第六章假设检验基础PPT课件

合集下载

假设检验PPT课件

假设检验PPT课件

60 62.5 65 67.5 70 72.5 75
b
H0 不真
67.5 70 72.5 75 77.5 80 82.5
两类错误是互相关联的, 当样本容 量固定时,一类错误概率的减少导致另 一类错误概率的增加.
b a
要同时降低两类错误的概率a b,或 者要在 a 不变的条件下降低 b,需要增
加样本容量.
(二)备择假设(alternative hypothesis),与原假设相对立(相反)的假设。 一般为研究者想收集数据予以证实自己观点的假设。 用H1表示。 表示形式:H1:总体参数≠某值 (<) (>)
例:H1: 0
(三)两类假设建立原则 1、H0与H1必须成对出现 2、通常先确定备择假设,再确定原假设 3、假设中的等号“=”总是放在原假设中

P>α时,H0成立
多重检验及校正
在同一研究中,有时我们会用到二次或多次显著 性检验,从上表可以看出,如果我们将显著性水平确 定为α=0.05水平,做一次显著性检验后我们只能保证 有95%的研究结果与真值是一致的;如果做两次显著 性检验后,研究结果与真值的符合程度就会降至 95%*95%=90.25,当我们进行5次显著性检验后,就 会降至77.4%,即在5次显著性检验后,由α水平所得 到的显著性检验结果的可靠性只有3/4的可靠性。
用于处理生物学研究中比较不同处理效应 的差异显著性。
数据资料中,两个样本的各个变量从各自 总体中抽取,两个样本之间变量没有任何关 联,即两个抽样样本彼此独立,不论两个样 本容量是否相同。
方法1:两个总体方差都已知(或方差未知大样本)
• 假定条件
– 两个样本是独立的随机样本
– 两个总体都是正态分布 – 若不是正态分布, 可以用正态分布来近似(n130和

《假设检验》PPT课件

《假设检验》PPT课件
2008-2009
样本统计量 临界值
抽样分布
2008-2009
1 -
置信水平 拒绝H0
0
样本统计量
临界值
✓决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
2008-2009
➢提出假设
【例】一种零件的生产标准是直径应为10cm,为对生产过
程进行控制,质量监测人员定期对一台加工机床检查, 确定这台机床生产的零件是否符合标准要求。如果零件 的平均直径大于或小于10cm,则表明生产过程不正常, 必须进行调整。试陈述用来检验生产过程是否正常的原 假设和备择假设
2008-2009
❖利用P值进行决策
➢什么是P 值(P-value)
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率 双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
3. 被称为观察到的(或实测的)显著性水平 4. 决策规则:若p值<, 拒绝 H0
2008-2009
第6章 假设检验
统计研究目的
统计设计


客观



现象



数量


表现


描 述

第六讲假设检验基础优秀课件

第六讲假设检验基础优秀课件

7
42
70
28
784
8
45
45
0
0
9
25
50
25
625
10
55
80
25
625
11
51
60
9
81
12
59
60
1
1
合计
128
2740
H0:d=0,干预前后血红蛋白差值的总体均数为零 H1:d≠0, =0.05。
t d 10.670 3.305 sd n 11.18/ 12
按 = n-1=11,查t值表,则0.01<P<0.005,拒绝H0,
• (1)检验假设:又称无效假设、零假设、原假设,是从反证法
思想提出的。
H0 :0
• (2)备择假设:拒绝H0时而被接受的假设,与H0对立。有三种 情况: H1:0 双侧检验 H1:0 单侧检验
H1:0 单侧检验
2.单、双侧的选择:由专业知识来确定。
3.检验水准:α,又称显著性水准,是小概率事件的概率。通 常取0.05。
可认为健康干预前后该地区儿童血红蛋白量有变化。
三、两独立样本t检验
▲目的:由两个样本均数的差别推断两样本所代表 的总体均数间有无差别。
▲计算公式及意义:
t
s 自由X度1X:2 n1
X1 X2 s
+sc2Xn12 X–2n211
1 n2
sc2
(n11)s12(n21)s22 n1n22
▲ 适用条件:
例7-2 健康教育干预三个月前后血红蛋白(%)
表 6.1 用两种方法对 12 名妇女的最大呼气率检测结果(L/min)
序号

卫生统计学课件_第六章_假设检验

卫生统计学课件_第六章_假设检验
16
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。

假设检验基础知识概述PPT课件( 59页)

假设检验基础知识概述PPT课件( 59页)


9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,
(3)确定P值及作出推断结论: 若P> α,则不能拒绝H0(或接受
H0),可认为差别是由抽样误差引起 的。
若P≤ α,则拒绝H0,接受H1,可认 为存在本质差别。
图6-1 假设检验示意图
二、t检验
应用条件:
t检验:当样本例数n较小时,要求 样本取自正态总体,成组t检验要求方 差齐性。
Z(u)检验:样本例数较大( 一般 大于100),要求样本取自正态总体, 成组u检验要求方差齐性。 。
功效大的检验方法更可取。
进行假设检验应注意的问题
要有严密的研究设计(资料间的可比性) 正确选用统计方法,注意其适用条件 正确理解P值的意义 结论不能绝对化 报告结果时应写出P值的确切范围。
正态性检验
图示法
统计检验法
七、案例讨论

1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。
所用公式: H0:μd=0 H1:μd≠0
t d 0 Sd n
自由度v=n-1
2、配对t检验
例2:为研究女性服用某避孕新药后 是否影响其血清总胆固醇含量,将 20名女性按年龄配成10对。每对中 随机抽取一人服用新药,另一人服 用安慰剂。经过一定时间后,测得 血清总胆固醇含量(mmol/L),结 果见表1。问新药是否影响女性血清 总胆固醇含量?

7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江

第六章 假设检验PPT课件

第六章 假设检验PPT课件

4.一批成品按不重复方法抽选200件, 其中废品10件,又知道抽样单位数是成 品量的1/22。当概率为0.9545时,可否 认为这一批产品的废品率不超过6%? (20分)
解:已p 知n1:n 1 02 100 % ;0 n 10 5 % 1;U 0/22,N n2 12
n 200
pP ( 1 n P )( 1 N n )0 .0 ( 2 1 5 0 .0 0 )( 1 0 5 2 1 ) 2 0 .01 1 .5 5 %
解 由题意可知:化肥重量X~N(,2),0=100 方差未知,要求对均值进行检验,采用T检验法。
假设 H0:=100; H1: ≠100
构造T统计量,得T的0.1双侧分位数为
t0.05 (8) 1 . 8 6
例3 化工厂用自动包装机包装化肥,每包重量服从正态 分布,额定重量为100公斤。某日开工后,为了确定包 装机这天的工作是否正常,随机抽取9袋化肥,称得平 均重量为99.978,均方差为1.212,能否认为这天的包 装机工作正常?(=0.1)
3、在Variables栏中,键入C2,在Test Mean栏中 键入750,打开Options选项,在Confidence level 栏中键入95,在Alternative中选择not equal,点击 每个对话框中的OK即可。
显示结果
结(1)因为 750 746.98,754.58所以接受原假设
表达:原假设:H0:EX=75;备择假设: H1:EX≠75
判断结果:接受原假设,或拒绝原假设。
基本思想
参数的假设检验:已知总体的分布类型,对分布函数或 密度函数中的某些参数提出假设,并检验。
基本原则——小概率事件在一次试验中是不可能发生的。
思想:如果原假设成立,那么某个分布已知的统计 量在某个区域内取值的概率应该较小,如果样本的观 测数值落在这个小概率区域内,则原假设不正确,所以, 拒绝原假设;否则,接受原假设。

第6章 假设检验的基本概念 PPT课件

第6章 假设检验的基本概念 PPT课件
第六章假设检验第一节假设检验的基本思想及步骤例61为了解某地1岁婴儿的血红蛋白浓度某医生从该地随机抽取了1岁婴儿25名测得其血红蛋白浓度的平均数为1235gl标准差为116gl而一般正常婴儿的平均血红蛋白浓度为125gl试分析该地1岁婴儿的平均血红蛋白浓度与一般正常婴儿的平均血红蛋白浓度是否相同
第六章 假设检验的 基本概念
一、Ⅰ型错误与Ⅱ型错误的概念
假设检验的结果 拒绝 H0 H0 成立 I 类错误() 不拒绝 H0 推断正确(1-) II 类错误()
客观实际
H0 不成立 H1 成立 推断正确(1-)
二、Ⅰ型错误与Ⅱ型错误的关系
图6-2 Ⅰ型错误与Ⅱ型错误示意图
三、假设检验的检验功效
• 检验功效或把握度(power of a test) 1-称为检验功效或把握度(power of a test), 是指当两总体参数确有差别时,按水准假 设检验能发现它们有差别的能力。即对真 实的作肯定结论之把握程度。 影响因素:
第五节 假设检验与区间估计的联系
• 假设检验与可信区间是从两个不同目的 出发并有密切关联的分析方法,假设检 验用于推断总体参数“质”的不同,而 可信区间用于说明总体参数“量”的大 小,两者即有区别又有联系。
1.可信区间可以回答假设检验的问题
如果可信区间包含H0,则按水准不拒绝H0; 如果可信区间不包含H0,则按水准拒绝H0。
一 、单侧检验与双侧检验的概念
1.双侧检验(two-sided test)
H 0 : 0
H1 : 0
2.单侧检验(one-sided test)
H 0: 0 ① H 1: 0 H 0: 0 或 ② H 1: 0
二、单侧检验与双侧检验的关系

假设检验课件

假设检验课件

2020/1/23
第六章 假设检验基础
13
4. 确定 P 值
P值的含义:由H0所规定的总体作随机
抽样,获得等于及大于现有样本统计量 值的概率。
怎样确定P值:构造的检验统计量服从 相应的分布,查相应分布界值表确定P 值。
一般双侧检验查双侧界值表,单侧检验 查单侧界值表。
2020/1/23
第六章 假设检验基础
的两个受试对象随机接受两种不同的处理。
例1 某医生研究脑缺氧对脑组织中生化指标的影响,将乳猪按出生 体重配成7对,一组为对照组,一组为脑缺氧模型组。试比较 两组动物脑组织钙泵的含量有无差别?
乳猪编号 1
2
3
4
5
6
7
对照组 0.3550 0.2000 0.3130 0.3630 0.3544 0.3450 0.3050
差值d 0.10 0.17 0.10 0.04 -0.02 0.30 0.03 -0.07 0.21 0.02 0.03 0.03 -0.11 0.06 0.05
2020/1/23
第六章 假设检验基础
27
配对设计的三种设计形式
2. 同一样品分成两份,随机分别接受不同处理(或测量) 例1 教材88页例6-3 例2 现用两种测量肺活量的仪器对12名妇女测得最大呼 气率(PEER)(L/min),资料如下表,问两种方法的检测结 果有无差别?
14
5. 作出推断结论
P与检验水准α相比作出推断结论 P≤ α,拒绝H0,接收H1
(在H0成立的前提下,一次随机抽样发生了小概率事件)
P> α,不能拒绝H0
(在H0成立的前提下,一次随机抽样没有发生了小概率 事件,没有充足的理由拒绝H0 )
2020/1/23

第六章假设检验1_PPT课件

第六章假设检验1_PPT课件
11
实例:有两个盒子,各装有100个球.
…99个
…99个
99个红球 一个白球
一盒中的白球和红球数
99个白球 一个红球
另一盒中的白球和红球数
现从两盒中随机取出一个盒子,验证这个盒子里 是白球99个还是红球99个?
12
不妨假设H0:这个盒子里 有99个白球.
现从中随机摸出一个球,发现是红球,如何判断该 假设是否成立?
因为有99个白球的盒子中,摸出红球的概率只有 1/100,这是小概率事件.
但小概率事件在一次试验中竟然发生了,这不能不 使人怀疑所作的假设H0,从而拒绝该假设。
上面所使用的推理方法,是一种带概率性质的反证 法,不妨称为概率反证法.
13
概率反证法与传统反证法的区别: 传统反证法原理:在原假设成立的条件下导出的结论应是绝
如 对原假设H0 :=0 有两种结果:
在 水平上拒绝H0,接受H1,说明有1-的把握 H0不 真,可以说与0差异有统计学意义,但并不能作出H0不
成立的肯定结论。
在 水平上不拒绝H0 (注:对H0不说接受,此时不提备择
假设;但若拒绝H0,对H1应说接受)其含义是无足够理由拒绝,
并不意味着有充分理由接受,只说明与0差异无统计学
对正确的,如果结论与之矛盾,则完全否定原假设. 概率反证法原理(小概率原理) :如果小概率事件在一次试 验中居然发生,则以很大的把握否定原假设.
14
三、假设检验(Hypothesis Testing) 拒绝(否定)域( Critical region )
根据实际需要选取一临界概率 (0<<1,很小)及一个 适于检验原假设H0的统计量 S=f(X1,X2,…Xn),使得 P(S∈V0)= , 则集合V0就称为原假设H0的拒绝域.

假设检验基础 ppt

假设检验基础 ppt

1、推断目的:差值d的总体均数是否为0。
使用条件:要求差值d服从正态分布。
t d 0 Sd / n
n-1
例6-2 某儿科采用静脉注射丙种球蛋白治疗 小儿急性毛细支气管炎。用药前后患儿血清 中免疫球蛋白IgG(mg/dl)含量如表6-1所示。 试问用药前后IgG有无变化?
见p88表6-1
H0 : d 0, H1 : d 0 0.05
若两95%的CI无重叠,则P≤0.05,认为有 意义。
如例6-4
①95%的CI:
x t0.05,19sx 17.15 2.0931.59/ 20 16.41 ~ 17.89
② 95%的CI:
x t0.05,33sx 16.92 2.0351.42/ 34 16.42 ~ 17.42
20 11.592 34 11.422
20 34 2
2.20
t X1 X2 17.15-16.92 0.550
Sc2
1 n1
1 n2
2.20( 1 1 ) 20 34
n1 n2 2 20 34 2 52
查附表2(t界值表),t0.5,50==0.679,知P>0.50, 在α=0.05水准上尚不能拒绝H0。即不能认为 该市13-16岁居民腭弓深度有性别差异。 表1 长春市13-16岁男女居民恒牙期腭弓深度mm)
36
二、假设检验的功效
1- b为假设检验的功效,又称检验效能 (power of a test)/把握度: 其意义是:当两总体确有差别,按规定的检
验水准 能发现该差别的能力(概率)。
例如1- β=0.90,即说明H0不成立,则理论上 每100次检验中,在α的水准上,平均有90 次能拒绝H0(能认为有统计学意义)。

(06)第6章 假设检验(T6)PPT课件

(06)第6章  假设检验(T6)PPT课件
备择假设的方向为“<”,称为左侧检验 备择假设的方向为“>”,称为右侧检验
6 - 14
7/16/2020
统计学
STATISTICS (第六版)
双侧检验与单侧检验
(假设的形式)
以总体均值的检验为例
假设
双侧检验
单侧检验 左侧检验 右侧检验
原假设 H0 : =0 H0 : 0 H0 : 0
备择假设 H1 : ≠0 H1 : <0 H1 : >0
已经成了一种 37.1 36.2 36.3 37.5 36.9
共识。下面是 一个研究人员
37.0
36.7
36.9
37.0
37.1
测量的50个健 36.6 37.2 36.4 36.6 37.3
康成年人的体 36.1 37.1 37.0 36.6 36.9
温数据
36.7 37.2 36.3 37.1 36.7
2. 所表达的含义是总体参数发生了变化或变量之间 有某种关系或总体分布于某种理论分布有差异
3. 备择假设通常用于表达研究者自己倾向于支持的 看法,然后就是想办法收集证据拒绝原假设,以 支持备择假设
alternative 4. 总是有符号 , 或 H1 : 某一数值 H1 : 某一数值 H1 : <某一数值
36.8 37.0 37.0 36.1 37.0
6-6
7/16/2020
统计学
STATISTICS (第六版)
正常人的平均体温是37oC吗?
➢ 根据样本数据计算的平均值是36.8oC ,标准差 为0.36oC
➢ 根据参数估计方法得到的健康成年人平均体温的 95%的置信区间为(36.7,36.9)。研究人员发现 这个区间内并没有包括37oC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

❖假设检验的原理: 假设检验的基本思想是反证法和小
概率的思想
❖反证法思想:首先提出假设(由于未经检验是否成立,
所以称为无效假设),用适当的统计方法确定假设
成立的可能性大小,如果可能性小,则认为假设不
成立,拒绝它;如果可能性大,还不能认为它不成立
❖小概率思想:是指小概率事件在一次随机试验中认为
基本上不会发生
一、一组样本资料的t 检验(one sample/group t-test)
现有取自正态总体N(μ,σ2)的、容量为n 的一份 完全随机样本。 目的:推断该样本所代表的未知总体均数µ与已知总体 均数µ0是否相等已知总体均数µ0是指标准值,理论值 或经大量观察所得的稳定值。
n136135
3. 确定P值
指从H0规定的总体中随机抽得等于及 大于(或等于及小于)现有样本获得
的检验统计量值的概率。
4. P值的意义:如果总体状况和H0一致,统计量获 得现有数值以及更不利于H0的数值的可能性(概率) 有多大。
5.
t0 .2 (3 5 ) 50 .68 t 2 t0 .2 (3 5 ) 5得 P 0 .25
H0一般设为某两个或多个总体参数 相等,即认为他们之间的差别是由 于抽样误差引起的。H1的假设和H0 的假设相互对立,即认为他们之间 存在着本质的差异。H1的内容反映 出检验的单双侧。
单双侧的确定: 一是根据专业知识,已知东北某县囱
门月龄闭合值不会低于一般值; 二是研究者只关心东北某县值是否高
于一般人群值,应当用单侧检验。 一般认为双侧检验较为稳妥,故较为
目的要求选用不同的检验方法。
4、确定P值: P值是指由H0所规定的总体中做随机抽
样,获得等于及大于(或等于及小于)现 有统计量的概率。当求得检验统计量的值 后,一般可通过特制的统计用表直接查出P 值。
55、作出推断结论: 当P≤时,结论为按所取检验水准α拒绝
H0,接受H1,差异有统计学意义。 如果P> ,结论为按所取检验水准α不拒
称之为差异无统计学意义。
如:从某地13岁女孩的总体中(总体均数为155.4cm) 随机抽取两个样本,样本均数分别为154.6、155.8, 154.6≠155.8,是因为抽样误差所致。
2.除抽样误差之外,主要是由于两样本并不是来 自同一总体而导致的本质差异。
称之为差异有统计学意义。
如:分别从某地13岁女孩和男孩的总体中各随机抽 取一个样本,样本均数分别为154.6、 161.5, 154.6≠161.5,除抽样误差外,主要是因为两样本不 是来自同一总体所致。
概率小于多少算小概率是相对的,在进行统计分析
时要事先规定,即检验水准。
二、假设检验的基本步骤:
例6-1 已知北方农村儿童前囟门闭合月龄为14.1月。某 研究人员从东北某县抽取36名儿童,得囟门闭合月龄 均值为14.3月,标准差为5.08月。问该县儿童前囟门闭 合月龄的均数是否大于一般儿童?
已0 知 1 .1 4 X : 1 .3 4 s 5 .0n 8 36
常用。
2、确定检验水准: 亦称为显著性水准,符号为α,是预先
给定的概率值。是判定样本指标与总体指 标或两样本指标间的差异有无统计学显著 性意义的概率水准,在实际工作中, α常 取0.05。 α可根据不同的研究目的给予不 同的设置,如方差齐性检验,正态性检验α 常取0.1或0.2。
3、选择检验方法并计算统计量: 要根据所分析资料的类型和统计推断的
①同一总体,即 0但有抽样误差存在;
②非同一总体,即 0 存在本质上的差别,同时
有抽样误差存在。
0
00 0
X
X
假设检验的基本步骤
1、建立检验假设与单双侧 假设有两种:一种为检验假设或称无效假
设,符号为H0;一种为备择假设,符号为H1。 这两种假设都是根据统计推断的目的要求而 提出的对总体特征的假设。应当注意检验假 设是针对总体而言,而不是针对样本。H0是 从反证法的思想提出的,H1和H0是相联系的 但又是相对立的假设。
第六章 假设检验基础
本章涉及内容: 假设检验的概念及原理 假设检验的基本步骤 t 检验方法 二项分布与poisson分布资料的Z检验 假设检验的功效
第一节 假设检验的概念、原理、步骤
一、假设检验的概念与原理:
一般科研程序: 假说----验证----对假说作出结论
统计上的假设检验:
假设检验亦称为显著性检验,是判 断样本指标与总体指标或样本指标与样 本指标之间的差异有无统计学意义的一 种统计方法。
从统计学角度考虑东北某县与北方儿 童前囟门闭合月龄有差别有两种可能:
1)差别是由于抽样误差引起的,统计学 上称为差异无显著性。
2)差异是本质上的差异,即二者来自不 同总体。统计学上称为差异有显著性。
已0 知 1 .1 4 X : 1 .3 4 s 5 .0n 8 36
造成两者不等的原因:
绝H0,差异无统计学意义。其间的差异是由
抽样误差引起的。
原假设H0: 0 14.1 备择假设 H1 : 0(单侧) 检验水准: 0.0 5
2. 计算统计量:不同的检验方法和类型选用相应的统
计量。
是随机样本的函数,它不
包含任何未知参数。
t X0 14.314.10.236
s n 5.08 36
假设检验的推断结论是对“H0 是否真实”作出判断。这种判 断是通过比较P值与检验水准α 的大小来进行的。 4. 做推断结论: (包括统计结论和专业结论)
按=05水准,不拒绝H0,差别无统计学意义, 故还不能认为该县儿童前囟门闭合月龄的均数大于
一般t 儿t童,。 P
t t, P
第二节 t 检验
称之为差异有统计学意义。
如:从某地13岁男孩的总体中(总体均数为160.4cm) 随机抽取一个样本,样本均数为161.5, 161.5≠155.4,除抽样误差外,主要是因为该样本 不是来自总体均数为155.4cm女孩总体所致。
样本指标与样本指标之间差异产生的原因有: 1.抽样误差---亦即两样本来自同一总体。
样本指标与总体指标之间差异产生的原因有: 1.抽样误差---亦即样本来自于该总体。
称之为差异无统计学意义。
如:从某地13岁女孩的总体中(总体均数为155.4cm) 随机抽取一个样本,样本均数为154.6, 154.6≠155.4,是因为抽样误差所致。
2.除抽样误差之外,主要是由于样本并不是来自 于该总体而导致的本质差异。
相关文档
最新文档