FG ,∵BF ∥PG ,BF =PG ,∴四边形BFGP 为平行四边形. ∴BP =GF ,BP ∥GF. ∴∠GFE =∠ABE.又∵∠GEF =∠BAE =90, ∴△GEF ∽△EAB.∴EF GF =ABBE.∴BE ·EF =AB ·GF =AB ·BP =8×5=40.与图形变换有关的几何综合题,常涉及特殊三角形和特殊四边形的判定,线段之间的数量关系和位置关系探究,图形之间的关系探究等,解决这类问题,首先应熟练掌握图形的平移、旋转及轴对称的性质,明确图形变换前后哪些是不变的量,哪些是变化的量,然后用全等、相似、解直角三角形、方程和函数等数学模型求解.1.(2018·昆明T23·12分)如图1,在矩形ABCD 中,P 为CD 边上一点(DP<CP ),∠APB =90°.将△ADP 沿AP 翻折得到△AD ′P ,PD ′的延长线交边AB 于点M ,过点B 作BN ∥MP 交DC 于点N.(1)求证:AD 2=DP ·PC ;(2)请判断四边形PMBN 的形状,并说明理由;(3)如图2,连接AC ,分别交PM ,PB 于点E ,F.若DP AD =12,求EFAE的值.解:(1)证明:在矩形ABCD 中, ∵AD =BC ,∠C =∠D =90°, ∴∠DAP +∠APD =90°. ∵∠APB =90°, ∴∠CPB +∠APD =90°. ∴∠DAP =∠CPB.∴△ADP ∽△PCB.∴AD PC =DPCB .∴AD ·CB =DP ·PC. ∵AD =BC ,∴AD 2=DP ·PC.(2)四边形PMBN 为菱形,理由如下: 在矩形ABCD 中,CD ∥AB. ∵BN ∥PM ,∴四边形PMBN 为平行四边形. ∵△ADP 沿AP 翻折得到△AD ′P.∴∠APD =∠APM.∵CD ∥AB ,∴∠APD =∠PAM. ∴∠APM =∠PAM.∵∠APB =90°,∴∠PAM +∠PBA =90°, ∠APM +∠BPM =90°. ∴∠PBA =∠BPM. ∴PM =MB.∴四边形PMBN 为菱形. (3)解法一: ∵∠APM =∠PAM.∴PM =AM.∵PM =MB ,∴AM =MB. ∵四边形ABCD 为矩形, ∴CD ∥AB 且CD =AB. 设DP =a ,则AD =2DP =2a , 由AD 2=DP ·PC ,得PC =4a , ∴DC =AB =5a.∴MA =MB =5a2.∵CD ∥AB ,∴∠ABF =∠CPF ,∠BAF =∠PCF. ∴△BFA ∽△PFC. ∴AF CF =AB CP =5a 4a =54.∴AF AC =59. 同理△MEA ∽△PEC. ∴AE CE =AM CP =5a24a =58. ∴AE AC =513. ∴EF AC =AF AC -AE AC =59-513=20117. ∵EF AC ∶AE AC =EF AE , ∴EF AE =20117∶513=49. 解法二:图3如图3,过点F 作FG ∥PM 交MB 于点G.∵∠APM =∠PAM.∴PM =AM.∵PM =MB ,∴AM =MB.∵四边形ABCD 为矩形,∴CD ∥AB 且CD =AB.设DP =a ,则AD =2DP =2a ,由AD 2=DP ·PC ,得PC =4a ,∴DC =AB =5a.∴MA =MB =5a 2. ∵CD ∥AB ,∴∠CPF =∠ABF ,∠PCF =∠BAF.∴△PFC ∽△BFA.∴PF BF =CP AB =4a 5a =45. ∵FG ∥PM ,∴MG BG =PF BF =45. ∴MG MB =49. ∵AM =MB ,∴MG AM =49. ∵FG ∥PM ,∴EF AE =MG AM =49.2.(2019·曲靖麒麟区模拟)已知,正方形ABCD 中,∠MAN =45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB ,DC (或它们的延长线)于点M ,N ,AH ⊥MN 于点H.(1)如图1,当∠MAN 绕点A 旋转到BM =DN 时,请你直接写出AH 与AB 的数量关系:AH =AB ;(2)如图2,当∠MAN 绕点A 旋转到BM ≠DN 时,(1)中发现的AH 与AB 的数量关系还成立吗?如果不成立,请写出理由,如果成立,请证明;(3)如图3,已知∠MAN =45°,AH ⊥MN 于点H ,且MH =2,NH =3,求AH 的长.(可利用(2)得到的结论)解:(2)数量关系成立.理由如下:延长CB 至E ,使BE =DN.∵四边形ABCD 是正方形,∴AB =AD ,∠D =∠ABE =90°.在Rt △AEB 和Rt △AND 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADN ,BE =DN ,∴Rt △AEB ≌Rt △AND (SAS ).∴AE =AN ,∠EAB =∠NAD.∵∠DAN +∠BAM =45°,∴∠EAB +∠BAM =∠EAM =45°.∴∠EAM =∠NAM.在△AEM 和△ANM 中,⎩⎪⎨⎪⎧AE =AN ,∠EAM =∠NAM ,AM =AM ,∴△AEM ≌△ANM (SAS ).∴S △AEM =S △ANM ,EM =MN.∵AB ,AH 是△AEM 和△ANM 对应边上的高,∴AB =AH.(3)分别沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,∴BM =2,DN =3,AB =AH =AD ,∠B =∠D =90°.∵∠BAM =∠MAH ,∠HAN =∠DAN ,∴∠BAD =2∠MAH +2∠HAN =2∠MAN =90°.分别延长BM 和DN 相交于点C ,可得正方形ABCD ,∴AH =AB =BC =CD =AD.设AH =x ,则MC =x -2,NC =x -3,在Rt △MCN 中,由勾股定理,得MN 2=MC 2+NC 2,∴52=(x -2)2+(x -3)2.解得x 1=6,x 2=-1(不符合题意,舍去).∴AH =6.3.(2019·天津)在平面直角坐标系中,O 为原点,点A (6,0),点B 在y 轴的正半轴上,∠ABO =30°.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,OD =2.(1)如图1,求点E 的坐标;(2)将矩形CODE 沿x 轴向右平移,得到矩形C ′O ′D ′E ′,点C ,O ,D ,E 的对应点分别为C ′,O ′,D ′,E ′.设OO ′=t ,矩形C ′O ′D ′E ′与△ABO 重叠部分的面积为S.①如图2,当矩形C ′O ′D ′E ′与△ABO 重叠部分为五边形时,C ′E ′,E ′D ′分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当3≤S ≤53时,求t 的取值范围(直接写出结果即可).解:(1)∵点A (6,0),∴OA =6.∵OD =2,∴AD =OA -OD =6-2=4.∵四边形CODE 是矩形,∴CE ∥OD ,CE =OD =2,DE ∥OC.∴∠AED =∠ABO =30°.在Rt △AED 中,AE =2AD =8,ED =AE 2-AD 2=82-42=4 3.∴点E 的坐标为(2,43).(2)①由平移的性质得O ′D ′=2,E ′D ′=43,ME ′=OO ′=t ,D ′E ′∥O ′C ′∥OB ,∴∠E ′FM =∠ABO =30°.∴在Rt △MFE ′中,MF =2ME ′=2t ,FE ′=MF 2-ME ′2=(2t )2-t 2=3t.∴S △MFE ′=12ME ′·FE ′=12×t ×3t =3t 22. ∵S 矩形C ′O ′D ′E ′=O ′D ′·E ′D ′=2×43=83,∴S =S 矩形C ′O ′D ′E ′-S △MFE ′=83-3t 22. ∴S =-32t 2+83,其中t 的取值范围是0<t <2. ②当2≤t<4时,如图3所示,O ′A =6-t ,D ′A =6-t -2=4-t.∴O ′G =3(6-t ),D ′F =3(4-t ).∴S =12[3(6-t )+3(4-t )]×2=-23t +10 3. ∵-23<0,∴S 随t 增大而减小,∴23<S ≤6 3.∴令S =53,即-23t +103=5 3.解得t =52. ∴当52≤t<4时,23<S ≤53;当4≤t<6时,如图4所示,O ′A =OA -OO ′=6-t.∵∠AO ′F =90°,∠AFO ′=∠ABO =30°,∴O ′F =3O ′A =3(6-t ).∴S =12(6-t )×3(6-t )=32(t -6)2(4≤t<6). 又∵当4≤t<6时,S 随t 增大而减小,∴0<S ≤2 3. ∴令S =3,即32(t -6)2= 3. 解得t 1=6-2,t 2=6+2(舍去).∴t =6- 2.∴当4≤t ≤6-2时,3≤S ≤2 3.综上所述,当3≤S ≤53时,t 的取值范围为52≤t ≤6- 2.拓展类型 其他问题1.(2019·眉山)如图,正方形ABCD 中,AE 平分∠CAB ,交BC 于点E ,过点C 作CF ⊥AE ,交AE 的延长线于点G ,交AB 的延长线于点F.(1)求证:BE =BF ;(2)如图2,连接BG ,BD ,求证:BG 平分∠DBF ;(3)如图3,连接DG 交AC 于点M ,求AE DM的值.解:(1)证明:在正方形ABCD 中,∠ABC =90°,AB =BC ,∴∠EAB +∠AEB =90°.∵AG ⊥CF ,∴∠BCF +∠CEG =90°.又∵∠AEB =∠CEG ,∴∠EAB =∠BCF.在△ABE 和△CBF 中,⎩⎪⎨⎪⎧∠EAB =∠BCF ,AB =CB ,∠ABE =∠CBF ,∴△ABE ≌△CBF (ASA ).∴BE =BF.(2)∵AE 平分∠CAB ,CF ⊥AE 于G ,∴∠CAG =∠FAG =22.5°,∠AGC =∠AGF.在△AGC 和△AGF 中,⎩⎪⎨⎪⎧∠CAG =∠FAG ,AG =AG ,∠AGC =∠AGF ,∴△AGC ≌△AGF (ASA ).∴CG =GF ,∠ACG =∠AFG.又∵∠CBF =90°,∴GB =GC =GF ,∠GBF =∠GFB =90°-∠GAF =90°-22.5°=67.5°.∴∠DBG =180°-67.5°-45°=67.5°,即∠GBF =∠DBG.∴BG平分∠DBF.(3)连接BG.∵∠DCG=90°+22.5°=112.5°,∠ABG=180°-67.5°=112.5°,∴∠DCG=∠ABG.又∵DC=AB,CG=BG,∴△DCG≌△ABG(SAS).∴∠CDG=∠GAB=22.5°.∴∠CDG=∠CAE.又∵∠DCM=∠ACE=45°,∴△DCM∽△ACE.∴AEDM=ACDC= 2.2.(2019·红河弥勒市二模)问题背景:折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:将正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B′E的位置,得到折痕MN,B′E与AB交于点P,则P即为AB的三等分点,即AP∶PB=2∶1.解决问题(1)在图1中,若EF与MN交于点Q,连接CQ.求证:四边形EQCM是菱形;(2)设正方形边长为1,求线段MC的长度;(3)利用线段MC的长度,证明P点是AB的三等分点(即证明AP∶PB=2∶1).发现感悟若改变E点在正方形纸片ABCD的边AD上的位置,重复“问题背景”中操作2的折纸过程,请你根据上面得到的结论,思考并解决如下问题:(不写过程,直接回答)(4)如图2.若DE∶AE=2∶1,则AP∶PB=4∶1;(5)如图3,若DE∶AE=3∶1,则AP∶PB=6∶1;解:(1)证明:由折叠可得,CM=EM,CQ=EQ,∠CMQ=∠EMQ,四边形CDEF是矩形,∴CD ∥EF.∴∠CMQ =∠EQM.∴∠EQM =∠EMQ.∴ME =EQ.∴CM =ME =EQ =CQ.∴四边形EQCM 是菱形.(2)设CM =x ,则EM =x ,DM =1-x ,在Rt △DEM 中,由勾股定理得EM 2=ED 2+DM 2,即x 2=(12)2+(1-x )2.解得x =58.∴MC =58. (3)设正方形边长为1,由(2)得CM =58,则DM =38. ∵∠PEM =∠D =90°,∴∠AEP +∠DEM =90°,∠DEM +∠EMD =90°.∴∠AEP =∠DME.又∵∠A =∠D =90°,∴△AEP ∽△DME.∴AP AE =DE DM ,即AP 12=1238.解得AP =23. ∴PB =13.∴AP ∶PB =2∶1.3.(2019·昆明西山区二模)如图1,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm ,如果点P 由B 出发沿PA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2 cm/s ,连接PQ ,设运动的时间为t (单位:s )(0≤t ≤4),解答下列问题:(1)当t 为何值时,PQ ∥BC?(2)设△APQ 面积为S (单位:cm 2),当t 为何值时,S 取得最大值?并求出最大值;(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由;(4)如图2,把△AQP 沿AP 翻折,得到四边形AQPQ ′,那么是否存在某时刻t ,使四边形AQPQ ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.解:∵AB =10 cm ,AC =8 cm ,BC =6 cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角.(1)BP =AQ =2t ,则AP =10-2t.∵PQ ∥BC ,∴AP AB =AQ AC ,即10-2t 10=2t 8,解得t =209. ∴当t =209s 时,PQ ∥BC.答图1(2)如答图1所示,过点P 作PD ⊥AC 于点D.∴PD ∥BC.∴AP AB =PD BC ,即10-2t 10=PD 6,解得PD =6-65t. S =12×AQ ·PD =12×2t ×(6-65t ) =-65t 2+6t =-65(t -52)2+152. ∴当t =52 s 时,S 取得最大值,最大值为152cm 2. (3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP =12S △ABC ,而S △ABC =12AC ·BC =24, ∴此时S △AQP =12.由(2)可知,S △AQP =-65t 2+6t , ∴-65t 2+6t =12,化简得t 2-5t +10=0. ∵Δ=(-5)2-4×1×10=-15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.答图2(4)方法1,假设存在时刻t ,使四边形AQPQ ′为菱形,则有AQ =PQ =BP =2t.如答图2所示,过P 点作PD ⊥AC 于点D ,则有PD ∥BC ,∴AP AB =PD BC =AD AC ,即10-2t 10=PD 6=AD 8. 解得PD =6-65t ,AD =8-85t.∴QD =AD -AQ =8-85t -2t =8-185t. 在Rt △PQD 中,由勾股定理得QD 2+PD 2=PQ 2,即(8-185t )2+(6-65t )2=(2t )2, 化简得13t 2-90t +125=0,解得t 1=5,t 2=2513. ∵t =5 s 时,AQ =10 cm>AC ,不符合题意,舍去,∴t =2513s. 由(2)可知,S AQP =-65t 2+6t , ∴S 菱形AQPQ ′=2S △AQP =2×(-65t 2+6t )=2×[-65×(2513)2+6×2513]=2 400169(cm 2). ∴当t =2513 s 时,四边形AQPQ ′为菱形,此时菱形的面积为2 400169cm 2. (或连接QQ ′交AB 于N ,利用相似三角形的性质,求出QN ,菱形的面积等于△AQN 面积的4倍)答图3方法2,如答图3.过点Q 作QH ⊥AB 于H ,∵四边形AQPQ ′是菱形,∴AQ =PQ =2t.∴AH =12AP =12(10-2t )=5-t. ∵∠AHQ =∠ACB =90°,∠HAQ =∠CAB ,∴△AHQ ∽△ACB.∴AH AC =AQ AB =QH BC. ∴5-t 8=2t 10=QH 6. ∴t =2513,QH =3013. ∴S 菱形AQPQ ′=2S △AQP =2×12(10-2×2513)×3013=2 400169(cm 2). ∴当t =2513 s 时,四边形AQPQ ′为菱形,此时菱形的面积为2 400169cm 2.。

专题六 几何图形综合问题

专题六 几何图形综合问题

类型一
类比、迁移与拓展类几何综合问题
(1)该类问题常常是先根据特殊的条件结合图形猜想出结论,然后在一般条件下论证结论,最后运用
结论解决问题;或者是在特殊条件下得出结论,改变条件的特殊性(如点的位置发生改变,图形的形状
发生改变等)判断结论是否仍然成立.
(2)解答该类问题注意类比,几问之间层层递进,但是原理相同,图形结构类似或方法类似,或在此基
∵四边形ABCD和四边形AEGF是正方形,∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,
∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,
∴△EAD≌△AFH(SAS),∴DE=AH.
又∵AM=MH,∴DE=AM+MH=2AM.
∵△EAD≌△AFH,∴∠ADE=∠FHA.
边形ABCD中这对互余的角可类比(1)中思路进行拼合,先作∠CDF=
∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量
关系是
.
(1)解:∠DCA′
(2)解:AD2+DE2=AE2


方法运用
(3)如图③所示,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平
∵△AMB≌△HMF,∴∠FHA=∠BAM,∴∠ADE=∠BAM.
又∵∠BAM+∠DAM=∠DAB=90°,∴∠ADE+∠DAM=90°,
∴∠AND=180°-(∠ADE+∠DAM)=90°,即DE⊥AM.
故DE=2AM,DE⊥AM.
类型三 几何多结论判断问题
几何多结论判断问题考查的知识点较多,主要以圆和四边形为核心,解决问题的主要手段是利用三

中考冲刺几何综合问题—知识讲解及典型例题解析

中考冲刺几何综合问题—知识讲解及典型例题解析

;;中考冲刺:几何综合问题—知识讲解及典型例题解析【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要 考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选 择题、填空题、几何推理计算题以及代数与几何的综合计算题 ,还有更注重考查学生分析问题和解决问 题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多, 题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有 实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能 力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等)2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等)3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图 1,在正方形 ABCD 中,点 E 、F 分别是边 BC 、AB 上的点,且 CE=BF ,连接 DE ,过点 E 作 EG ⊥DE,使 EG=DE ,连接 FG ,FC .(1)请判断:FG 与 CE 的数量关系和位置关系;(不要求证明)(2)如图 2,若点 E 、F 分别是 CB 、BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出 判断判断予以证明;(3)如图 3,若点 E 、F 分别是 BC 、AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直 接写出你的判断.【思路点拨】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(3)结论仍然成立.如图3中,设DE与FC的延长线交于点M,证明方法类似.【答案与解析】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(3)结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.【总结升华】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,注意这类题目的解题规律,图形变了,条件不变,证明的方法思路完全一样,属于中考常考题型.举一反三:【变式】已知:如图(1),射线AM//射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE⊥EC,且AD+DE=AB=a.(1)求证:∆ADE∽∆BEC;(2)如图(2),当点E为AB边的中点时,求证:AD+BC=CD;(3)设AE=m,请探究:∆BEC的周长是否与m值有关?若有关,请用含有m的代数式表示∴1∆BEC的周长;若无关,请说明理由.【答案】(1)证明:∵DE⊥EC,∴∠DEC=90︒.∴∠AED+∠BEC=90︒.又∵∠A=∠B=90︒,∴∠AED+∠EDA=90︒.∴∠BEC=∠EDA.∴∆ADE∽∆BEC.(2)证明:如图,过点E作EF//BC,交CD于点F,∵E是AB的中点,容易证明EF=1(AD+BC).2在Rt∆DEC中,∵DF=CF,∴EF=12 CD.1(A D+BC)=CD.22∴AD+BC=CD.(3)解:∆AED的周长=AE+AD+DE=a+m,BE=a-m.设AD=x,则DE=a-x.∵∠A=90︒,∴DE2=AE2+AD2.即a2-2ax+x2=m2+x2.a2-m2∴x=.2a由(1)知∆ADE∽∆BEC,∆ADE的周长AD a+m2a=∴a2-m2==∆BEC的周长BE a-m2a.∴∆BEC的周长=2a⋅∆ADE的周长=2a.a+m∴∆BEC的周长与m值无关.2.在△ABC中,∠ACB=45º.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=42,BC=3,CD=x,求线段CP的长.(用含x的式子表示)【思路点拨】(1)由题干可以发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解.(2)是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,和上题一样找AC的垂线,就可以变成第一问的条件,然后一样求解.(3)D在BC之间运动和它在BC延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X还是4-X.分类讨论之后利用相似三角形的比例关系即可求出CP.【答案与解析】(1)结论:CF⊥BD;证明如下:ΘAB=AC,∠ACB=45º,∴∠ABC=45º.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90º,∴∠DAB=∠FAC,∴△DAB≌△FAC,∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90º.即CF⊥BD.(2)CF⊥BD.(1)中结论仍成立.理由是:过点A作AG⊥AC交BC于点G,∴AC=AG可证:GAD≌CAF∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF=90º.即CF⊥BD(3)过点A作AQ⊥BC交CB的延长线于点Q,易证△AQD∽△DCP,∴ CP = CD ,∴ = , ∴CP = - + x . ∴ CP = CD , ∴ = , ∴CP = + x . ①点 D 在线段 BC 上运动时,∵∠BCA=45º,可求出 AQ= CQ=4.∴DQ=4-x ,CP x DQ AQ4 - x 4 x 2 4②点 D 在线段 BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x.过 A 作 AQ⊥BC,∴∠Q=∠FQC=90°,∠ADQ=∠AFC,则△AQD∽△ACF.∴CF⊥BD,∴△AQD∽△DCP,CP x DQ AQ4+x 4x 2 4【总结升华】此题综合性强,需要综合运用全等、相似、正方形等知识点,属能力拔高性的题目.3.如图,正方形ABCD 的边长为 6,点 E 是射线 BC 上的一个动点,连接 AE 并延长,交射线 DC 于点 F △,将 ABE 沿直线 AE 翻折,点 B 坐在点 B ′处.自主探究:(1)当=1 时,如图 1,延长 AB ′,交 CD 于点 M .①CF 的长为; ②判断 AM 与 FM 的数量关系,并证明你的结论.(2)当点 B ′恰好落在对角线 AC 上时,如图 2,此时 CF 的长为, 拓展运用:(3)当=2 时,求 sin ∠DAB ′的值.= .(【思路点拨】1)①利用相似三角形的判定与性质得出FC=AB即可得出答案;②利用翻折变换的性质得出∠BAF=∠MAF,进而得出AM=FM;(2)根据翻折变换的性质得出∠BAE=∠MAF,进而得出AM=MF,利用△ABE∽FCE得出答案即可;(3)根据①如图1,当点E在线段BC上时,延长AB′交DC边于点M,②如图3,当点E在线段BC 的延长线上时,延长AD交B′E于点N,分别利用勾股定理求出即可.【答案与解析】解:(1)①当=1时,∵AB∥FC,∴△ABE∽FCE,∴==1,∴FC=AB=6,②AM=FM,理由如下:∵四边形ABCD是正方形,∴AB∥DC,∴∠BAF=∠AFC,∵△ABE沿直线AE翻折得到△AB′E,∴∠BAF=∠MAF,∴∠MAF=∠AFC,∴AM=FM;(2)如图2,∵当点B′恰好落在对角线AC上时,∴∠1=∠2,∵AB∥FC,∴∠1=∠F,∴∠2=∠F,∴AC=FC,∵AB=BC=6,∴AC=FC=6,∵AB∥FC,∴△ABE∽FCE,∴===,(3)①如图1,当点E在线段BC上时,延长AB′交DC边于点M,∵AB∥CF,∴△ABE∽△FCE,∴==2,∵AB=6,∴CF=3,∴DF=CD+CF=9,由(1)知:AM=FM,∴AM=FM=9﹣DM,在△Rt ADM中,由勾股定理得:DM′2=(9﹣DM)2﹣62,解得:DM=,则MA=,∴sin∠DAB′==,②如图3,当点E在线段BC的延长线上时,延长AD交B′E于点N,由(1)知:AN=EN,又BE=B′E=12,点∴NA=NE=12﹣B′N,在△Rt AB′N中,由勾股定理得:B′N2=(12﹣B′N)2﹣62,解得:B′N=,AN=,∴sin∠DAB′=故答案为:6;6=.,.【总结升华】此题主要考查了翻折变换的性质以及相似三角形的判定与性质和勾股定理等知识,熟练利用相关性质和进行分类讨论得出是解题关键.类型二、几何计算型问题4.已知如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60︒保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中,当y取最小值时,判断△PQC的形状,并说明理由.【思路点拨】(1)属于纯静态问题,只要证两边的三角形全等就可以了.(2)是双动点问题,所以就需要研究在P,Q运动过程中什么东西是不变的.题目给定∠MPQ=60°,其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以很自然想到要通过相似三角形找比例关系.(3)条件又回归了当动点静止时的问题,由第二问所得的二次函数,很轻易就可以求出当x取对称轴的值时y有最小值,接下来就变成了“给定PC=2,求△PQC形状”的问题了,由已知的BC=4,自然看出P 是中点,于是问题轻松求解.【答案与解析】(1)证明:∵△MBC是等边三角形∴MB=MC,∠MBC=∠MCB=60︒∵M是AD中点∴AM=MD∵AD∥BC∴∠AMB=∠MBC=60︒,∠DMC=∠MCB=60︒∴△AMB≌△DMC∴AB=DC∴梯形ABCD是等腰梯形.∴ PC ∴ x 而(2)解:在等边 △MBC 中, MB = MC = BC = 4,∠MBC = ∠MCB = 60︒,∠MPQ = 60︒∴∠BMP + ∠BPM = ∠BPM + ∠QPC = 120︒∴∠BMP = ∠QPC∴ △BMP ∽△CQPCQ = BM BP∵ PC = x ,MQ = y ∴ BP = 4 - x ,QC = 4 - y4 - y 1 = ∴ y = x 2 - x + 4 4 4 - x4(3)解: △PQC 为直角三角形,∵ y = 1(x - 2)2 + 34 ∴当 y 取最小值时, x = PC = 2∴ P 是 BC 的中点, MP ⊥ BC , ∠MPQ = 60︒,∴∠CPQ = 30︒,∴∠PQC = 90︒∴ △PQC 为直角三角形.【总结升华】以上题目是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相 等,某角固定时,将动态问题化为静态问题去求解 .如果没有特殊条件,那么就需要研究在动点移动中 哪些条件是保持不变的.举一反三:【变式】已知:如图,N 、M 是以 O 为圆心,1 为半径的圆上的两点,B 是 MN 上一动点(B 不与点 M 、N 重合),∠MON=90°,BA⊥OM 于点 A ,BC⊥ON 于点 C ,点 D 、E 、F 、G 分别是线段 OA 、AB 、BC 、CO的中点,GF 与 CE 相交于点 P ,DE 与 AG 相交于点 Q .(1)四边形 EPGQ(填“是”或者“不是”)平行四边形;(2)若四边形 EPGQ 是矩形,求 OA 的值.【答案】(1)是.证明:连接OB,如图①,∵BA⊥OM,BC⊥ON,∴∠BAO=∠BCO=90°,∵∠AOC=90°,∴四边形OABC是矩形.∴AB∥OC,AB=OC,∵E、G分别是AB、CO的中点,∴AE∥GC,AE=GC,∴四边形AECG为平行四边形.∴CE∥AG,∵点D、E、F、G分别是线段OA、AB、BC、CO的中点,∴GF∥OB,DE∥OB,∴PG∥EQ,∴四边形EPGQ是平行四边形;(2)解:如图②,∴ AD ,AE=1,在①的条件下,设 CP 1= x ,S VP FC = y ,求 y 与 x 之间的函数关系式, 3 ∵口 EPGQ 是矩形.∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,AE= , BEBC x y y : = : x 设 OA=x ,AB=y ,则 2 2 2得 y 2=2x 2,又∵OA 2+AB 2=OB 2, 即 x 2+y 2=12.∴x 2+2x 2=1,解得:x=3 . 3即当四边形 EPGQ 是矩形时,OA 的长度为3 3 .5.在 Y ABCD 中,过点 C 作 CE⊥CD 交 AD 于点 E,将线段 EC 绕点 E 逆时针旋转 90o 得到线段 EF(如图 1)(1)在图 1 中画图探究:①当 P 为射线 CD 上任意一点(P 1 不与 C 重合)时,连结EP 1 绕点 E 逆时针旋转 90o 得到线段 EC 1.判断直线 FC 1 与直线 CD 的位置关系,并加以证明; ②当 P 2 为线段 DC 的延长线上任意一点时,连结 EP 2,将线段 EP 2 绕点 E 逆时针旋转 90o 得到线段 EC 2.判断直线 C 1C 2 与直线 CD 的位置关系,画出图形并直接写出你的结论.4 (2)若 AD=6,tanB=1 1 并写出自变量 x 的取值范围.图1 备用图【思路点拨】(1)本题在于如何把握这个旋转 90°的条件.旋转 90°自然就是垂直关系,于是出现了一 系列直角三角形,于是证角、证线就手到擒来了.(2)是利用平行关系建立函数式,但是不要忘记分类讨论.【答案与解析】(1)①直线 FG 与直线 CD 的位置关系为互相垂直. 112,- - . , , 证明:如图 1,设直线 FG 与直线 CD 的交点为 H .1 G 1AE F G 2 P H 1 DBCP 2图 1∵线段 EC 、EP 分别绕点 E 逆时针旋转 90°依次得到线段 EF 、EG , 1 1∴ ∠PEG = ∠CEF = 90° EG = EP ,EF = EC . 1 1 1 1∵ ∠G EF = 90° ∠PEF , ∠PEC = 90° ∠PEF ,1 1 1 1∴ ∠G EF = ∠PEC .1 1∴ △G EF ≌△PEC .1 1∴ ∠G FE = ∠PCE .1 1∵ EC ⊥ C D ,∴ ∠PCE = 90°, 1∴ ∠G FE = 90° 1∴ ∠EFH = 90°.∴ ∠FHC = 90°.∴ FG ⊥ CD . 1②按题目要求所画图形见图 1,直线 G G 与直线 CD 的位置关系为互相垂直.1 2(2)∵四边形 ABCD 是平行四边形,∴ ∠B = ∠ADC .∵ AD = 6,AE = 1 tan B = 4 3 , ∴ DE = 5 tan ∠EBC = tan B = 4 3. 可得 CE = 4 .由(1)可得四边形 EFCH 为正方形.∴ CH = CE = 4 .P 1 2 2 2 2 1 ①如图 2,当 P 点在线段 CH 的延长线上时,1 G 1A EFD H BC 图 2∵ FG = CP = x ,PH = x - 4 ,1 1 1 ∴ S△P FG 1 1 1 x( x - 4) = ⨯ FG ⨯ PH = 1 1 . ∴ y = 1 2x 2 - 2 x ( x > 4) . ②如图 3,当 P 点在线段 CH 上(不与 C 、H 两点重合)时, 1G 1 FB A ECD P 1 H图 3∵ FG = CP = x ,PH = x - 4 ,1 1 1 ∴ S △P FG 1 = 1 x(4 - x) FG ⨯ PH = 1 1 . 1 ∴ y = - x2 + 2 x (0 < x < 4) . 2③当 P 点与 H 点重合时,即 x = 4 时, △PFG 不存在. 1 1 1综上所述, y 与 x 之间的函数关系式及自变量 x 的取值范围是 y =1 2 x 2 - 2 x ( x > 4) 或 1 y = - x 2 + 2 x (0 < x < 4) . 2【总结升华】本题着重考查了二次函数的解析式、图形的旋转变换、三角形全等、探究垂直的构成情况 等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法.举一反三: 【变式】已知,点 P 是∠MON 的平分线上的一动点,射线 PA 交射线 OM 于点 A ,将射线 PA 绕点 P 逆时针 旋转交射线 ON 于点 B ,且使∠APB+∠MON=180°.(1)利用图 1,求证:PA=PB ;(2)如图2,若点C是AB与OP的交点,当△SPOB=3S△PCB时,求PB与PC的比值;(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.【答案】(1)作PE⊥OM,PF⊥ON,垂足为E、F∵四边形OEPF中,∠OEP=∠OFP=90°,∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB,即∠EPA+∠APF=∠APF+∠FPB,∴∠EPA=∠FPB,由角平分线的性质,得PE=PF,∴△EPA≌△FPB,即PA=PB;(2)∵S△POB=3S△PCB,∴PO=3PC,由(1)可知△PAB为等腰三角形,则∠PBC=又∵∠BPC=∠OPB(公共角),∴△PBC∽△POB,11(180°-∠APB)=∠MON=∠BOP,22∴PB PC=PO PB,即PB2=PO•PC=3PC2,∴PB=3PC(3)作BH⊥OT,垂足为H,当∠MON=60°时,∠APB=120°,由PA=PB,得∠PBA=∠PAB=12(180°-∠APB)=30°,又∵∠PBD=∠ABO,∠PBD+∠PBA+∠ABO=180°,∴∠ABO=12(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°,在△OBP中,∵∠BOP=30°,∴∠BPO=45°,在Rt△OBH中,BH=1OB=1,OH=3,2在Rt△PBH中,PH=BH=1,∴OP=OH+PH=3+1.。

几何综合题

几何综合题

图1
D HF
E
C
图2
G
• 证明:(1)法①: 相似
• △BFE∽△CGE∽△ BHC, 设BE=nFC
H
O G
• ∴BE=BC,CE=BC ,
F
• ∴==, ==,
B
C
E
• ∴EF+EG=HC
+HC=HC
• 法②: 相似 • =,∴EF= • =,∴EG= • ∴EF+EG=CH=CH
H
O G
F
y-2 3
E
01
Bx
y
C
过点C作CDx轴于点D,将ΔBCD绕点C顺时针旋转60°,得 到ΔACD',延长D'A,交x轴于点E.则D'DE=AOE=30°,所以
所以OA//DD',EA=EO.
23
23
所以 =
,所以y= 3x+2.
y 23
x+
D'
3
A E0
1D
Bx
• 例题4: (1)如图1,已知矩形ABCD中, 点E是BC上的一动点,过点E作EF⊥BD于 点F,EG⊥AC于点G,CH⊥BD于点H,
B
C
E
• 法③:三角函

H
• =HC== • ∴EF+EG=aH
O G
F
C+(1-
a)HC=HC
B E
C
• 法④: 面积
• =,
H
• ∴=+ • ∵OD=OB=OC,
O G
F
• ∴CH=EF+EG
B
C
E
法⑤:延短 ∵∠B=∠1,∠BEF=∠CGE ∴∠2=∠3,∵∠3=∠4,∴∠2=∠4 在△EGC与△EPC中,

一次函数与几何综合(题型齐全)

一次函数与几何综合(题型齐全)

一次函数与几何图形综合考点一、面积问题一次函数求面积的常用方法:(1)直接法(公式法)适用于规则图形,三角形中至少有一边与坐标轴重合或平行时,常用直接法求面积;(2)割补法(分割求和、补形作差)适用于不规则四边形,将四边形分割成两个三角形,分别计算两个三角形的面积再求和。

或者将四边形放在一个规则图形中(需要时做辅助线),此时四边形的面积可以看作一个规则图形面积减去补充的规则图形面积;(3)铅锤法(底相同,高运算)适用于三边均不与坐标轴平行的三角形(不规则三角形);(4)平行线面积转化适用于存在平行线的情况下,利用平行线的性质,平行线间的距离处处相等做高;题型一:直接求图形面积1、正比例函数()110y k x k =≠与一次函数()220y k x b k =+≠的图象的交点坐标为()43A ,,一次函数的图象与y 轴的交点坐标为()03B -,.(1)求正比例函数和一次函数的解析式;(2)求AOB 的面积.2、如图,一次函数5y x =-+和1y kx =-的图象与x 轴分别交于A 、C 两点,与y 轴分别交于B 、D 两点,两个函数图象的交点为点E ,且E 点的横坐标为2.(1)求k 的值;(2)不解方程组,请直接写出方程组51x y kx y +=⎧⎨-=⎩的解;(3)求两函数图象与x 轴所围成的ACE △的面积.3、如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求ABC 的面积.4、如图,在平面直角坐标系中,直线132x m l y =+:与直线2l 交于点()23A -,,直线2l 与x 轴交于点()40C ,,与y 轴交于点B ,将直线l 2向下平移8个单位长度得到直线3l ,3l 与y 轴交于点D ,与1l 交于点E ,连接AD .(1)求直线2l 的解析式;(2)求△ADE V 的面积;5、如图,直线l 1:y =x +m 与y 轴交于点B ,与x 轴相交于点F .直线l 2:y =kx ﹣9与x 轴交于点A ,与y 轴交于点C ,两条直线相交于点D ,连接AB ,且OA :OC :AB =1:3:.(1)求直线l 1、l 2的解析式;(2)过点C 作l 3∥l 1交x 轴于点E ,连接BE 、DE .求△BDE 的面积.5、如图,一次函数()0y kx b k =+≠的图象与正比例函数2y x =-的图象交于点A ,与x 轴交于点C ,与y 轴交于点B ,5OB =,点A 的纵坐标为4.(1)求一次函数的解析式;(2)点D 和点B 关于x 轴对称,将直线2y x =-沿y 轴向上平移8个单位后分别交x 轴,y 轴于点,M N ,与直线()0y kx b k =+≠交于点E ,连接DE ,DC ,求ECD 的面积.题型二:已知面积求点的坐标1、如图,一次函数y kx b =+与反比例函数a y x=的图象在第一象限交于点()4,3A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求一次函数y kx b =+与反比例函数a y x =的表达式;(2)已知点C 在x 轴上,且ABC 的面积是8,求此时点C 的坐标;2、如图,在平面直角坐标系中直线13:2l x m +与直线2l 交于点()2,3A -,直线2l 与x 轴交于点()4,0C ,与y 轴交于点B ,过BD 中点E 作直线3l y ⊥轴.(1)求直线2l 的解析式和m 的值;(2)点P 在直线1l 上,当6PBC S = 时,求点P 坐标;。

二次函数与几何综合压轴题题型归纳

二次函数与几何综合压轴题题型归纳

一 基础构图:之杨若古兰创作y=322--x x (以下几种分类的函数解析式就是这个)★和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标在对称轴上找一点P ,使得PB-PC的差最大,求出P 点坐标★求面积最大 连接AC,在第四象限找一点P ,使得ACP ∆面积最大,求出P 坐标★ 讨论直角三角 连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形, 求出P 坐标或者在抛物线上求点P ,使△ACP 是以AC为直角边的直角三角形.★ 讨论等腰三角 连接AC,在对称轴上找一点P ,使得ACP ∆为等腰三角形, 求出P 坐标★ 讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E 四点为顶点的四边形为平行四边形,求点F 的坐标二 综合题型 例 1 (中考变式)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(-3,0)两点,顶点为D.交Y 轴于C(1)求该抛物线的解析式与△ABC 的面积.(2)在抛物线第二象限图象上是否存在一点M ,使△MBC 是以∠BCM 为直角的直角三角形,若存在,求出点P 的坐标.若没有,请说明理由(3)若E 为抛物线B 、C 两点间图象上的一个动点(不与A 、B 重合),过E 作EF 与X 轴垂直,交BC 于F ,设E 点横坐标为x.EF 的长度为L ,求L 关于X 的函数关系式?关写出X 的取值范围?当E 点活动到什么地位时,线段EF 的值最大,并求此时E 点的坐标?(4)在(5)的情况下直线BC 与抛物线的对称轴交于点H.当E 点活动到什么地位时,以点E 、F 、H 、D 为顶点的四边形为平行四边形?(5)在(5)的情况下点E 活动到什么地位时,使三角形BCE 的面积最大?例2 考点: 关于面积最值 如图,在平面直角坐标系中,点A 、C 的坐标分别为(-1,0)、(0,3-),点B 在x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线x =1,点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F . (1)求该二次函数的解析式; (2)若设点P 的横坐标为m ,试用含m 的代数式暗示线段PF 的长; (3)求△PBC 面积的最大值,并求此时点P 的坐标. 例3 考点:讨论等腰 如图,已知抛物线y =21x 2+bx +c 与y 轴订交于C ,与x 轴订交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;y xB A F P x =1C O(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.例4考点:讨论直角三角 ⑴ 如图,已知点A (一1,0)和点B (1,2),在座标轴上确定点P ,使得△ABP 为直角三角形,则满足如许条件的点P 共有( ). (A )2个 (B )4个 (C ) 6个(D )7个⑵已知:如图一次函数y =21x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =21x 2+bx +c 的图象与一次函数y =21x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.例5 考点:讨论四边形已知:如图所示,关于x 的抛物线y =ax 2+x +c (a ≠0)与x 轴交于点A (-2,0),点B (6,0),与y 轴交于点C .(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式;(3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.D B C OA yx EB CO A 备用图 y x O A B y C x D E 2综合练习:xOy 中,抛物线2y ax =-A 、点B ,与y 轴的正半轴交于点C ,点A OC ,抛物线的顶点为D .(1) 求此抛物线的解析式;(2) 若此抛物线的对称轴上的点P 满足∠APB =∠ACB ,求点P 的坐标;(3)Q 为线段BD 上一点,点A 关于∠AQB 的平分线的对称点为2=-QB QA ,求点Q 的坐标和此时△QAA '的面积. xOy 中,已知二次函数2+2y ax ax c =+的图像与y ()3 0,C ,与x 轴交于A 、B 两点,点B 的坐标为()0 3,-.(1) 求二次函数的解析式及顶点D 的坐标;(2) 点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1 :2的两部分,求出此时点M的坐标;(3) 点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.xOy 中,抛物线x x my 222-=与x 轴负半轴交于点A ,顶点为B ,且对称轴与x 轴交于点C .(1)求点B 的坐标(用含m 的代数式暗示);(2)D 为OB 中点,直线AD 交y 轴于E ,若E (0,2),求抛物线的解析式;(3)在(2)的条件下,点M 在直线OB 上,且使得AMC ∆的周长最小,P 在抛物线上,Q 在直线BC 上,若觉得Q P M A 、、、顶点的四边形是平行四边形,求点P 的坐标.4、已知关于x的方程2-+-+=.(1)(4)30m x m x(1)若方程有两个不相等的实数根,求m的取值范围;(2)若正整数m满足822->,设二次函数2m=-+-+(1)(4)3y m x m x 的图象与x轴交于A B、两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分坚持不变,得到一个新的图象;请你结合这个新的图象回答:当直线3=+与此y kx 图象恰好有三个公共点时,求出k的值(只须请求出两个满足题意的k值即可).5如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.三、中考二次函数代数型综合题题型一、抛物线与x轴的两个交点分别位于某定点的两侧例1.已知二次函数y=x2+(m-1)x+m-2的图象与x轴订交于A(x,0),B(x2,0)两点,且x1<x2.1(1)若x1x2<0,且m为正整数,求该二次函数的表达式;(2)若x1<1,x2>1,求m的取值范围;(3)是否存在实数m ,使得过A 、B 两点的圆与y 轴相切于点C (0,2),若存在,求出m 的值;若不存在,请说明理由;(4)若过点D (0,12)的直线与(1)中的二次函数图象订交于M 、N 两点,且MD DN =13,求该直线的表达式. 题型二、抛物线与x 轴两交点之间的距离成绩例2 已知二次函数y= x 2+mx+m-5,(1)求证:不管m 取何值时,抛物线总与x 轴有两个交点;(2)求当m 取何值时,抛物线与x 轴两交点之间的距离最短. 题型三、抛物线方程的整数解成绩例1. 已知抛物线222(1)0y x m x m =-++=与x 轴的两个交点的横坐标均为整数,且m <5,则整数m 的值为_____________ 例2.已知二次函数y =x 2-2mx +4m -8.(1)当x ≤2时,函数值y 随x 的增大而减小,求m 的取值范围;(2)以抛物线y =x 2-2mx +4m -8的顶点A 为一个顶点作该抛物线的内接正AMN ∆(M ,N的面积是与m 请说明理由;(3)若抛物线y =x 2-2mx +4m -8与x 数,求整数..m 的值. 题型四、抛物线与对称,包含:点与点关于原点对称、抛物线的对称性、数形结合例1.已知抛物线2y x bx c =++(其中b >0,c ≠0)与y 轴的交点为A ,点A 关于抛物线对称轴的对称点为B (m ,n ),且AB =2.(1)求m ,b 的值(2)如果抛物线的顶点位于x 轴的下方,且BO 求抛物线所对应的函数关系式(友谊提醒:请画图思考)题型五、抛物线中韦达定理的广泛利用(线段长、定点两侧、点点关于原点对称、等等)例1.已知:二次函数2y 4x x m =-+的图象与x 轴交于分歧的两点A (1x ,0)、B (2x ,0)(1x <2x ),其顶点是点C ,对称轴与x 轴的交于点D .(1)求实数m 的取值范围;(2)如果(1x +1)(2x +1)=8,求二次函数的解析式;(3)把(2)中所得的二次函数的图象沿y 轴上下平移,如果平移后的函数图象与x 轴交于点1A 、1B ,顶点为点C1,且△111A B C 是等边三角形,求平移后所得图象的函数解析式.综合提升1.已知二次函数的图象与x 轴交于A ,B 两点,与y 轴交于点C (0,4),且|AB |=23,图象的对称轴为x =1.(1)求二次函数的表达式;(2)若二次函数的图象都在直线y =x +m 的下方,求m 的取值范围.2.已知二次函数y =-x 2+mx -m +2.(1)若该二次函数图象与x 轴的两个交点A 、B 分别在原点的两侧,而且AB=5,求m的值;(2)设该二次函数图象与y轴的交点为C,二次函数图象上存在关于原点对称的两点M、N,且S△MNC =27,求m的值.3. 已知关于x的一元二次方程x2-2(k+1)x+k2=0有两个整数根,k<5且k为整数.(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y =x2-2(k+1)x+k2的图象沿x轴向左平移4个单位,求平移后的二次函数图象的解析式;(3)根据直线y=x+b与(2)中的两个函数图象交点的总个数,求b的取值范围.4.已知二次函数的图象经过点A(1,0)和点B(2,1),且与y轴交点的纵坐标为m.(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围;(3)若二次函数的图象截直线y=-x+1所得线段的长为22,求m的值.四、中考二次函数定值成绩1. (2012江东北昌8分)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A.B两点(点A在点B右边),与y轴交于点C.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研讨二次函数L2:y=kx2﹣4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条不异的性质;②若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变更?如果不会,请求出EF 的长度;如果会,请说明理由.2. (2012山东潍坊11分)如图,已知抛物线与坐标轴分别交于A(-2,O)、B(2,0)、C(0,-l)三点,过坐标原点O 的直线y=kx 与抛物线交于M 、N 两点.分别过点C 、D(0,-2)作平行于x 轴的直线1l 、2l .(1)求抛物线对应二次函数的解析式;(2)求证以ON 为直径的圆与直线1l 相切;(3)求线段MN 的长(用k 暗示),并证实M 、N 两点到直线2l 的距离之和等于线段MN 的长.3. (2012浙江义乌12分)如图1,已知直线y=kx 与抛物线2422y=x +x 273 交于点A (3,6).(1)求直线y=kx 的解析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点P 作直线PM ,交x 轴于点M (点M 、O 不重合),交直线OA 于点Q ,再过点Q 作直线PM 的垂线,交y 轴于点N .试探究:线段QM 与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B 为抛物线上对称轴右边的点,点E 在线段OA 上(与点O 、A 不重合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m 在什么范围时,符合条件的E 点的个数分别是1个、2个?4.(2011•株洲)孔明是一个爱好探究研究的同学,他在和同学们一路研讨某条抛物线y =ax 2(a <0)的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下成绩:(1)若测得OA=OB=22(如图1),求a的值;(2)对同一条抛物线,孔明将三角板绕点O扭转到如图2所示地位时,过B作BF⊥x轴于点F,测得OF=1,写出此时点B的坐标,并求点A的横坐标;...(3)对该抛物线,孔明将三角板绕点O扭转任意角度时惊奇地发现,交点A、B的连线段总经过一个固定的点,试说明理由并求出该点的坐标.。

重难点04几何综合题(22年上海二模25题)-【寒假预习】2022-2023学年九年级数学核心考点+

重难点04几何综合题(22年上海二模25题)-【寒假预习】2022-2023学年九年级数学核心考点+

重难点04几何综合题(22年上海二模25题)几何题是中考数学中必考题目之一,主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。

这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。

【满分技巧】一、常考题型几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.二、基本图形及辅助线解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。

在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。

1、与相似及圆有关的基本图形2、正方形中的基本图形3、基本辅助线(1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;(2)与中点相关——倍长中线(八字全等),中位线,直角三角形斜边中线;(3)共端点的等线段——旋转基本图形(60°,90°),构造圆;垂直平分线,角平分线——翻折;转移线段——平移基本图形(线段)线段间有特殊关系时,翻折;(4)特殊图形的辅助线及其迁移——梯形的辅助线等作双高——上底、下底、高、腰(等腰梯形)三推一;面积;锐角三角函数平移腰——上下底之差;两底角有特殊关系(延长两腰);梯形——三角形平移对角线——上下底之和;对角线有特殊位置、数量关系。

初三代几综合题

初三代几综合题

初三数学——代数与几何综合题【解题策略】1.认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;再将以上得到的显性条件进行恰当地组合,进一步得到新的结论.2.分析结构理清关系——注意题目的逻辑结构,搞清楚它的各个小题之间的关系是“平行”的,还是“递进”的.这一点非常重要.3.从代数几何两方面入手,多角度、多线索地深入分析,架起连接代数与几何的桥梁关键点.灵活运用数学思想方法,如数形结合思想、数学建模思想、分类讨论思想、转化的思想、函数与方程思想等.【题型特点】一、用函数的观点看方程(组)和不等式(组)1.若关于x 的一元二次方程2250ax x +-=的两根中有且仅有一根在0与1之间(不含0和1),则a 的取值范围是( ).A .3a <B .3a >C .3a <-D .3a >-2.直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx -2的解集是______________.二、图形运动中的函数关系这通常是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化(或不变化),求对应的未知函数(即在求出解析式前不确定函数的类型)的解析式和自变量的取值范围.求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系.找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似等.求自变量的取值范围主要是寻找图形的特殊位置(极限位置)和根据解析式求解.1.(2010桂林)如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个动点,AE ⊥EF ,EF 交DC 于F ,设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是( ).A .B .C .D .ADBFMNABCD2.如图,已知△ABC 中,BC =8,BC 边上的高h=4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为().A .B .C .D .3.如图,在直角梯形ABCD 中,DC AB ∥,90A ∠=︒,28AB =cm ,24DC =cm ,4AD =cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动.当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ANMD 的面积2(cm )y 与两动点运动的时间(s)t 的函数图象大致是().A .B .C .D .4.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度大小不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( ).5.(2010成都)如图,在ABC △中,90B ∠=︒,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm /s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过_____________秒,四边形APQC 的面积最小.6.已知:如图(a),梯形ABCD中,AB∥CD,∠C=90°,AB=BC=4,CD=6.(1)E为BC边上一点,EF∥AD,交CD边于点F,FG∥EA,交AD边于点G,若四边形AEFG为矩形,求BE的长;(2)如图(b),将(1)中的∠AEF绕E点逆时针旋转为∠A′EF′,EF′交CD 边于F′点,且F′点与D点不重合,射线EA′交AB边于点M,作F′N∥EA′交AD边于点N,设BM为x,△NF′D中,F′D边上的高为y,求y关于x的函数解析式及自变量x的取值范围.图(a)图(b)7.如图,在Rt ABC∆中,90A∠=︒,6AB=,8AC=,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向运动,过点P作PQ BC⊥于Q,过点Q作QR BA∥交AC于R,当点Q与点C重合时,点P停止运动.设BQ x=,QR y=.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)若点P使PQR∆为等腰三角形.请直接写出所有满足要求的x的值.AB CD ERPH Q三、坐标几何问题这通常是先给定直角坐标系和几何图形,求已知函数(即在求出解析式前就已知函数的类型)的解析式,然后进行图形的研究,求点的坐标或研究图形的某些性质.然后根据所求的函数关系进行探索研究,探索研究的一般类型有:①在什么条件下三角形是等腰三角形、直角三角形;②四边形是菱形、梯形等;③探索两个三角形满足什么条件相似;④探究线段之间的位置关系等;⑤探索面积之间满足一定关系求x 的值等;⑥直线(圆)与圆的相切时求自变量的值等.求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法).1.(2009十堰)已知函数1y x =-+的图象与x 轴、y 轴分别交于点C 、B ,与双曲线xky =交于点A 、D ,若AB+CD= BC ,则k 的值为 .2.(2010义乌)(1)将抛物线y 1=2x 2向右平移2个单位,得到抛物线y 2的图象,则y 2= ;(2)如图,P 是抛物线y 2对称轴上的一个动点,直线x =t 平行于y 轴,分别与直线y =x 、抛物线y 2交于点A 、B .若△ABP 是以点A 或点B 为直角顶点的等腰直角三角形,求满足条件的t 的值,则t = .3.如图,在等腰梯形ABCD 中,AD BC ∥,5AB DC ==,6AD =,12BC =.动点P 从D 点出发沿DC 以每秒1个单位的速度向终点C 运动,动点Q 从C 点出发沿CB 以每秒2个单位的速度向B 点运动.两点同时出发,当P 点到达C点时,Q 点随之停止运动.(1)梯形ABCD 的面积等于 ;(2)当PQ AB ∥时,P 点离开D 点的时间等于 秒;(3)当P Q C ,,三点构成直角三角形时,P 点离开D 点的时间是 秒.Cxx4.(2009武汉)如图,抛物线y=ax2+bx-4a经过A(-1,0),C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点E的坐标;(3)在(2)的条件下,连接BD,若点P为抛物线上一点,且∠DBP=45°,求点P的坐标.与x轴只有一个公共点.(1)求这个函数关系式;2+x+1图象的(2)如图所示,设二次..函数y=ax顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.6.(2008常州)如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB ,把AB 所的直线沿y 轴向上平移,使它经过原点O ,得到直线l ,设P 是直线l 上一动点.(1)求点A 的坐标;(2)以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3)设以点A 、B 、O 、P 为顶点的四边形的面积为S ,点P 的横坐标为x,当46S +≤≤+x 的取值范围.7.如图,已知抛物线与x 轴交于点(2 0)A -,,(4 0)B ,,与y 轴交于点(0 8)C ,.(1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 的垂直平分线上是否存在点P ,使得点P 到直线CD 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?8.如图,在平面直角坐标系中,直线)0(21>+-=b b x y 分别交x 轴,y 轴于A ,B两点,以OA ,OB 为边作矩形OACB ,D 为BC 的中点.以M (4,0),N (8,0)为斜边端点作等腰直角三角形PMN ,点P 在第一象限,设矩形OACB 与△PMN 重叠部分的面积为S .(1)求点P 的坐标;(2)当b 值由小到大变化时,求S 与b 的函数关系式;(3)若在直线b x y +-=21(b >0)上存在点Q ,使∠OQM 等于90°,请直接写出....b 的取值范围;(4)在b 值的变化过程中,若△PCD 为等腰三角形,请直接写出....所有符合条件的b 值.【中考汇编】1.(2009 山西省太原市) 如图,AB 是半圆O 的直径,点P 从点O 出发,沿 OA AB BO --的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( ).2.(2008 盐城) 如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O — C — D — O 路线作匀速运动.设运动时间为t (s ),∠APB =y (°),则下列图象中表示y 与t 之间函数关系最恰当的是( ).OPDCBAA .B .C .D .3.(2010 南京)如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间函数关系的图象大致为( ).4.(2009 湖北省襄樊市) 在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍.5.(2009天津市)已知一个直角三角形纸片OAB ,其中90AOB ∠=︒,2OA =,4OB =.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(1)若折叠后使点B 与点A 重合,求点C 的坐标;B .C.A .D .AB .C .D(2)若折叠后点B 落在边OA 上的点为B ',设O B x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(3)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.6.(2009 云南省昆明市) 如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒).(1)求线段AB 的长;当t 为何值时,MN ∥OC ? (2)设△CMN 的面积为S ,求S 与t 之间的函数解析式,并指出自变量t 的取值范围;S 是否有最小值?若有最小值,最小值是多少?(3)连接AC ,那么是否存在这样的t ,使MN 与AC 互相垂直?若存在,求出这时的t 值;若不存在,请说明理由.7.(2010 内蒙古鄂尔多斯市) 如图,四边形OABC 是一张放在平面直角坐标系的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,159OA OC ==,,在AB 上取一点M ,使得CBM △沿CM 翻折后,点B 落在x 轴上,记作N 点. (1)求N 点、M 点的坐标; (2)将抛物线236y x =-向右平移(010)a a <<个单位后,得到抛物线l ,l 经过N 点,求抛物线l 的解析式; (3)①抛物线l 的对称轴上存在点P ,使得P 点到M N ,两点的距离之差最大,求P 点的坐标;②若点D 是线段OC 上的一个动点(不与O 、C 重合),过点D 作DE OA ∥交CN 于E ,设CD 的长为m ,PDE △的面积为S ,求S 与m 之间的函数关系式,并说明S 是否存在最大值.若存在,请求出最大值;若不存在,请说明理由.8.(2010 江苏省徐州市)如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点M 处,点C 落在点N 处,MN 与CD 交于点 P ,连接EP .(1)如图②,若M 为AD 边的中点,①△AEM 的周长= cm ;②求证:EP=AE +DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.x9.(2010 青海省西宁市) 如图,直线y =kx -1与x 轴、y 轴分别交与B 、C 两点,tan ∠OCB =21.(1)求B 点的坐标和k 的值;(2)2若点A (x ,y )是第一象限内的直线y =kx -1上的一个动点.当点A 运动过程中,试写出△AOB 的面积S 与x 的函数关系式;(3)探索:①当点A 运动到什么位置时,△AOB 的面积是41;②在①成立的情况下,x 轴上是否存在一点P ,使△POA 是等腰三角形.若存在,请写出满足条件的所有P 点的坐标;若不存在,请说明理由.10.(2010 福建省龙岩市) 如图①,将直角边长为ABC 绕其直角顶点C 顺时针旋转α角()090α<<°°,得111ABC AC △,交AB 于点D ,11A B 分别交于BC AB 、于点E F 、,连接1AB .(1)求证:ADC ∆∽1A DF ∆; (2)若30α=°,求11AB A ∠的度数;(3)如图②,当45α=°时,将11A B C △沿C A →方向平移得22222A B C A C △,交AB于点G ,22B C 交BC 于点H ,设2CC x =(0x <<,ABC △与222A B C △的重叠部分面积为S ,试求S 与x 的函数关系式.11.(2009福建省泉州市)在直角坐标系中,点(50)A ,关于原点O 的对称点为点C . (1)请直接写出点C 的坐标; (2)若点B 在第一象限内,∠OAB =∠OBA ,并且点B 关于原点O 的对称点为点D . ①试判断四边形ABCD 的形状,并说明理由;②现有一动点P 从B 点出发,沿路线BA —AD 以每秒1个单位长的速度向终点D 运动,另一动点Q 从A 点同时出发,沿AC 方向以每秒0.4个单位长的速度向终点C 运动,当其中一个动点到达终点时,另一个动点也随之停止运动.已知AB =6,设点P 、Q 的运动时间为t 秒,在运动过程中,当动点Q 在以PA 为直径的圆上时,试求t 的值.12.(2009 上海市) 在直角坐标平面内,O为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标;(3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.13.(2010 宁夏回族自治区) 如图,已知:一次函数:4y x =-+的图像与反比例函数:2y x=(0)x >的图像分别交于A 、B 两点,点M 是一次函数图像在第一象限部分上的任意一点,过M 分别向x 轴、y 轴作垂线,垂足分别为M 1、M 2,设矩形MM 1OM 2的面积为S 1;点N 为反比例函数图像上任意一点,过N 分别向x 轴、y 轴作垂线,垂足分别为N 1、N 2,设矩形NN 1ON 2的面积为S 2;(1)若设点M 的坐标为(x ,y ),请写出S 1关于x 的函数表达式,并求x 取何值时,S 1的最大值;(2)观察图形,通过确定x 的取值,试比较S 1、S 2的大小. 14.(2010四川省眉山市)如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为原点,A 、B 两点的坐标分别为(-3,0)、(0,4),x抛物线223y x bx c =++经过B 点,且顶点在直线52x =上.(1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.15.(2010四川省内江市)如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标;(2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.x16.(2010四川省南充市)已知抛物线2142y x b x =-++上有不同的两点E (3k +,21k -+)和F (1k --,21k -+).(1)求抛物线的解析式.(2)如图,抛物线2142y x bx =-++与x 轴和y 轴的正半轴分别交于点A 和B ,M 为AB 的中点,∠PMQ 在AB 的同侧以M 为中心旋转,且∠PMQ =45°,MP 交y 轴于点C ,MQ 交x 轴于点D .设AD 的长为m (m >0),BC 的长为n ,求n 和m 之间的函数关系式.(3)当m ,n 为何值时,∠PMQ 的边过点F . 17.(2009浙江省湖州市)如图,在平面直角坐标系中,直线l ∶y =28x --分别与x 轴,y 轴相交于A B ,两点,点()0P k ,是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作P ⊙.(1)连结PA ,若PA PB =,试判断P ⊙与x 轴的位置关系,并说明理由;(2)当k 为何值时,以P ⊙与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?18.(2010湖南省湘潭市)如图,直线6=-+与x轴交于点A,与y轴交于点B,y x以线段AB为直径作⊙C,抛物线c=2过A、C、O三点.+bxy+ax(1)求点C的坐标和抛物线的解析式;(2)过点B作直线与x轴交于点D,且OB2=OA·OD,求证:DB是⊙C的切线;(3)抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为直角梯形,如果存在,求出点P的坐标;如果不存在,请说明理由.Array19.(2010湖南省株洲市)在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A,其顶点为B.孔明同学用一把宽为3cm带刻度的矩形直尺对抛物线进行如下测量:①量得3=;OA cm②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5.请完成下列问题:(1)写出抛物线的对称轴; (2)求抛物线的解析式;(3)将图中的直尺(足够长)沿水平方向向右平移到点A 的右边(如图2),直尺的两边交x 轴于点H 、G ,交抛物线于点E 、F .求证:21(9)6EFGH S EF =-梯形. 20.(2010湖北省十堰市)已知关于x 的方程2(31)220mx m x m --+-=. (1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数2(31)22y mx m x m =--+-的图象与x 轴两交点间的距离为2时,求抛物线的解析式.(3)在直角坐标系xoy 中,画出(2)中的函数图象,结合图象回答问题:当直线图 1图2· By x b =+与(2)中的函数图象只有两个交点时,求b 的取值范围.21.(2010广西河池市) 如图,在直角梯形OABC 中,CB ∥OA ,90OAB ∠=︒,点O 为坐标原点,点A 在x 轴的正半轴上,对角线OB ,AC 相交于点M ,4OA AB ==,2OA CB =.(1)线段OB 的长为 ,点C 的坐标为 ;(2)求△OCM 的面积;(3)求过O ,A ,C 三点的抛物线的解析式; (4)若点E 在(3)的抛物线的对称轴上,点F 为该抛物线上的点,且以A ,O ,F ,E 四点为顶点的四边形为平行四边形,求点F 的坐标.22.(2010 江苏省苏州市)如图,以A 为顶点的抛物线与y 轴交于点.B 已知A B 、两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设()M m n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A 、、、为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P ,22228PA PB PM ++>是否总成立?请说明理由.23.(2010浙江省丽水市)△ABC 中,∠A =∠B =30°,AB =.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1)当点B 在第一象限,纵坐标是B 的横坐标;(2)如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:①当a =12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由;②设b =-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.24.(2010新疆乌鲁木齐)已知二次函数2(0)y ax bx c a =++≠的图象经过(00)(1)O M ,,,1和()(0)N n n ≠,0三点.(1)若该函数图象顶点恰为点M ,写出此时n 的值及y 的最大值;(2)当2n =-时,确定这个二次函数的解析式,并判断此时y 是否有最大值; (3)由(1)、(2)可知,n 的取值变化,会影响该函数图象的开口方向.请你求出n 满足什么条件时,y 有最小值?25.(2009沈阳)如图所示,在平面直角坐标系中,点O 为坐标原点.Rt △OBA 的斜边OA 在x 轴的正半轴上,点A 的坐标为(2,0),点B 在第一象限内,且3=OB ,∠OBA =90°.沿边OB 所在直线折叠Rt △OAB ,记点A 的落点为C .(1)求证:△OAC 为等边三角形;(2)点D 在x 轴的正半轴上,且点D 的坐标为(4,0),P 为线段OC 上一动点(点P 不与点O 重合),连接P A ,PD ,设PC =x ,△P AD 的面积为y ,求y 与x 之间的函数关系式;(3)在(2)的条件下,当21=x 时,过点A 作AM ⊥PD 于点M ,若PDAMk 27=,求证:二次函数y =k x k x 3)337(22+---的图象关于y 轴对称.26.如图(a),正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向匀速运动,同时点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒.(1)求正方形ABCD的边长;(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图(b)所示),求P,Q两点的运动速度;(3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积S取最大值时点P的坐标;(4)求出图(b)中a,b的值.27.已知如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片,点O 与坐标原点重合,点A在x轴的正半轴上,点C在y轴的正半轴上,OC=4,E为BC 的中点,点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M,现将纸片沿过E点的直线折叠,使顶点C落在MN上,落点记为G,折痕与y轴的交点记为F.(1)求点G的坐标;(2)求折痕EF所在直线的解析式;(3)设点P 为直线EF 上的点,是否存在这样的点P ,使得以P ,F ,G 为顶点的三角形为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.28.(2009黄冈)如图,在平面直角坐标系xOy 中,抛物10941812--=x x y 与x 轴正半轴的交点为A ,与y 轴的交点为B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒).(1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当290<<t 时,△PQF 的面积是否总为定值?若是,求出此定值;若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三形?请写出解答过程.。

2019届中考数学(通用版)复习专题学案:几何综合题

2019届中考数学(通用版)复习专题学案:几何综合题

几何综合题【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等.【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决.【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势.为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.类型一以三角形为背景的综合题典例1(2019·江苏泰州)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.【技法梳理】(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.【解析】(1)∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE.∴AF=DE.∵BD是△ABC的角平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE.∴BE=DE.∴BE=AF.(2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°.∴DE=BE=2.∴四边形ADEF的面积为DE·DG=6.举一反三1. (2019·湖北武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm 的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.(1)(2)(第1题)【小结】此类题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.类型二以四边形为背景的综合题典例2(2019·安徽)如图(1),正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于点N.(1)①∠MPN=;②求证:PM+PN=3a;(2)如图(2),点O是AD的中点,连接OM,ON,求证:OM=ON;(3)如图(3),点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.(1)(2)(3)【全解】(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°.∵PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°.∴∠MPN=180°-∠BPM-∠NPC=180°-60°-60°=60°.故答案为60°.②如图(1),作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,(1)(2)如图(2),连接OE.(2)∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC, ∴AM=BP=EN.又∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS).(3)如图(3),连接OE.(3)由(2)得,△OMA≌△ONE,∴∠MOA=∠EON.∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形.∴∠AFE=∠AOE=120°.∴∠MON=120°.∴∠GON=60°.∵∠GON=60°-∠EON,∠DON=60°-∠EON,∴∠GOE=∠DON.∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA).又∠GON=60°,∴△ONG是等边三角形.∴ON=NG.∵OM=ON,∠MOG=60°,∴△MOG是等边三角形.∴MG=GO=MO.∴MO=ON=NG=MG.∴四边形MONG是菱形.【技法梳理】(1)①运用∠MPN=180°-∠BPM-∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解;(2)连接OE,由△OMA≌△ONE证明;(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.举一反三2. (2019·山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图(1),当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由.(2)如图(2),当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图(3),当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由.(4)如图(4),当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.(1)(2)(3)(4)(第2题)【小结】主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.类型三以圆为背景的综合题典例3(2019·江苏苏州)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm,矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm,若☉O与矩形ABCD沿l1同时向右移动,☉O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s),(1)如图,连接OA,AC,则∠OAC的度数为°;(2)如图,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【全解】(1)∵l1⊥l2,☉O与l1,l2都相切,∴∠OAD=45°.∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm.∴∠DAC=60°.∴∠OAC的度数为∠OAD+∠DAC=105°.(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为点E, 连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=.∴∠C1A1D1=60°.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1,如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置,设☉O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2.由(2)得,∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,②当直线AC与☉O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三, 由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,【提醒】本题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.【技法梳理】(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1-OO1-2=t-2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与☉O第一次相切时,设移动时间为t1,②当直线AC与☉O第二次相切时,设移动时间为t2,分别求出即可.举一反三3. (2019·浙江宁波)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径.(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数表达式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.方案一方案二方案三方案四方案备用图方案备用图(第3题)【小结】本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.类型一2. (2019·浙江嘉兴)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB 上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是.(第2题)类型二3. (2019·广东珠海)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;.(第3题)4. (2019·浙江温州)如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.(第4题)类型三5. (2019·湖南怀化)如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设H是ED上一点,以EH为直径作☉O,DF与☉O相切于点G,若DH=OH=3,求图中阴影部分的面积(结果保留到小数点后面第一位,≈1.73,π≈3.14).(第5题)6. (2019·黑龙江大庆)如图(1),已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.(1)用x表示AD和CD;(2)用x表示S,并求S的最大值;(3)如图(2),当S取最大值时,等腰梯形ABCD的四个顶点都在☉O上,点E和点F分别是AB 和CD的中点,求☉O的半径R的值.(1)(2)(第6题)参考答案【真题精讲】(2)如图(1),过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,(第1题(1))∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°.∴△ACQ∽△CMP.(3)如图(2),仍有PM⊥BC于点M,PQ的中点设为点D,再作PE⊥AC于点E,DF⊥AC于点F,(第1题(2))∵∠ACB=90°,∴DF为梯形PECQ的中位线.∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立.∴D在过R的中位线上.∴PQ的中点在△ABC的一条中位线上.2. (1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF.由于∠CDF+∠ADF=90°.∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是.(3)成立.理由如下:由(1)同理可证AE=DF,∠DAE=∠CDF,如图(1),延长FD交AE于点G,(第2题(1))则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图(2):(第2题(2)) 由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC===,∴CP=OC-OP=-1.3. (1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图(1),方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为☉O与AB,BF的切点.方案二方案三(第3题)方案二:设半径为r.在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB-AO1-CO2=3-2r,∴(2r)2=22+(3-2r)2,比较知,方案三半径较大.(3)①∵EC=x,∴新拼图形水平方向跨度为3-x,竖直方向跨度为2+x.类似题(1),所截出圆的直径最大为3-x或2+x较小的.∴方案四时可取的圆桌面积最大.【课后精练】1.①②③④解析:①∵AB=AC,∴∠B=∠C.∵∠ADE=∠B,∴∠ADE=∠C.∴△ADE∽△ACD.故①结论正确.故③正确.④易证得△CDE∽△BAD,由②可知BC=16, 设BD=y,CE=x,整理,得y2-16y+64=64-10x,即(y-8)2=64-10x,∴0<y<8,0<x<6.4.故④正确.2.①③⑤解析:①连接CD,如图(1)所示.(第2题(1))∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图(2)所示.(第2题(2))∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.③当AD=2时,连接OC,如图(3)所示.(第2题(3))∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴∠ECO=90°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB,AF,如图(4)所示.(第2题(4))∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴DB=4.∴AD=AB-DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图(5)中阴影部分.(第2题(5))∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.3. (1)∵四边形ABCD是正方形,∴AD∥BF.∵AE=CF,∴四边形ACFE是平行四边形.∴EF∥AC.(2)连接BG,(第3题)∵EF∥AC,∴∠F=∠ACB=45°.∵∠GCF=90°,∴∠CGF=∠F=45°.∴CG=CF.∵AE=CF,∴AE=CG.在△BAE与△BCG中,∴△BAE≌△BCG(SAS).∴BE=BG.∵BE=EG,∴△BEG是等边三角形.∴∠BEF=60°.(3)∵△BAE≌△BCG,∴∠ABE=∠CBG.∵∠BAC=∠F=45°,∴△AHB∽△FGB.(2)如图(1),连接CD交OP于点G,(第4题(1))在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG.∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图(2),当点M在CE边上时,(第4题(2))∵MF∥OC,∴△EMF∽△ECO.∴t=1.第二种情况:如图(3),当点N在DE边(第4题(3))∵NF∥PD,∴△EFN∽△EPD.(Ⅱ)当点C在BO的延长线上时,第一种情况:如图(4),当点M在DE边上时,(第4题(4))∵MF∥PD,∴EMF∽△EDP.第二种情况:如图(5),当点N在CE边上时,(第4题(5))∵NF∥OC,∴△EFN∽△EOC.5. (1)∵四边形ABCD是矩形, ∴∠A=∠B=90°.∵EF⊥DE,∴∠DEF=90°.∴∠AED=90°-∠BEF=∠EFB.∵∠A=∠B,∠AED=∠EFB,∴△ADE∽△BEF.(2)∵DF与☉O相切于点G, ∴OG⊥DG.∴∠DGO=90°.∵DH=OH=OG,∴∴图中阴影部分的面积约为6.2.6. (1)作AH⊥CD于点H,BG⊥CD于点G,如图(1),(第6题(1))则四边形AHGB为矩形,∴HG=AB=3x.∵四边形ABCD为等腰梯形,∴AD=BC,DH=CG.在Rt△ADH中,设DH=t,∵∠ADC=60°,∴∠DAH=30°.∴AD=2t,AH=t.∴BC=2t,CG=t.∵等腰梯形ABCD的周长为48,∴3x+2t+t+3x+t+2t=48,解得t=8-x.∴AD=2(8-x)=16-2x,CD=8-x+3x+8-x=16+x.(3)连接OA,OD,如图(2),(第6题(2))当x=2时,AB=6,CD=16+2=18,等腰梯形的高为(8-2)=6, 则AE=3,DF=9,∵点E和点F分别是AB和CD的中点,∴直线EF为等腰梯形ABCD的对称轴.∴EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6.∴等腰梯形ABCD的外接圆的圆心O在EF上.设OE=a,则OF=6-a.在Rt△AOE中,∵OE2+AE2=OA2,∴a2+32=R2.在Rt△ODF中,∵OF2+DF2=OD2,∴(6-a)2+92=R2.∴a2+32=(6-a)2+92,解得a=5.∴R2=(5)2+32=84.∴R=2.。

几何图形综合题(10道)

几何图形综合题(10道)

题型四几何图形综合题类型一动态探究型1.如图, BD是正方形ABCD的对角线, BC=2,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,同时动点Q从点C出发,以相同的速度沿射线BC运动,当点P出发后,过点Q 作QE⊥BD,交直线BD于点E,连接AP、AE、PE、QE,设运动时间为t(秒).(1)请直接写出动点P运动过程中,四边形APQD是什么四边形?(2)请判断AE, PE之间的数量关系和位置关系,并加以证明;(3)设△EPB的面积为y,求y与t之间的函数关系式;(4)请求出△EPQ的面积是△EDQ面积的2倍时t的值.第1题图解:(1)四边形APQD是平行四边形;【解法提示】∵四边形ABCD 是正方形,P 、Q 速度相同, ∴∠ABE =∠EBQ =45°,AD //BQ ,AD =BC =2,BP =CQ , ∴BC =AD =PQ ,∴四边形APQD 是平行四边形; (2)AE =PE , AE ⊥PE ; 证明如下: ∵QE ⊥BD ,∴∠PQE =90°-45°=45°, ∴∠ABE =∠EBQ =∠PQE =45°, ∴BE =QE ,在△AEB 和△PEQ 中,⎪⎩⎪⎨⎧=∠=∠=QE BE PQE ABE PQ AB , ∴△AEB ≌△PEQ (SAS ), ∴AE =PE ,∠AEB =∠PEQ , ∴∠AEP =∠BEQ =90°,∴AE ⊥PE ;(3)如解图①,过点E 作EF ⊥BC 于点F ,第1题解图①∵BC =2,CQ =t , ∴BQ =t +2,∵EF ⊥BC ,且∠EBC =∠EQB =45°, ∴EF =BF =FQ ,∴EF =21BQ =22+t , 又∵BP =QC =t ,∴y =21EF ·BP =21×22+t ×t , 即y =41t 2+21t ;(4)①当点P 在BC 的延长线上时,如解图②,作PM ⊥QE 于点M ,第1题解图②∵PQ =2,∠BQE =45°, ∴PM =22PQ =2,BE =QE =22BQ =22(t +2), ∴DE =BE -BD =22(t +2)-22=22t -2, ∵△EPQ 的面积是△EDQ 面积的2倍,∴EQ DE PM EQ ⋅⨯=⋅21221, ∴21×22(t +2)×2=2×21(22t -2)×22(t +2), 解得:t =3或t =-2(舍去), ∴t =3;②当P 在线段BC 上时,解法同①,此时DE =BD -BE =2-22t , ∵△EPQ 的面积是△EDQ 面积的2倍,∴EQ DE PM EQ ⋅⨯=⋅21221, ∴21×22(t +2)×2=2×21(2-22t )×22(t +2),解得:t =1或t =-2(舍去), ∴t =1;综上所述,当t =1或t =3时,△EPQ 的面积是△EDQ 面积的2倍.2.如图,在矩形ABCD 中,AB =6 cm ,BC =8 cm ,对角线AC ,BD 交于点O .点P 从点A 出发,沿AD 方向匀速运动,速度为 1 cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1 cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长交BC 于点E ,过点Q 作QF ∥AC 交BD 于点F .设运动时间为t (s)(0<t <6),解答下列问题: (1)当t 为何值时,AP = PO ;(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)当t 为何值时,OD 平分∠COP ?第2题图解:(1)∵在矩形ABCD 中,AB =6 cm ,BC =8 cm ,∠ABC =90°, ∴AC =10 cm ,AO =12AC =5 cm , 如解图①,过点P 作PM ⊥AO 于点M ,第2题解图①当AP =PO =t 时,AM =12AO =52 cm , ∵∠PMA =∠ADC =90°,∠P AM =∠CAD , ∴△APM ∽△ACD ,∴AP AC =AM AD ,即t 10=528, 解得t =258,即t =258 s 时,AP =PO ;(2)如解图②,过点O 作OH ⊥BC 交BC 于点H ,则OH =12CD =12AB =3 cm .由矩形的性质可知∠PDO =∠EBO ,DO =BO , 在△DOP 和△BOE 中, ⎩⎪⎨⎪⎧∠PDO =∠EBO OD =OB∠DOP =∠BOE , ∴△DOP ≌△BOE (ASA), ∴BE =PD =(8-t )cm ,则S △BOE =12BE ·OH =12×(8-t )×3=12-32t . ∵FQ ∥AC ,第2题解图②∴△DFQ ∽△DOC ,相似比为DQ DC =t6,∴362t S S DOC DFQ △△, ∵S △DOC =14S 矩形ABCD =14×6×8=12 cm 2, ∴S △DFQ =12×t 236=t 23,∴S 五边形OECQF =S △DBC -S △BOE -S △DFQ =12×6×8-(12-32t )-t 23=-13t 2+32t +12,∴S 与t 的函数关系式为S =-13t 2+32t +12;(3)如解图③,过点D 作DM ⊥PE 于点M ,作DN ⊥AC 于点N , 易证△ADN ∽△ACD ,∴DN CD =AD AC ,即DN 6=810, ∴DN =245,第2题解图③∵∠POD =∠COD , ∴DM =DN =245,∴ON =OM =OD 2-DN 2=75, ∵S △POD =12OP ·DM =12×12PD ·DC , ∴OP ·DM =12PD ·DC , ∴OP =5-58t ,∴PM =OP - OM =185-58t , ∵PD 2=PM 2+DM 2, 即(8-t )2=(185-58t )2+(245)2, 解得t 1=16(不合题意,舍去),t 2=11239, ∴当t =11239 s 时,OD 平分∠COP .3.如图,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm .如果点P 由B 出发沿BA 向点A 匀速运动,同时点Q 由A 出发沿AC 向点C 匀速运动,它们的速度均为2 cm/s .连接PQ ,设运动的时间为t (单位:s)(0≤t ≤4).第3题图(1)当t 为何值时,PQ ∥BC ;(2)设△AQP 的面积为S (单位:cm 2),当t 为何值时,S 取得最大值,并求出最大值;(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由. 解:(1)由题意知BP =2t ,AP =10-2t ,AQ =2t , ∵PQ ∥BC , ∴△APQ ∽△ABC , ∴AP AB =AQ AC ,即10-2t 10=2t 8,解得t =209, 即当t 为209 s 时,PQ ∥BC ;(2)∵AB =10 cm ,AC =8 cm ,BC =6 cm , ∴AB 2=AC 2+BC 2, ∴△ABC 为直角三角形, ∴∠C =90°,如解图,过点P 作PD ⊥AC 于点D ,第3题解图则PD ∥BC , ∴△APD ∽△ABC , ∴AP AB =PD BC , ∴10-2t 10=PD 6, ∴PD =35(10-2t ),∴S =12AQ ·PD =12×2t ×35(10-2t )=-65t 2+6t =-65(t -52)2+7.5, ∵-65<0,抛物线开口向下,有最大值,且0≤t ≤4, ∴当t =2.5 s 时,S 有最大值,最大值是7.5 cm 2; (3)不存在.理由如下:假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则S △AQP =12S △ABC ,即-65t 2+6t =12×12×8×6,整理得t 2-5t +10=0, ∵b 2-4ac =(-5)2-4×10=-15<0, ∴此方程无实数解,即不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分. 4.如图,在菱形ABCD 中,∠BAD =120°,边长AB =6,对角线AC 、BD 交于点 O ,线段AD 上有一动点P ,过点P 作PH ⊥BC 于点H ,交直线CD 于点Q ,连接OQ ,OP ,设线段PD =m . (1)求线段PH 的长度;(2)设△DPQ 的面积为S ,求S 与m 之间的关系式;(3)当△DPQ 的面积与△CQH 的面积相等时,m 的值是多少?第4题图解:(1)∵四边形ABCD是菱形,∴BC∥AD,AB=AD=CD=6,∵∠BAD=120°,∴∠ADC=60°,∴△ACD是等边三角形,如解图,过点C作CG⊥AD于G,在Rt△CDG中,∠CDG=60°,CD=6,∴DG=3,CG=33,∵BC∥AD, PH⊥BC,CG⊥AD,∴四边形CHPG是矩形,∴PH=CG=33,第4题解图(2)在Rt△PDQ中,∠PDQ=60°, DP=m,∴PQ3m,∴S=S△PDQ=12DP·PQ=12m×3m3m2(0<m≤6),(3)∵点Q在线段CD上,AD∥BC,∴△CHQ∽△DPQ,当△DPQ的面积与△CQH的面积相等时,有△CHQ≌△DPQ,∴CQ=DQ=1CD=3,2在Rt△PQD中,∠PDQ=60°, DQ=3,,∴DP=32时,△DPQ的面积与△CQH的面积相等.即m=325.如图,在平面直角坐标系中,长方形OABC的两边分别在x轴和y轴上,OA=12,OC=8,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒1.5个单位长度的速度匀速运动,运动到点A停止,Q在线段CO上沿CO方向以每秒1个单位长度的速度匀速运动,运动到点O停止,设运动时间为t秒.(1)B点的坐标为,OQ=,AP=;(用含t 的代数式表示)(2)当t 为何值时,△BCQ 的面积不小于△BAP 的面积? (3)当t 为何值时,△OPQ 的面积与△BAP 的面积的和为36?请求出t 的值;连接AC ,试探究此时线段PQ 与AC 之间的数量关系并说明理由.第5题图 备用图解:(1)(12,8),8-t ,12-1.5t ; 【解法提示】∵四边形OABC 是矩形,且OA =12,OC =8,∴B (12,8),由题意得:OP =1.5t ,CQ =t ,∴AP =12-1.5t ,OQ =8-t .(2)∵S △BCQ ≥S △BAP , ∴21CQ ·BC ≥21AP ·AB , 12t ≥8(12-1.5t ), t ≥4,∵点P 在线段OA 上沿OA 方向以每秒1.5个单位长度的速度匀速运动,运动到点A 停止,点Q 在线段CO 上沿CO 方向以每秒1个单位长度的速度匀速运动,运动到点O 停止, ∴12÷1.5=8,8÷1=8, ∴0≤t ≤8,∴当4≤t ≤8时,△BCQ 的面积不小于△BAP 的面积; (3)由题意得:S △OPQ +S △BAP =36, ∴21OP ·OQ +21AP ·AB =36,21×1.5t ×(8-t )+()85.11221⋅-t =36, t =4或-4(舍),∴当t =4时,△OPQ 的面积与△BAP 的面积的和为36; 此时AC =2PQ ,理由如下: 如解图,第5题解图当t=4时,OP=1.5t=6,CQ=4,∴P和Q分别是OA和OC的中点,∴AC=2PQ.6.两个全等的三角形,△ABC,△DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6 cm.现固定△DEF,将△ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设△ABC平移的距离为x(cm),两个三角形重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________ cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在△ABC平移过程中,点M与点N之间距离的最小值.第6题图解:(1)15;【解法提示】如解图①,作CG⊥AB于点G,CH⊥FE于点H,第6题解图①在Rt△ABC中,由AC=6,∠ABC=30°,得BC=ACtan30°=6 3cm.在Rt△BCG中,BG=BC·cos30°=9 cm.∵四边形CGEH是矩形,∴CH=GE=BG+BE=9+6=15 cm.(2)①当0≤x<6时,如解图②,第6题解图②由∠GDB =60°,∠GBD =30°,DB =x ,得DG =12x ,BG =32x , 重叠部分的面积y =12DG ·BG =12×12x ×32x =38x 2; ②当6≤x <12时,如解图③,第6题解图③BD =x ,DG =12x ,BG =32x ,BE =x -6,EH =33(x -6), 重叠部分的面积y =S △BDG -S △BEH =12DG ·BG -12BE ·EH , 即y =12×12x ×32x -12(x -6)×33(x -6),化简得y =-324x 2+23x -63;③当12≤x ≤15时,如解图④,第6题解图④AC =6,BC =63,BD =x ,BE =x -6,EG =33(x -6),重叠部分的面积y =S △ABC -S △BEG =12AC ·BC -12BE ·EG ,即y =12×6×63-12(x -6)×33(x -6),化简得y =-36x 2+23x +123;综上所述,y =⎩⎪⎨⎪⎧38x 2(0≤x <6)-324x 2+23x -63(6≤x <12);-36x 2+23x +123(12≤x ≤15)(3)如解图⑤所示,作NG ⊥DE 于点G ,第6题解图⑤点M 在NG 上时MN 最短,NG 是△DEF 的中位线,NG =12EF =33,∵MB =12CB =33,∠B =30°,∴MG =12MB =332,则MN min =NG -MG =33-332=332.7.如图①,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图③,延长BD 交CF于点G.①求证:BD⊥CF;②当AB=4,AD=2时,求线段BG的长.第7题图解:(1)BD=CF成立;证明:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB =AC , AD =AF ,∵∠BAD =∠CAF =θ,∴在△BAD 和△CAF 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAF ,AD =AF ,∴△BAD ≌△CAF (SAS),∴BD =CF ;(2)①证明:如解图,设BG 交AC 于点M ,由(1)可知△BAD ≌△CAF ,∴∠ABM =∠GCM ,∵∠BMA =∠CMG ,∴△BMA ∽△CMG ,∴∠BGC =∠BAC =90°,即BD ⊥CF ;②解:如解图,过点F 作FN ⊥AC 于点N ,第7题解图∵在正方形ADEF 中,AD =DE =2,∴AE =AD 2+DE 2=2,∴AN =FN =12AE =1,∵在等腰△ABC 中,AB =4,∴CN =AC -AN =3,BC =AB 2+AC 2=42,在Rt △FCN 中,tan ∠FCN =FN CN =13,∴tan ∠ABM =tan ∠FCN =13,∴AM =13AB =43,∴CM =AC -AM =4-43=83,BM =AB 2+AM 2=4103, 易证△BMA ∽△CMG ,∴BM BA =CM CG ,∴CG =4105,∴在Rt △BGC 中,BG =BC 2-CG 2=8105. 类型二 类比探究型8.已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B 、C 重合),以AD 为边作菱形ADEF (A 、D 、E 、F 按逆时针排列),使∠DAF =60°,连接CF .(1)如图①,当点D 在边BC 上时,求证:①BD =CF ; ②AC =CF +CD ;(2)如图②,当点D 在边BC 的延长线上且其他条件不变时,结论AC =CF +CD 是否成立?若不成立,请写出AC 、CF 、CD之间存在的数量关系,并说明理由;(3)如图③,当点D 在边CB 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系.第8题图(1)证明:∵四边形AFED 为菱形,∴AF =AD ,∵△ABC 是等边三角形,∴AB =AC =BC ,∠BAC =60°=∠DAF ,∴∠BAC -∠DAC =∠DAF -∠DAC ,即∠BAD =∠CAF ,在△BAD 和△CAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AD CAF BAD AC AB ,∴△BAD ≌△CAF (SAS ),∴BD =CF ,∴CF +CD =BD +CD =BC =AC ;(2)解:不成立,AC 、CF 、CD 之间存在的数量关系是AC =CF -CD .理由如下:由(1)知:AB =AC =BC ,∠BAC =∠DAF =60°,∴∠BAC +∠DAC =∠DAF +∠DAC ,即∠BAD =∠CAF ,在△BAD 和△CAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AD CAF BAD AC AB , ∴△BAD ≌△CAF (SAS ),∴BD =CF ,∴CF -CD =BD -CD =BC =AC ,即AC =CF -CD ;(3)解:补全图形如解图,AC =CD -CF .第8题解图【解法提示】∵∠BAC =∠DAF =60°,∴∠DAB =∠CAF ,在△BAD 和△CAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AD CAF BAD AC AB , ∴△BAD ≌△CAF (SAS ),∴BD =CF ,∴CD -CF =CD -BD =BC =AC ,即AC =CD -CF .9.如图,已知∠AOB=120°,在∠AOB的平分线OM上有一点C,将一个60°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.第9题图(1)当∠DCE绕点C旋转到CD与OA垂直时(如图①),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图②的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,线段OD、OE与OC之间有怎样的数量关系?解:(1)∵OM是∠AOB的角平分线,1∠AOB=60°.∴∠AOC=∠BOC=2∵CD⊥OA,∴∠ODC =90°.∴∠OCD =30°.∴∠OCE =∠DCE -∠OCD =30°.在Rt △OCD 中,OD =21OC ,同理:OE =21OC .∴OD +OE =OC ;(2)(1)中结论仍然成立,理由如下:如解图①,过点C 作CF ⊥OA 于F ,CG ⊥OB 于G ,第9题解图①∴∠OFC =∠OGC =90°.∵∠AOB =120°,∴∠FCG =60°.同(1)的方法得,OF =21OC ,OG =21OC .∴OF +OG =OC .∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG.∵∠DCE=60°,∠FCG=60°,∴∠DCF=∠ECG.∴△CFD≌△CGE(ASA),∴DF=EG.∴OF=OD-DF=OD-EG,OG=OE+EG.∴OF+OG=OD-EG+OE+EG=OD+OE.∴OD+OE=OC;(3)如解图②,过点C作CF⊥OA于F,CG⊥OB于G,第9题解图②∴∠OFC=∠OGC=90°,∵∠AOB=120°,∴∠FCG =60°.同(1)的方法得,OF =21OC ,OG =21OC ,∴OF +OG =OC .∵CF ⊥OA ,CG ⊥OB ,且点C 是∠AOB 的平分线OM 上一点, ∴CF =CG .∵∠DCE =60°,∠FCG =60°,∴∠DCF =∠ECG .∴△CFD ≌△CGE (ASA ).∴DF =EG .∴OF =DF -OD =EG -OD ,OG =OE -EG .∴OF +OG =EG -OD +OE -EG =OE -OD .∴OE -OD =OC .10.△ABC 为等边三角形,点M 是BC 中点,点P 在△ABC 所在平面内,连接P A ,PB ,PC ,PM ,直线PC 与直线AB 交于点D .(1)若点P 在△ABC 内,∠BPC =120°.①如图①,当点P 在AM 上时,求证:∠APD =∠BPM ;②如图②,当点P 不在AM 上时,∠APD =∠BPM 是否仍然成立?若成立,请证明;若不成立,请说明理由.(2)当点P 在△ABC 外,且点P 与点A 在直线BC 异侧时,若∠BPC =60°,∠APD 与∠BPM 有怎样的数量关系?第10题图解:(1)①证明:∵△ABC 是等边三角形,∴AB =AC ,∵点M 是BC 中点,∴BM =CM ,∴AM ⊥BC ,在△PMC 和△PMB 中,⎪⎩⎪⎨⎧=∠=∠=PM PM PMB PMC BM CM ,∴△PMC ≌△PMB (SAS ),1∠BPC=60°,∴∠MPC=∠MPB=2∵∠MPC=∠APD,∴∠APD=∠BPM;②∠APD=∠BPM仍然成立,如解图①,延长PM至K,使MK=PM,连接BK,延长PD至T,使PT=PB,连接TB、TA,第10题解图①由“倍长中线法”可证,△MCP≌△MBK(SAS),∴CP=BK,∠BCP=∠CBK,∴CP∥BK,∴∠PBK=∠PBC+∠CBK=∠PBC+∠BCP=180°-∠BPC=60°,∵∠BPT=180°-∠BPC=60°,∵PT =PB ,∴△PTB 是等边三角形,∴PB =BT ,∵∠PBT =∠ABC ,∴∠ABT =∠CBP ,在△ABT 和△CBP 中,⎪⎩⎪⎨⎧=∠=∠=BC AB CBP ABT BP BT , ∴△ABT ≌△CBP (SAS ),∴AT =PC ,∠ATB =∠CPB =120°,∵PC =BK ,∴AT =BK ,∴∠ATP =∠ATB -∠PTB =120°-60°=60°=∠PBK , 在△ATP 和△KBP 中,⎪⎩⎪⎨⎧=∠=∠=BP TP KBP ATP BK AT , ∴△ATP ≌△KBP (SAS ),∴∠APD =∠BPM ;(2)(Ⅰ)点D 在BA 延长线上时,如解图②,延长PM 至K ,使MK =PM ,连接BK ,在PD 上截取TB =TA ,连接PT 、PB ,第10题解图②同(1)②中的方法得,△MCP ≌△MBK (SAS ), ∴CP =BK ,CP ∥BK ,∴∠KBP =180°-∠BPC =120°.∵PT =PB ,∠BPC =60°,∴△PTB 是等边三角形,同(1)②的方法证得,△BAT≌△BCP(SAS),∴AT=CP=BK,∠ATB=∠CPB=60°=∠BTP,∴∠ATP=∠KBP=120°,∴△ATP≌△KBP(SAS),∴∠APT=∠KPB,∴∠APD=∠BPM;(Ⅱ)点D在AB延长线上时,如解图③,延长PM至K,使MK=MP,连接CK,第10题解图同(1)②的方法得,△MCK≌△MBP(SAS),∴CK=BP,∠CKP=∠BPK,∴CK∥BP,∴∠KCP=180°-∠BPC=120°,∵∠BPC=60°, PT=PC,∴△PTC是等边三角形,同(1)②的方法得,△CAT≌△CBP(SAS),∴AT=BP=CK,∠ATC=∠BPC=60°=∠CTP,∴∠ATP =∠KCP=120°,∴△KCP≌△ATP(SAS),∴∠CPK=∠APT,∵∠APD=120°+∠APT,∠BPM =60°-∠CPK,∴∠APD+∠BPM=180°.综上所述,∠APD=∠BPM或∠APD+∠BPM=180°.。

[数学]-专题34 利用相似解决四边形问题——几何综合(原版)

[数学]-专题34 利用相似解决四边形问题——几何综合(原版)

专题34 利用相似解决四边形问题——几何综合(原卷版)专题诠释:几何综合题是中考必考题型。

试题一般以全等或相似为中心 , 以四边形为重点 , 常常是三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.解题策略:解答几何综合题应注意 :(1) 注意观察、分析图形 , 把复杂的图形分解成几个基本图形 , 通过添加辅助线补全或构造基本图形 .(2) 掌握常规的证题方法和思路 ;(3) 运用转化的思想解决几何证明问题 , 运用方程的思想解决计算问题。

另外还用结合数学思想和方法。

第一部分 专题典例剖析类型一 利用相似解决平行四边形问题1.(2022•贺州)如图,在平行四边形ABCD 中,点E ,F 分别在AD ,BC 上,且ED =BF ,连接AF ,CE ,AC ,EF ,且AC 与EF 相交于点O .(1)求证:四边形AFCE 是平行四边形;(2)若AC 平分∠F AE ,AC =8,tan ∠DAC =34,求四边形AFCE 的面积.2.(2022•杭州)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,DE BC =14. (1)若AB =8,求线段AD 的长.(2)若△ADE 的面积为1,求平行四边形BFED 的面积.3.(2021•长春)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=4,BD=8,点E在边AD上,AE=13AD,连结BE交AC于点M.(1)求AM的长.(2)tan∠MBO的值为.类型二利用相似解决矩形问题4.(2022•玉林)如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.5.(2022•泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.6.(2022秋•苏州期末)如图,矩形ABCD 中,AD =3,CD =4,点P 从点A 出发,以每秒1个单位长度的速度在射线AB 上向右运动,运动时间为t 秒,连接DP 交AC 于点Q .(1)求证:△DCQ ∽△P AQ ;(2)若△ADQ 是以AD 为腰的等腰三角形,求运动时间t 的值.类型三 利用相似解决菱形问题7.(2022•长春)如图,在Rt △ABC 中,∠ABC =90°,AB <BC .点D 是AC 的中点,过点D 作DE ⊥AC 交BC 于点E .延长ED 至点F ,使得DF =DE ,连结AE 、AF 、CF .(1)求证:四边形AECF 是菱形;(2)若BE EC =14,则tan ∠BCF 的值为 .8.(2022秋•海淀区校级期末)如图,在菱形ABCD 中,∠A =60°,经过点C 的直线分别与AB ,AD 的延长线相交于点P ,Q ,QB ,PD 相交于点O .(Ⅰ)求证:BD 2=PB •DQ ;(Ⅱ)求证:BD 2=OD •PD .9.(2022秋•汝州市期末)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)连接AE,交CD于点F,当∠ADB=60°,AD=4√3时,直接写出EA的长.10.(2022秋•白塔区月考)如图,在菱形ABCD中,DE⊥BC交BC的延长线于点E,连结AE交BD于点F,交CD于点G,连结CF.(1)求证:AF2=EF•GF;(2)若菱形ABCD的边长为2,∠BAD=120°,求FG的长.类型一利用相似解决正方形问题11.(2022秋•青浦区校级期末)如图,在三角形ABC中,∠C=90°,四边形DEFC是边长为4的正方形,且D、E、F分别在边AC、AB、BC上.把三角形ADE绕点E逆时针旋转一定的角度.(1)当点D与点F重合时,点A的对应点G落在边BC上,此时四边形ACGE的面积为;(2)当点D的对应点D1落在线段BE上时,点A的对应点为点A1,在旋转过程中点A经过的路程为l1,点D经过的路程为l2,且l1:l2=3:2,求线段AD1的长.12.(2022秋•成华区期末)如图,点E是正方形ABCD的对角线CA延长线上一点,连接BE,将BE绕点B顺时针旋转90°至BF,连接EF,EF交AD于点G.(1)求证:△ABE∽△AEG;(2)若正方形ABCD的边长为4,点G为AD的中点,求AE的长.13.(2022秋•洛阳期末)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0°<n<90°)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M,若BQ:AQ =4:1,求AM的值.14.(2022秋•邹平市校级期末)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3,AE=3,求AF的长.第二部分 专题提优训练1.(2023•偃师市一模)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,DE BC =14.(1)若AB =12,求线段AD 的长.(2)若△ADE 的面积为1,求平行四边形BFED 的面积.2.(2022秋•济南期末)如图,点F 是平行四边形ABCD 的边AD 上的一点,直线CF 交线段BA 的延长线于点E .(1)求证:△AEF ∽△DCF ;(2)若AF :DF =1:2,AE =√2,S △AEF =23.①求AB 的长;②求△EBC 的面积.4.(2022秋•惠济区校级期末)如图1,在矩形ABCD 中,AC ,BD 相交于点O ,点E 为BD 上的一个动点,连接CE 并延长到点F ,使EF =CE ,连接AF .(1)若点E 与点B 重合(如图2),判断AF 与BD 的数量关系和位置关系,并说明理由;(2)若以A ,F ,B ,E 为顶点的四边形是平行四边形,BD =3,请直接写出线段BE 的长度.5.(2022秋•路南区校级期末)如图,矩形ABCD中,AB=16,BC=8,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒2个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?8.(2022秋•运城期末)如图,矩形ABCD的对角线AC、BD相交于点F,延长BC到点E,使CE=BC,连接DE,连接AE交BD于点G,交CD于点H.(1)求证:四边形ACED是平行四边形;(2)求证:DG2=FG•BG;(3)若AB=14,BC=24,求线段GH的长度.9.(2021秋•三原县期末)如图,在菱形ABCD中,∠C=60°,AB=4,点E是边BC的中点,连接DE、AE、BD.(1)求DE的长;(结果保留根号)(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,AF⊥EF.①求证:△AGE∽△DGF;②求DF的长.(提示:过点E作EH⊥CD于点H.)10.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.11.(2021秋•宝塔区校级期末)如图,在菱形ABOC中,对角线AO,BC相交于点D,BE⊥AC于点E,A0与BE交于点H.(1)求证:△BAD∽△HBD;(2)延长OC交BE的延长线于点F.求证:HB2=HE•HF.12.(2022秋•未央区校级期末)已知有一块三角形材料∠ABC,其中BC=120cm,高AD=80cm,现需要在三角形ABC上裁下一个正方形材料做零件,使得正方形EFGH的顶点E、F分别在边AB,AC上,H、G在BC上,裁下的正方形EFGH的边长是多少?27.(2022秋•东明县校级期末)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当CEEB =13时,求S△CEFS△CDF的值;(2)如图②,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=12BG.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何综合题【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等.【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决.【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势.为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.类型一以三角形为背景的综合题典例1(2014·江苏泰州)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF ∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.【技法梳理】(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.【解析】(1)∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE.∴AF=DE.∵BD是△ABC的角平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE.∴BE=DE.∴BE=AF.(2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°.∴DE=BE=2.∴四边形ADEF的面积为DE·DG=6.举一反三1.(2014·湖北武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm 的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.(1)(2)(第1题)【小结】此类题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.类型二以四边形为背景的综合题典例2(2014·安徽)如图(1),正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM ∥AB交AF于M,作PN∥CD交DE于点N.(1)①∠MPN= ;②求证:PM+PN=3a;(2)如图(2),点O是AD的中点,连接OM,ON,求证:OM=ON;(3)如图(3),点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.(1)(2)(3)【全解】(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°.∵PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°.∴∠MPN=180°-∠BPM-∠NPC=180°-60°-60°=60°.故答案为60°.②如图(1),作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,(1)(2)如图(2),连接OE.(2)∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN.又∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS).∴OM=ON.(3)如图(3),连接OE.(3)由(2)得,△OMA≌△ONE,∴∠MOA=∠EON.∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形.∴∠AFE=∠AOE=120°.∴∠MON=120°.∴∠GON=60°.∵∠GON=60°-∠EON,∠DON=60°-∠EON,∴∠GOE=∠DON.∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA).∴ON=OG.又∠GON=60°,∴△ONG是等边三角形.∴ON=NG.∵OM=ON,∠MOG=60°,∴△MOG是等边三角形.∴MG=GO=MO.∴MO=ON=NG=MG.∴四边形MONG是菱形.【技法梳理】(1)①运用∠MPN=180°-∠BPM-∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解;(2)连接OE,由△OMA≌△ONE证明;(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.举一反三2.(2014·山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图(1),当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由.(2)如图(2),当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图(3),当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由.(4)如图(4),当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.(1)(2)(3)(4) (第2题)【小结】主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.类型三以圆为背景的综合题典例3(2014·江苏苏州)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm,矩形ABCD 的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm,若☉O与矩形ABCD沿l1同时向右移动,☉O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s),(1)如图,连接OA,AC,则∠OAC的度数为°;(2)如图,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【全解】(1)∵l1⊥l2,☉O与l1,l2都相切,∴∠OAD=45°.∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm.∴∠DAC=60°.∴∠OAC的度数为∠OAD+∠DAC=105°.(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为点E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=.∴∠C1A1D1=60°.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1,如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置,设☉O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2.由(2)得,∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,②当直线AC与☉O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,【提醒】本题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.【技法梳理】(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1-OO1-2=t-2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与☉O第一次相切时,设移动时间为t1,②当直线AC与☉O第二次相切时,设移动时间为t2,分别求出即可.举一反三3. (2014·浙江宁波)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径.(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数表达式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.方案一方案二方案三方案四方案备用图方案备用图(第3题)【小结】本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.类型一2.(2014·浙江嘉兴)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB 上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是.(第2题)类型二3. (2014·广东珠海)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;.(第3题)4.(2014·浙江温州)如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.(第4题)类型三5. (2014·湖南怀化)如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设H是ED上一点,以EH为直径作☉O,DF与☉O相切于点G,若DH=OH=3,求图中阴影部分的面积(,≈1.73,π≈3.14).(第5题)6.(2014·黑龙江大庆)如图(1),已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.(1)用x表示AD和CD;(2)用x表示S,并求S的最大值;(3)如图(2),当S取最大值时,等腰梯形ABCD的四个顶点都在☉O上,点E和点F分别是AB 和CD的中点,求☉O的半径R的值.(1)(2)(第6题)参考答案【真题精讲】(2)如图(1),过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,(第1题(1))∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°.∴△ACQ∽△CMP.(3)如图(2),仍有PM⊥BC于点M,PQ的中点设为点D,再作PE⊥AC于点E,DF⊥AC于点F,(第1题(2))∵∠ACB=90°,∴DF为梯形PECQ的中位线.∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立.∴D在过R的中位线上.∴PQ的中点在△ABC的一条中位线上.2. (1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF.由于∠CDF+∠ADF=90°.∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是.(3)成立.理由如下:由(1)同理可证AE=DF,∠DAE=∠CDF,如图(1),延长FD交AE于点G,(第2题(1))则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图(2):(第2题(2))由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC===,∴CP=OC-OP=-1.3. (1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图(1),方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为☉O与AB,BF的切点.方案二方案三(第3题)方案二:设半径为r.在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB-AO1-CO2=3-2r,∴(2r)2=22+(3-2r)2,比较知,方案三半径较大.(3)①∵EC=x,∴新拼图形水平方向跨度为3-x,竖直方向跨度为2+x.类似题(1),所截出圆的直径最大为3-x或2+x较小的.∴方案四时可取的圆桌面积最大.【课后精练】1.①②③④解析:①∵AB=AC,∴∠B=∠C.∵∠ADE=∠B,∴∠ADE=∠C.∴△ADE∽△ACD.故①结论正确.故③正确.④易证得△CDE∽△BAD,由②可知BC=16,设BD=y,CE=x,整理,得y2-16y+64=64-10x,即(y-8)2=64-10x,∴0<y<8,0<x<6.4.故④正确.2.①③⑤解析:①连接CD,如图(1)所示.(第2题(1))∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图(2)所示.(第2题(2))∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.③当AD=2时,连接OC,如图(3)所示.(第2题(3))∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴∠ECO=90°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB,AF,如图(4)所示.(第2题(4))∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴DB=4.∴AD=AB-DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图(5)中阴影部分.(第2题(5))∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.3. (1)∵四边形ABCD是正方形,∴AD∥BF.∵AE=CF,∴四边形ACFE是平行四边形.∴EF∥AC.(2)连接BG,(第3题)∵EF∥AC,∴∠F=∠ACB=45°.∵∠GCF=90°,∴∠CGF=∠F=45°.∴CG=CF.∵AE=CF,∴AE=CG.在△BAE与△BCG中,∴△BAE≌△BCG(SAS).∴BE=BG.∵BE=EG,∴△BEG是等边三角形.∴∠BEF=60°.(3)∵△BAE≌△BCG,∴∠ABE=∠CBG.∵∠BAC=∠F=45°,∴△AHB∽△FGB.(2)如图(1),连接CD交OP于点G,(第4题(1))在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG.∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图(2),当点M在CE边上时,(第4题(2))∵MF∥OC,∴△EMF∽△ECO.∴t=1.第二种情况:如图(3),当点N在DE边(第4题(3))∵NF∥PD,∴△EFN∽△EPD.(Ⅱ)当点C在BO的延长线上时,第一种情况:如图(4),当点M在DE边上时,(第4题(4))∵MF∥PD,∴EMF∽△EDP.第二种情况:如图(5),当点N在CE边上时,(第4题(5))∵NF∥OC,∴△EFN∽△EOC.5. (1)∵四边形ABCD是矩形,∴∠A=∠B=90°.∵EF⊥DE,∴∠DEF=90°.∴∠AED=90°-∠BEF=∠EFB.∵∠A=∠B,∠AED=∠EFB,∴△ADE∽△BEF.(2)∵DF与☉O相切于点G,∴OG⊥DG.∴∠DGO=90°.∵DH=OH=OG,∴∴图中阴影部分的面积约为6.2.6. (1)作AH⊥CD于点H,BG⊥CD于点G,如图(1),(第6题(1))则四边形AHGB为矩形,∴HG=AB=3x.∵四边形ABCD为等腰梯形,∴AD=BC,DH=CG.在Rt△ADH中,设DH=t,∵∠ADC=60°,∴∠DAH=30°.∴AD=2t,AH=t.∴BC=2t,CG=t.∵等腰梯形ABCD的周长为48,∴3x+2t+t+3x+t+2t=48,解得t=8-x.∴AD=2(8-x)=16-2x,CD=8-x+3x+8-x=16+x.(3)连接OA,OD,如图(2),(第6题(2))当x=2时,AB=6,CD=16+2=18,等腰梯形的高为×(8-2)=6,则AE=3,DF=9,∵点E和点F分别是AB和CD的中点,∴直线EF为等腰梯形ABCD的对称轴.∴EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6.∴等腰梯形ABCD的外接圆的圆心O在EF上.设OE=a,则OF=6-a.在Rt△AOE中,∵OE2+AE2=OA2,∴a2+32=R2.在Rt△ODF中,∵OF2+DF2=OD2,∴(6-a)2+92=R2.∴a2+32=(6-a)2+92,解得a=5.∴R2=(5)2+32=84.∴R=2.。

相关文档
最新文档