初三中考数学 专题五 三角形
初三数学三角形知识点总结归纳
初三数学三角形知识点总结归纳三角形是初中数学中的重要内容,掌握三角形的相关知识是理解和解决相关问题的基础。
在初三数学学习中,我们需要对三角形的性质、分类、定理等内容进行总结和归纳,以便更好地应对考试和日常学习中的问题。
一、三角形的基本概念三角形是由三条边和三个内角组成的图形。
常见的表示方法有三个顶点的大写字母或者使用线段AB、BC、CA表示。
三角形的顶点分别为A、B、C,三边分别为a、b、c,对应的内角为∠A、∠B、∠C。
二、三角形的分类1. 根据边的长度分类:- 等边三角形:三条边的长度相等,对应的内角也相等,记作∆ABC。
- 等腰三角形:两条边的长度相等,对应的两个内角也相等,记作∆ABC。
- 普通三角形:三条边的长度均不相等,对应的内角也均不相等,记作∆ABC。
2. 根据角度的大小分类:- 直角三角形:一个内角为直角(90度角),记作∆ABC。
- 钝角三角形:一个内角大于90度,记作∆ABC。
- 锐角三角形:三个内角均小于90度,记作∆ABC。
三、三角形的性质1. 三角形内角和定理:一个三角形的内角和等于180度。
∠A + ∠B + ∠C = 180度2. 三角形的外角和定理:一个三角形的外角和等于无关角的内角和或补角。
∠D = ∠A + ∠B 或∠D = 180度 - ∠C3. 三角形的边与角关系:- 三角形两边之和大于第三边。
- 三角形两边之差小于第三边。
- 三角形内角的关系:最大的内角对应最长的边,最小的内角对应最短的边。
四、常见的三角形定理1. 直角三角形的性质:- 勾股定理:直角三角形斜边的平方等于两直角边的平方和。
c^2 = a^2 + b^2- 余弦定理:直角三角形中,直角边的平方等于斜边的平方减去另一直角边的平方。
a^2 = c^2 - b^2 或 b^2 = c^2 - a^22. 等腰三角形的性质:- 等腰三角形的底角相等。
∠A = ∠C- 等腰三角形的高度和斜边关系:等腰三角形的高度是斜边平分线的垂直平分线。
初中中考三角形知识点总结
初中中考三角形知识点总结一、三角形的定义三角形是平面上的一个图形,它由三条边和三个顶点组成。
三角形是一种基本的几何图形,也是平面几何中研究最多的图形之一。
二、三角形的分类根据三条边的长度,三角形可以分为等腰三角形、等边三角形和普通三角形。
1. 等腰三角形:两条边的长度相等的三角形。
2. 等边三角形:三条边的长度都相等的三角形。
3. 普通三角形:三条边的长度都不相等的三角形。
根据角的大小,三角形可以分为直角三角形、锐角三角形和钝角三角形。
1. 直角三角形:其中一个角是90度的三角形。
2. 锐角三角形:三个角都是锐角的三角形。
3. 钝角三角形:其中一个角是钝角的三角形。
三、三角形的性质1. 三角形的内角和恒为180度。
这是三角形的最基本的性质,也是很多三角形问题的关键。
2. 等腰三角形的性质(1) 两底角相等。
(2) 两边边相等。
3. 等边三角形的性质(1) 三个角均相等,每个角为60度。
(2) 三条边均相等。
4. 直角三角形的性质(1) 两个锐角的和等于90度。
(2) 三个角的和等于180度。
(3) 符合勾股定理:a²+b²=c²。
5. 三角形的外角和等于没有被包含的两个内角的和。
这个性质非常重要,经常和外角性质一起来进行三角形的运算。
6. 三角形的两边之和大于第三边,任意两边之差小于第三边。
这是三角形的一个重要性质,也是判断三角形是否存在的关键。
7. 经常包含的一些特殊的三角形关系(1) 在一个等腰三角形中,这个等腰三角形可以分成两个直角三角形。
(2) 30度和60度角的三角函数值,这种关系是初中数学中的重点内容。
四、初中中考三角形的运算1. 求三角形的周长和面积。
我们经常会遇到问周长或者面积的问题,对初中生来说,掌握好周长和面积的计算方法是非常重要的。
2. 利用三角形的性质进行求解。
在解三角形问题的时候,我们经常会利用三角形的性质,根据题目给出的条件进行运算。
3. 利用勾股定理求解。
中考数学考点专题复习 三角形与全等三角形
剖析
先看一个事实,如图,将等腰△ABC 的底边 BC 延长线上的任一点和顶 点 A 相连,所得的△DAB 和△DAC 无疑是不全等的,由此可知,有两边及 其一边的对角对应相等的两个三角形(简称“边边角”)不一定全等.因此, 在判定三角形全等时,一定要留心“边边角”,别上当哟.
正解 证明:∵EB=EC,∴∠3=∠4.又∵∠1=∠2,∴∠1+∠3= ∠2+∠4,即∠ABC=∠ACB,∴AB=AC.在△AEB和△AEC中, ∵EB=EC,∠1=∠2,AB=AC,∴△AEB≌△AEC(SAS), ∴∠BAE=∠CAE
的长可能是下列哪个值( B )
A.11
B.5 C.2 D.1
(2)(2015·巴中)若 a,b,c 为三角形的三边,且 a,b 满足 a2-9+(b-
2)2=0,则第三边 c 的取值范围是 1<c<5
.
【点评】 三角形三边关系性质的实质是“两点之间,线段最 短”.根据三角形的三边关系,已知三角形的两边a,b,可确 定三角形第三边长c的取值范围|a-b|<c<a+b.
[对应训练] 1.(1)(2014·宜昌)已知三角形两边长分别为3和8,则该三角形第 三边的长可能是( )B A.5 B.10 C.11 D.12
(2)(2014·淮安)若一个三角形三边长分别为2,3,x,则x的值可 以为___4_.(只需填一个整数)
【例2】 (1)(2014·赤峰)如图,把一块含有30°角(∠A=30°)的 直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌 面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么 ∠AFE=( ) D
A.40° B.50° C.60° D.70°
4.(2015·柳州)如图,下列条件中,不能证明△ABC≌△DCB 的是( D )
备考2021年九年级数学中考复习专题:全等三角形性质与判定(五)
备考2021年九年级数学中考复习专题:全等三角形性质与判定(五)1.“截长补短法”证明线段的和差问题:先阅读背景材料,猜想结论并填空,然后做问题探究.背景材料:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.探究的方法是,延长FD到点G.使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出的结论是.探索问题:(2)如图2,若四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立?成立的话,请写出推理过程.2.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:BE=CF;(2)若AF=6,△ABC的周长为20,求BC的长.3.如图,已知AB=DC,AB∥CD,E、F是AC上两点,且AF=CE.(1)求证:△ABE≌△CDF;(2)若∠BCE=30°,∠CBE=70°,求∠CFD的度数.4.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,点E为CD的中点,过C 作CF∥AB交AE的延长线于点F,连接BF.(1)求证:△ADE≌△FCE;(2)四边形BDCF是怎样的特殊四边形?请加以证明.5.如图,△ABC是等边三角形,点D是边BC边上的任意一点(除B、C外),以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.求证:EF=CD.6.如图所示,在四边形ABCD中,AC与BD交于O,AB=AD,CB=CD.BE⊥CD于E,BE与AC交于F.CF=2BO.(1)求证:△BEC是等腰直角三角形;(2)求tan∠ACD的值.7.如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.8.如图,四边形ABCD为正方形,E为对角线AC上的点,连接BE并作BE⊥EF,交边CD于点F,过点F作FG⊥AC交对角线AC于点G.(1)请在图中找出与BE长度相等的边并加以证明:(2)求的值.9.如图,在△ABC中,AB=AC,∠BAC=90°,AE是过点A的一条直线,且B、C在AE 的两侧,BD⊥AE于D,CE⊥AE于E.(1)求证:△ABD≌△CAE;(2)若DE=3,CE=2,求BD.10.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,交AC于E.交CD于F.点H是BC边的中点,连接DH,交BE于点G,连接CG.(1)求证:CE=BF;(2)判断△ECG的形状,并证明你的结论.°.参考答案1.证明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.2.(1)证明:连接DB、DC.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵DG垂直平分BC,∴DB=DC,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:∵∠DAE=∠DAF,∠AED=∠AFD=90°,AD=AD,∴△AED≌△AFD(AAS),∴AF=AE=6,由(1)得:BE=CF,∵△ABC的周长=AB+AC+BC,=AE+EB+AF﹣CF+BC,=AE+AF+BC=20,∴BC=20﹣12=8.3.(1)证明:∵AB∥CD,∴∠BAE=∠FCD,∵AF=CE,∴AE=CF,又∵AB=CD,∴△ABE≌△CDF(SAS).(2)解:∵∠BCE=30°,∠CBE=70°,∴∠AEB=∠BCE+∠CBE=30°+70°=100°,∵△ABE≌△CDF,∴∠CFD=∠AEB=100°.4.证明:(1)∵CF∥AB,∴∠CF A=∠BAF,∠ADC=∠FCD,∵点E为CD的中点,∴DE=CE,∴△ADE≌△FCE(AAS);(2)解:四边形BDCF是菱形.证明如下:∵△ADE≌△FCE,∴AD=CF,∵CD是Rt△ABC的中线,∴CD=AD=BD,∴CF=BD,且CF∥AB,∴四边形BDCF是平行四边形,且CD=BD,∴四边形BDCF是菱形.5.证明:∵△AED是等边三角形,△ABC是等边三角形,∴AD=AE=ED,AB=CA=BC,∠ADE=60°,∠B=∠F AC=60°,∵ED∥FC,∴∠EDB=∠FCB,∵∠BDA=∠ADE+∠EDB=60°+∠EDB,∠AFC=∠B+∠FCB=60°+∠FCB,∴∠BDA=∠AFC,在△ABD和△CAF中,,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=CD.6.证明:(1)∵AB=AD,CB=CD,∴AC垂直平分BD,∴BD=2BO,∵CF=2BO,∴CF=BD,∵∠DBE+∠BDE=90°,∠BDE+∠DCO=90°,∴∠DBE=∠FCE,又∵∠BED=∠CEF,∴△BDE≌△CFE(AAS),∴BE=CE,又∵BE⊥CD,∴△BEC是等腰直角三角形;(2)如图,连接DF,∵△BDE≌△CFE,∴DE=EF,∴DF=EF,∵AC垂直平分BD,∴BF=DF=EF,∴BE=BF+EF=(+1)EF,∴CE=(+1)EF,∴tan∠ACD==﹣1.7.解:(1)由折叠可得AB=AB′,BE=B′E,∵四边形ABCD是正方形,∴AB=DC=DF,∠B′CE=45°,∴B′E=B′F,∴AF=AB′+B′F,即DF+BE=AF;(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;图(2)的证明:延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,∵CB∥AD,∴∠AEB=∠EAD,∵∠BAE=∠B′AE,∴∠B′AE=∠DAG,∴∠GAF=∠DAE,∴∠AGD=∠GAF,∴GF=AF,∴BE+DF=AF;图(3)的证明:在BC上取点M,使BM=DF,连接AM,需证△ABM≌△ADF,∵∠BAM=∠F AD,AF=AM∵△ABE≌AB′E∴∠BAE=∠EAB′,∴∠MAE=∠DAE,∵AD∥BE,∴∠AEM=∠DAB,∴∠MAE=∠AEM,∴ME=MA=AF,∴BE﹣DF=AF.8.解:(1)BE=EF,证明如下:如图1,过P作MN∥AD,交AB于M,交CD于N,∵BE⊥EF,∴∠BEF=90°,∴∠MEB+∠NEF=90°,∵四边形ABCD是正方形,∴∠BAD=∠D=90°,∵AD∥MN,∴∠BME=∠BAD=∠ENF=∠D=90°,∴∠MEB+∠MBE=90°,∴∠NEF=∠MBE,Rt△ENC中,∠ECN=45°,∴△ENC是等腰直角三角形,∴EN=CN,∵∠BME=∠ENC=∠ABC=90°,∴四边形MBCN是矩形,∴BM=CN,∴BM=EN,∴△BME≌△ENF(ASA),∴BE=EF;(2)如图2,设正方形ABCD的中心为点O,连接OB,∵点O是正方形ABCD对角线AC的中点,∴OB⊥AC,∴∠AOB=90°,∴∠AOB=∠EGF=90°,∴∠OBE+∠BEO=90°,∵∠BEF=90°,∴∠BEO+∠GEF=90°,∴∠OBE=∠GEF,由(1)得:BE=EF,∴△OBE≌△GEF(AAS),∴OB=EG,∵∠BAO=45°,∴,∴.9.(1)证明:∵BD⊥AE于D,CE⊥AE于E,∠BAC=90°,∴∠BDA=∠AEC=90°,∠DBA+∠BAD=90°,∠BAD+∠EAC=90°,∴∠DBA=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS);(2)解:由(1)知,△ABD≌△CAE,则BD=AE,AD=CE.∵DE=3,CE=2∴AE=AD+DE=CE+DE=5.∴BD=AE=5.10.证明:(1)∵AB=BC,BE平分∠ABC,∴BE⊥AC,CE=AE,∴∠A+∠ACD=90°,∵CD⊥AB,∴∠A+∠DBF=90°∴∠ACD=∠DBF,在△ADC和△FDB中,∠ACD=∠DFB,CD=BD,∠ADC=∠BDF,∴△ADC≌△FDB(ASA);∴AC=BF,又∵CE=AE,∴CE=BF;(2)△ECG为等腰直角三角形.∵点H是BC边的中点,∴GH垂直平分BC,∴GC=GB,∵∠DBF=∠GBC=∠GCB=∠ECF,得∠ECG=45°,又∵BE⊥AC,∴△ECG为等腰直角三角形;。
三角形中考知识点
三角形中考知识点关键信息项:1、三角形的定义与分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
分类:按角分类(锐角三角形、直角三角形、钝角三角形);按边分类(等边三角形、等腰三角形、不等边三角形)2、三角形的三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边。
3、三角形的内角和定理三角形三个内角的和等于 180°。
4、三角形的外角性质三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于任何一个与它不相邻的内角。
5、三角形的中线、高线、角平分线中线:连接三角形一个顶点和它对边中点的线段叫做三角形的中线。
高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线。
角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
6、全等三角形的性质与判定性质:全等三角形的对应边相等、对应角相等。
判定:SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS (角角边)、HL(斜边、直角边)7、相似三角形的性质与判定性质:相似三角形的对应边成比例,对应角相等;相似三角形的周长比等于相似比,面积比等于相似比的平方。
判定:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似。
11 三角形的定义与分类三角形是由不在同一直线上的三条线段首尾顺次相接所组成的封闭图形。
三角形具有稳定性,这一特性在生活中有广泛的应用,如建筑结构、桥梁设计等。
三角形按角分类可分为锐角三角形、直角三角形和钝角三角形。
锐角三角形的三个内角都小于 90°;直角三角形有一个内角等于 90°;钝角三角形有一个内角大于 90°小于 180°。
按边分类可分为等边三角形、等腰三角形和不等边三角形。
等边三角形的三条边都相等;等腰三角形有两条边相等;不等边三角形的三条边都不相等。
2024中考数学专题5.7相似三角形压轴训练专题 (全国通用)
考向5.7 相似三角形压轴训练专题例题:(2021·安徽·中考真题)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作CF //AD 交线段AE 于点F ,连接BF .(1)求证:ABF EAD △≌△;(2)如图2,若9AB =,5CD =,ECF AED ∠=∠,求BE 的长;(3)如图3,若BF 的延长线经过AD 的中点M ,求BE EC的值.(1)证明://AE CD ,AEB DCE ∴∠=∠;//DE AB ,ABE DEC ∴∠=∠,12∠=∠,ABC BCD ∠=∠ ,ABE AEB ∴∠=∠,DCE DEC ∠=∠,AB AE =∴,DE DC =,//AF CD ,//AD CF ,∴四边形AFCD 是平行四边形AF CD∴=AF DE∴=在ABF 与EAD 中.12AB EA AF ED =⎧⎪∠=∠⎨⎪=⎩,()ABF EAD SAS ∴△≌△(2)ABF EAD △≌△,BF AD ∴=,在AFCD □中,AD CF =,BF CF ∴=,FBC FCB ∴∠=∠,又2FCB ∠=∠ ,21∠=∠,1FBC ∴∠=∠,在EBF △与EAB 中.1EBF BEF AEB ∠=∠⎧⎨∠=∠⎩,EBF EAB ∴△∽△;EBEFEA EB ∴=;9AB = ,9AE ∴=;5CD = ,5AF ∴=;4EF ∴=,49EBEB ∴=,6BE ∴=或6-(舍);(3)延长BM 、ED 交于点G .ABE 与DCE 均为等腰三角形,ABC DCE ∠=∠,ABE DCE ∴△∽△,AB AE BE DC DE CE∴==,设1CE =,BE x =,DC DE a ==,则AB AE ax ==,AF CD a ==,(1)EF a x ∴=-,//AB DG ,3G ∴∠=∠;在MAB △与MDG 中,345G MA MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()MAB MDG AAS ∴△≌△;DG AB ax ∴==.(1)EG a x ∴=+;//AB EG ,FAB FEG ∴△∽△,FA AB FE EG∴=,(1)(1)a ax a x a x ∴=-+,(1)1x x x -∴=+,2210x x ∴--=,2(1)2x ∴-=,1x ∴=11x ∴=,21x =+,1BE EC∴=一、单选题1.(2018·山东聊城·中考真题)如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,)C .(﹣161255,)D .(﹣121655,)2.(2020·四川遂宁·中考真题)如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于F ,下列结论:①∠AED +∠EAC +∠EDB =90°,②AP =FP ,③AE ,④若四边形OPEQ 的面积为4,则该正方形ABCD 的面积为36,⑤CE •EF =EQ •DE .其中正确的结论有( )A .5个B .4个C .3个D .2个3.(2018·广西桂林·中考真题)如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(12,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB AC ⊥交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .114b -≤≤B .514b -≤≤C .9142b -≤≤D .914b -≤≤二、填空题4.(2017·贵州黔南·中考真题)如图,在ABC 中,AB =2,AC =4,ABC 绕点C 按逆时针方向旋转得到A B C ''△,使CB '∥AB ,分别延长AB ,CA '相交于点D ,则线段BD 的长为__.5.(2016·四川资阳·中考真题)如图,在等腰直角△ABC 中,∠ACB=90°,CO ⊥AB 于点O ,点D 、E 分别在边AC 、BC 上,且AD=CE ,连结DE 交CO 于点P ,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④22222AD BE OP DP PE +-=⋅,其中所有正确结论的序号是___________.三、解答题6.(2019·广西梧州·中考真题)如图,在矩形ABCD 中,4,3AB BC ==,AF 平分DAC ∠,分别交,DC BC 的延长线于点,E F ;连接DF ,过点A 作AH DF ∕∕,分别交,BD BF 于点,G H .(1)求DE 的长;(2)求证:1DFC ∠=∠.7.(2012·浙江金华·中考真题)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.8.(2013·江苏盐城·中考真题)阅读材料:如图①,△ABC 与△DEF 都是等腰直角三角形,∠ACB=∠EDF=90°,且点D 在AB 边上,AB 、EF 的中点均为O,连结BF 、CD 、CO ,显然点C 、F 、O 在同一条直线上,可以证明△BOF ≌△COD ,则BF=CD解决问题:(1)将图①中的Rt △DEF 绕点O 旋转得到图②,猜想此时线段BF 与CD 的数量关系,并证明你的结论;(2)如图③,若△ABC 与△DEF 都是等边三角形,AB 、EF 的中点均为O,上述(1)中结论仍然成立吗?如果成立,请说明理由;如果不成立,请求出BF 与CD 之间的数量关系;(3)如图④,若△ABC 与△DEF 都是等腰三角形,AB 、EF 的中点均为O,且顶角∠ACB=∠EDF=α,请直接写出BF CD的值(用含α的式子表示出来).9.(2018·浙江舟山·中考真题)已知,ABC ∆中,B C ∠=∠,P 是BC 边上一点,作CPE BPF ∠=∠,分别交边AC ,AB 于点E ,F .(1)若CPE C ∠=∠(如图1),求证:PE PF AB +=.(2)若CPE C ∠≠∠,过点B 作CBD CPE ∠=∠,交CA (或CA 的延长线)于点D .试猜想:线段PE ,PF 和BD 之间的数量关系,并就CPE C ∠>∠情形(如图2)说明理由.(3)若点F 与A 重合(如图3),27C ∠= ,且PA AE =.①求CPE ∠的度数;②设PB a =,PA b =,AB c =,试证明:22a cb c-=.10.(2015·四川成都·中考真题)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB 的延长线相交于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.一、单选题BC=2,M为1.(2021·广西百色·中考真题)如图,矩形ABCD各边中点分别是E、F、G、H,AB=AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是()A .B .C .D .2.(2019·辽宁鞍山·中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF ;③BC CG1;④HOM HOG S S △△=2,其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④3.(2015·广西贵港·中考真题)如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列五个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠⑤S 四边形CDEF =52S △ABF ,其中正确的结论有( )A .5个B .4个C .3个D .2个二、填空题4.(2017·湖北十堰·中考真题)如图,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN=NF ;③38MB MG =;④S 四边形CGNF =S 四边形ANGD .其中正确的结论的序号是_______.5.(2015·四川南充·中考真题)如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连结DQ .给出如下结论:①DQ =1;②;③S △PDQ =;④cos ∠ADQ=.其中正确结论是_________.(填写序号)三、解答题6.(2021·内蒙古赤峰·中考真题)数学课上,有这样一道探究题.如图,已知ABC 中,AB =AC =m ,BC =n ,()0180BAC αα∠=︒<<︒,点P 为平面内不与点A 、C 重合的任意一点,将线段CP 绕点P 顺时针旋转a ,得线段PD ,E 、F 分别是CB 、CD 的中点,设直线AP 与直线EF 相交所成的较小角为β,探究EF AP 的值和β的度数与m 、n 、α的关系,请你参与学习小组的探究过程,并完成以下任务:(1)填空:【问题发现】小明研究了60α=︒时,如图1,求出了EF PA =___________,β=___________;小红研究了90α=︒时,如图2,求出了EF PA =___________,β=___________;【类比探究】他们又共同研究了α=120°时,如图3,也求出了EF PA ;【归纳总结】最后他们终于共同探究得出规律:EF PA =__________(用含m 、n 的式子表示);β=___________ (用含α的式子表示).(2)求出120α=︒时EF PA的值和β的度数.7.(2021·湖南岳阳·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,60A ∠=︒,点D 为AB 的中点,连接CD ,将线段CD 绕点D 顺时针旋转()60120αα︒<<︒得到线段ED ,且ED 交线段BC 于点G ,CDE ∠的平分线DM 交BC 于点H .(1)如图1,若90α=︒,则线段ED 与BD 的数量关系是________,GD CD=________;(2)如图2,在(1)的条件下,过点C 作//CF DE 交DM 于点F ,连接EF ,BE .①试判断四边形CDEF 的形状,并说明理由;②求证:BE FH =;(3)如图3,若2AC =,()tan 60m α-︒=,过点C 作//CF DE 交DM 于点F ,连接EF ,BE ,请直接写出BE FH的值(用含m 的式子表示).8.(2021·四川乐山·中考真题)在等腰ABC 中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),连结AD .(1)如图1,若60C ∠=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE ∠=________;(2)若60C ∠=°,将线段AD 绕点A 顺时针旋转60︒得到线段AE ,连结BE .①在图2中补全图形;②探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE==,且ADE C ∠=∠,试探究BE 、BD 、AC 之间满足的数量关系,并证明.9.(2020·湖北省直辖县级单位·中考真题)实践操作:第一步:如图1,将矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处,得到折痕DE ,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD 沿过点E 的直线折叠,点C 恰好落在AD 上的点C '处,点B 落在点B '处,得到折痕EF ,B C ''交AB 于点M ,C F '交DE 于点N ,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA D '的形状是_____________________;(2)如图2,线段MC '与ME 是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若2cm,'4cm AC DC '==,求:DN EN 的值.10.(2020·四川内江·中考真题)如图,正方形ABCD 中,P 是对角线AC 上的一个动点(不与A 、C 重合),连结BP ,将BP 绕点B 顺时针旋转90︒到BQ ,连结QP 交BC 于点E ,QP 延长线与边AD 交于点F .(1)连结CQ ,求证:AP CQ =;(2)若14AP AC =,求:CE BC 的值;(3)求证:PF EQ =.11.(2021·湖北十堰·中考真题)已知抛物线25y ax bx =+-与x 轴交于点()1,0A -和()5,0B -,与y轴交于点C ,顶点为P ,点N 在抛物线对称轴上且位于x 轴下方,连AN 交抛物线于M ,连AC 、CM .(1)求抛物线的解析式;(2)如图1,当tan 2ACM ∠=时,求M 点的横坐标;(3)如图2,过点P 作x 轴的平行线l ,过M 作MD l ⊥于D ,若MD =,求N 点的坐标.1.A【解析】【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±35(负数舍去),则NO=95,NC1=125,故点C的对应点C1的坐标为:(-95,125).故选A.【点拨】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.2.B【解析】【分析】①正确:证明∠EOB=∠EOC=45°,再利用三角形的外角的性质即可得出答案;②正确:利用四点共圆证明∠AFP=∠ABP=45°即可;③正确:设BE=EC=a,求出AE,OA即可解决问题;④错误:通过计算正方形ABCD的面积为48;⑤正确:利用相似三角形的性质证明即可.【详解】①正确:如图,连接OE,∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD,∴∠BOC=90°,∵BE=EC,∴∠EOB=∠EOC=45°,∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确;②正确:如图,连接AF,∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠PAF=∠PFA=45°,∴PA=PF,故②正确;③正确:设BE=EC=a,则AE,OA=OC=OB=OD a,∴AE AO AE ,故③正确;④错误:根据对称性可知,OPE OQE ≅△△,∴OEQ S △=12OPEQ S 四边形=2,∵OB =OD ,BE =EC ,∴CD =2OE ,OE ⊥CD ,∴ EQ OE 1==DQ CD 2, OEQ CDQ △△,∴ODQ S =4△, CDQ S =8△,∴CDO S =12△,∴ABCD S =48正方形,故④错误;⑤正确:∵∠EPF =∠DCE =90°,∠PEF =∠DEC ,∴EPF ECD △△,∴EF PE =ED EC,∴EQ =PE ,∴CE•EF =EQ•DE ,故⑤正确;综上所诉一共有4个正确,故选:B .【点拨】本题主要考查了三角形外角性质、四点共圆问题、全等与相似三角形的综合运用,熟练掌握相关概念与方法是解题关键.3.B【解析】【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PA NA NC=,设PA=x ,则NA=PN-PA=3-x ,设PB=y ,代入整理得到22393()24y x x x =-=--+,根据二次函数的性质以及12≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围.【详解】解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN ∠∠︒⎧⎨∠∠︒-∠⎩====,∴△PAB ∽△NCA ,∴PB PA NA NC=,设PA=x ,则NA=PN-PA=3-x ,设PB=y ,∴31y x x =-,∴22393()24y x x x =-=--+,∵-1<0,12≤x≤3,∴x=32时,y 有最大值94,此时b=1-94=-54,x=3时,y 有最小值0,此时b=1,∴b 的取值范围是-54≤b≤1.故选:B .【点拨】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.4.6.【解析】【详解】试题分析:∵将△ABC 绕点C 按逆时针方向旋转得到△A′B′C ,AB =2,AC =4,∴A′B′=AB =2,AC′=AC =4,∠CA′B′=∠A.又∵CB′∥AB ,∴∠A′CB′=∠A. ∴△A′CB′∽△DAC.∴CA A B AD AC'''=,即4284AD AD =⇒=. ∴BD=6.考点:1.旋转的性质;2.平行的性质;3.相似三角形的判定和性质.5.①②③④.【解析】【详解】试题分析:①正确.如图,∵∠ACB=90°,AC=BC ,CO ⊥AB∴AO=OB=OC ,∠A=∠B=∠ACO=∠BCO=45°,在△ADO 和△CEO 中,∵OA=OC ,∠A=∠ECO ,AD=CE ,∴△ADO ≌△CEO ,∴DO=OE ,∠AOD=∠COE ,∴∠AOC=∠DOE=90°,∴△DOE 是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D 、C 、E 、O 四点共圆,∴∠CDE=∠COE ,故②正确.③正确.∵AC=BC=1,∴S △ABC =12×1×1=12,S 四边形DCEO =S △DOC +S △CEO =S △CDO +S △ADO =S △AOC =12S △ABC =14,故③正确.④正确.∵D 、C 、E 、O 四点共圆,∴OP•PC=DP•PE ,∴22OP +2DP•PE=22OP +2OP•PC=2OP (OP+PC )=2OP•OC ,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE ,∴△OPE ∽△OEC ,∴OP OE OE OC =,∴OP•OC=2OE ,∴22OP +2DP•PE=22OE =2DE =22CD CE +,∵CD=BE ,CE=AD ,∴22222AD BE OP DP PE +=+⋅,∴22222AD BE OP DP PE +-=⋅.故④正确.考点:勾股定理;四点共圆.6.(1)32=DE ;(2)见解析.【解析】【分析】(1)由AD CF ∕∕,AF 平分DAC ∠,可得FAC AFC ∠=∠,得出5AC CF ==,可证出ADE FCE ∆∆∽,则AD DE CF CE =,可求出DE 长;(2)由ADG HBG ∆∆∽,可求出DG ,则DE DC DG DB=,可得EG BC ∕∕,则1AHC ∠=∠,根据DF AH ∕∕,可得AHC DFC ∠=∠,结论得证.【详解】(1)解:∵矩形ABCD 中, AD CF ∕∕,∴DAF ACF ∠=∠,∵AF 平分DAC ∠,∴DAF CAF ∠=∠,∴FAC AFC ∠=∠,∴AC CF =,∵4,3AB BC ==,∴5AC ==,∴5CF =,∵AD CF ∕∕,∴ADE FCE ∆∆∽,∴AD DECF CE =,设DE x =,则354xx =-,解得32x =∴32=DE ;(2)∵,AD FH AF DH ∕∕∕∕,∴四边形ADFH 是平行四边形,∴3AD FH ==,∴2,5CH BH ==∵AD BH ∕∕,∴ADG HBG ∆∆∽,∴DGADBG BH =,∴355DGDG =-,∴158DG =,∵32=DE ,∴45DE DCDG DB ==,∴EG BC ∕∕,∴1AHC ∠=∠,又∵DF AH ∕∕,∴AHC DFC ∠=∠,1DFC ∠=∠.【点拨】考核知识点:相似三角形综合运用.证明相似三角形,运用相似三角形性质是关键.7.(1)∠CC 1A 1=90°.(2)S △CBC1=254.(3)最小值为:EP 12.最大值为:EP 1= 7.【解析】【分析】(1)由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,又由等腰三角形的性质,即可求得∠CC 1A 1的度数.(2)由旋转的性质可得:△ABC ≌△A 1BC 1,易证得△ABA 1∽△CBC 1,利用相似三角形的面积比等于相似比的平方,即可求得△CBC 1的面积.(3)由①当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1最小;②当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,即可求得线段EP 1长度的最大值与最小值.【详解】解:(1)∵由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,∴∠CC 1B=∠C 1CB=45°.∴∠CC 1A 1=∠CC 1B+∠A 1C 1B=45°+45°=90°.(2)∵由旋转的性质可得:△ABC ≌△A 1BC 1,∴BA=BA 1,BC=BC 1,∠ABC=∠A 1BC 1.∴11BA BA BC BC =,∠ABC+∠ABC 1=∠A 1BC 1+∠ABC 1∴∠ABA 1=∠CBC 1.∴△ABA 1∽△CBC 1∴1122ABA CBC S AB 416S CB 525∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.∵S△ABA1=4,∴S△CBC1=254.(3)过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上.在Rt△BCD中,①如图1,当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小.最小值为:EP1=BP1﹣BE=BD﹣2.②如图2,当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大.最大值为:EP1=BC+BE=5+2=7.8.(1)根据等腰直角三角形和旋转的性质,由SAS证出△BOF≌△COD,即可得出结论.(2)不成立.根据等边三角形和旋转的性质,证出△BOF∽△COD,即可得出结论.(3)BFtan CD2α=.【解析】【详解】分析:(1)根据等腰直角三角形和旋转的性质,由SAS证出△BOF≌△COD,即可得出结论.(2)根据等边三角形和旋转的性质,证出△BOF∽△COD,即可得出结论.(3)如图,连接CO、DO,仿(2)可证△BOF∽△COD,从而BF BO CD CO=.由点O是AB的中点,可得CO⊥AB,∴BOtan2COα=.∴BFtanCD2α=.解:(1)相等.证明如下:如图,连接CO、DO,∵△ABC是等腰直角三角形,点O是AB的中点,∴BO=CO,CO⊥AB.∴∠BOC=900.同理,FO=DO,∠DOF=900.∴∠BOF=900+∠COF,∠COD=900+∠COF.∴∠BOF=∠COD.∴△BOF≌△COD(SAS).∴BF=CD.(2)不成立.如图,连接CO、DO,∵△ABC 是等边三角形,∴∠CBO=600.∵点O 是AB 的中点,∴CO ⊥AB ,即∠BOC=900.∴在Rt △BOC 中,CO tan CBO BO ∠==同理,∠DOF=900,DO FO =.∴CO DO BO FO=.又∵∠BOF=900+∠COF ,∠COD=900+∠COF.∴∠BOF=∠COD.∴△BOF ∽△COD.∴CD CO BF BO==∴CD =.(3)BF tan CD 2α=.9.(1)证明见解析;(2)猜想:BD PE PF =+,理由见解析;(3)①51CPE ∠= ;②证明见解析.【解析】【详解】【分析】(1)根据平行线的判定,得到//PE AF ,//PF AE ,证明PE AF =.即可证明PE PF AB +=. (2)过点B 作DC 的平行线交EP 的延长线于点G ,证明FBP ∆≌()GBP ASA ∆,得到PF PG =.证明四边形BGED 是平行四边形,即可得到BD EG PG PE PE PF ==+=+.(3)①设CPE BPF x ∠=∠=,27APE PEA C CPE x ∠=∠=∠+∠=+ ,根据三角形的内角和列出方程,求解即可.②延长BA 至M ,使AM AP =,连结MP ,证明 ABP PBM ∆~∆.根据相似三角形的性质得到BP BM AB BP=,即可证明.【解答】(1)∵B C ∠=∠,CPE BPF ∠=∠,CPE C ∠=∠,∴B BPF CPE ∠=∠=∠,BPF C ∠=∠,∴PF BF =,//PE AF ,//PF AE ,∴PE AF =.∴PE PF AF BF AB +=+=.(2)猜想:BD PE PF =+,理由如下:过点B 作DC 的平行线交EP 的延长线于点G ,则ABC C CBG ∠=∠=∠,∵CPE BPF ∠=∠,∴BPF CPE BPG ∠=∠=∠,又BP BP =,∴FBP ∆≌()GBP ASA ∆,∴PF PG =.∵CBD CPE ∠=∠,∴//PE BD ,∴四边形BGED 是平行四边形,∴BD EG PG PE PE PF ==+=+.(3)①设CPE BPF x ∠=∠=,∵27C ∠= ,PA AE =,∴27APE PEA C CPE x ∠=∠=∠+∠=+ ,又180BPA APE CPE ∠+∠+∠= ,即27180x x x +++= ,∴51x = ,即51CPE ∠= .②延长BA 至M ,使AM AP =,连结MP ,∵27C ∠= ,51BPA CPE ∠=∠= .∴180BAP B BPA ∠=-∠-∠ 102M MPA ==∠+∠ ,∵AM AP =,∴1512M MPA BAP ∠=∠=∠= ,∴M BPA ∠=∠,而B B ∠=∠,∴ABP PBM ∆~∆.∴BP BM AB BP=,∴2BP AB BM =⋅.∵PB a =,PA AM b ==,AB c =,∴()2a c b c =+,∴22a cb c-=.【点评】考查平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质, 综合性比较强,对学生综合能力要求较高.10.(1)证明见试题解析;(2)相切,理由见试题解析;(3)2.【解析】【分析】(1)由∠ABC=90°和FD ⊥AC ,得到∠ABF=∠EBF ,由∠DEC=∠BEF ,得到∠DCE=∠EFB ,从而得到△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.连接OB ,只需证明∠DBE+∠OBE=90°,即可得到OB ⊥BD ,从而有BD 与⊙O 相切;(3)连接EA ,EH ,由DF 为线段AC 的垂直平分线,得到AE=CE ,由△ABC ≌△EBF ,得到AB=BE=1,进而得到=故1BF BC ==即可得出结论24EF =+又因为BH 为角平分线,易证△EHF 为等腰直角三角形,故222EF HF =,得到22122HF EF ==△GHF ∽△FHB ,得到2HG HB HF ⋅=.【详解】解:(1)∵∠ABC=90°,∴∠CBF=90°,∵FD ⊥AC ,∴∠CDE=90°,∴∠ABF=∠EBF ,∵∠DEC=∠BEF ,∴∠DCE=∠EFB ,∵BC=BF ,∴△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.理由:连接OB ,∵DF 是AC 的垂直平分线,∴AD=DC ,∴BD=CD ,∴∠DCE=∠DBE ,∵OB=OF ,∴∠OBF=∠OFB ,∵∠DCE=∠EFB ,∴∠DBE=∠OBF ,∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°,∴OB ⊥BD ,∴BD 与⊙O 相切;(3)连接EA ,EH ,∵DF 为线段AC 的垂直平分线,∴AE=CE ,∵△ABC ≌△EBF ,∴AB=BE=1,∴=,∴1BF BC ==+∴(2222114EF BE BF =+=+=+,又∵BH 为角平分线,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF 为等腰直角三角形,∴222EF HF =,∴22122HF EF ==∵∠HFG=∠FBG=45°,∠GHF=∠GHF ,∴△GHF ∽△FHB ,∴HF HGHB HF =,∴2HG HB HF ⋅=,∴22HG HB HF ⋅==.【点拨】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.1.D【解析】【分析】把M 点的运动过程分为AE 段(0x ≤≤)和BE x ≤≤可知在AE 段HAE GHD EOM GPS S S S S S =+--△△△△,分别表示出四个三角形的面积即可用x 表示出S ;同理当在BE 段时1111HAE GHD EO M GP S S S S S S =+++△△△△,分别表示出四个三角形的面积即可用x 表示出S ;最后根据x与S 的函数关系式对图像进行判断即可【详解】解:如下图所示,当M 点的运动过程在AE 段则由题意可知HAE GHD EOM GPSS S S S S =+--△△△△∵四边形ABCD 是矩形,直线l ⊥AB ,H 、E 、F 、G 为AD 、AB 、BC 、CD 的中点∴=HAE GHD S S △△,=EOM GPSS S △△∴22HAE EOMS S S =-△△∵1=2HAE S AE AH △,11122AH AD BC ===,12AE AB ==∴1=2HAE S AE AH △∵直线l ⊥AB∴∠OME =∠A =90°∴△HAE ∽△OME ∴AH OM AE ME=∴OM =又∵ME AE AM x=-=∴)OM x ==∴)212EOM S OM ME x ==- △∴)222HAE EOM S S S x =-=△△如下图所示,当M 点的运动过程在BE 段同理当在BE 段时1111HAE GHD EO M GP S S S S S S =+++△△△△即1122HAE EO M S S S =+△△同理可以得到111O M E =11M E AM AE x =-=∴111O M E x ==∴11211112EO M S O M M E x ==- △∴11222HAE EO MS S S x=+=△△综上所述当M点的运动过程在AE段时)222HAE EOMS S S x=-=--△△,二次函数开口向下;当M 点的运动过程在BE段时2S x=,二次函数开口向上故选D.【点拨】本题主要考查了二次函数图像,矩形的性质,相似三角形等等知识点,解题的关键在于能够熟练掌握相关知识点进行求解运算.2.A【解析】【分析】由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG 且HO=12BG;由△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE 的外接圆上,根据圆周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,从而证得△EHM∽△GHF;设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出DN HNDC CG=,得到b2a a2a2b-=,即a2+2ab-b2=0,从而求得BC1CG-,设正方形ECGF的边长是2b,则,得到,通过证得△MHO∽△MFE,得到OM OHEM EF===1OMOE===,进一步得到1HOM HOMHOE HOGS SS S∆∆∆∆==.【详解】解:如图,∵四边形ABCD 和四边形CGFE 是正方形,∴BC =CD ,CE =CG ,∠BCE =∠DCG ,在△BCE 和△DCG 中,BC CD BCE DCGCE CG =⎧⎪∠=∠⎨⎪=⎩∴△BCE ≌△DCG (SAS ),∴∠BEC =∠BGH ,∵∠BGH+∠CDG =90°,∠CDG =∠HDE ,∴∠BEC+∠HDE =90°,∴GH ⊥BE .故①正确;∵△EHG 是直角三角形,O 为EG 的中点,∴OH =OG =OE ,∴点H 在正方形CGFE 的外接圆上,∵EF =FG ,∴∠FHG =∠EHF =∠EGF =45°,∠HEG =∠HFG ,∴△EHM ∽△GHF ,故②正确;∵△BGH ≌△EGH ,∴BH =EH ,又∵O 是EG 的中点,∴HO ∥BG ,∴△DHN ∽△DGC ,DN HN DC CG∴=设EC 和OH 相交于点N .设HN =a ,则BC =2a ,设正方形ECGF 的边长是2b ,则NC =b ,CD =2a ,222b a a a b-∴=即a 2+2ab ﹣b 2=0,解得:a =b =(﹣b ,或a =(﹣1b (舍去),212ab ∴=1BCCG ∴=故③正确;∵△BGH ≌△EGH ,∴EG =BG ,∵HO 是△EBG 的中位线,∴HO =12BG ,∴HO =12EG ,设正方形ECGF 的边长是2b ,∴EG =,∴HOb ,∵OH ∥BG ,CG ∥EF ,∴OH ∥EF ,∴△MHO △MFE ,∴OM OH EM EF ===∴EMOM ,∴1OMOE ===,∴1HOMHOES S ∆∆=-∵EO =GO ,∴S △HOE =S △HOG ,∴1HOMHOGS S ∆∆=-故④错误,故选A .【点拨】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.3.B【解析】【详解】过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE AF BC CF =,∵AE=12AD=12BC ,∴12AF CF =,∴CF=2AF ,故②正确,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM=DE=12BC ,∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF=DC ,故③正确;设AD=a ,AB=b ,易知△BAE ∽△ADC ,有A D AD B AE C =,即2a b a b=∵tan ∠CAD==CD b AD a ,∴tan ∠④错误;∵△AEF ∽△CBF ,∴12EF AE BF BC ==,∴S △AEF =12S △ABF ,S △ABF =16S 矩形ABCD ,∵S △ABE =14S 矩形ABCD ,S △ACD =12S 矩形ABCD ,∴S △AEF =112S 四边形ABCD ,又∵S 四边形CDEF =S △ACD ﹣S △AEF =12S 矩形ABCD ﹣112S 矩形ABCD =512S 矩形ABCD ,∴S 四边形CDEF =52S △ABF ,故⑤正确;故选B .考点:1.相似三角形的判定与性质;2.矩形的性质;3.综合题.4.①③.【解析】【详解】试题分析:①易证△ABF ≌△BCG ,即可解题;②易证△BNF ∽△BCG ,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题.①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF=,∵S△ABF=AFBN=ABBF,∴BN=,NF=BN=,∴AN=AF﹣NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,,解得:MN=,∴BM=BN﹣MN=,MG=BG﹣BM=,∴,③正确;④连接AG,FG,根据③中结论,则NG=BG﹣BN=,∵S四边形CGNF=S△CFG+S△GNF=CGCF+NFNG=1+,S四边形ANGD=S△ANG+S△ADG=ANGN+ADDG=,∴S四边形CGNF≠S四边形ANGD,④错误;故答案为①③.考点:全等三角形的判定和性质,相似三角形的判定和性质.5.①②④【解析】【分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图2,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图3.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图4.易得DP∥NQ∥AB,根据平行线分线段成比例可得32DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图2.则有CP=12,=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得则=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图3.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图4.易得DP ∥NQ ∥AB ,根据平行线分线段成比例可得32DN PQ AN BQ ==,则有312DN DN =-,解得:DN=35.由DQ=1,得cos ∠ADQ=35DN DQ =.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点拨】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.6.(1)【问题发现】12,60°,45°;【类比探究】见(2)题的解析;【归纳总结】2n m ,1802a ︒-;(2),30°【解析】【分析】(1)当60α=︒时,△ABC 和△PDC 都是等边三角形,可证△ACP ∽△ECF ,从而有12EF AP =,∠Q =β=∠ACB =60°;当90α=︒时,△ABC 和△PDC 都是等腰直角三角形,同理可证△ACP ∽△ECF 即可解决,依此可得出规律;(2)当120α=︒,可证CE AC =,CF CP =CE CA CF CP =,由∠ECF =∠ACP ,可得△PCA ∽△FCE 即可解决问题.【详解】(1)【问题发现】如图1,连接AE ,PF ,延长EF 、AP 交于点Q ,当60α=︒时,△ABC 和△PDC 都是等边三角形,∴∠PCD =∠ACB =60°,PC =CD ,AC =CB ,∵F 、E 分别是CD 、BC 的中点,∴12CF PC =,12CE AC =,∴CF CE PC AC=,又∵∠ACP =∠ECF ,∴△ACP ∽△ECF ,∴12EF AP =,∠CEF =∠CAP ,∴∠Q =β=∠ACB =60°,当90α=︒时,△ABC 和△PDC 都是等腰直角三角形,如图2,连接AE ,PF ,延长EF 、AP 交于点Q ,∴∠PCD =∠ACB =45°,PC CD ,AC ,∵F 、E 分别是CD 、BC 的中点,∴CE AC =,CF PC =∴CF CE PC AC=,又∵∠ACP=∠ECF,∴△ACP∽△ECF,∴EFAP==,∠CEF=∠CAP,∴∠Q=β=∠ACB=45°,【归纳总结】由此,可归纳出22nEF CE nAP AC m m===,β=∠ACB=1802a︒-;(2)当120α=︒,连接AE,PF,延长EF、AP交于点Q,∵AB=AC,E为BC的中点,∴AE⊥BC,∠CAE=60°∴sin60°=CEAC=,同理可得:CFCP=∴CE CFAC CP=,∴CE CACF CP=,又∵∠ECF=∠ACP,∴△PCA∽△FCE,∴EF ECAP AC==∠CEF=∠CAP,∴∠Q=β=∠ACB=30°.【点拨】本题主要考查了三角形相似的判定与性质,通过解决本题感受到:图形在变化但解决问题的方法不变,体会“变中不变”的思想.7.(1)ED BD =(2)①正方形,理由见解析;②见解析;(3【解析】【分析】(1)根据“斜中半”定理可得CD AD BD ==,然后根据旋转的性质可得CD ED =,从而得出ED BD =,再结合题意推出30B DCG ∠=∠=︒,从而根据正切函数的定义求出GD CD即可;(2)①通过证明CDF EDF △≌△,并综合条件//CF DE ,推出四边形CDEF 是正方形;②首先根据CFH DGH △△∽推出DH DG FH CD ==GBE GDH △≌△得到BE DH =,即可得出结论;(3)根据题意可首先证明四边形CDEF 是菱形,然后证明出EBG HFC △△∽,即可推出结论BE BG FH FC =,再作DK CG ⊥,通过解直角三角形,求出BG 的长度,从而得出结论.【详解】(1)∵点D 为Rt ABC 中斜边AB 的中点,∴CD AD BD ==,∵线段CD 绕点D 顺时针旋转得到线段ED ,∴CD ED =,∴ED BD =,∵Rt ABC 中,90ACB ∠=︒,60A ∠=︒,∴30B ∠=︒,∵CD BD =,∴30B DCG ∠=∠=︒,∴在Rt DCG 中,tan tan 30GD DCG CD =∠=︒=故答案为:ED BD =(2)①正方形,理由如下:∵90α=︒,DM 平分CDE ∠,∴90CDE ∠=︒,CDF EDF ∠=∠,∵CD ED =,DF DF =,∴()CDF EDF SAS △≌△,∴DCF DEF ∠=∠,∵//CF DE ,∴180FCD CDE ∠+∠=︒,∴90FCD ∠=︒,∴90DCF DEF CDE ∠=∠=∠=︒,∴四边形CDEF 为矩形,又∵CD ED =,∴四边形CDEF 为正方形;②显然,在正方形CDEF 中,CFH GDH △△∽,∴DH DG FH CF=,又∵CD CF =,∴DH DG FH CD ==由(1)得:60,,A CD AD ∠=︒=则ACD △为等边三角形,∴60ADC ∠=︒,∵90CDE ∠=︒,∴30GDB ∠=︒,∴GDB GBD ∠=∠,GD GB =,又∵DE DB =,∴()1180752DBE DEB GDB ∠=∠=︒-∠=︒,∴753045GBE ∠=︒-︒=︒,∵45GDH ∠=︒,∴GBE GDH∠=∠在GBE 与GDH 中,GDH GBE GD GBDGH BGE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GBE GDH ASA △≌△,∴BE DH =,∴BE DH DG FH FH CD ===(3)同(2)中①理,CDF EDF △≌△,∴CDF EDF ∠=∠,CFD EFD ∠=∠,∵//CF DE ,∴CFD EDF ∠=∠,∴CFD CDF ∠=∠,EDF EFD ∠=∠,∴CF CD =,ED EF =,∴四边形CDEF 为菱形,∵ACD △为等边三角形,∴2AC CD AD BD ====,菱形的边长也为2,由题意,2HDG α∠=,13022DEB DBE ADE α∠=∠=∠=︒+,∵30DBG ∠=︒,∴2EBG α∠=,即:HDG EBG ∠=∠,∴EBG HDG △△∽,∵在菱形CDEF 中,HFC HDG △△∽,∴EBG HFC △△∽,∴BE BG FH FC=,如图,作DK CG ⊥,∵30DCK ∠=︒,∴60CDK ∠=︒,60KDG α∠=-︒,∵2CD =,∴1DK =,CK =在Rt KDG △中,()tan tan 60GK KDG m DKα=∠=-︒=,∴GK m =,∴CG m =,在Rt ABC 中,BC ==∴BG BC CG m m =-==,∵2CF CD ==,∴BE BG FH FC ==.【点拨】本题考查相似三角形的判定与性质,特殊平行四边形的判定与性质,以及锐角三角函数等,综合性较强,掌握基本图形的性质,灵活运用相似三角形以及锐角三角函数是解题关键.8.(1)30°;(2)①见解析;②CD BE =;见解析;(3)()AC k BD BE =+,见解析【解析】【分析】(1)先根据题意得出△ABC 是等边三角形,再利用三角形的外角计算即可(2)①按要求补全图即可②先根据已知条件证明△ABC 是等边三角形,再证明AEB ADC △≌△,即可得出CD BE=(3)先证明AC BC AD DE=,再证明ACB ADE △∽△,得出BAC EAD ∠=∠,从而证明AEB ADC △≌△,得出BD BE BC +=,从而证明()AC k BD BE =+【详解】解:(1)∵AB AC =,60C ∠=°∴△ABC 是等边三角形∴∠B =60°∵点D 关于直线AB 的对称点为点E∴AB ⊥DE ,∴BDE ∠=30︒故答案为:30︒;(2)①补全图如图2所示;②CD 与BE 的数量关系为:CD BE =;证明:∵AB AC =,60BAC ∠=︒.∴ABC 为正三角形,又∵AD 绕点A 顺时针旋转60︒,∴AD AE =,60EAD ∠=︒,∵60BAD DAC ∠+∠=︒,60BAD BAE ∠+∠=︒,∴BAE DAC ∠=∠,∴AEB ADC △≌△,∴CD BE =.(3)连接AE .∵AB AD k BC DE ==,AB AC =,∴AC AD BC DE =.∴AC BC AD DE=.又∵ADE C ∠=∠,∴ACB ADE △∽△,∴BAC EAD ∠=∠.∵AB AC =,∴AE AD =,∴BAD DAC BAD BAE ∠+∠=∠+∠,∴DAC BAE ∠=∠,∴AEB ADC △≌△,CD BE =.∵BD DC BC +=,∴BD BE BC +=.又∵AC k BC=,∴()AC k BD BE =+.【点拨】本题考查相似三角形的证明及性质、全等三角形的证明及性质、三角形的外角、轴对称,熟练进行角的转换是解题的关键,相似三角形的证明是重点9.(1)正方形;(2)MC ME '=,见解析;(3)25【解析】【分析】(1)有一组邻边相等且一个角为直角的平行四边形是正方形;(2)连接EC ',由(1)问的结论可知,90AD BC EAC B '=∠=∠=︒,,又因为矩形纸片ABCD 沿过点E 的直线折叠,可知折叠前后对应角以及对应边相等,有B B '∠=∠,B C BC ''=,90AE B C EAC B ''''=∠=∠=︒,,可以证明Rt EC A ' 和Rt C EB '' 全等,得到C EA EC B '''∠=∠,从而有MC ME '=;(3)由Rt EC A Rt C EB ''' ≌,有AC B E ''=;由折叠知,AC BE '=,可以计算出()8cm AB =;用勾股定理计算出DF 的长度,再证明DNF ENG ∽得出等量关系,从而得到:DN EN 的值.【详解】(1)解:∵ABCD 是平行四边形,∴'////AD BC EA ,'//AE DA ∴四边形'AEA D 是平行四边形∵矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处∴'AED A ED≌∴'AE A E=∵90A ∠=∴四边形AEA D '的形状是正方形故最后答案为:四边形AEA D '的形状是正方形;(2)MC ME'=理由如下:如图,连接EC ',由(1)知:AD AE=∵四边形ABCD 是矩形,∴90AD BC EAC B '=∠=∠=︒,由折叠知:B C BC B B'''=∠=∠,∴90AE B C EAC B ''''=∠=∠=︒,。
中考数学三角形知识点总结归纳
中考数学三角形知识点总结归纳提高学习效率并非一朝一夕之事,需要长期的探索和积累,前人的经验是可以借鉴的,但必须充分结合自己的特点。
下面是小编为大家整理的关于中考数学三角形知识点总结,希望对您有所帮助!初中数学三角形知识点总结一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。
2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。
二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。
在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
2019年四川省中考数学真题汇编专题05 三角形
∵AD:DC=1:2,
∴S△BDC=2S△ABD=8S,S 四边形 CDOE=7S,
∴S△AEC=9S,S△ABE=3S,
D.2:3
∴
.
故选:B.
6.(2019 四川自贡)如图,已知 A、B 两点的坐标分别为(8,0)、(0,8),点 C、F 分别 是直线 x=﹣5 和 x 轴上的动点,CF=10,点 D 是线段 CF 的中点,连接 AD 交 y 轴于点 E, 当△ABE 面积取得最小值时,tan∠BAD 的值是( )
∵tan∠EAO=
,
∴
,
∴OE= ,
∴AE=
,
作 EH⊥AB 于 H. ∵S△ABE= •AB•EH=S△AOB﹣S△AOE,
∴EH=
,
∴AH=
,
∴tan∠BAD=
,
故选:B.
二、填空题
7.(2019 四川广安)等腰三角形的两边长分别为 6cm,13cm,其周长为
cm.
【答案】32.
【解析】解:由题意知,应分两种情况:
∴∠BAC=2∠BAD=80°
∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°
故选:C.
3.(2019 四川南充)如图,在△ABC 中,AB 的垂直平分线交 AB 于点 D,交 BC 于点 E,
若 BC=6,AC=5,则△ACE 的周长为( )
A.8
B.11
【答案】B.
【解析】解:∵DE 垂直平分 AB,
故选:C.
2.(2019 四川眉山)如图,在△ABC 中,AD 平分∠BAC 交 BC 于点 D,∠B=30°,∠ADC
=70°,则∠C 的度数是( )
A.50°
B.60°
中考数学黄金知识点系列专题三角形5
专题25 三角形聚焦考点☆温习理解一、三角形1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
2、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
3、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
二、全等三角形1、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)2.全等三角形的性质:三、等腰三角形1、等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(完整版)初三三角形的知识点总结
(完整版)初三三角形的知识点总结初三三角形的知识点总结
本文将为大家总结初三阶段研究的三角形的知识点,帮助大家加深对该概念的理解。
1. 三角形的定义
三角形是由三条线段组成的图形,其中每个线段都与其他两个线段相交在一个顶点。
三角形有各种类型,包括等边三角形、等腰三角形和普通三角形。
2. 三角形的分类
- 等边三角形:三条边的长度都相等。
- 等腰三角形:两条边的长度相等。
- 直角三角形:一个角是直角(90度角)。
- 钝角三角形:一个角大于90度。
- 锐角三角形:三个角都小于90度。
3. 三角形的性质
- 三角形内角和等于180度,即三个角的度数加起来为180度。
- 等边三角形的三个角都是60度。
- 等腰三角形的底边上的两个角相等。
- 直角三角形的一个角是90度。
- 两个角相等的三角形一定是等腰三角形。
- 两个边长相等的三角形一定是等边三角形。
4. 三角形的计算
- 三角形的周长等于三条边长之和。
- 使用勾股定理可计算直角三角形的斜边长。
- 使用正弦定理和余弦定理可计算任意三角形的边长和角度。
5. 三角形的应用
三角形的概念在很多实际问题中都有广泛应用,例如测量建筑
物的高度、计算地形的起伏、解决航海和航空中的导航问题等。
总结:初三三角形的知识点包括三角形的定义、分类、性质、计算方法和应用。
理解三角形的概念对于解决实际问题和进一步学习数学都是重要的基础。
中考数学三角形知识点总结
中考数学三角形知识点总结一、三角形的基础概念三角形呢,就是由三条线段首尾顺次相接组成的封闭图形。
这三条线段就叫做三角形的边,相邻两边组成的角就叫做三角形的内角,简称角。
三角形的角那可太重要啦,就像人的眼睛一样关键呢。
三角形有三个角,这三个角的和永远是180度哦,这可是个铁打的定律,就像太阳每天都会升起一样。
二、三角形的分类1. 按角来分的话,可以分成锐角三角形、直角三角形和钝角三角形。
锐角三角形就是三个角都是锐角的三角形,锐角就是小于90度的角啦。
直角三角形呢,有一个角是直角,也就是90度的角,这个直角就像三角形里的大明星一样,特别显眼。
钝角三角形就是有一个角是钝角,钝角是大于90度小于180度的角,这种三角形看起来就有点“歪歪扭扭”的。
2. 按边来分,有等边三角形、等腰三角形和不等边三角形。
等边三角形可厉害了,它的三条边都相等,三个角也都相等,每个角都是60度呢,就像三个好兄弟一样,完全一样,特别团结。
等腰三角形就是有两条边相等的三角形,这两条相等的边叫做腰,另一条边叫做底边。
等腰三角形的两个底角也是相等的,就像双胞胎一样。
不等边三角形就是三条边都不相等的三角形,这种三角形就比较普通啦。
三、三角形的性质1. 三角形的两边之和大于第三边,这就好比你要去两个地方,你肯定是直接走过去比绕远路要近,三角形的边也是这个道理。
比如说一个三角形的三条边分别是3、4、5,那3 + 4肯定大于5啦。
2. 三角形的稳定性。
这可是三角形的一个超酷的特性哦。
你看生活中的很多东西都利用了三角形的稳定性,像自行车的车架,就是三角形的结构,这样自行车骑起来才稳稳当当的,要是车架是四边形的,那可就东倒西歪啦。
四、三角形的高、中线和角平分线1. 高呢,就是从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段就叫做三角形的高。
每个三角形都有三条高呢,不过不同类型的三角形高的位置不太一样哦。
锐角三角形的三条高都在三角形的内部,直角三角形的两条直角边就是两条高,另一条高在三角形的内部,钝角三角形有两条高在三角形的外部,一条高在内部。
2024年九年级数学中考专题:二次函数相似三角形问题 课件
04
方法归纳
四、方法归纳
在平面直角坐标系中,二次函数背景下 当两个三角形相似,求点的坐标,一般 情况下,相似的两个三角形都是特殊的 三角形(常见直角三角形),且有一条 直角边在坐标轴上,或者垂直平行坐标 轴,结合相似三角形模型,对应边成比 例,求出点的坐标即可
05
学以致用
五、学以致用
如图,抛物线经过A(4,0),B(1,0),C(0,−2)三点。 (1)求出抛物线的解析式; (2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以 A,P,M为顶点的三角形与ΔOAC相似?若存在,请求出符合条件的点P的 坐标;若不存在,请说明理由
一、相似三角形
相似三角形判定:(1)两角对应分别相等的两个三角形相似。 (2)三边对应成比例的两个三角形相似。 (3)两边对应成比例且它们的夹角相等的两个三角形 相似。
02
相似三角形模型
(1) A字型(反A型)
二、相似三角形模型
(2)8字型(反8型)
(3)一线三垂直
二
例题讲解
三、例题讲解
抛物线与x轴交于A、B两点,与y轴交于点C,且点A的坐标为(-3,0),顶点D 的坐标为(-1,4) (1)求抛物线的表达式和B、C两点的坐标 (2)连接AD 、 AC 、 CD 、 BC,在y轴上是否存在点M,使得以M 、B 、 C 为顶点的三角形与ΔACD相似?若存在,请求出点M的坐标;若不存在,请 说明理由
中考专题: 二次函数三角形相似问题
目录
01
02
03
04 05
相
相
例
方
学
似
似
题
法
以
三
三
讲
归
中考数学复习专题(五)解直角三角形的实际应用(含答案)
(湖南株洲第23题)如图示一架水平飞行的无人机AB 的尾端点A 测得正前方的桥的左端点P 的俯角为α其中tanα=23,无人机的飞行高度AH 为5003米,桥的长度为1255米. ①求点H 到桥左端点P 的距离;②若无人机前端点B 测得正前方的桥的右端点Q 的俯角为30°,求这架无人机的长度A B .【答案】①求点H 到桥左端点P 的距离为250米;②无人机的长度AB 为5米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC =AH =5003,∠BQC =30°, ∴CQ =tan 30BC︒=1500米,∵PQ =1255米,∴CP =245米,∵HP =250米,∴AB =HC =250﹣245=5米.答:这架无人机的长度AB 为5米..考点:解直角三角形的应用﹣仰角俯角问题.(内蒙古通辽第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角030=⊥EOA ,在OB 的位置时俯角060=∠FOB .若EF OC ⊥,点A 比点B 高cm 7.求(1)单摆的长度(7.13≈);(2)从点A 摆动到点B 经过的路径长(1.3≈π).【答案】(1)单摆的长度约为18.9cm(2)从点A摆动到点B经过的路径长为29.295cm则在Rt△AOP中,OP=OAcos∠AOP=12 x,在Rt△BOQ中,OQ=OBcos∠BOQ=32x,由PQ=OQ﹣OP 3﹣12x=7,解得:x3(cm),.答:单摆的长度约为18.9cm;(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB3,∴∠AOB=90°,则从点A摆动到点B经过的路径长为907+73180π⨯()≈29.295,答:从点A摆动到点B经过的路径长为29.295cm.考点:1、解直角三角形的应用﹣仰角俯角问题;2、轨迹.(湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD 两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【答案】4.2m.考点:解直角三角形的应用.(海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度B C.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.(乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救≈≈≈,结果取整数)援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】试题分析:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.试题解析:辅助线如图所示:答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题(浙江省绍兴市)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)【答案】(1)38°;(2)20.4m.【解析】试题分析:(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.试题解析:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.考点:1.解直角三角形的应用﹣仰角俯角问题;2.应用题;3.等腰三角形与直角三角形.(·湖北随州·8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.解:如图,过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=1620×=810,∵BC=857.5,CF=EG,∴BF=BC﹣CF=47.5,在Rt△BEF中,tan∠BEF=,∴EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=,∴AF=EF×tan∠AEF,∴x+47.5=3×47.5,∴x=95,答:雕像AB的高度为95尺.2. (·吉林·7分)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)解:如图,∠B=α=43°,在Rt△ABC中,∵sinB=,∴AB=≈1765(m).答:飞机A与指挥台B的距离为1765m.3.(·江西·8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.4. (·辽宁丹东·10分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.5.(·四川宜宾)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A 点的仰角β=60°,求树高AB(结果保留根号)解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.6.(·湖北黄石·8分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米.(·湖北荆门·6分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小和小明同时分别从A处和B 处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小的行走速度为米/秒.若小明与小同时到达山顶C处,则小明的行走速度是多少?解:过点C 作CD ⊥AB 于点D ,设AD =x 米,小明的行走速度是a 米/秒, ∵∠A =45°,CD ⊥AB ,∴AD =CD =x 米, ∴AC =x .在Rt △BCD 中, ∵∠B =30°, ∴BC ===2x ,∵小的行走速度为米/秒.若小明与小同时到达山顶C 处,∴=,解得a =1米/秒.答:小明的行走速度是1米/秒.8.(·四川内江)(9分)如图,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B 两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).[考点]三角函数、解决实际问题。
中考数学三角形知识点总结
中考数学三角形知识点总结一、三角形的定义和性质1.三角形是由三条边和三个内角组成的封闭图形。
2.三角形的内角和等于180度。
3.三条边的和大于第三边,任意两边之差小于第三边。
二、三角形的分类1.根据角度分类:(1)锐角三角形:三个内角都是锐角的三角形。
(2)直角三角形:有一个内角为直角的三角形。
(3)钝角三角形:有一个内角为钝角的三角形。
2.根据边长分类:(1)等边三角形:三条边长度相等的三角形。
(2)等腰三角形:有两条边长度相等的三角形。
(3)普通三角形:三条边长度都不相等的三角形。
三、三角形的重要性质1.三角形的内角和定理:三角形的三个内角和等于180度。
2.三角形的外角和定理:三角形的一个外角等于其两个不相邻内角。
3.三角形的角平分线:三角形的内角平分线上的点到三条边的距离相等。
4.三角形的中线:三角形的中线连接相邻顶点的中点,长度相等。
5.三角形的高:三角形的高是从顶点到底边的垂直线段。
6.三角形的面积公式:S=1/2*底边长*高。
四、三角形的相似性质1.相似三角形的性质:(1)对应角相等:相似三角形的对应角相等。
(2)对应边成比例:相似三角形的对应边成比例。
(3)边角对应:相似三角形的角与边成比例。
2.判定相似三角形的定理:(1)AA相似判定定理:如果两个三角形的两个角分别相等,则它们相似。
(2)SAS相似判定定理:如果两个三角形的一个角相等,并且两个对应边的比值相等,则它们相似。
(3)SSS相似判定定理:如果两个三角形的三条边的比值相等,则它们相似。
五、三角形的勾股定理1.勾股定理的形式:直角三角形中,较长的斜边的平方等于两直角边的平方和。
(1)a²=b²+c²(2)b²=a²-c²(3)c²=a²-b²2.利用勾股定理求三角形的边长:(1)已知直角边和斜边,可以求另一个直角边的长度。
(2)已知两个直角边的长度,可以求斜边的长度。
2021年九年级数学中考复习——几何小专题:三角形综合之解答题专项(五)
2021年九年级数学中考复习——几何小专题:三角形综合之解答题专项(五)1.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上,连接BE、CE.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF.(3)在(2)的条件下,若∠BAC=45°,判断△CFE的形状,并说明理由.2.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F.(1)如图1,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD=BC.他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.①下面是小东证明该猜想的部分思路,请补充完整:ⅰ)在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与全等,判定它们全等的依据是;ⅱ)由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=°;…②请直接利用ⅰ),ⅱ)已得到的结论,完成证明猜想BE+CD=BC的过程.(2)如图2,若∠ABC=40°,求证:BF=CA.3.已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上,且PM=PN,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,CN与AC之间的数量关系;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,且∠MAN+∠MPN =180°,若AC:PC=2:1,PC=4,求四边形ANPM的面积.4.在△ABC中,AB=AC,以BC为边作等边△BDC,连接AD.(1)如图1,直接写出∠ADB的度数;(2)如图2,作∠ABM=60°在BM上截取BE,使BE=BA,连接CE,判断CE与AD 的数量关系,请补全图形,并加以证明;(3)在(2)的条件下,连接DE,AE.若∠DEC=60°,DE=2,求AE的长.5.如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC 的延长线于点G,AG=5CG,BH=3.求CG的长.6.如图1,∠ACB=∠AED=90°,AC=BC,AE=DE.(1)若D为AC的中点,求的值;(2)将图1中的△ADE绕点A顺时针旋转,使点D落任AB上,如图2,F为DB的中点.①画出△DEF关于点F成中心对称的图形,②求的值;(3)如图3,将△ADE绕点A顺时针旋转,F为BD的中点,当AC=6,AD=4时,则CF的最大值为(直接写出结果).7.(1)如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E证明:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,请问结论DE=BD+CE是否成立,若成立,请你给证明:若不存在,请说明理由.(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,D、A、E 三点都在直线m上,且∠BDA=∠AEC=∠BAC,只出现m与BC的延长线交于点F,若BD=5,DE=7,EF=2CE,求△ABD与△ABF的面积之比.8.如图1,在平面直角坐标系中,△ABC的顶点A(﹣3,0)、B(0,3),AD⊥BC交BC于D点,交y轴正半轴于点E(0,t)(1)当t=1时,求C点的坐标;(2)如图2,求∠ADO的度数;(3)如图3,已知点P(0,2),若PQ⊥PC,PQ=PC,求Q的坐标(用含t的式子表示).9.用一条直线分割一个三角形,如果能分割出等腰三角形,那么就称这条直线为该三角形的一条等腰分割线.在直角三角形ABC中,∠C=90°,AC=8,BC=6.(1)如图(1),若O为AB的中点,则直线OC△ABC的等腰分割线(填“是”或“不是”)(2)如图(2)已知△ABC的一条等腰分割线BP交边AC于点P,且PB=PA,请求出CP的长度.(3)如图(3),在△ABC中,点Q是边AB上的一点,如果直线CQ是△ABC的等腰分割线,求线段BQ的长度等于.(直接写出答案).10.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b且填空:当点A 位于时,线段AC的长取得最大值,且最大值为(用含a、b的式子表示).(2)应用:点A为线段BC外一动点,且BC=4,AB=2,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.参考答案1.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠CAD+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠CAD=∠CBF;(3)△CEF是等腰直角三角形,理由:∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,在△AEF和△BCF中,∴△AEF≌△BCF(ASA),∴EF=CF,∵∠CFE=90°,∴△CFE为等腰直角三角形.2.解:(1)BC=CD+BE①如图1,在BC上取一点M,使BM=BE,∵BD,CE是△ABC的两条角平分线,∴∠FBC=∠ABC,∠BCF=∠ACB,在△ABC中,∠A+∠ABC+∠ACB=180°,∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BFC=180°﹣(∠CBF+∠BCF)=180°﹣(∠ABC+∠ACB)=120°,∴∠BFE=60°;故答案为:△BMF,SAS,60;②由①知,∠BFE=60°,∴∠CFD=∠BFE=60°∵BD是∠ABC的平分线,∴∠EBF=∠MBF,在△BEF和△BMF中,,∴△BEF≌△BMF(SAS),∴∠BFE=∠BFM=60°,∴∠CFM=∠BFC﹣∠BFM=60°,∴∠CFM=∠CFD=60°,∵CE是∠ACB的平分线,∴∠FCM=∠FCD,在△FCM和△FCD中,∴△FCM≌△FCD(ASA),∴CM=CD,∴BC=CM+BM=CD+BE;(2)如图2,在△ABC中,∠A=60°,∠ABC=40°,∴∠ACB=80°,∵BD,CE是△ABC的两条角平分线,∴∠ABD=∠CBD=∠ABC=20°,∠BCE=∠ACE=∠ACB=40°,∴∠AEC=∠ABC+∠BCE=80°,∠ABC=∠BCE,∴BE=CE,在△ABC的边AB左侧作∠ABG=20°,交CE的延长线于G,∴∠FBG=∠ABD+∠ABG=40°=∠ACE.∵∠AEC=80°,∴∠BEG=80°,∴∠G=180°﹣∠ABG﹣∠BEG=80°=∠BEG=∠AEC,∴BG=BE,∴BG=CE,在△BGF和△CEA中,,∴△BGF≌△CEA,∴BF=AC.3.(1)证明:∵点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,∴PB=PC,在Rt△PBM和Rt△PCN中,,∴Rt△PBM≌Rt△PCN,∴BM=CN;(2)AM+CN=AC,理由如下:在Rt△PBA和Rt△PCA中,,∴Rt△PBA≌Rt△PCA,∴AB=AC,∴AM+CN=AM+BM=AB=AC,故答案为:AM+CN=AC;(3)∵AC:PC=2:1,PC=4,∴AC=8,∵PB⊥AE,PC⊥AF,∴∠ABP=∠ACP=90°,∴∠MAN+∠BPC=180°,又∵∠MAN+∠MPN=180°,∴∠MPB=∠NPC,在△PBM和△PCN中,,∴△PBM≌△PCN,∴四边形ANPM的面积=四边形ABPC的面积=×8×4×2=32.4.解:(1)如图1中,∵△BDC是等边三角形,∴BD=DC,∠BDC=60°,在△ADB和△ADC中,,∴△ADB≌△ADC,∴∠ADB=∠ADC,∵∠ADB+∠ADC=360°﹣60°,∴∠ADB=150°,故答案为150°.(2)结论:CE=AD.理由:∵∠ABE=∠DBC=60°∴∠ABE﹣∠DBM=∠DBC﹣∠DBM ∴∠1=∠2,∵AB=BE,BD=DC∴△ABD≌△EBC∴CE=AD.(3)解:∵△ABD≌△EBC∴∠BCE=∠BDA=150°∵∠DCE=90°,∠DEC=60°∴∠CDE=30°∵DE=2∴CE=1,DC=BC=,∵∠BDE=60°+30°=90°DE =2,BD=由勾股BE=,∵∠ABE=60°AB=BE∴△ABE是等边三角形∴AE=BE=.5.(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB;(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,在△ACD和△OCE中,,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,在△COE和△BOE中,,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(3)取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,∵∠GCD=∠GCE+60°=∠CDA+60°,∴∠GCE=∠CDA,在△CEG和△DCO中,,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.6.解:(1)如图1中,作EQ⊥AC于Q.∵△ADE是等腰直角三角形,∴EQ=QA=QD,设EQ=QA=QD=a,∵AD=DC,∴AD=DC=2a,BC=AC=4a,∴在Rt△CDB中,BD==2a,在Rt△CQE中,EC==a,∴==.(2)①如图2中,△DEF关于点F对称的△FBH如图所示;②连接CF、CH.∵△FDE≌△FBH,∴DE=BH=AE,∠EDF=∠FBH=135°,EF=FH,∵∠ABC=45°,∴∠CBH=90°=∠CAE,∵CA=CB,∴△CAE≌△CBH,∴EC=CH,∠ACE=∠BCH,∴∠ECH=∠ACB=90°,∴△ECH是等腰直角三角形.∵EF=FH,∴CF⊥EH,CF=EF=FH,∴△ECF是等腰直角三角形,∴EC=EF,∴=.(3)如图3中,延长EF到H,使得EF=FH.连接CF、CH,延长ED交BC于K.∵∠ACK=∠AEK=90°,∴∠CAE+∠EKC=180°,∵∠EKC+∠EKB=180°,∴∠CAE=∠EKB,∵DF=FB,∠DFE=∠BFH,FE=FH,∴△DFE≌△BFH,∴DE=BH=QE,∠DEF=∠FHB,∴EK∥BH,∴∠EKB=∠CBH,∴∠CAE=∠CBH,∵CA=CB,∴△CAE≌△CBH,∴EC=CH,∠ACE=∠BCH,∴∠ECH=∠ACB=90°,∴△ECH是等腰直角三角形.∵EF=FH,∴CF⊥EH,CF=EF=FH,∴△ECF是等腰直角三角形,∴EC=CF,∴当EC的值最大时,CF的值也最大,∵EC的最大值=AC+AE=6+2,∴6+2=CF,∴CF的最大值=3+2,故答案为3+2.7.(1)证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥直线m,∴∠ACE+∠CAE=90°,∴∠BAD=∠ACE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(2)解:结论DE=BD+CE成立,证明:∠CAE=180°﹣∠BAC﹣∠BAD,∠ABD=180°﹣∠ADB﹣∠BAD,∠BDA=∠BAC,∴∠CAE=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE,即结论DE=BD+CE成立;(3)由(2)得,△ABD≌△CAE,∴AE=BD=5,∴AD=DE﹣AE=2,∴EF=2CE=4,∴△ABD与△ABF的面积之比=AD:AF=2:9.8.解:(1)如图1,当t=1时,点E(0,1),∵AD⊥BC,∴∠EAO+∠BCO=90°,∵∠CBO+∠BCO=90°,∴∠EAO=∠CBO,在△AOE和△BOC中,∵,∴△AOE≌△BOC(ASA),∴OE=OC=1,∴点C坐标(1,0).(2)如图2,过点O作OM⊥AD于点M,作ON⊥BC于点N,∵△AOE≌△BOC,∴S△AOE=S△BOC,且AE=BC,∵OM⊥AE,ON⊥BC,∴OM=ON,∴OD平分∠ADC;∴∠ADO=∠ABO=45°;(3)如图3,过P作GH∥x轴,过C作CG⊥GH于G,过Q作QH⊥GH于H,交x轴于F,∵P(0,2),C(t,0),∴CG=FH=2,PG=OC=t,∵∠QPC=90°,∴∠CPG+∠QPH=90°,∵∠QPH+∠HQP=90°,∴∠CPG=∠HQP,∵∠QHP=∠G=90°,PQ=PC,∴△PCG≌△QPH,∴CG=PH=2,PG=QH=t,∴Q(﹣2,2﹣t).9.解:(1)如图(1),是.∵∠ACB=90°,O为AB中点,在Rt△ACB中,OC=AB=AO=BO,∴得等腰△AOC和等腰△BOC.则直线OC是△ABC的等腰分割线故答案为:是;(2)由题可知PA=PB,BC=6,设CP=x,则PA=PB=8﹣x,在Rt△BPC中,BC2+PC2=PB2,∴62+x2=(8﹣x)2,x=.即:CP=.(3)BQ=5或2或6或.①若△ACQ为等腰三角形,如图(3),当AC=AQ时,AQ=8,BQ=AB﹣AQ=2,如图(4),当QC=QA时,Q为AB中点,BQ=AB=5.当CA=CQ时,Q不在线段AB上,舍去.②若△BCQ为等腰三角形.如图(5),当CQ=CB时,过C作CM⊥AB于M,此时M为BQ的中点,S△ABC=BC•AC=AB•CM×6×8=×10CMCM=.Rt△CMQ中,BM==,∴BQ=2QM=.如图(6),当BC=BQ时,BQ=BC=6.如图(7),当QC=QB时,Q为AB中点,BQ=AB=5.综上,BQ=2或5或或6.故答案为:5或2或6或.10.解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=6;(3)连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2 ,∴最大值为2 +3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上所述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2+3.。
中考复习初中数学中的三角形知识点
中考复习初中数学中的三角形知识点三角形是初中数学中一个重要的几何形状,对于中考来说,掌握三角形的相关知识点是非常重要的。
在本文中,我们将从三角形的定义、分类、性质以及相关定理等方面,对中考复习中的三角形知识点进行整理和总结。
一、三角形的定义和分类三角形是由三条线段组成的闭合图形,这三条线段称为三角形的边,而将边两两相接的交点称为三角形的顶点。
根据三角形的边长的关系,三角形可以分为以下几种特殊情况:1. 等边三角形:三条边的长度相等的三角形称为等边三角形。
2. 等腰三角形:两条边的长度相等的三角形称为等腰三角形。
3. 直角三角形:其中一个角度为90°的三角形称为直角三角形。
4. 钝角三角形:有一个角度大于90°的三角形称为钝角三角形。
5. 锐角三角形:没有角度大于90°的三角形称为锐角三角形。
二、三角形的性质1. 角度性质:a) 三角形的内角和为180°。
即三个内角度数的和等于180°。
b) 直角三角形中,一直角(90°)与一个锐角的和等于180°。
c) 三角形的三个内角必有一个大于90°。
2. 边长性质:a) 三角形的任意两边之和大于第三边。
即对于三角形的三边a、b、c来说,有a+b>c,a+c>b,b+c>a。
b) 三角形两边之差小于第三边。
即对于三角形的三边a、b、c来说,有|a-b|<c,|a-c|<b,|b-c|<a。
三、三角形的相关定理1. 直角三角形的性质:a) 勾股定理:设直角三角形的两条直角边分别为a和b,斜边为c,则成立a²+b²=c²。
b) 斜边上的中线等于直角边的一半。
即对于直角三角形的斜边c来说,斜边上的中线等于直角边的一半。
2. 等腰三角形的性质:a) 顶角定理:等腰三角形的底边上的两个角度相等。
b) 底边上的中线等于底边的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【自主解答】 (1) 证 明 : ∵AB = AC , ∴∠B = ∠ACB.∵AE∥BC , ∴∠EAC=∠ACB.∴∠B=∠EAC.∵AD 是 BC 边上的中线, ∴AD⊥BC,即∠ADB=90°.∵CE⊥AE,∴∠CEA=90°. ∴∠CEA=∠ADB.又∵AB=AC,∴△ABD≌ △CAE(AAS).
A.2 海里 C.2cos 55°海里
B.2 sin 55°海里 D.2tan 55°海里
7.如图,△ABC 中,AB=AC=18,BC=12.正方形 DEFG 的顶点 E,F 在△ABC 内,顶点 D,G 分别在 AB, AC 上,AD=AG,DG=6,则点 F 到 BC 的距离为( )
A.1 B.2 C.12 2-6 D.6 2-6
答案: D
8.(2015·金华五中模拟)如图,在钝角三角形 ABC 中, AB=6 cm,AC=12 cm,动点 D 从 A 点出发到 B 点停止, 动点 E 从 C 点出发到 A 点停止.点 D 运动的速度为 1 cm/s, 点 E 运动的速度为 2 cm/s.如果两点同时运动,那么当以点 A,D,E 为顶点的三角形与△ABC 相似时,运动的时间是 ()
A. 3
B.1
C. 2
D.2
5.(2015·衢州实验中学检测)如图,在 Rt△ABC 中,∠C =90°,∠A=30°,E 为线段 AB 上一点,且 AE∶EB=4∶1, EF⊥AC 于点 F,连结 FB,则 tan∠CFB 的值等于( C )
A.
3 3
B.
23 3
C.
53 3
D.5 3
6.(2015·南充)如图,一艘海轮位于灯塔 P 的北偏东方 向 55°,距离灯塔为 2 海里的点 A 处.如果海轮沿正南方 向航行到灯塔的正东位置 B 处,海轮航行的距离 AB 长是 (C)
一艘游船从港口 O 出发,沿 OA 方向(北偏西 30°)以 v km/h 的速度驶离港口 O.同时一艘快艇从港口 B 出发,沿 北偏东 30°的方向以 60 km/h 的速度驶向小岛 C,在小岛 C 用 1 h 加装补给物资后,立即按照原来的速度给游船送去.
(1)快艇从港口 B 到小岛 C 需要多长时间? (2)若快艇从小岛 C 到与游船相遇恰好用时 1 h,求 v 的值及相遇处与港口 O 的距离.
分两种情况: 当点 E 在线段 OD 上时,如图①,DE=(90-3v)km, ∵CE=60 km,CD2+DE2=CE2, ∴(30 3)2+(90-3v)2=602, ∴v=20 或 v=40. ∵90-3v>0,∴v=20.
当点 E 在射线 DA 上时,如图②,DE=(3v-90)km, ∵CE=60 km,CD2+DE2=CE2, ∴(30 3)2+(3v-90)2=602, ∴v=20 或 v=40. ∵3v-90>0,∴v=40. ∴当 v=20 km/h 时, OE=3×20=60(km); 当 v=40 km/h 时, OE=3×40=120(km).
A.3 s 或 4.8 s C.4.5 s
B.3 s D.4.5 s 或 4.8 s
【解析】根据题意,设当以点 A,D,E 为顶点的三角 形 与 △ABC 相 似 时 , 运 动 的 时 间 是 x s , ① 若 △ADE∽△ABC,则AADB=AAEC,∴x6=12-122x,解得 x=3; ②若△ADE∽△ACB,则AADC=AAEB,∴1x2=12-6 2x,解得 x=4.8.∴当以点 A,D,E 为顶点的三角形与△ABC 相似 时,运动的时间是 3 s 或 4.8 s.故选 A.
A.3
B.4
C.6
D.5
【思路点拨】过点 D 作 DF⊥AC,由 S△ABC=S△ABD+
S△ACD 可求出 AC 的长.
答案:A
(2015·青岛)已知:如图,△ABC 中,AB=AC, AD 是 BC 边上的中线,AE∥BC,CE⊥AE,垂足为 E.
(1)求证:△ABD≌△CAE; (2)连结 DE,线段 DE 与 AB 之间有怎样的位置和数量关系? 请证明你的结论.
.∴△ABC∽△DEF.
(3)解:如图,△P2P4 P5 即为所求.
规律方法: 在网格中证明两个三角形相似,可分别计算两个三角 形三边的长度,再计算三组对应边的比是否相等,根据三 组对应边的比相等,得两三角形相似.
(2015·攀枝花)如图,港口 B 位于港口 O 正西方向 120 km 处,小岛 C 位于港口 O 北偏西 60°的方向.
专题五 三角形
【专题分析】三角形在中考中的常见考点有三角形的 边和角,三角形的重要线段;全等三角形的判定,全等三 角形的性质及综合应用,角平分线的应用;等腰三角形的 性质和判定,等边三角形的性质和判定,直角三角形的性 质,勾股定理,线段的垂直平分线;比例线段与黄金分 割,相似三角形的性质及判定,相似多边形的性质;锐角 三角函数,解直角三角形的应用等.对三角形的考查在中 考中既有客观题又有主观题,考查题型多样,关于边角的 基础知识一般以选择题或填空题的形式进行考查,
规律方法: 解决此类问题的关键在于将斜三角形转化为直角三角 形,而转化的关键 是作出三角形的某一条高 .
能力评估检测
一、选择题 1.如图,在△ABC 中,∠B=46°,∠C=54°, AD 平分∠BAC,交 BC 于点 D,DE∥AB,交 AC 于点 E,则 ∠ADE 的大小是( C )
A.45° B.54° C.40°
【解析】如图,过点 A 作 AH⊥BC 于点 H,交 DG 于 点 I,BH=12BC=6,在 Rt△ABH 中, AH= AB2-BH2= 182-62 =12 2,易知 D,G 分别是 AB, AC 的中点,则 I 为 AH 的中点, IH=6 2,DG=12BC=6,则正方 形 DGFE 的边长 FG=6,于是点 F 到 BC 的距离=6 2-6.故选 D.
(2)解:AB∥DE 且 AB=DE.由(1)△ABD≌△CAE 可 得 AE=BD,又∵AE∥BD,∴四边形 ABDE 是平行四边 形,∴AB∥DE 且 AB=DE.
规律方法: 在求线段角的长度度数或证明线段角相等时,利 用全等三角形的对应边角相等,可将对应边角进行转 化,从而建立已知与未知之间的联系.
如图,在边长为 1 的小正方形组成的网格中, △ABC 和△DEF 的顶点都在格点上,P1,P2,P3,P4,P5 是△DEF 边上的 5 个格点,请按要求完成下列各题:
(1)试证明△ABC 是直角三角形; (2)判断△ABC 和△DEF 是否相似,并说明理由; (3)画一个三角形,使它的三个顶点为 P1,P2,P3,P4, P5 中的 3 个格点,并且与△ABC 相似.(要求:用尺规作图, 保留痕迹,不写作法与证明) 【思路点拨】(1)分别求出△ABC 三边的长度,利用勾 股定理进行判断;(2)分别求出△DEF 三边的长度,计算 △DEF 与△ABC 三边长度的比值,进而作出判断;(3)观 察图形,所求作的三角形满足其三边与△ABC 三边的比值 相等即可.
【自主解答】
解:(1)∵∠BOC=30°,∠CBO=60°,
∴∠BCO = 90°, ∴BC = OB·cos
60°m),
∴快艇从港口 B 到小岛 C 需要的时间为6600=1(h).
(2)过点 C 作 CD⊥OA,设相遇处为点 E. 则 OC=OB·cos 30°=60 3(km),CD=12OC=30 3 (km),OD=OC·cos 30°=90(km).
【思路点拨】(1)由 AB=AC 及 AE∥BC 易得∠B= ∠CAE,然后由 AD 是中线可得∠ADB=∠CEA,由 AAS 证明两个三角形全等;(2)由(1)可得 AE=BD,结合已知条 件 AE∥BC 可得四边形 ABDE 是平行四边形,根据平行四 边形的性质得出 DE 与 AB 平行且相等.
【自主解答】
(1)证明:根据勾股定理,得 AB=2 5,AC= 5, BC=5;显然有 AB2+AC2=BC2,
根据勾股定理的逆定理,得△ABC 为直角三角形.
(2)解:△ABC 和△DEF 相似.
根据勾股定理,得 DE=4 2,DF=2 2,EF=2 10.
∵ADBE=ADCF=BECF=2
5 2
【解析】在△ABC 中,∵AE 为△ABC 的角平分线, CH⊥AE, ∴△AFH≌△ACH.∴AF= AC= 3.∵AB= 5, ∴BF=2.∵AF=AC,CH⊥AE,∴FH=HC.∵AD 为△ABC 的中线,∴DH 为△CBF 的中位线,DH=12BF=1.
答案: 1
三、解答题 13.(2015·珠海)已知△ABC,AB=AC,将△ABC 沿 BC 方向平移得到△DEF. (1)如 图 ① , 连 结 BD, AF, 则 BD________AF(填 “>”“<”或“=”).
【思路点拨】(1)根据题意可知∠CBO=60°,∠COB =30°,∴∠C=90°,在 Rt△BOC中,根据 cos ∠CBO=BBOC, 求出 BC,根据“路程=速度×时间”求出时间即可; (2)根据题意游船共行驶了 3 个小时,所以行驶路程为 3v km,设相会点为点 E,作 CD⊥OA,分点 E 在线段 OD 上和在射线 DA 上两种情况,解非直角三角形 OCE,根据 DE=90-3v 或 DE=3v-90,利用 CD2+DE2=CE2,求出 速度 v 和路程 OE 即可.
答案: A
二、填空题 9.(2015·乐山)如图,在等腰三角形 ABC 中,AB=AC, DE 垂直平分 AB,已知∠ADE=40°,则∠DBC=15 °.
10.如图,直线 a 经过正方形 ABCD 的顶点 A,分别 过正方形的顶点 B,D 作 BF⊥a 于点 F,DE⊥a 于点 E, 若 DE=8,BF=5,则 EF 的长为 13.
证明三角形全等、 相似,应用三角形全等、相似解决问 题 一般以解答题的形 式进行考查;三角形在中考中的比重 约 为 15%~ 20% .