2020年中考数学小题专项训练(27)

合集下载

2020年中考数学一轮专项复习——尺规作图 中考真题汇编(含详细解答)

2020年中考数学一轮专项复习——尺规作图 中考真题汇编(含详细解答)

2020年中考数学一轮专项复习——尺规作图中考真题汇编一.选择题1.如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,是()A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C.以点E为圆心、DM的长为半径的弧D.以点E为圆心、OD的长为半径的弧2.如图,∠MAN=60°,点B为AM上一点,以点A为圆心、任意长为半径画弧,交AM于点E,交AN于点D.再分别以点D,E为圆心、大于DE的长为半径画弧,两弧交于点F.作射线AF,在AF上取点G,连接BG,过点G作GC⊥AN,垂足为点C.若AG=6,则BG的长可能为()A.1 B.2 C.D.23.(2019•鄂尔多斯)如图,在▱ABCD中,∠BDC=47°42′,依据尺规作图的痕迹,计算α的度数是()A.67°29′B.67°9′C.66°29′D.66°9′4.(2019•贵阳)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2 B.3 C.D.5.(2019•包头)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1 B.C.2 D.6.(2019•北京)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD7.(2019•广西)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(2019•新疆)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD:S△ABD=1:3 D.CD=BD9.(2019•深圳)如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB 的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8 B.10 C.11 D.13 10.(2019•荆州)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON 上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是()A.①②B.①③C.②③D.①②③11.(2019•宜昌)通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.12.(2019•安顺)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M、N两点;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE.则下列说法错误的是()A.∠ABC=60°B.S△ABE=2S△ADEC.若AB=4,则BE=4D.sin∠CBE=13.(2019•河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.14.(2019•烟台)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB 内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为()A.15°B.45°C.15°或30°D.15°或45°15.(2019•长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°16.(2019•潍坊)如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE 17.(2019•东营)如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF的长为()A.B.3 C.2 D.二.填空题18.(2019•葫芦岛)如图,BD是▱ABCD的对角线,按以下步骤作图:①分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于E,F两点;②作直线EF,分别交AD,BC于点M,N,连接BM,DN.若BD=8,MN=6,则▱ABCD的边BC上的高为.19.(2019•宁夏)如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则=.20.(2019•本溪)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.21.(2019•成都)如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为.22.(2018•益阳)如图,在△ABC中,AB=5,AC=4,BC=3.按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF.AE交BF于点O,连接OC,则OC=.23.(2018•抚顺)如图,▱ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是.24.(2018•荆州)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN 的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是.25.(2018•葫芦岛)如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于BC 的长为半径作弧,两弧交于点D、作直线AD分别交OP、ON于点E、F.若∠MON=60°,EF=1,则OA=.26.(2018•山西)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.三.解答题27.(2019•徐州)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.28.(2019•长春)图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.29.(2019•绥化)按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC 上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A 在港口B的北偏东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.(结果可保留根号)30.(2019•柳州)已知:∠AOB.求作:∠A′O′B′,使得∠A′O′B′=∠AOB.作法:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;③以点C′为圆心,CD长为半径画弧,与第②步中所画的弧相交于点D′;④过点D′画射线O′B′,则∠A′O′B′=∠AOB.根据上面的作法,完成以下问题:(1)使用直尺和圆规,作出∠A′O′B′(请保留作图痕迹).(2)完成下面证明∠A′O′B′=∠AOB的过程(注:括号里填写推理的依据).证明:由作法可知O′C′=OC,O′D′=OD,D′C′=,∴△C′O′D′≌△COD()∴∠A′O′B′=∠AOB.()31.(2019•孝感)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC 的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.32.(2019•武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.33.(2019•攀枝花)(1)如图1,有一个残缺圆,请作出残缺圆的圆心O(保留作图痕迹,不写作法).(2)如图2,设AB是该残缺圆⊙O的直径,C是圆上一点,∠CAB的角平分线AD交⊙O于点D,过D作⊙O的切线交AC的延长线于点E.①求证:AE⊥DE;②若DE=3,AC=2,求残缺圆的半圆面积.34.(2019•温州)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG =90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.35.(2019•无锡)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.参考答案一.选择题1.解:由作图可知作图步骤为:①以点O为圆心,任意长为半径画弧DM,分别交OA,OB于M,D.②以点C为圆心,以OM为半径画弧EN,交OA于E.③以点E为圆心,以DM为半径画弧FG,交弧EN于N.④过点N作射线CP.根据同位角相等两直线平行,可得CP∥OB.故选:C.2.解:由作法得AG平分∠MON,∴∠NAG=∠MAG=30°,∵GC⊥AN,∴∠ACG=90°,∴GC=AG=×6=3,∵AG平分∠MAN,∴G点到AM的距离为3,∴BG≥3.故选:D.3.解:∵四边形ABCD为平行四边形,∴AB∥CD,∴∠ABD=∠BDC=47°42′,由作法得EF垂直平分BD,BE平分∠ABD,∴EF⊥BD,∠ABE=∠DBE=∠ABD=23°51′,∵∠BEF+∠EBD=90°,∴∠BEF=90°﹣23°51°=66°9′,∴α的度数是66°9′.故选:D.4.解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,CE==.故选:D.5.解:由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,所以△ACG的面积=×4×1=2.故选:C.6.解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM=,∴∠MCD=180°﹣α,又∵∠CMN=∠CON=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.7.解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.8.解:由作法得BD平分∠ABC,所以A选项的结论正确;∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=30°=∠A,∴AD=BD,所以B选项的结论正确;∵∠CBD=∠ABC=30°,∴BD=2CD,所以D选项的结论正确;∴AD=2CD,∴S△ABD=2S△CBD,所以C选项的结论错误.故选:C.9.解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.10.解:∵四边形ABCD为矩形,∴AE=CE,而OA=OC,∴OE为∠AOC的平分线.故选:C.11.解:作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选:A.12.解:由作法得AE垂直平分CD,即CE=DE,AE⊥CD,∵四边形ABCD为菱形,∴AD=CD=2DE,AB∥DE,在Rt△ADE中,cos D==,∴∠D=60°,∴∠ABC=60°,所以A选项的结论正确;∵S△ABE=AB•AE,S△ADE=DE•AE,而AB=2DE,∴S△ABE=2S△ADE,所以B选项的结论正确;若AB=4,则DE=2,∴AE=2,在Rt△ABE中,BE==2,所以C选项的结论错误;作EH⊥BC交BC的延长线于H,如图,设AB=4a,则CE=2a,BC=4a,BE=2a,在△CHE中,∠ECH=∠D=60°,∴CH=a,EH=a,∴sin∠CBE===,所以D选项的结论正确.故选:C.13.解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.14.解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA 的角平分线,则∠BOC=15°或45°,故选:D.15.解:在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°,故选:B.16.解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S四边形OCED=CD•OE,但不能得出∠OCD=∠ECD,故选:C.17.解:由作法得GF垂直平分BC,∴FB=FC,CG=BG=2,FG⊥BC,∵∠ACB=90°,∴FG∥AC,∴BF=CF,∴CF为斜边AB上的中线,∵AB==5,∴CF=AB=.故选:A.二.填空题(共9小题)18.解:由作法得MN垂直平分BD,∴MB=MD,NB=ND,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,而MB=MD,∴∠MBD=∠MDB,∴∠MBD=∠NBD,而BD⊥MN,∴△BMN为等腰三角形,∴BM=BN=ND=MD,∴四边形BMDN为菱形,∴BN==5,设▱ABCD的边BC上的高为h,∵MN•BD=2BN•h,∴h==,即▱ABCD的边BC上的高为.故答案为.19.解:由作法得BD平分∠ABC,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∴DA=DB,在Rt△BCD中,BD=2CD,∴AD=2CD,∴=.故答案为.20.解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.21.解:由作法得∠COE=∠OAB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=AB=×8=4.故答案为4.22.解:过点O作OD⊥BC,OG⊥AC,垂足分别为:D,G,由题意可得:O是△ACB的内心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四边形OGCD是正方形,∴DO=OG==1,∴CO=.故答案为:.23.解:∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7.∵由作图可知,MN是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10.故答案为:10.24.解:由作法①知,OM=ON,由作法②知,CM=CN,∵OC=OC,∴△OCM≌△OCN(SSS),故答案为:SSS.25.解:由作法得AD⊥ON于F,∴∠AOF=90°,∵OP平分∠MON,∴∠EOF=∠MON=×60°=30°,在Rt△OEF中,OF=EF=,在Rt△AOF中,∠AOF=60°,∴OA=2OF=2.故答案为2.26.解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.三.解答题(共9小题)27.解:如图根据作图可知40cm时,所有图案个数5个50cm时,所有图案个数8个;60cm时,所有图案个数13个;故答案为5,8,13;28.解:(1)如图①所示,△ABM即为所求;(2)如图②所示,△CDN即为所求;(3)如图③所示,四边形EFGH即为所求;29.解:(1)如图,点P即为所求.(2)作AD⊥BC于D.在Rt△ABD中,∵AB=40海里,∠ABD=30°,∴AD=AB=20(海里),∵∠ACD=45°,∴AC=AD=20(海里).答:小岛A与港口C之间的距离为20海里.30.解:(1)如图所示,∠A′O′B′即为所求;(2)证明:由作法可知O′C′=OC,O′D′=OD,D′C′=DC,∴△C′O′D′≌△COD(SSS)∴∠A′O′B′=∠AOB.(全等三角形的对应角相等)故答案为:DC,SSS,全等三角形的对应角相等.31.解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.32.解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.33.(1)解:如图1:点O即为所求.(2)①证明:如图2中,连接OD交BC于F.∵AD平分∠BAC,∴∠DAC=∠DAB,∴=,∴OD⊥BC,∴CF=BF,∠CFD=90°,∵DE是切线,∴DE⊥OD,∴∠EDF=90°,∵AB是直径,∴∠ACB=∠BCE=90°,∴四边形DECF是矩形,∴∠E=90°,∴AE⊥DE.②∵四边形DECF是矩形,∴DE=CF=BF=3,在Rt△ACB中,AB==2,∴残缺圆的半圆面积=•π•()2=5π.34.解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.35.解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,F即为所求②如图3所示,AH即为所求.。

2020年全国中考数学试题精选分类(3)——分式方程(含解析)

2020年全国中考数学试题精选分类(3)——分式方程(含解析)

2020年全国中考数学试题精选分类(3)——分式方程一.选择题(共26小题)1.(2020•阜新)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=302.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.3.(2020•鞍山)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是()A.B.C.D.4.(2020•呼伦贝尔)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.=B.=C.+=130 D.﹣130=5.(2020•绵阳)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时6.(2020•海南)分式方程=1的解是()A.x=﹣1 B.x=1 C.x=5 D.x=27.(2020•广西)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣208.(2020•十堰)某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1 B.=﹣1C.=+2 D.=﹣29.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣5910.(2020•鸡西)若关于x的分式方程=有正整数解,则整数m的值是()A.3 B.5 C.3或5 D.3或411.(2020•荆门)已知关于x的分式方程=+2的解满足﹣4<x<﹣1,且k为整数,则符合条件的所有k值的乘积为()A.正数B.负数C.零D.无法确定12.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3 B.1 C.0 D.﹣113.(2020•宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+814.(2020•荆州)八年级学生去距学校10km的荆州博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm/h,则可列方程为()A.﹣=20 B.﹣=20C.﹣=D.﹣=15.(2020•牡丹江)若关于x的方程=0的解为正数,则m的取值范围是()A.m<2 B.m<2且m≠0 C.m>2 D.m>2且m≠416.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80 D.=17.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.=B.=C.=D.=18.(2020•黑龙江)已知关于x的分式方程﹣4=的解为正数,则k的取值范围是()A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k≠﹣2 19.(2020•泸州)已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3 B.4 C.5 D.620.(2020•齐齐哈尔)若关于x的分式方程=+5的解为正数,则m的取值范围为()A.m<﹣10 B.m≤﹣10C.m≥﹣10且m≠﹣6 D.m>﹣10且m≠﹣621.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40 B.﹣=40C.﹣=40 D.﹣=4022.(2020•重庆)若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7 B.﹣14 C.28 D.﹣5623.(2020•遂宁)关于x的分式方程﹣=1有增根,则m的值()A.m=2 B.m=1 C.m=3 D.m=﹣324.(2020•重庆)若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1 B.﹣2 C.﹣3 D.025.(2020•上海)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=026.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4 B.x=5 C.x=6 D.x=7二.填空题(共8小题)27.(2020•河池)方程=的解是x=.28.(2020•潍坊)若关于x的分式方程+1有增根,则m=.29.(2020•徐州)方程=的解为.30.(2020•内江)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为.31.(2020•淮安)方程+1=0的解为.32.(2020•菏泽)方程的解是.33.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.34.(2020•嘉兴)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程.三.解答题(共16小题)35.(2020•日照)(1)计算:+()﹣1﹣×cos30°;(2)解方程:+1=.36.(2020•黔南州)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?37.(2020•锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?38.(2020•葫芦岛)某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A 种书架?39.(2020•桂林)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?40.(2020•赤峰)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?41.(2020•沈阳)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?42.(2020•益阳)“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务?43.(2020•丹东)为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍.求八年级捐书人数是多少?44.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?45.(2020•大庆)解方程:﹣1=.46.(2020•长春)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?47.(2020•镇江)(1)解方程:=+1;(2)解不等式组:48.(2020•吉林)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.49.(2020•云南)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?50.(2020•岳阳)为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.2020年全国中考数学试题精选分类(3)——分式方程参考答案与试题解析一.选择题(共26小题)1.(2020•阜新)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=30【答案】B【解答】解:设实际每天铺xm管道,则原计划每天铺m管道,根据题意,得﹣=30,故选:B.2.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.【答案】B【解答】解:设班级共有x名学生,依据题意列方程得,.故选:B.3.(2020•鞍山)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是()A.B.C.D.【答案】B【解答】解:设甲每小时加工x个零件,根据题意可得:=.故选:B.4.(2020•呼伦贝尔)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.=B.=C.+=130 D.﹣130=【答案】A【解答】解:设甲每天做x个零件,根据题意得:,故选:A.5.(2020•绵阳)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时【答案】C【解答】解:设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:=,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故选:C.6.(2020•海南)分式方程=1的解是()A.x=﹣1 B.x=1 C.x=5 D.x=2【答案】C【解答】解:去分母,得x﹣2=3,移项合并同类项,得x=5.检验:把x=5代入x﹣2≠0,所以原分式方程的根为:x=5.故选:C.7.(2020•广西)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣20【答案】A【解答】解:因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:﹣=.故选:A.8.(2020•十堰)某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1 B.=﹣1C.=+2 D.=﹣2【答案】A【解答】解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.9.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59【答案】B【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.10.(2020•鸡西)若关于x的分式方程=有正整数解,则整数m的值是()A.3 B.5 C.3或5 D.3或4【答案】D【解答】解:解分式方程,得x=,经检验,x=是分式方程的解,因为分式方程有正整数解,则整数m的值是3或4.故选:D.11.(2020•荆门)已知关于x的分式方程=+2的解满足﹣4<x<﹣1,且k为整数,则符合条件的所有k值的乘积为()A.正数B.负数C.零D.无法确定【答案】A【解答】解:=+2,(2x+3)(x+3)=k+2(x﹣2)(x+3),解得x=﹣3,∵﹣4<x<﹣1且(x﹣2)(x+3)≠0且k为整数,∴﹣4<﹣3<﹣1,解得﹣7<k<14且k≠0,∴解k=﹣6、﹣5、﹣4、﹣3、﹣2、﹣1、1、2、3、4、5、6、7、8、9、10、11、12、13,∴符合条件的所有k值的乘积为正数.故选:A.12.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3 B.1 C.0 D.﹣1【答案】C【解答】解:当m2﹣2m≥0时,,解得m=0,经检验,m=0是原方程的解,并且满足m2﹣2m≥0,当m2﹣2m<0时,m﹣3=﹣6,解得m=﹣3,不满足m2﹣2m<0,舍去.故输入的m为0.故选:C.13.(2020•宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+8【答案】B【解答】解:设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,依题意,得:=.故选:B.14.(2020•荆州)八年级学生去距学校10km的荆州博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm/h,则可列方程为()A.﹣=20 B.﹣=20C.﹣=D.﹣=【答案】C【解答】解:设骑车学生的速度为xkm/h,则乘车学生的速度为2xkm/h,依题意,得:﹣=.故选:C.15.(2020•牡丹江)若关于x的方程=0的解为正数,则m的取值范围是()A.m<2 B.m<2且m≠0 C.m>2 D.m>2且m≠4【答案】C【解答】解:∵解方程,去分母得:mx﹣2(x+1)=0,整理得:(m﹣2)x=2,∵方程有解,∴,∵分式方程的解为正数,∴,解得:m>2,∴m的取值范围是:m>2.故选:C.16.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80 D.=【答案】D【解答】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,依题意,得:=.故选:D.17.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.=B.=C.=D.=【答案】B【解答】解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:=.故选:B.18.(2020•黑龙江)已知关于x的分式方程﹣4=的解为正数,则k的取值范围是()A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k≠﹣2【答案】B【解答】解:分式方程﹣4=,去分母得:x﹣4(x﹣2)=﹣k,去括号得:x﹣4x+8=﹣k,解得:x=,由分式方程的解为正数,得到>0,且≠2,解得:k>﹣8且k≠﹣2.故选:B.19.(2020•泸州)已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3 B.4 C.5 D.6【答案】B【解答】解:去分母,得:m+2(x﹣1)=3,移项、合并,得:x=,∵分式方程的解为非负数,∴5﹣m≥0且≠1,解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.20.(2020•齐齐哈尔)若关于x的分式方程=+5的解为正数,则m的取值范围为()A.m<﹣10 B.m≤﹣10C.m≥﹣10且m≠﹣6 D.m>﹣10且m≠﹣6【答案】D【解答】解:去分母得:3x=﹣m+5(x﹣2),解得:x=,由方程的解为正数,得到m+10>0,且m+10≠4,则m的范围为m>﹣10且m≠﹣6,故选:D.21.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40 B.﹣=40C.﹣=40 D.﹣=40【答案】A【解答】解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为万平方米,依题意,得:﹣=40,即﹣=40.故选:A.22.(2020•重庆)若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7 B.﹣14 C.28 D.﹣56【答案】A【解答】解:不等式组整理得:,由解集为x≤a,得到a≤7,分式方程去分母得:y﹣a+3y﹣4=y﹣2,即3y=a+2,解得:y=,由y为正整数解,且y≠2得到a=1,71×7=7,故选:A.23.(2020•遂宁)关于x的分式方程﹣=1有增根,则m的值()A.m=2 B.m=1 C.m=3 D.m=﹣3【答案】D【解答】解:去分母得:m+3=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.24.(2020•重庆)若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1 B.﹣2 C.﹣3 D.0【答案】B【解答】解:不等式组整理得:,由解集为x≥5,得到2+a<5,即a<3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.25.(2020•上海)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=0【答案】A【解答】解:把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.26.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4 B.x=5 C.x=6 D.x=7【答案】B【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.二.填空题(共8小题)27.(2020•河池)方程=的解是x=﹣3.【答案】﹣3.【解答】解:方程的两边同乘(2x+1)(x﹣2),得:x﹣2=2x+1,解这个方程,得:x=﹣3,经检验,x=﹣3是原方程的解,∴原方程的解是x=﹣3.故答案为:﹣3.28.(2020•潍坊)若关于x的分式方程+1有增根,则m=3.【答案】见试题解答内容【解答】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.29.(2020•徐州)方程=的解为x=9.【答案】见试题解答内容【解答】解:去分母得:9(x﹣1)=8x9x﹣9=8xx=9检验:把x=9代入x(x﹣1)≠0,所以x=9是原方程的解.故答案为:x=9.30.(2020•内江)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为40.【答案】见试题解答内容【解答】解:去分母,得:x+2﹣a=3(x﹣1),解得:x=,∵分式方程的解为非负数,∴≥0,且≠1,解得a≤5且a≠3,解不等式﹣≥﹣,得:y≤0,解不等式2(y﹣a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,故答案为:40.31.(2020•淮安)方程+1=0的解为x=﹣2.【答案】见试题解答内容【解答】解:方程+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.32.(2020•菏泽)方程的解是x=.【答案】见试题解答内容【解答】解:方程=,去分母得:(x﹣1)2=x(x+1),整理得:x2﹣2x+1=x2+x,解得:x=,经检验x=是分式方程的解.故答案为:x=.33.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程﹣=2.【答案】见试题解答内容【解答】解:设原计划每天加工零件x个,则实际每天加工零件1.5x个,依题意,得:﹣=2.故答案为:﹣=2.34.(2020•嘉兴)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程=.【答案】见试题解答内容【解答】解:根据题意得,=,故答案为:=.三.解答题(共16小题)35.(2020•日照)(1)计算:+()﹣1﹣×cos30°;(2)解方程:+1=.【答案】(1)﹣2;(2)x=1.【解答】解:(1)原式=.(2)+1=,两边同乘以(x﹣2)得,x﹣3+(x﹣2)=﹣3,解得,x=1.经检验x=1是原分式方程的解.36.(2020•黔南州)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?【答案】(1)甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)购买了20瓶乙品牌消毒剂.【解答】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.37.(2020•锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?【答案】200顶.【解答】解:设计划每天生产x顶帐篷,则实际每天生产帐篷(1+25%)x顶,依题意得:﹣10=.解得x=200.经检验x=200是所列方程的解,且符合题意.答:计划每天生产200顶帐篷.38.(2020•葫芦岛)某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A 种书架?【答案】(1)购买A种书架需要100元,B种书架需要80元.(2)最多可购买10个A种书架.【解答】解:(1)设B种书架的单价为x元,根据题意,得.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15﹣m)≤1400.解得m≤10.答:最多可购买10个A种书架.39.(2020•桂林)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【答案】(1)每副围棋18元,则每副象棋10元;(2)该校最多可再购买25副围棋.。

专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分

专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分
47.(2021•德阳)在锐角三角形ABC中,∠A=30°,BC=2,设BC边上的高为h,则h的取值范围是.
48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳名观众同时观看演出.(π取3.14, 取1.73)
A.95°B.100°C.105°D.130°
16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是( )
A.40°B.45°C.50°D.55°
17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧 上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为( )
31.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为.(结果保留π)
32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.
三.解答题(共12小题)
49.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.
(1)求证DB平分∠ADC,并求∠BAD的大小;
(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.
50.(2023•内蒙古)如图,AB是⊙O的直径,AC是弦,D是 上一点,P是AB延长线上一点,连接AD,DC,CP.

2020中考数学 应用题专项训练(含答案)

2020中考数学 应用题专项训练(含答案)

2020中考数学应用题专项训练(含答案)例题1.(1)某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为_______元,最大利润为______元.(2)根据统计经验,若某工厂以x千克/小时的效率生产某种产品(由于生产条件限制,110x≤≤),则每小时可获得的利润是310051xx⎛⎫+-⎪⎝⎭元.如果接到一笔900千克的订单,要使得此笔订单获得的利润最大,则应该以______________千克/小时的效率生产.(3)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(0a>).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为______________.【答案】(1)40,6000;(2)6;(3)06a<<.例题2. 为推进节能减排,发展低碳经济,深化“宜居成都”的建设,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x元,年销售量为y万件,年获利为w万元.(年获利=年销售额-生产成本-节电投资)(1)直接写出y与x间的函数关系式;(2)求第一年的年获利w与x函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?【答案】(1)当100200x <≤,100200.810x y -=-⨯,∴22825y x =-+, 当200300x <≤,把200x =代入22825y x =-+,得:12y =,∴20012110x y -=-⨯,13210y x =-+;(2)当100200x <≤时,(40)(1520480)w x y =--+2(40)28200025x x ⎛⎫=--+- ⎪⎝⎭221563120255x x =-+-22(195)7825x =---当195x =,=78w -最大当200300x <≤时,(40)(1520480)w x y =--+1(40)32200010x x ⎛⎫=--+- ⎪⎝⎭2136328010x x =-+-21(180)4010x =---, ∵2025-<,∴当在200300x <≤时,y 随x 的增大而减小,∴80w <-,∴是亏损的,最少亏损为78万元. (3)依题意可知,当100200x <≤时,第二年w 与x 关系为2(40)287825w x x ⎛⎫=--+- ⎪⎝⎭当总利润刚好为1842万元时,依题意可得2(40)2878184225x x ⎛⎫--+-= ⎪⎝⎭整理,得2390380000x x -+=,解得,1190x =,2200x =∴要使两年的总盈利为1842万元,销售单价可定为190元或200元.∵对22825y x =-+,y 随x 增大而减小∴使销售量最大的销售单价应定为190元.例题3. 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (190x ≤≤)天的售价与销量的相关信息如下表:时间x (天)150x ≤< 5090x ≤≤ 售价(元/件) 40x +90每天销量(件)2002x -已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果. 【答案】(1)当150x ≤<时,2(2002)(4030)21802000y x x x x =-+-=-++, 当5090x ≤≤时,(2002)(9030)12012000y x x =--=-+,综上所述:221802000(150)12012000(5090)x x x y x x ⎧-++≤<⎨-+≤≤⎩;(2)当150x ≤<时,二次函数开口向下,二次函数对称轴为45x =,当45x =时,22451804520006050y =-⨯+⨯+=最大, 当5090x ≤≤时,y 随x 的增大而减小, 当50x =时,6000y =最大,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元; (3)当150x ≤<时,2218020004800y x x =-++≥,解得2070x ≤≤, 因此利润不低于4800元的天数是2050x ≤<,共30天; 当5090x ≤≤时,120120004800y x =-+≥,解得60x ≤, 因此利润不低于4800元的天数是5060x ≤≤,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.例题4. 某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y (件)与销售价x (元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务). (1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数; (3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元? 【答案】(1)当4058x ≤≤时,设y 与x 的函数解析式为11y k x b =+,由图象可得 111140605824k b k b +=⎧⎨+=⎩, 解得112140k b =-⎧⎨=⎩.)件∴2140y x =-+.当5871x <≤时,设y 与x 的函数解析式为22y k x b =+,由图象得 222258247111k b k b +=⎧⎨+=⎩, 解得22182k b =-⎧⎨=⎩,∴82y x =-+,综上所述:2140(4058)82(5871)x x y x x -+≤≤⎧=⎨-+<≤⎩;(2)设人数为a ,当48x =时,24814044y =-⨯+=, ∴(4840)4410682a -⨯=+,解得3a =;(3)设需要b 天,该店还清所有债务, 则:[(40)822106]68400b x y -⋅-⨯-≥,∴68400(40)822106b x y ≥-⋅-⨯-,当4058x ≤≤时,∴26840068400(40)(2140)27022205870b x x x x ≥=--+--+-, 220552(2)x =-=⨯-时,222205870x x -+-的最大值为180,∴68400180b ≥,即380b ≥;当5871x <≤时,26840068400(40)(82)2701223550b x x x x ≥=--+--+-, 当122611(1)x =-=⨯-时,21223550x x -+-的最大值为171,∴68400171b ≥,即400b ≥.综合两种情形得380b ≥,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.例题5. 某服装经销商甲库存有进价每套400元的A 品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年刚好卖完,现市场上流行B 品牌服装,此品牌服装进价每套200元,售出每套500元,每月可卖出120套(两种服装的市场行情相互不受影响),目前有一可进B 品牌服装的机会,若这一机会错过,估计一年内进不到这种服装,可是经销商手头无流动资金可用,只有折价转让A 品牌服装,经与销售商乙协商,达成协议,转让方案一:不转让A 品牌服装,也不经销B 品牌服装; 方案二:全部转让A 品牌服装,用转让得来的资金一次性购入B 品牌服装,经销B 品牌服装; 方案三:为谋求更高利润,部分转让A 品牌服装,用转让来的资金一次性购入B 品牌服装后,经销B 品牌服装,同时也经销A 品牌服装.(1)如经锁商甲选择方案一,则他在一年内能获得多少利润? (2)如经销商甲选择方案二,则他在一年内能获得多少利润?(3)经锁商甲选择哪种方案可以使自己在一年内获得最大利润?并求出此时他转让经销商乙的A 品牌服装的数量是多少?此时他在这一年内共得利润多少元? 【答案】(1)方案一得1200(600200)240000⨯-=(元);(2)方案二得12002401200(240400)(500200)240000200⨯⨯-+⨯-=(元); (3)设转让数量为x 件,转让价格为y ,有表格关系得:136010y x =-+,则总利润(400)(500200)(1200)(600400)200xyz x y x =-+⨯-+-⨯-2211300240000(600)33000044x x x =-++=--+则转让600件时,利润最大为330000元.例题6. 某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A 、B 两类,A类杨梅包装后直接销售;B 类杨梅深加工后再销售.A 类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y (单位:万元/吨)与销售数量(2)x x ≥之间的函数关系如图;B 类杨梅深加工总费用s (单位:万元)与加工数量t (单位:吨)之间的函数关系是123s t =+,平均销售价格为9万元/吨.(1)直接写出A 类杨梅平均销售价格y 与销售量x 之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A 类杨梅有x 吨,经营这批杨梅所获得的毛利润为w 万元(毛利润=销售总收入-经营总成本). ①求w 关于x 的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A 类杨梅有多少吨? (3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【答案】 (1)①当28x ≤<时,如图, 设直线AB 解析式为:y kx b =+,将(2,12)A 、(8,6)B 代入得:21286k b k b +=⎧⎨+=⎩,解得114k b =-⎧⎨=⎩, ∴14y x =-+;②当8x ≥时,6y =.所以A 类杨梅平均销售价格y 与销售量x 之间的函数关系式为: 14(28)6(8)x x y x -+≤<⎧=⎨≥⎩;(2)设销售A 类杨梅x 吨,则销售B 类杨梅(20)x -吨.①当28x ≤<时,2(14)13A w x x x x x =-+-=-+; 9(20)[123(20)]1086B w x x x =--+-=-∴320A B w w w =+-⨯2(13)(1086)60x x x =-++--2748x x =-++; 当8x ≥时,65A w x x x =-=;9(20)[123(20)]1086B w x x x =--+-=- ∴320A B w w w =+-⨯(5)(1086)60x x =+--48x =-+.∴w 关于x 的函数关系式为:2748(28)48(8)x x x w x x ⎧-++≤<=⎨-+≥⎩.②当28x ≤<时,274830x x -++=,解得19x =,22x =-,均不合题意;当8x ≥时,4830x -+=,解得x =18.∴当毛利润达到30万元时,直接销售的A 类杨梅有18吨.(3)设该公司用132万元共购买了m 吨杨梅,其中A 类杨梅为x 吨,B 类杨梅为()m x -吨,则购买费用为3m 万元,A 类杨梅加工成本为x 万元,B 类杨梅加工成本为[123()]m x +-万元, ∴39[123()]132m x m x +++-=,化简得:360x m =-. ①当28x ≤<时,2(14)13A w x x x x x =-+-=-+; 9()[123()]6612B w m x m x m x =--+-=--∴3A B w w w m =+-⨯2(13)(6612)3m x x m x =-++---27312x x m =-++-.将360m x =+代入得:22848(4)64w x x x =-++=--+∴当4x =时,有最大毛利润64万元,此时643m =,523m x -=;②当8x ≥时,65A w x x x =-=;9()[123()]6612B w m x m x m x =--+-=-- ∴3A B w w w m =+-⨯(5)(6612)3m x m x =+---312x m =-+-.将360m x =+代入得:48w =,∴当8x >时,有最大毛利润48万元.综上所述,购买杨梅共643吨,其中A 类杨梅4吨,B 类523吨,公司能够获得最大毛利润,最大毛利润为64万元.例题7.(1)如图7-1,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为_______米.(2)如图7-2,一个横断面为抛物线形的拱桥,当水面宽4m 时,拱顶离水面2m .当水面下降1m 时,此时水面的宽度增加了______________(结果保留根号).(3)如图7-3,在水平地面点A 处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B ,有人在直线AB 上点C (靠点B 一侧)竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知4AB =米,3AC =米,网球飞行最大高度5OM =米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少______________个时,网球可以落入桶内.图7-1 图7-2 图7-3【答案】(1)0.5;(2)4)m ;(3)8.例题8. 某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示. 某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前(37)t t <≤秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和. 根据以上信息,完成下列问题: (1)当37t <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37t <≤时,运动的路程S (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间. 【答案】(1)由题意得,当37t ≤≤时,v ,t 为一次函数设为v kt b =+;代入点(3,2) (7,10)得到24v t =-,(2)当03t ≤≤时,12S t =,当37t <≤时,2123[2(24)](3)2S t t =⨯++--,即22,40379,3t S t t t t ⎧=⎨-+≤≤<≤⎩,总路程为总面积为62430+=米,7302110⨯=米6>米,令221S =,得24921t t -+=,解得6t =,或2t =-舍,故从P 点运动到Q 总路程的710时所用的时间为6秒.)例题9. 某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围. 【答案】(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1k =-,120b =.所求一次函数的表达式为120y x =-+.(2)22(60)(120)1807200(90)900W x x x x x =-⋅-+=-+-=--+, 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤, ∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元. (3)由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,170x =,2110x =.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.例题10. 某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x 天获得的利润y 关于x 的函数关系式.(3)这40天中该网店第几天获得的利润最大?最大利润是多少? 【答案】(1)当120x ≤≤时,令130352x +=,得10x =.当2140x ≤≤时,令5252035x+=,得35x =.即第10天或者第35天该商品的销售单价为35元/件.(2)当120x ≤≤时,2113020(50)1550022y x x x x ⎛⎫=+--=-++ ⎪⎝⎭,当2140x ≤≤时,525262502020(50)525y x x x ⎛⎫=+--=- ⎪⎝⎭.∴2115500(120)226250525(2140)x x x y x x⎧-++⎪⎪=⎨⎪-⎪⎩≤≤≤≤(3)当120x ≤≤时,221115500(15)612.522y x x x =-++=--+∵102-<,∴当15x =时,y 有最大值1y ,且1612.5y =.当2140x ≤≤时,∵262500>,∴26250x 随着x 的增大而减小,∴21x =时,26250x 最大.于是,21x =时,26250525y x =-有最大值2y ,且22625052572521y =-=.∵12y y <.∴这40天中第21天时该网店获得利润最大,最大利润为725元.例题11. 某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品的年获利z (万元)关于销售单价x (元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价x 为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于...40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元? 【答案】(1)如图可知两点坐标为(60, 5),(80, 4)代入y kx b =+得1820y x =-+ (2)由题意可得1188401202020z x x x ⎛⎫⎛⎫=-+--+⨯- ⎪ ⎪⎝⎭⎝⎭整理得21(100)6020z x =--+,故当销售单价100x =时,最大利润为60万元 (3)由题意22140(100)6040(100)40020z x x ≥⇒--+≥⇒-≤ 201002080120x x ∴-≤-≤⇒≤≤要求y 尽可能大,所以x 尽可能小,故当80x =,保证销售最大又达到指标.)例题12. 如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子OA ,O恰在水面中心, 1.25m OA =,由柱子顶端A 处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA 距离为1m 处达到距水面最大高度2.25m .(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m ,要使水流不落到池外,此时水流最大高度应达多少米?【答案】(1)以O 为原点,顶点为(1, 2.25),设解析式为2(1) 2.25y a x =-+过点(0, 1.25),解得1a =-,所以解析式为:2(1) 2.25y x =--+,令0y =,则2(1) 2.250x --+=,解得 2.5x =或0.5x =-(舍去),所以花坛半径至少为2.5m .(2)根据题意得出:设2y x bx c =-++,把点(0, 1.25) (3.5, 0) ∴ 1.25497042c b c =⎧⎪⎨-++=⎪⎩,解得:22754b c ⎧=⎪⎪⎨⎪=⎪⎩, ∴2222511729747196y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴水池的半径为3.5m ,要使水流不落到池外,此时水流最大高度应达729196米.A O例题13. “城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V (单位:千米/时)是车流密度x (单位:辆/千米)的函数,且当028x <≤时,80V =;当28188x <≤时,V 是x 的一次函数. 函数关系如图所示.(1)求当28188x <≤时,V 关于x 的函数表达式;(2)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P (单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)【答案】 (1)设函数解析式为V kx b =+, 则28801880k b k b +=⎧⎨+=⎩,解得:1294k b ⎧=-⎪⎨⎪=⎩, 故V 关于x 的函数表达式为:1942V x =-+; (2)由题意得,194502V x =-+≥, 解得:88x ≤,又211949422P Vx x x x x ⎛⎫==-+=-+ ⎪⎝⎭,当088x <≤时,函数为增函数,即当88x =时,P 取得最大,故2max 188948844002P =-⨯+⨯=. 即当车流密度达到88辆/千米时,车流量P 达到最大,最大值为4400辆/时.千米)。

2020年全国中考数学试题精选分类(3)——分式方程(含解析)

2020年全国中考数学试题精选分类(3)——分式方程(含解析)

2020年全国中考数学试题精选分类(3)——分式方程一.选择题(共26小题)1.(2020•阜新)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=302.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.3.(2020•鞍山)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是()A.B.C.D.4.(2020•呼伦贝尔)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.=B.=C.+=130 D.﹣130=5.(2020•绵阳)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时6.(2020•海南)分式方程=1的解是()A.x=﹣1 B.x=1 C.x=5 D.x=27.(2020•广西)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣208.(2020•十堰)某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1 B.=﹣1C.=+2 D.=﹣29.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣5910.(2020•鸡西)若关于x的分式方程=有正整数解,则整数m的值是()A.3 B.5 C.3或5 D.3或411.(2020•荆门)已知关于x的分式方程=+2的解满足﹣4<x<﹣1,且k为整数,则符合条件的所有k值的乘积为()A.正数B.负数C.零D.无法确定12.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3 B.1 C.0 D.﹣113.(2020•宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+814.(2020•荆州)八年级学生去距学校10km的荆州博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm/h,则可列方程为()A.﹣=20 B.﹣=20C.﹣=D.﹣=15.(2020•牡丹江)若关于x的方程=0的解为正数,则m的取值范围是()A.m<2 B.m<2且m≠0 C.m>2 D.m>2且m≠416.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80 D.=17.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.=B.=C.=D.=18.(2020•黑龙江)已知关于x的分式方程﹣4=的解为正数,则k的取值范围是()A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k≠﹣2 19.(2020•泸州)已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3 B.4 C.5 D.620.(2020•齐齐哈尔)若关于x的分式方程=+5的解为正数,则m的取值范围为()A.m<﹣10 B.m≤﹣10C.m≥﹣10且m≠﹣6 D.m>﹣10且m≠﹣621.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40 B.﹣=40C.﹣=40 D.﹣=4022.(2020•重庆)若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7 B.﹣14 C.28 D.﹣5623.(2020•遂宁)关于x的分式方程﹣=1有增根,则m的值()A.m=2 B.m=1 C.m=3 D.m=﹣324.(2020•重庆)若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1 B.﹣2 C.﹣3 D.025.(2020•上海)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=026.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4 B.x=5 C.x=6 D.x=7二.填空题(共8小题)27.(2020•河池)方程=的解是x=.28.(2020•潍坊)若关于x的分式方程+1有增根,则m=.29.(2020•徐州)方程=的解为.30.(2020•内江)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为.31.(2020•淮安)方程+1=0的解为.32.(2020•菏泽)方程的解是.33.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.34.(2020•嘉兴)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程.三.解答题(共16小题)35.(2020•日照)(1)计算:+()﹣1﹣×cos30°;(2)解方程:+1=.36.(2020•黔南州)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?37.(2020•锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?38.(2020•葫芦岛)某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A 种书架?39.(2020•桂林)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?40.(2020•赤峰)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?41.(2020•沈阳)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?42.(2020•益阳)“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务?43.(2020•丹东)为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍.求八年级捐书人数是多少?44.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?45.(2020•大庆)解方程:﹣1=.46.(2020•长春)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?47.(2020•镇江)(1)解方程:=+1;(2)解不等式组:48.(2020•吉林)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.49.(2020•云南)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?50.(2020•岳阳)为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.2020年全国中考数学试题精选分类(3)——分式方程参考答案与试题解析一.选择题(共26小题)1.(2020•阜新)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=30【答案】B【解答】解:设实际每天铺xm管道,则原计划每天铺m管道,根据题意,得﹣=30,故选:B.2.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.【答案】B【解答】解:设班级共有x名学生,依据题意列方程得,.故选:B.3.(2020•鞍山)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是()A.B.C.D.【答案】B【解答】解:设甲每小时加工x个零件,根据题意可得:=.故选:B.4.(2020•呼伦贝尔)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.=B.=C.+=130 D.﹣130=【答案】A【解答】解:设甲每天做x个零件,根据题意得:,故选:A.5.(2020•绵阳)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时【答案】C【解答】解:设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:=,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故选:C.6.(2020•海南)分式方程=1的解是()A.x=﹣1 B.x=1 C.x=5 D.x=2【答案】C【解答】解:去分母,得x﹣2=3,移项合并同类项,得x=5.检验:把x=5代入x﹣2≠0,所以原分式方程的根为:x=5.故选:C.7.(2020•广西)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣20【答案】A【解答】解:因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:﹣=.故选:A.8.(2020•十堰)某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1 B.=﹣1C.=+2 D.=﹣2【答案】A【解答】解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.9.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59【答案】B【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.10.(2020•鸡西)若关于x的分式方程=有正整数解,则整数m的值是()A.3 B.5 C.3或5 D.3或4【答案】D【解答】解:解分式方程,得x=,经检验,x=是分式方程的解,因为分式方程有正整数解,则整数m的值是3或4.故选:D.11.(2020•荆门)已知关于x的分式方程=+2的解满足﹣4<x<﹣1,且k为整数,则符合条件的所有k值的乘积为()A.正数B.负数C.零D.无法确定【答案】A【解答】解:=+2,(2x+3)(x+3)=k+2(x﹣2)(x+3),解得x=﹣3,∵﹣4<x<﹣1且(x﹣2)(x+3)≠0且k为整数,∴﹣4<﹣3<﹣1,解得﹣7<k<14且k≠0,∴解k=﹣6、﹣5、﹣4、﹣3、﹣2、﹣1、1、2、3、4、5、6、7、8、9、10、11、12、13,∴符合条件的所有k值的乘积为正数.故选:A.12.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3 B.1 C.0 D.﹣1【答案】C【解答】解:当m2﹣2m≥0时,,解得m=0,经检验,m=0是原方程的解,并且满足m2﹣2m≥0,当m2﹣2m<0时,m﹣3=﹣6,解得m=﹣3,不满足m2﹣2m<0,舍去.故输入的m为0.故选:C.13.(2020•宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+8【答案】B【解答】解:设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,依题意,得:=.故选:B.14.(2020•荆州)八年级学生去距学校10km的荆州博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm/h,则可列方程为()A.﹣=20 B.﹣=20C.﹣=D.﹣=【答案】C【解答】解:设骑车学生的速度为xkm/h,则乘车学生的速度为2xkm/h,依题意,得:﹣=.故选:C.15.(2020•牡丹江)若关于x的方程=0的解为正数,则m的取值范围是()A.m<2 B.m<2且m≠0 C.m>2 D.m>2且m≠4【答案】C【解答】解:∵解方程,去分母得:mx﹣2(x+1)=0,整理得:(m﹣2)x=2,∵方程有解,∴,∵分式方程的解为正数,∴,解得:m>2,∴m的取值范围是:m>2.故选:C.16.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80 D.=【答案】D【解答】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,依题意,得:=.故选:D.17.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.=B.=C.=D.=【答案】B【解答】解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:=.故选:B.18.(2020•黑龙江)已知关于x的分式方程﹣4=的解为正数,则k的取值范围是()A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k≠﹣2【答案】B【解答】解:分式方程﹣4=,去分母得:x﹣4(x﹣2)=﹣k,去括号得:x﹣4x+8=﹣k,解得:x=,由分式方程的解为正数,得到>0,且≠2,解得:k>﹣8且k≠﹣2.故选:B.19.(2020•泸州)已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3 B.4 C.5 D.6【答案】B【解答】解:去分母,得:m+2(x﹣1)=3,移项、合并,得:x=,∵分式方程的解为非负数,∴5﹣m≥0且≠1,解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.20.(2020•齐齐哈尔)若关于x的分式方程=+5的解为正数,则m的取值范围为()A.m<﹣10 B.m≤﹣10C.m≥﹣10且m≠﹣6 D.m>﹣10且m≠﹣6【答案】D【解答】解:去分母得:3x=﹣m+5(x﹣2),解得:x=,由方程的解为正数,得到m+10>0,且m+10≠4,则m的范围为m>﹣10且m≠﹣6,故选:D.21.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40 B.﹣=40C.﹣=40 D.﹣=40【答案】A【解答】解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为万平方米,依题意,得:﹣=40,即﹣=40.故选:A.22.(2020•重庆)若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7 B.﹣14 C.28 D.﹣56【答案】A【解答】解:不等式组整理得:,由解集为x≤a,得到a≤7,分式方程去分母得:y﹣a+3y﹣4=y﹣2,即3y=a+2,解得:y=,由y为正整数解,且y≠2得到a=1,71×7=7,故选:A.23.(2020•遂宁)关于x的分式方程﹣=1有增根,则m的值()A.m=2 B.m=1 C.m=3 D.m=﹣3【答案】D【解答】解:去分母得:m+3=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.24.(2020•重庆)若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1 B.﹣2 C.﹣3 D.0【答案】B【解答】解:不等式组整理得:,由解集为x≥5,得到2+a<5,即a<3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.25.(2020•上海)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=0【答案】A【解答】解:把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.26.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4 B.x=5 C.x=6 D.x=7【答案】B【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.二.填空题(共8小题)27.(2020•河池)方程=的解是x=﹣3.【答案】﹣3.【解答】解:方程的两边同乘(2x+1)(x﹣2),得:x﹣2=2x+1,解这个方程,得:x=﹣3,经检验,x=﹣3是原方程的解,∴原方程的解是x=﹣3.故答案为:﹣3.28.(2020•潍坊)若关于x的分式方程+1有增根,则m=3.【答案】见试题解答内容【解答】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.29.(2020•徐州)方程=的解为x=9.【答案】见试题解答内容【解答】解:去分母得:9(x﹣1)=8x9x﹣9=8xx=9检验:把x=9代入x(x﹣1)≠0,所以x=9是原方程的解.故答案为:x=9.30.(2020•内江)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为40.【答案】见试题解答内容【解答】解:去分母,得:x+2﹣a=3(x﹣1),解得:x=,∵分式方程的解为非负数,∴≥0,且≠1,解得a≤5且a≠3,解不等式﹣≥﹣,得:y≤0,解不等式2(y﹣a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,故答案为:40.31.(2020•淮安)方程+1=0的解为x=﹣2.【答案】见试题解答内容【解答】解:方程+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.32.(2020•菏泽)方程的解是x=.【答案】见试题解答内容【解答】解:方程=,去分母得:(x﹣1)2=x(x+1),整理得:x2﹣2x+1=x2+x,解得:x=,经检验x=是分式方程的解.故答案为:x=.33.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程﹣=2.【答案】见试题解答内容【解答】解:设原计划每天加工零件x个,则实际每天加工零件1.5x个,依题意,得:﹣=2.故答案为:﹣=2.34.(2020•嘉兴)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程=.【答案】见试题解答内容【解答】解:根据题意得,=,故答案为:=.三.解答题(共16小题)35.(2020•日照)(1)计算:+()﹣1﹣×cos30°;(2)解方程:+1=.【答案】(1)﹣2;(2)x=1.【解答】解:(1)原式=.(2)+1=,两边同乘以(x﹣2)得,x﹣3+(x﹣2)=﹣3,解得,x=1.经检验x=1是原分式方程的解.36.(2020•黔南州)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?【答案】(1)甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)购买了20瓶乙品牌消毒剂.【解答】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.37.(2020•锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?【答案】200顶.【解答】解:设计划每天生产x顶帐篷,则实际每天生产帐篷(1+25%)x顶,依题意得:﹣10=.解得x=200.经检验x=200是所列方程的解,且符合题意.答:计划每天生产200顶帐篷.38.(2020•葫芦岛)某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A 种书架?【答案】(1)购买A种书架需要100元,B种书架需要80元.(2)最多可购买10个A种书架.【解答】解:(1)设B种书架的单价为x元,根据题意,得.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15﹣m)≤1400.解得m≤10.答:最多可购买10个A种书架.39.(2020•桂林)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【答案】(1)每副围棋18元,则每副象棋10元;(2)该校最多可再购买25副围棋.。

2020年中考数学第一轮复习专题 第27课 尺规作图(含答案)

2020年中考数学第一轮复习专题 第27课 尺规作图(含答案)

第27课尺规作图本节内容考纲要求考查五个基本作图和能转化为基本作图的简单尺规作图。

广东省近5年试题规律:以解答题出现,一般考查作角平分线,线段的垂直平分线和过一点直线的垂线,多与三角形、四边形问题结合一起,难度不大,但学生欠缺动手操作,是常见丢分题。

知识清单知识点一尺规作图定义只用圆规和尺子来完成的图画,称为尺规作图.基本步骤(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,使它符合什么条件;(3)作法:运用五种基本作图,保留作图痕迹;(4)证明:验证所作图形的正确性;(5)结论:对所作的图形下结论.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过一已知点作直线的垂线;(5)作已知线段的垂直平分线.课前小测1.(尺规作图的定义)尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具2.(作角平分线)如图,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.AAS D.SSS3.(作一个角等于已知角)小明回顾用尺规作一个角等于已知角的作图过程(如图所示),连接CD、C′D′得出了△OCD≌△O′C′D′,从而得到∠O=∠O′,其中小明作出△OCD≌△O′C′D′判定的依据是()A.SSS B.SAS C.ASA D.AAS 4.(作垂直平分线)如图所示,已知线段AB=6,现按照以下步骤作图:①分别以点A,B为圆心,以大于12AB的长为半径画弧,两弧相交于点C和点D;②连结CD交AB于点P.则线段PB的长为.5.(作垂线)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.经典回顾考点一作线段垂直平分线【例1】(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【点拨】作线段的垂直平分线要点:①以线段两端点为圆心作弧,两弧交于两点;②再过两点作垂线.考点二作角平分线【例2】(2018•赤峰)如图,D是△ABC中BC边上一点,∠C=∠DAC.(1)尺规作图:作∠ADB的平分线,交AB于点E(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:DE∥AC.【点拔】作角的平分线要点:①以顶点为圆心画弧交角的两边于两点;②再以这两点为圆心作弧,两弧交于一点;③最后过顶点与交点作射线.考点三作垂线【例3】(2015•广东)如图,已知锐角△AB C.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=34,求DC的长.【点拨】过一点作垂线或作高线要点:①以这点为圆心,在直线上截取一条线段;②再作线段的垂直平分.考点四作一个角等于已知角【例4】(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC 于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.【点拔】过一点作一个角等于已知角要点:①以角的顶点为圆心画弧交两边于两点,以这一点为圆心,相同半径作弧,交于一点;②再以两点间距离为半径,作弧,两弧交于一点;③最后过这一点于交点作射线.对应训练1.(2019•泰州)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.2.(2019•中山一模)如图,已知平行四边形ABCD,(1)作∠B的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,CD=2,求DE的长.3.(2019•江门期末)画图题:如图,已知三角形ABC,AB=5.(1)过点C作CD⊥AB,点D为垂足:(2)在(1)的条件下,若DB=2,求点A到CD的距离.4.(2019•顺德期末)如图,Rt△ABC中,∠A=90°.(1)用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法);(2)在(1)的条件下,当∠C=30°时,求∠BDC的度数.中考冲刺夯实基础1.(2019•赤峰)已知:AC是□ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.2.(2019•惠阳二模)如图,已知:AB∥CD.(1)在图中,用尺规作∠ACD的平分线交AB于E点;(不要求写作法,保留作图痕迹)(2)判断△ACE的形状,并证明.3.(2019•玉林)如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.4.(2019•越秀一模)如图,在矩形ABCD中,AD=AE(1)尺规作图:作DF⊥AE于点F;(保留作图痕迹,不写作法)(2)求证:AB=DF.能力提升5.(2019•白银)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.6.(2019•三明模拟)如图,在△ABC中,AB=AC.(1)尺规作图:作∠CBD=∠A,D点在AC边上(要求:不写作法,保留作图痕迹)(2)若∠A=40°,求∠ABD的度数.7.(2019•达州)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.第27课尺规作图课前小测1.C.2.D.3.A.4.3.5.B.经典回顾考点一作线段垂直平分线【例1】解:(1)如图,直线EF即为所求;(2)∵四边形ABCD是菱形,∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABD=∠DBC=12∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.考点二作角平分线【例2】(1)解:如图,DE为所求;(2)证明:∵DE平分∠ADB,∴∠ADE=∠BDE,∵∠ADB=∠C+∠DAC,而∠C=∠DAC,∴2∠BDE=2∠C,即∠BDE=∠C,∴DE∥AC.考点三作垂线【例3】解:(1)如图,MN为所求;(2)∵AD⊥BC,∴∠ADB=∠ADC=90°,∵tan∠BAD=BDAD =34,∴BD=3,∴CD=BC﹣BD=5﹣3=2.考点四作一个角等于已知角【例4】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴AEEC =ADDB=2.对应训练1.解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.2.解:(1)如图,BE为所作;(2)∵四边形ABCD为平行四边形,∴AD∥BC,AB=CD=2,AD=BC,∵平行四边形ABCD的周长为10∴AB+AD=5,∴AD=3,∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠ABE=∠AEB,∴AE=AB=2,∴DE=AD﹣AE=3﹣2=1.3.解:(1)如图,CD为所作.(2)∵AB=5,BD=2,∴AD=3,∴点A到CD的距离为3.4.解:(1)如图,∠ABD为所作;(2)∵∠ABC+∠C+∠A=90°,∴∠ABC=180°﹣90°﹣30°=60°,∵∠ABD=∠C=30°,∴∠BDC=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠BDC=180°﹣30°﹣30°=120°.中考冲刺夯实基础1.解:(1)如图,CE为所作;(2)∵四边形ABCD为平行四边形,∴AD=BC=5,CD=AB=3,∵点E在线段AC的垂直平分线上,∴EA=EC,∴△DCE的周长=CE+DE+CD=EA+DE+CD=AD+CD=5+3=8.2.解:(1)如图即为所求:(2)△ACE是等腰三角形.证明:∵CE平分∠ACD,∴∠ACE=∠ECD,∵AB∥CD,∴∠AEC =∠ECD ,∴∠ACE =∠AEC ,∴△ACE 是等腰三角形.3.(1)解:如图,点D 为所作;(2)证明:∵AB =AC ,∴∠ABC =∠C =(180°﹣36°)=72°, ∵DA =DB ,∴∠ABD =∠A =36°,∴∠BDC =∠A +∠ABD =36°+36°=72°, ∴∠BDC =∠C ,∴△BCD 是等腰三角形.4.(1)解:如图,F 点为所作;(2)证明:∵四边形ABCD 为矩形, ∴AD ∥BC ,∠B =90°,∴∠DAE =∠AEB ,∵DF ⊥AE ,∴∠AFD =90°,在△ABE 和△DFA 中B DFAAEB DAF AE AD=⎧⎪=⎨⎪=⎩∠∠∠∠,∴△ABE≌△DFA(AAS),∴AB=DF.能力提升5.解:(1)如图⊙O即为所求.(2)25π.6.解:(1)如图,∠CBD为所作;(2)∵AB=AC,∴∠ABC=∠C=1(180°﹣∠A)=70°,2∵∠CBD=∠A=40°,∴∠ABD=70°﹣40°=30°.7.解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=12∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴DEAC =BEBC,即2DE=33DE,∴DE=65.。

压轴题26选择压轴题(函数篇)-2023年中考数学压轴题专项训练(全国通用)(学生版)

压轴题26选择压轴题(函数篇)-2023年中考数学压轴题专项训练(全国通用)(学生版)

选择压轴题(函数篇)1压轴题速练1一.选择题(共40小题)1(2023•方城县一模)如图,点A (0,3)、B (1,0),将线段AB 平移得到线段DC ,若∠ABC =90°,BC =2AB ,则点D 的坐标是()A.(7,2)B.(7,5)C.(5,6)D.(6,5)2(2023•东莞市校级二模)如图,在平面直角坐标系中,A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一条长为2023个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A -B -C -D -A ⋯⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是()A.(-1,0)B.(0,2)C.(-1,-2)D.(0,1)3(2023•越秀区二模)抛物线G :y =-13x 2+3与x 轴负半轴交于点A ,与y 轴交于点B ,将抛物线G 沿直线AB 平移得到抛物线H ,若抛物线H 与y 轴交于点D ,则点D 的纵坐标的最大值是()A.415B.154C.32D.234(2023•上城区一模)二次函数y =ax 2+bx +c 与自变量x 的部分对应值表如下,已知有且仅有一组值错误(其中a ,b ,c ,m 均为常数).x ⋯-2023⋯y⋯-m 22-m 2-m 2⋯甲同学发现当a >0时,x =5是方程ax 2+bx +c =2的一个根;乙同学发现当a <0时,则a +b =0.下列说法正确的是()A.甲对乙错B.甲错乙对C.甲乙都错D.甲乙都对5(2023•温州二模)已知函数y=-x2+mx+n(-1≤x≤1),且x=-1时,y取到最大值1,则m的值可能为()A.3B.1C.-1D.-36(2023•越秀区一模)抛物线G:y=-13x2+3与x轴负半轴交于点A,与y轴交于点B,将抛物线G沿直线AB平移得到抛物线H,若抛物线H与y轴交于点D,则点D的纵坐标的最大值是()A.415B.154C.32D.237(2023•定海区模拟)如图,C是线段AB上一动点,分别以AC、BC为边向上作正方形ACDE、BCFG,连结EG交DC于K.已知AB=10,设AC=x(5<x<10),记△EDK的面积为S1,记△EAC的面积为S2.则S1S2与x的函数关系为()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系8(2023•雁塔区模拟)抛物线y=ax2+bx+c(a,b,c为常数)开口向上,且过点A(1,0),B(m,0)(-1 <m<0),下列结论:①abc>0;②若点P1(-1,y1),P2(1,y2)都在抛物线上,则y1<y2;③2a+c<0;④若方程a(x-m)(x-1)+2=0没有实数根,则b2-4ac<8a,其中正确结论的序号为()A.①③B.②③④C.①④D.①③④9(2023•碑林区校级模拟)已知二次函数y=a(x-1)2-a(a≠0),当-1≤x≤4时,y的最小值为-4,则a的值为()A.12或4B.4或-12C.-43或4D.-12或4310(2023•海安市一模)二次函数y=ax2+bx+c(a>0)的图象与x轴相交于A,B两点,点C在二次函数图象上,且到x轴距离为4,∠ACB=90°,则a的值为()A.4B.2C.12D.1411(2023•和平区二模)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0),9a-3b+c=m,有下列结论:①若m=0,则抛物线经过点(-3,0);②若4a-2b+c=n且m>n,当-3<x<-2,y随x的增大而减小;③若m>0,抛物线经过点A(-1,0),B(5,m)和P(t,k),且点P到y轴的距离小于2时,则k的取值范围为-3a<k<5a.其中,正确结论的个数是()A.0B.1C.2D.312(2023•杭州一模)设二次函数y=ax2+c(a,c是常数,a<0),已知函数的图象经过点(-2,p),(10,0),(4,q),设方程ax2+c+2=0的正实数根为m,()A.若p>1,q<-1,则2<m<10B.若p>1,q<-1,则10<m<4C.若p>3,q<-3,则2<m<10D.若p>3,q<-3,则10<m<413(2023•衡水模拟)某水利工程公司开挖的沟渠,蓄水之后截面呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m).某学习小组探究之后得出如下结论,其中正确的为()A.AB=24mB.池底所在抛物线的解析式为y=125x2-5C.池塘最深处到水面CD的距离为3.2mD.若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离减少为原来的1314(2023•宝安区二模)已知点(x1,y1),(x2,y2)(x1<x2)在y=-x2+2x+m的图象上,下列说法错误的是()A.当m>0时,二次函数y=-x2+2x+m与x轴总有两个交点B.若x2=2,且y1>y2,则0<x1<2C.若x1+x2>2,则y1>y2D.当-1≤x≤2时,y的取值范围为m-3≤y≤m15(2023•四川模拟)已知二次函数y=ax2+bx+c(a<0),跟x轴正半轴交于A、B两点,直线y=kx +b与y轴正半轴交于点D,交x轴于点C(C在A的右侧不与B重合),抛物线的对称轴为x=2,连接AD,则△AOD是等腰直角三角形,有以下四个命题:①-4ac<0;②4a+b+c>0;③k≠-1;④b=-4a.以上命题正确的是()A.①②③④B.②③C.①③④D.①②④16(2023•东莞市校级模拟)已知抛物线y=ax2+bx+c(a>0)经过两点(m,n),(4-m,n),则关于函数y=ax2+bx+c(a>0),下列说法“①4a-b=0;②当x>2时,y随着x的增大而增大;③若b2-4ac=0,则ax2+bx+c=a(x-2)2;④若实数t<2,则(t+2)a+b<0”中正确的个数有()A.1个B.2个C.3个D.4个17(2023•商河县一模)已知二次函数的表达式为y=-x2-2x+3,将其图象向右平移k(k>0)个单位,得到二次函数y1=mx2+nx+q的图象,使得当-1<x<3时,y1随x增大而增大;当4<x<5时,y1随x增大而减小.则实数k的取值范围是()A.1≤k ≤3B.2≤k ≤3C.3≤k ≤4D.4≤k ≤518(2023•佳木斯一模)如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在反比例函数y =a x的图象上,顶点B 在反比例函数y =bx的图象上,点C 在x 轴的正半轴上,平行四边形OABC 的面积是3,则a -b 的值是​()A.3B.-3C.5D.-519(2023•雨山区校级一模)如图,在平面直角坐标系中,将一块直角三角形纸板如图放置,直角顶点与原点O 重合,顶点A 、B 恰好分别落在函数y =-1x (x <0),y =4x(x >0)的图象上,则sin ∠ABO 的值为()A.13B.64C.25D.5520(2023•驻马店模拟)某商家设计了一个水箱水位自动报警仪,其电路图如图1所示,其中定值电阻R 1=10Ω,R 2是一个压敏电阻,用绝缘薄膜包好后放在一个硬质凹形绝缘盒中,放入水箱底部,受力面水平,承受水压的面积S 为0.01m 2,压敏电阻R 2的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深,压力F 越大),电源电压保持6V 不变,当电路中的电流为0.3A 时,报警器(电阻不计)开始报警,水的压强随深度变化的关系图象如图3所示(参考公式:I =UR,F =pS ,1000Pa =1kPa ),则下列说法中不正确的是()A.当水箱未装水(h =0m )时,压强p 为0kPaB.当报警器刚好开始报警时,水箱受到的压力F 为40NC.当报警器刚好开始报警时,水箱中水的深度h 是0.8mD.若想使水深1m 时报警,应使定值电阻R 1的阻值为12Ω21(2023•长春一模)如图,在平面直角坐标系中,点A 在反比例函数y =2x(x >0)的图象上,点B 在反比例函数y =k x (x >0)的图象上,AB ∥x 轴,BD ⊥x 轴与反比例函数y =2x的图象交于点C ,与x 轴交于点D ,若BC =2CD ,则k 的值为()A.4B.5C.6D.722(2023•翼城县一模)如图,在平面直角坐标系内,四边形OABC 是矩形,四边形ADEF 是正方形,点A ,D 在x 轴的负半轴上,点F 在AB 上,点B ,E 均在反比例函数y =kx(x <0)的图象上,若点B 的坐标为(-1,6),则正方形ADEF 的周长为()A.4B.6C.8D.1023(2023•萧县一模)如图,在Rt △OAB 中,OC 平分∠BOA 交AB 于点C ,BD 平分∠OBA 交OA 于点D ,交OC 于点E ,反比例函数y =k x 经过点E ,若OB =2,CE OE=12,则k 的值为()A.49B.89C.43D.8324(2023•仙桃校级一模)如图,菱形ABCD 的对角线AC ,BD 交于点P ,且AC 过原点O ,AB ∥x 轴,点C 的坐标为(6,3),反比例函数y =kx的图象经过A ,P 两点,则k 的值是()A.4B.3C.2D.125(2022•吴兴区校级二模)已知在平面直角坐标系xOy 中,过点O 的直线交反比例函数y =1x的图象于A ,B 两点(点A 在第一象限),过点A 作AC ⊥x 轴于点C ,连结BC 并延长,交反比例函数图象于点D ,连结AD ,将△ACB 沿线段AC 所在的直线翻折,得到△ACB 1,AB 1与CD 交于点E .若点D 的横坐标为2,则AE 的长是()A.23B.223C.22D.126(2022•太康县校级模拟)如图,△AOB 的顶点O 在原点上,顶点A 的坐标为(-3,1),∠BAO =90°,AB =OA ,点P 为OB 上一点,且OP =3BP ,将△AOB 向右平移,当点P 的对应点P ′落在反比例函数y =4x(x >0)上时,则点P ′的坐标为()A.(2,3)B.(3,2)C.3,43D.43,327(2022•丹徒区模拟)如图,平面直角坐标系中,过原点的直线AB 与双曲线交于A 、B 两点,在线段AB 左侧作等腰三角形ABC ,底边BC ∥x 轴,过点C 作CD ⊥x 轴交双曲线于点D ,连接BD ,若S △BCD =16,则k 的值是()A.-4B.-6C.-8D.-1628(2022•顺平县校级模拟)如图是反比例函数y 1=2x 和y 2=-4x在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象交于A 、B 两点,点P (-5.5,0)在x 轴上,则△PAB 的面积为()A.3B.6C.8.25D.16.529(2022•沭阳县模拟)如图,Rt △ABC 位于第一象限,AB =2,AC =2,直角顶点A 在直线y =x 上,其中点A 的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若函数y =kx(k ≠0)的图象与△ABC 有交点,则k 的最大值是()A.5B.4C.3D.230(2023•道外区二模)甲、乙两同学进行赛跑,两人在比赛时所跑的路程S (米)与时间t (分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲同学率先到达终点B.甲同学比乙同学多跑了200米路程C.乙同学比甲同学少用0.2分钟跑完全程D.乙同学的速度比甲同学的速度慢31(2023•潼南区二模)甲、乙两车分别从相距480km的A、B两地相向而行,甲、乙两车离B地的距离y(km)与甲车行驶时间x(h)关系如图所示,下列说法错误的是()​A.甲车比乙车提前出发1hB.甲车的速度为80km/hC.当乙车到达A地时,甲车距离B地80kmD.t的值为5.232(2023•南岗区校级二模)在全民健身越野比赛中,乙选手匀速跑完全程,甲选手1.5小时后的速度为每小时10千米,甲、乙两选手的行程y(千米)随时间z(时)变化的图象(全程)如图所示.下列说法:①起跑后半小时内甲的速度为每小时16千米;②第1小时两人都跑了10千米;③两人都跑了20千米;④乙比甲晚到0.3小时.其中正确的个数有()A.1个B.2个C.3个D.4个33(2023•延庆区一模)如图,用绳子围成周长为10m 的矩形,记矩形的一边长为xm ,它的邻边长为ym .当x 在一定范围内变化时,y 随x 的变化而变化,则y 与x 满足的函数关系是()A.一次函数关系B.二次函数关系C.正比例函数关系D.反比例函数关系34(x +y )=10,35(2023•西乡塘区一模)定义:如果两个函数图象上至少存在一对点是关于原点对称的,我们则称这两个函数互为“守望函数”,这对点称为“守望点”.例如:点P (2,4)在函数y =x 2上,点Q (-2,-4)在函数y =-2x -8上,点P 与点Q 关于原点对称,此时函数y =x 2和y =-2x -8互为“守望函数”,点P 与点Q 则为一对“守望点”.已知函数y =x 2+2x 和y =4x +n -2022互为“守望函数”,则n 的最大值为()A.2020B.2022C.2023D.408436(2023•武汉模拟)A ,B 两地相距80km ,甲、乙两人沿同一条路从A 地到B 地.l 1,l 2分别表示甲、乙两人离开A 地的距离s (km )与时间t (h )之间的关系,当乙车出发2h 时,两车相距是()A.403km B.803km C.13km D.40km37(2023•东至县一模)已知二次函数y =ax 2+bx +c 的图象如右图,其对称轴为x =-1,它与x 轴的一个交点的横坐标为-3,则一次函数y =ax -2b 与反比例函数y =cx在同一平面直角坐标系中的图象大致是()A. B. C. D.38(2023•六安三模)甲,乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过时间x(小时)之间的函数关系图象.当甲与乙相遇时距离A地()A.16千米B.18千米C.72千米D.74千米39(2023•东莞市二模)如图1,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,下列结论不正确的是()A.AC=4B.BC=23C.tan∠BAP=32D.∠ABC=90°40(2023•黄埔区一模)如图,在边长为2的正方形ABCD中,点P从点A出发,沿A→B→C→D匀速运动到点D,若点E是BC的中点,则△APE的面积y与点P运动的路程x之间形成的函数关系图象是()A. B.C. D.41(2023•鞍山一模)如图,在正方形ABCD中,AB=2,点E从点B出发以每秒2个单位长度的速度沿路径B-D-C运动,点F从点C出发以每秒1个单位长度的速度沿路径C-D-A运动,当点E与11点C 重合时停止运动,设点E 的运动时间为x 秒,△BEF 的面积为y ,则能反映y 与x 之间函数关系的图象大致为()A.B.C.D.。

压轴题27选择压轴题(几何篇)-2023年中考数学压轴题专项训练(全国通用)(原卷版)

压轴题27选择压轴题(几何篇)-2023年中考数学压轴题专项训练(全国通用)(原卷版)

2023年中考数学压轴题专项训练压轴题27选择压轴题(几何篇)一.选择题(共40小题)1.(2023•朝阳区校级三模)如图,AB是⊙O的直径,将OB绕着点O逆时针旋转40°得到OC,P是⊙O 上一点,且与点C在AB的异侧,连结P A、PC、AC,若P A=PC,则∠P AB的大小是()A.20°B.35°C.40°D.70°2.(2023•河北区二模)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,且∠COA=45°,OA =4,则点B的坐标为()A.(4+2√2,2√2)B.(2√2,2√2)C.(2+2√2,2)D.(√2,2)3.(2023•奉贤区二模)如图,矩形ABCD中,AB=1,∠ABD=60°,点O在对角线BD上,圆O经过点C.如果矩形ABCD有2个顶点在圆O内,那么圆O的半径长r的取值范围是()A.0<r≤1B.1<r≤√3C.1<r≤2D.√3<r≤24.(2023•广灵县模拟)如图,在Rt△ABC中,∠C=90°,BC=3,AC=6,点O,D,E是AB边上的点,以点O为圆心,DE长为直径的半圆O与AC相切于点M,与BC相切于点N,则图中阴影部分的面积为()A .5B .9﹣2πC .9﹣πD .5﹣π5.(2023•普陀区二模)如图,△ABC 中,∠BAC =60°,BO 、CO 分别平分∠ABC 、∠ACB ,AO =2,下面结论中不一定正确的是( )A .∠BOC =120°B .∠BAO =30°C .OB =3D .点O 到直线BC 的距离是16.(2023•瓯海区模拟)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH ,连结DH 并延长交AB 于点K ,若DF 平分∠CDK ,则DH HK =( )A .2√33B .65C .√5−1D .4√577.(2023•花溪区模拟)勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题的最重要工具也是数形结合的组带之一,如图,秋千静止时,踏板离地的垂直高度BE =1m ,将它往前推6m 至C 处时(即水平距离CD =6m ),踏板离地的垂直高度CF =4m ,它的绳索始终拉直,则绳索AC 的长是( )A .152mB .92mC .6mD .212m8.(2023•承德一模)如图,在菱形ABCD 中,AC 、BD (AC >BD )相交于点O ,E 、F 分别为OA 和OC 上的点(不与点A 、O 、C 重合).其中AE =OF .过点E 作GH ⊥AC ,分别交AD 、AB 于点G 、H ;过点F 作IJ ⊥AC 分别交CD 、CB 于点J 、I ;连接GJ 、HI ,甲、乙、丙三个同学给出了三个结论:甲:随着AE 长度的变化,GH +IJ =BD 始终成立.乙:随着AE 长度的变化,四边形GHIJ 可能为正方形.丙:随着AE 长度的变化,四边形GHIJ 的面积始终不变,都是菱形ABCD 面积的一半.下列选项正确的是( )A .甲、乙、丙都对B .甲、乙对,丙不对C .甲、丙对,乙不对D .甲不对,乙、丙对 9.(2023•石家庄二模)如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,E ,F 分别是OB 与OD 的中点,依连接点A ,E ,C ,F ,A ,当四边形AECF 是矩形时,与线段BE 相等的线段有( )A .4条B .5条C .6条D .7条10.(2023•青山区二模)如图,边长为2的正方形ABCD 的对角线AC 与BD 相交于点O ,E 是BC 边上一点,F 是BD 上一点,连接DE ,EF .若△DEF 与△DEC 关于直线DE 对称,则OF 的长为( )A .√22B .2√2−2C .2−√2D .√2−111.(2023•柳城县一模)七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.(清)陆以活《冷庐杂识》卷中写道:近又有七巧图,其式五,其数七,其变化之式多至千余,体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图,是一个用七巧板拼成的装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则BF BE 的值为( )A .1+√22B .√22C .2+√24D .2+√2212.(2023•泉州模拟)如图,在矩形ABCD 中,AB =2,BC =4,将△ABC 沿BC 的方向平移至△A 'B 'C ',使得A ′E =A ′F ,其中E 是A ′B ′与AC 的交点,F 是A ′C ′与CD 的交点,则CC ′的长为( )A .52−√52B .112−√5C .5−√5D .92−√5 13.(2023•定远县二模)如图,在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,点P 为BC 边上任意一点,连接P A ,以P A ,PC 为邻边作平行四边形P AQC ,连接PQ ,则PQ 长度的最小值为( )A .3B .2.5C .2.4D .214.(2023•烟台一模)如图,在矩形ABCD 中,AB =12,AD =10,点E 在AD 上,点F 在BC 上,且AE =CF ,连结CE ,DF ,则CE +DF 的最小值为( )A .26B .25C .24D .2215.(2023•郯城县一模)如图,在Rt △ABC 中,∠BAC =90°,AB =6,BC =10,点P 为BC 边上任意一点,连接P A ,以P A ,PC 为邻边作平行四边形P AQC ,连接PQ ,则PQ 长度的最小值为( )A .4.8B .5C .2.4D .416.(2023•白云区一模)如图,正方形ABCD 的面积为3,点E 在边CD 上,且CE =1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则下列结论错误的是( )A .FD =√2MNB .△DEF 是等腰直角三角形C .BN =1D .tan ∠FBE =√317.(2023•九龙坡区校级模拟)如图,在正方形ABCD 中,O 为AC 、BD 的交点,△DCE 为直角三角形,∠CED =90°,OE =3√2,若CE •DE =6,则正方形的面积为( )A .20B .22C .24D .2618.(2023•杭州一模)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2cm ,BC =FG =8cm .把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且B 点D 与点G 重合,当两张纸片交叉所成的角α最小时,tan α等于( )A .14B .815C .12D .81719.(2023•高明区二模)矩形ABCD 和直角三角形EFG 的位置如图所示,点A 在EG 上,点D 在EF 上,若∠2=55°,则∠1等于( )A.155°B.135°C.125°D.105°20.(2023•余姚市一模)如图,由两个正三角形组成的菱形内放入标记为①,②,③,④的四种不同大小的小正三角形5个,其中编号①的有2个.设未被覆盖的浅色阴影部分的周长为C1,深色阴影部分的周长为C2,若要求出C1﹣C2的值,只需知道其中两个小正三角形的边长,则这两个小三角形的编号为()A.①②B.②③C.①③D.②④21.(2023•衡水二模)如图,点P是正方形ABCD的边BC上一点,点M是对角线BD上一点,连接PM 并延长交BA的延长线于点Q,交AD于点G,取PQ的中点N.连接AN.若AQ=PC,有下面两个结论:①DM=DG,②AN⊥BD,则这两个结论中,正确的是()A.①对B.②对C.①②都对D.①②都不对22.(2023•新乡二模)如图,在矩形ABCD中,点B(0,4),点C(2,0),BC=2CD,先将矩形ABCD 沿y轴向下平移至点B与点O重合,再将平移后的矩形ABCD绕点O逆时针旋转90°得到矩形EOMN,则点D的对应点N的坐标为()A.(3,3)B.(4,4)C.(3,4)D.(4,3)23.(2023•荆门一模)如图,菱形ABCD各边的中点分别是E、F、G、H,若EH=2EF,则下列结论错误的是()A.EH⊥EF B.EH=AC C.∠B=60°D.AB=√5EF24.(2023•中原区校级二模)如图,在Rt△ABO中,AB=OB,顶点A的坐标为(2,0),以AB为边向△ABO的外侧作正方形ABCD,将组成的图形绕点O逆时针旋转,每次旋转45°,则第98次旋转结束时,点D的坐标为()A.(1,﹣3)B.(﹣1,3)C.(﹣1,2+√2)D.(1,3)25.(2023•中原区模拟)如图,▱ABCD的边BC在x轴的负半轴上,点B与原点O重合,DE⊥AB,交BA 的延长线于点E,已知∠ABC=60°,AB=4,BC=6,则点E的坐标为()A.(﹣2,﹣,2√3)B.(﹣3,3√3)C.(−72,72√3)D.(−52√3,52)26.(2023•武邑县二模)如图,N是正六边形ABCDEF对角线CF上一点,延长FE,CD相交于点M,若S△ABN=2,则S五边形ABCMF=()A.10B.12C.14D.1627.(2023•承德一模)如图,正六边形的两条对角线AE、BE把它分成Ⅰ、Ⅱ、Ⅲ三部分,则该三部分的面积比为()A.1:2:3B.2:2:4C.1:2:4D.2:3:528.(2023•罗湖区二模)如图,AB为圆O的直径,C为圆O上一点,过点C作圆O的切线交AB的延长线于点D,DB=13AD,连接AC,若AB=8,则AC的长度为()A.2√3B.2√5C.4√3D.4√529.(2023•杭州一模)如图,过⊙O外一点A作⊙O的切线AD,点D是切点,连结OA交⊙O于点B,点C是⊙O上不与点B,D重合的点.若∠A=α°,则∠C的度数为()A.(45−12α)°B.12α°C.2α°D.(45+12α)°30.(2023•西宁一模)如图,扇形纸片AOB的半径为3,沿AB所在直线折叠扇形纸片,圆心D恰好落在AB̂上的点C处,则阴影部分的面积是()A.3π−9√32B.3π−3√32C.2π−3√32D.2π−9√3231.(2023•太原一模)如图,在扇形纸片OAB 中,∠AOB =105°,OA =6、点C 是半径OA 上的点、沿直线BC 折叠△OBC 得到△DBC ,点O 的对应点D 落在AB̂上,图中阴影部分的面积为( )A .9π−92B .9π−182C .9π﹣18D .12π﹣1832.(2023•西山区校级模拟)如图,分别以等边△ABC 的三个顶点为圆心,边长为半径画弧,得到的封闭图形是莱洛三角形,若AB 为6,则图中阴影部分的面积为( )A .18π−27√3B .6π−9√3C .12π−9√3D .18π−18√333.(2023•莆田模拟)如图,在⊙O 中,∠AOB =120°,点C 在AB̂上,连接AC ,BC ,过点B 作BD ⊥AC 的延长线于点D ,当点C 从点A 运动到点B 的过程中,∠CBD 的度数( )A .先增大后减小B .先减小后增大C .保持不变D .一直减小 34.(2023•蚌埠二模)如图是某芯片公司的图标示意图,其设计灵感源于传统照相机快门的机械结构,圆O 中的阴影部分是一个正六边形,其中心与圆心O 重合,且AB =BC ,则阴影部分面积与圆的面积之比为( )A .3√38πB .√32πC .√3πD .2√39π35.(2023•鄞州区校级模拟)如图,AB 为⊙O 的直径,将弧BC 沿BC 翻折,翻折后的弧交AB 于D .若BC =4√5,sin ∠ABC =√55,则图中阴影部分的面积为( )A .256πB .253πC .8D .1036.(2023•九龙坡区模拟)如图,在⊙O 中,AB 是圆的直径,过点B 作⊙O 的切线BC ,连接AC 交⊙O 于点D ,点E 为弧AD 中点,连接AE ,若AE =AO ,AB =6,则CD 的长为( )A .2B .3√32C .√3D .3√337.(2023•宁德模拟)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”.若等边三角形ABC 的边长为2,则该“莱洛三角形”的周长等于( )A .2πB .2π−√3C .23πD .2π+√338.(2023•虹口区二模)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AB =5,BC =12.分别以点O 、D 为圆心画圆,如果⊙O 与直线AD 相交、与直线CD 相离,且⊙D 与⊙O 内切,那么⊙D 的半径长r 的取值范围是( )A .12<r <4B .52<r <6C .9<r <252D .9<r <1339.(2023•苏州一模)东南环立交是苏州中心城区城市快速内环道路系统的重要节点,也是江苏省最大规模的城市立交.左图是该立交桥的部分道路示意图(道路宽度忽略不计),A 为立交桥入口,D 、G 为出口,其中直行道为AB 、CD 、FG ,且AB =CD =FG ;弯道是以点O 为圆心的一段弧,且BC 、CE 、EF 所在的圆心角均为90°.甲、乙两车由A 口同时驶入立交桥,均以16m /s 的速度行驶,从不同出口驶出,其间两车到点O 的距离y (m )与时间x (s )的对应关系如右图所示.结合题目信息,下列说法错误的是( )A .该段立交桥总长为672mB .从G 口出比从D 口出多行驶192mC .甲车在立交桥上共行驶22sD .甲车从G 口出,乙车从D 口出40.(2023•滨城区一模)如图,点A ,B 是半径为2的⊙O 上的两点,且AB =2√3,则下列说法正确的是( )A .圆心O 到AB 的距离为√3B .在圆上取异于A ,B 的一点C ,则△ABC 面积的最大值为3√3C .以AB 为边向上作正方形,与⊙O 的公共部分的面积为3+√34πD .取AB 的中点C ,当AB 绕点O 旋转一周时,点C 运动的路线长为3π。

2020年九年级数学典型中考压轴题综合专项训练:一次函数(含答案)

2020年九年级数学典型中考压轴题综合专项训练:一次函数(含答案)

2020年九年级数学典型中考压轴题综合专项训练:一次函数一.选择题(共10小题)1.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是()A.(4,2)B.(2,4)C.(,3)D.(2+2,2)2.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.D.163.如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.则过B、C两点直线的解析式为()A.y=x+3B.y=x+3C.y=x+3D.y=x+34.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+4与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移k个单位,当点C落在△EOF的内部时(不包括三角形的边),k的值可能是()A.2B.3C.4D.55.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD 是长方形,且AB:AD=1:2,则k的值是()A.B.C.D.6.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.当S△BCD=时,t的值为()A.2或2+3B.2或2+3C.3或3+5D.3或3+57.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x+B.y=x+C.y=x+D.y=x+8.如图,点M(﹣3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A 坐标是()A.(,)B.(,11)C.(2,2)D.(,)9.如图,直线AB:y=﹣x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y 轴上一动点,把线段BD绕B点逆时针旋转120°得到线段BE,连接CE,CD,则当CE 长度最小时,线段CD的长为()A.B.C.2D.510.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.①C(﹣13,0),E(﹣5,﹣3);②直线AB的解析式为:y=x+5;③设面积的和S=S△CDE+S四边形ABDO,则S=32;④在求面积的和S=S△CDE+S四边形ABDO时,琪琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,即S=S△CDE+S四边形ABDO =S△AOC”.其中正确的结论个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为.12.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形,请写出符合条件的点P的坐标.13.如图,一次函数y=﹣x+1的图象与x轴,y轴分别交于点A,B,点C在y轴的正半轴上,且OC=3.在直线AB上有一点P,若满足∠CPB>∠ACB,则点P横坐标x的取值范围是.14.如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y =mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.15.如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为.16.如图,在平面直角坐标系中,点A的坐标是(0,2),点B的坐标是(2,0),连结AB,点P是线段AB上的一个动点(包括两端点),直线y=﹣x上有一动点Q,连结OP,PQ,已知△OPQ的面积为,则点Q的坐标为.17.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为.18.平面直角坐标系中,直线y=﹣x﹣1与x轴和y轴分别交于B、C两点,与直线x=4交于点D,直线x=4与x轴交于点A,点M(3,0),点E为直线x=4上一动点,点F 为直线y=﹣x﹣1上一动点,ME+EF最小值为,此时点F的坐标为.19.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,以PC为边做等腰直角三角形PCD,∠CPD=90°,PC=PD,过点D作线段AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则Q点的坐标是.20.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,AC所在直线的函数表达式是y=2x+4,若保持AC的长不变,当点A在y轴的正半轴滑动,点C随之在x 轴的负半轴上滑动,则在滑动过程中,点B与原点O的最大距离是.三.解答题(共10小题)21.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.22.如图,在平面直角坐标系中,直线AB分别交x轴、y轴于点A(a,0)点,B(0,b),且a、b满足a2﹣4a+4+|2a﹣b|=0,点P在直线AB的左侧,且∠APB=45°.(1)求a、b的值;(2)若点P在x轴上,求点P的坐标;(3)若△ABP为直角三角形,求点P的坐标.23.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y1=x 交于点C.(1)当直线AB解析式为y2=﹣x+10时,如图1.①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.24.如图1,已知直线y=2x+4与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证BE=DE;(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,a)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图(a),直线l1:y=kx+b经过点A、B,OA=OB=3,直线12:y=x﹣2交y轴于点C,且与直线l1交于点D,连接OD.(1)求直线11的表达式;(2)求△OCD的面积;(3)如图(b),点P是直线11上的一动点;连接CP交线段OD于点E,当△COE与△DEP的面积相等时,求点P的坐标.26.如图,在平面直角坐标系中,直线y=﹣x+8与x轴和y轴分别交于点B和点C,与直线OA相交于点A(3,4).(1)求点B和点C的坐标;(2)求△OAC的面积;(3)在线段OA或射线AC上是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出点M的坐标,若不存在,说明理由;(4)若点N是线段OC上一点,若将△BCN沿直线BN折叠,点C恰好落在x轴负半轴上的点D处,求BN所在直线的函数关系式.27.如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.28.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y =x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.29.如图1,在平面直角坐标系xOy中,直线y=kx+8分别交x轴,y轴于A、B两点,已知A点坐标(6,0),点C在直线AB上,横坐标为3,点D是x轴正半轴上的一个动点,连结CD,以CD为直角边在右侧构造一个等腰Rt△CDE,且∠CDE=90°.(1)求直线AB的解析式以及C点坐标;(2)设点D的横坐标为m,试用含m的代数式表示点E的坐标;(3)如图2,连结OC,OE,请直接写出使得△OCE周长最小时,点E的坐标.30.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB =OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.参考答案一.选择题(共10小题)1.【解答】解:在y=﹣x+2中令x=0,解得:y=2;令y=0,解得:x=2.则OA=2,OB=2.∴在直角△ABO中,AB==4,∠BAO=30°,又∵∠BAB′=60°,∴∠OAB′=90°,∴B′的坐标是(2,4).故选:B.2.【解答】解:如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C在直线y=2x﹣6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x﹣6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD﹣OA=5﹣1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选:D.3.【解答】解:∵一次函数y=﹣x+3中,令x=0得:y=3;令y=0,解得x=4,∴B的坐标是(0,3),A的坐标是(4,0).如图,作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,,∴△ABO≌△CAD(AAS),∴OB=AD=3,OA=CD=4,OD=OA+AD=7.则C的坐标是(7,4).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+3.故选:A.4.【解答】解:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,∵菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行,∴CQ=AQ=1,CM=2,即AC=2AQ=2,∴C(2,2),当C与M重合时,k=CM=2;当C与N重合时,把y=2代入y=x+4中得:x=﹣2,即k=CN=CM+MN=4,∴当点C落在△EOF的内部时(不包括三角形的边),k的范围为2<k<4,则k的值可能是3,故选:B.5.【解答】解:设长方形的AB边的长为a,则BC边的长度为2a,B点的纵坐标是a,把点B的纵坐标代入直线y=2x的解析式得:x=,则点B的坐标为(,a),点C的坐标为(+2a,a),把点C的坐标代入y=kx中得,a=k(+2a),解得:k=.故选:B.6.【解答】解:根据题意得:∠BAC=90°,∴∠CAO+∠BAE=90°,∵BE⊥x轴,∴∠AEB=90°=∠AOC,∴∠ABE+∠BAE=90°,∴∠CAO=∠ABE.∴△CAO∽△ABE.∴=,∵M是AC的中点,AB=AM,∴CA=2AB,∴=,∴BE=t,AE=2.分两种情况:①当0<t<8时,如图1所示:S=CD•BD=(2+t)(4﹣)=解得:t1=t2=3.②当t>8时,如图2所示,S=CD•BD=(2+t)(﹣4)=.解得:t1=3+5,t2=3﹣5(不合题意,舍去).综上所述:当t=3或3+5时,S=;故选:D.7.【解答】解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC ⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP•AB=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选:A.8.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,设直线OM的解析式为y=kx,直线AC的解析式为y=k′x+b,∵点M(﹣3,4),∴4=﹣3k,∴k=﹣,∵四边形ABCO是正方形,∴直线AC⊥直线OM,∴k′为,∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°∴∠COE=∠OAD,在△COE和△OAD中,∴△COE≌△OAD(AAS),∴CE=OD,OE=AD,设A(a,b),则C(﹣b,a),设直线AC的解析式为y=mx+n,∴解得m=,∴=,整理得,b=7a,∵正方形面积为128,∴OA2=128,在RT△AOD中,AD2+OD2=OA2,即(7a)2+a2=128,解得,a=,∴b=7a=7×=,∴A(,),故选:D.9.【解答】解:如图,设D(0,m).由题意:B(5,0).在BD的下方作等边三角形△BDQ,延长DQ到M,使得QM=DQ,连接BM,DE,DE 交BQ于点N,作MH⊥x轴于H.∵△BDQ是等边三角形,∴∠DQB=∠DBQ=60°,∵QM=BQ,∴∠QMB=∠QBM,∵∠DQB=∠QMB+∠BQM,∴∠QMB=∠QBM=30°,∴∠DBM=90°,∴BM=BD,∵∠DBO+∠ODB=90°,∠DBO+∠MBH=90°,∴∠MBH=∠BDO,∵∠DOB=∠MHB=90°,∴△DOB∽△BHM,∴===,∵OD=m,OB=5,∴BH=m,MH=5,∴M(5﹣m,﹣5),∵MQ=DQ,∴Q(,),∵∠DBE=120°,∴∠DBN=∠EBN=60°,∴DE⊥BQ,DN=NE,QN=BN,∴N(,),E(,),∴CE2=()2+()2=m2﹣6m+91,∴当m=﹣=3时,CE的值最小,此时D(0,3),∴CD==2,故选:C.10.【解答】解:∵在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),故①正确;∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5.故②错误;由①知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,故③正确;④由③知,S=32,在△AOC中,OA=5,OC=13,∴S△AOC=OA×OC=32.5,∴S△CDE+S四边形ABDO=12+20≠S△AOC.故④错误.综上所述,正确的结论有2个.故选:B.二.填空题(共10小题)11.【解答】解:当点E在y轴右侧时,如图1,连接AE,∵∠EAB=∠ABO,∴AE∥OB,∵A(0,8),∴E点纵坐标为8,又E点在直线y=x+4上,把y=8代入可求得x=4,∴E点坐标为(4,8);当点E在y轴左侧时,过A、E作直线交x轴于点C,如图2,设E点坐标为(a,a+4),设直线AE的解析式为y=kx+b,把A、E坐标代入可得,解得,∴直线AE的解析式为y=x+8,令y=0可得x+8=0,解得x=,∴C点坐标为(,0),∴AC2=OC2+OA2,即AC2=()2+82,∵B(4,0),∴BC2=(4﹣)2=()2﹣+16,∵∠EAB=∠ABO,∴AC=BC,∴AC2=BC2,即()2+82=()2﹣+16,解得a=﹣12,则a+4=﹣8,∴E点坐标为(﹣12,﹣8).方法二:设C(m,0),∵∠ACB=∠CBA,∴AC=BC,∴(4﹣m)2=m2+82,解得m=﹣6,∴直线AE的解析式为y=x+8,由,解得.∴E(﹣12,﹣8).综上可知,E点坐标为(4,8)或(﹣12,﹣8).故答案为:(4,8)或(﹣12,﹣8).12.【解答】解:当M运动到(﹣1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)和(0,1)就是符合条件的两个P点;又∵当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有﹣x=﹣(2x+3),解得x=﹣3,所以点P坐标为(0,﹣3).如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),则有﹣x=﹣(2x+3),化简得﹣2x=﹣2x﹣3,这方程无解,所以这时不存在符合条件的P点;又∵当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,设点M′(x,2x+3),则OP=ON′,而OP=M′N′,∴有﹣x=(2x+3),解得x=﹣,这时点P的坐标为(0,).综上,符合条件的点P坐标是(0,0),(0,),(0,﹣3),(0,1).故答案为:(0,0),(0,1),(0,),(0,﹣3).13.【解答】解:如图所示:过点P1作P1E⊥x轴于点E,∵一次函数y=﹣x+1的图象与x轴,y轴分别交于点A,B,点C在y轴的正半轴上,且OC=3,∴AO=BO=1,则BC=2,AC=,AB=,当∠CP1B=∠ACB时,又∵∠CAB=∠CAP1,∴△CAB∽△P1AC,∴=,则=,解得:AP1=5,则AE=P1E=5,故P1(﹣4,5),当∠CPB>∠ACB时,则点P横坐标x满足:﹣4<x,同理可得:当∠CP2B=∠ACB时,又∵∠ABC=∠P2BC,∴△CAB∽△P2CB,∴=,则=,解得:BP2=2,可得P2(2,﹣1),故当∠CPB>∠ACB时,则点P横坐标x满足:2>x,综上所述:﹣4<x<2且x≠0.故答案为:﹣4<x<2且x≠0.14.【解答】解:∵直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分∴直线必经过正方形的中心∵点B的坐标为(4,4)∴中心为(2,2),代入直线中得:2=2m﹣2,m=215.【解答】解:过点P作PE⊥OC于E,EP的延长线交AB于F.∵AB⊥OB,∴∠OBF=∠EOB=∠FEO=90°,∴四边形EOBF是矩形,∵P(2,2),∴OE=PE=BF=2,∵∠CPD=90°,∴∠CPE+∠DPF=90°,∠ECP+∠CPE=90°,∴∠ECP=∠DPF,在△CPE和△PDF中,,∴△CPE≌△PDF(AAS),∴DF=PE=2,∴BD=BF+DF=4,∵BD=4AD,∴AD=1,AB=OB=5,∴CE=PF=3,∴D(5,4),C(0,5),设直线CD的解析式为y=kx+b则有,解得,∴直线CD的解析式为y=﹣x+5,由解得,∴点Q的坐标为(,).故答案为(,).16.【解答】解:方法一:∵点Q在直线y=﹣x上,∴设点Q的坐标为(m,﹣m).∵点A的坐标是(0,2),点B的坐标是(2,0),∴△AOB为等腰直角三角形,点O(0,0)到AB的距离h=OA=.设直线AB的解析式为y=kx+b,∵点A(0,2),点B(2,0)在直线AB上,∴有,解得.即直线AB的解析式为y=﹣x+2,∵直线y=﹣x+2与y=﹣x平行,∴点P到底OQ的距离为(平行线间距离处处相等).∵△OPQ的面积S△OPQ=OQ•h=OQ=,∴OQ=2.由两点间的距离公式可知OQ==2,解得:m=±,∴点Q的坐标为(,﹣)或(﹣,).故答案为:(,﹣)或(﹣,).方法二:当P点与A重合时,则△OPQ底OP为2,∵△OPQ的面积为,∴△OPQ的高为,即点Q的横坐标为﹣,∵点Q在直线y=﹣x上,∴点Q的坐标为(﹣,);当P点与B重合时,同理可求出点Q的坐标为(,﹣).综上即可得出点Q的坐标为(,﹣)或(﹣,).17.【解答】方法一:解:设直线AB的解析式为:y=kx+b,把A(0,2),B(3,4)代入得:,解得:k=,b=2,∴直线AB的解析式为:y=x+2;∵点B与B′关于直线AP对称,设B′坐标为(a,0)∴线段BB′的中点坐标为(,2)∵线段BB′的中点在直线AP上,且A点坐标为(0,2)∴A点为线段BB′的中点,即A、B、B′三点共线∴AP⊥AB,∴设直线AP的解析式为:y=﹣x+c,把点A(0,2)代入得:c=2,∴直线AP的解析式为:y=﹣x+2,当y=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().方法二:解:如图,连接AB、AB′∵A(0,2),B(3,4)∴AB==∵点B与B′关于直线AP对称∴AB′=AB=,在Rt△AOB′中,B′O==3∴B′点坐标为(﹣3,0)设直线BB′方程为y=kx+b将B(3,4),B′(﹣3,0)代入得:,解得k=,b=2∴直线BB′的解析式为:y=x+2,∴直线AP的解析式为:y=﹣x+2,当y AP=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().18.【解答】解:①如图,作M点关于直线x=4的对称点M′,然后作M′F⊥直线y=﹣x﹣1于F,交直线x =4于E,此时ME+EF有最小值,最小值为M′F;∵y=﹣x﹣1与x轴和y轴分别交于B、C两点,令x=0,可得y=﹣1,令y=0,可得x=﹣2,∴B(﹣2,0),C(0,﹣1),∴OB=2,OC=1,∴BC==,∵M(3,0),∴M′(5,0),∴BM′=5+2=7,∵M′F⊥直线BC,∴∠BFM′=90°=∠BOC,∵∠OBC=∠FBM′∴△BOC∽△BFM′,∴,即,解得:M′F=,∴ME+EF的最小值为;②∵直线M′F与直线y=﹣x﹣1互相垂直,∴直线M′F与直线y=﹣x﹣1的k互为负倒数,∴设直线M′F的关系式为:y=2x+b,将M′(5,0),代入y=2x+b,可得:b=﹣10,∴直线M′F的关系式为:y=2x﹣10,将直线y=2x﹣10与直线y=﹣x﹣1联立方程组得:,解得:,∴点F的坐标为(,﹣).故答案为:;(,﹣).19.【解答】解:解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中,∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴BN=2a﹣1,则2a﹣1=1,∴a=1,即BD=2.∵直线y=x,∴AB=OB=3,∴点D(3,2)∴PC=PD===,在Rt△MCP中,由勾股定理得:CM===2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,∴组成方程组解得:∴点Q(,),故答案为:(,).20.【解答】解:当x=0时,y=2x+4=4,∴A(0,4);当y=2x+4=0时,x=﹣2,∴C(﹣2,0).∴OA=4,OC=2,∴AC==2.如图所示.过点B作BD⊥x轴于点D.∵∠ACO+∠ACB+∠BCD=180°,∠ACO+∠CAO=90°,∠ACB=90°,∴∠CAO=∠BCD.在△AOC和△CDB中,,∴△AOC≌△CDB(AAS),∴CD=AO=4,DB=OC=2,OD=OC+CD=6,∴点B的坐标为(﹣6,2).如图所示.取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=2,∴OE=CE=AC=,∵BC⊥AC,BC=2,∴BE==5,若点O,E,B不在一条直线上,则OB<OE+BE=5+.若点O,E,B在一条直线上,则OB=OE+BE=5+,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为5+,故答案为:5+.三.解答题(共10小题)21.【解答】解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△ABC=AB2=;(3)连接BP,PO,P A,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为或﹣3.22.【解答】解:(1)∵a2﹣4a+4+|2a+b|=0,∴(a﹣2)2+|2a+b|=0,∴a=2,b=4.(2)由(1)知,b=4,∴B(0,4).∴OB=4.∵点P在直线AB的左侧,且在x轴上,∠APB=45°∴OP=OB=4,∴B(4,0).(3)由(1)知a=﹣2,b=4,∴A(2,0),B(0,4)∴OA=2,OB=4,∵△ABP是直角三角形,且∠APB=45°,∴只有∠ABP=90°或∠BAP=90°,如图,①当∠ABP=90°时,∵∠BAP=45°,∴∠APB=∠BAP=45°.∴AB=PB.过点P作PC⊥OB于C,∴∠BPC+∠CBP=90°,∵∠CBP+∠ABO=90°,∴∠ABO=∠BPC.在△AOB和△BCP中,∠AOB=∠BCP=90°,∠ABO=∠BPC,AB=PB,∴△AOB≌△BCP(AAS).∴PC=OB=4,BC=OA=2.∴OC=OB﹣BC=2.∴P(﹣4,2).②当∠BAP=90°时,过点P'作P'D⊥OA于D,同①的方法得,△ADP'≌△BOA(AAS).∴DP'=OA=2,AD=OB=4.∴OD=AD﹣OA=2.∴P'(﹣2,2)).即:满足条件的点P(﹣4,2)或(﹣2,﹣2).23.【解答】解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.24.【解答】解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ(AAS),∴BQ=AO=4,OQ=BQ+BO=6,CQ=OB=2,∴C(﹣6,2),由A(0,4),C(﹣6,2)可知,直线AC:y=x+4;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF(AAS),∴BF=BH=4,∴OF=OB=2,∴DG=OB,∴△BOE≌△DGE(AAS),∴BE=DE;(3)如图3,直线BC:y=﹣x﹣1,P(﹣,k)是线段BC上一点,∴P(﹣,),由y=x+4知M(﹣12,0),∴BM=10,则S△BCM=10.设点N(n,0),则BN=|n+2|,假设存在点N使直线PN平分△BCM的面积,则BN•y C=×10,n=或﹣,故点N的坐标为:(,0)或(﹣,0).25.【解答】解:(1)OA=OB=3,则点A、B的坐标分别为:(3,0)、(0,3),将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线11的表达式为:y=﹣x+3…①;(2)联立l1、l2的表达式得:,解得:,故点D(2,1);△OCD的面积=×OA•y D=3×1=;(3)△COE与△DEP的面积相等,则S△CDO=S△CDE+S△OCE=S△PED+S△CED=S△PCD,则点P、O到CD的距离相等,故OP所在的直线与CD平行,则直线OP的表达式为:y=x…②,联立①②并解得:x=,则点P(,).26.【解答】解:(1)设y=0,则x=6;设点x=0,则y=6,故点B的坐标为(6,0),点C的坐标为(0,8);(2)S△OAC=×CO×x A=×8×3=12;(3)存在点M使S△OMC=S△OAC,设M的坐标为(x,y);OA的解析式是y=mx,则3m=4,解得:,则直线OA的解析式是:,∵当S△OMC=S△OAC时,即,又∵OC=8,∴,当M在线段OA上时,x>0,所以时,y=1,则M的坐标是;当M在射线上时,则y=7,则M的坐标是;则y=9,则M的坐标是,综上所述:M的坐标是:或或;(4)在Rt△OBC中,∠COB=90°,OB=6,OC=8,∴,∵△BCN沿直线BN折叠后,所得三角形为△BDN,∴CN=DN,BD=BC=10,∴OD=4在Rt△ODN中,设ON=x,则DN=8﹣x,∴42+x2=(8﹣x)2∴x=3,故点N(0,3),设直线AM的解析式为y=kx+b(k≠0)代入A(6,0),N(0,3)得:,解得,∴直线AM的解析式为.27.【解答】解:(1)∵点A的坐标为(﹣2,0),∴OA=2,∵OB=2OA=4,∴B(0,4),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积=+4×6=28.28.【解答】解:(1)∵点E是直线y=x+2上一点,点E的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8).29.【解答】解:(1)把A(6,0)代入y=kx+8中,得6k+8=0,解得:,∴,把x=3代入,得y=4,∴C(3,4);(2)作CF⊥x轴于点F,EG⊥x轴于点G,∵△CDE是等腰直角三角形,∴CD=DE,∠CDE=90°,∴∠CDF=90°﹣∠EDG=∠DEG,且∠CFD=∠DGE=90°,∴△CDF≌△DEG(AAS)∴CF=DG=4,DF=EG=3﹣m,∴OG=4+m,∴E(4+m,m﹣3);(3)点E(4+m,m﹣3),则点E在直线l:y=x﹣7上,设:直线l交y轴于点H(0,﹣7),过点O作直线l的对称点O′,∵直线l的倾斜角为45°,则HO′∥x轴,则点O′(7,﹣7),连接CO′交直线l于点E′,则点E′为所求点,OC是常数,△OCE周长=OC+CE+OE=OC+OE′+CE′=OC+CE′+O′E′=OC+CO′为最小,由点C、O′的坐标得,直线CO′的表达式为:y=﹣x+联立,解得:,故:.30.【解答】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).。

专题27 三角形角平分线交角模型问题(解析版)-2021年中考数学二轮复习经典问题专题训练

专题27  三角形角平分线交角模型问题(解析版)-2021年中考数学二轮复习经典问题专题训练

专题27 三角形角平分线交角模型问题【规律总结】【典例分析】例1.(2020·孝感市孝南区教学研究室八年级期中)如图,ABC 中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF 和CEF △都是等腰三角形②DE BD CE =+;③BF CF >;④若80A ∠=︒,则130BFC ∠=︒.其中正确的有( )个A.1B.2C.3D.4【答案】C【分析】根据等腰三角形的判断与性质和平行线的性质及三角形三边的关系即可求解.【详解】解:①∵BF是∵ABC的角平分线,CF是∵ACB的角平分线,∵∵ABF=∵CBF,∵ACF=∵BCF,∵DE∵BC,∵∵CBF=∵BFD,∵BCF=∵EFC(两直线平行,内错角相等),∵∵ABF=∵BFD,∵ACF=∵EFC,∵DB=DF,EF=EC,∵∵BDF和∵CEF都是等腰三角形,∵①选项正确,符合题意;②∵DE=DF+FE,∵DB=DF,EF=EC,∵DE=DB+CE,∵②选项正确,符合题意;③根据题意不能得出BF>CF,∵④选项不正确,不符合题意;④∵若∵A=80°,∵∵ABC+∵ACB=180°-∵A=180°-80°=100°,∵∵ABF=∵CBF,∵ACF=∵BCF,∵∵CBF+∵BCF=12×100°=50°,∵∵BFC=180°-∵CBF-∵BCF=180°-50°=130°,∵④选项正确,符合题意;故①②④正确.故选C【点睛】等腰三角形的判断与性质和平行线的性质及三角形三边的关系,解题关键是逐个判断选项即可得出正确答案.例2.(2021·全国八年级)如图,在ABC ∆中,A θ∠=,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠,1A BC ∠和1A CD ∠的平分线交于点2A ,得2A ∠;⋯;2019A BC ∠和2019A CD ∠的平分线交于点2020A ,则2020A ∠=__.(用θ表示)【答案】20202θ【分析】利用角平分线的性质、三角形外角性质,易证∵A 1=12∵A ,由于∵A 1=12∵A ,∵A 2=12∵A 1=212∵A ,…,以此类推可知∵A 2020即可求得.【详解】∵A 1B 平分∵ABC ,A 1C 平分∵ACD ,∵∵A 1BC=12∵ABC ,∵A 1CA=12∵ACD , ∵∵A 1CD=∵A 1+∵A 1BC , 即12∵ACD=∵A 1+12∵ABC ,∵∵A 1=12(∵ACD -∵ABC ), ∵∵A+∵ABC=∵ACD ,∵∵A=∵ACD -∵ABC ,∵∵A 1=12∵A , 以此类推∵A 2=12∵A 1=12•12∵A=212∵A, ∵A 3=12∵A 2=21122⨯∵A=312∵A ,……, 所以∵A n =12n A ∠, 202020202020122A A θ∴∠=∠=. 故答案为:20202θ.【点睛】本题考查了角平分线性质、三角形外角性质,解题的关键是推导出∵A n =12nA ∠. 例3.(2020·利辛县启明中学八年级月考)如图①所示是一个飞镖图案,连接AB ,BC ,我们把四边形ABCD 叫做“飞镖模型”.(1)求证:ADC DAB DCB ABC ∠∠∠∠=++;(2)如图②所示是一个变形的飞镖图案,CE 与BF 交于点D ,若120EDF ∠=︒,求A B C G E F ∠∠∠∠∠∠+++++的度数.【答案】(1)见解析;(2)240°【分析】(1)延长CD 交AB 于点E ,根据三角形外角性质可证ADC DAE AED ∠=∠+∠,AED DCB ABC ∠=∠+∠,运用角的等量转换即可证明.(2)根据三角形外角性质,运用第(1)题的方法可证A B C BDC ∠+∠+∠=∠,E G F EDF ∠+∠+∠=∠,BDC ∠和EDF ∠是对顶角,可推出A B C G E F ∠∠∠∠∠∠+++++的度数等于2倍EDF ∠的度数,计算得出答案.【详解】(1)证明:延长CD 交AB 于点E ,如图:∵ADC ∠是ADE 的外角,∵ADC DAE AED ∠=∠+∠.∵AED ∠是CEB △的外角,∵AED DCB ABC ∠=∠+∠,∵ADC DAE DCB ABC DAB DCB ABC ∠=∠+∠+∠=∠+∠+∠.(2)解:∵EDF ∠和BDC ∠是对顶角,∵120BDC EDF ∠=∠=︒.由(1)的结论可知BDC A B C ∠=∠+∠+∠,EDF E G F ∠=∠+∠+∠,∵240A B C E G F DCB EDF ∠+∠+∠+∠+∠+∠=∠+∠=︒.【点睛】本题考查了三角形外角性质,灵活运用三角形外角性质是解题关键.【好题演练】一、单选题1.(2020·河北邢台市·八年级月考)在ABC ∆中,70A ∠=︒ ,若B C ∠∠、的平分线BE CF 、交于点O ,则BOC ∠的度数是( )A .115︒B .125︒C .135︒D .110︒ 【答案】B【分析】由A ∠的度数可以求出ABC ∠与ACB ∠的和,由角平分线的性质可以得出1=2∠∠,3=4∠∠,即可得出2∠与4∠的和,即可得出BOC ∠的度数.【详解】∵70A ∠=︒,∵ABC ∠+ACB ∠=110°,∵BE CF 、为ABC ∠与ACB ∠的平分线,∵1=2∠∠,3=4∠∠,∵2∠+4∠=110÷2=55°,∵BOC ∠=180°-55°=125°.故选:B .【点睛】本题主要考查角平分线的性质以及三角形的内角和定理,熟记相关概念是解题关键.二、填空题2.(2020·四川成都市·成都实外七年级期中)如图,已知ABC 的两条高BD 、CE 交于点F ,ABC ∠的平分线与ABC 外角ACM ∠的平分线交于点G ,若8BFC G ∠=∠,则A ∠=________︒.【答案】36【分析】首先根据三角形的外交性质求出2A G ∠=∠,结合三角形的高的知识得到G ∠和A ∠之间的关系,进而可得结果;【详解】由图知:ACM A ABC ∠=∠+∠,∵CG 是ACM ∠的角平分线,∵2ACM GCM ∠=∠,∵2A ABC GCM ∠+∠=∠,∵BG 是ABC ∠的角平分线, ∵12GBC ABC ∠=∠,∵GBC G GCM ∠+∠=∠, 即12ABC G GCM ∠+∠=∠, ∵22ABC G GCM ∠+∠=∠,∵2ABC G A ABC ∠+∠=∠+∠,∵2A G ∠=∠,∵ABC 的两条高BD 、CE 交于点F ,∵CE AB ⊥,BD AC ⊥,∵90AEF ADF ∠=∠=︒,∵在四边形AEFD 中有:180A DFE ∠+∠=︒,∵DFE BFC ∠=∠,∵180A BFC ∠+∠=︒, ∵18842BFC G A A ∠=∠=⨯∠=∠, ∵45180A BFC A A A ∠+∠=∠+∠=∠=︒,∵180536A ︒∠=÷=︒.【点睛】本题主要考查了与角平分线有关的三角形的内角和与外角性质,准确分析计算是解题的关键.3.(2020·湖北十堰市·八年级期中)如图,在△ABC 中,△A=60°,BD 、CD 分别平分△ABC 、△ACB ,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分△MBC 、△BCN ,BF 、CF 分别平分△EBC 、△ECQ ,则△F=________.【答案】15°【分析】先由BD、CD分别平分∵ABC、∵ACB得到∵DBC=12∵ABC,∵DCB=12∵ACB,在∵ABC中根据三角形内角和定理得∵DBC+∵DCB=12(∵ABC+∵ACB)=12(180°-∵A)=60°,则根据平角定理得到∵MBC+∵NCB=300°;再由BE、CE分别平分∵MBC、∵BCN得∵5+∵6=12∵MBC,∵1=12∵NCB,两式相加得到∵5+∵6+∵1=12(∵NCB+∵NCB)=150°,在∵BCE中,根据三角形内角和定理可计算出∵E=30°;再由BF、CF分别平分∵EBC、∵ECQ得到∵5=∵6,∵2=∵3+∵4,根据三角形外角性质得到∵3+∵4=∵5+∵F,∵2+∵3+∵4=∵5+∵6+∵E,利用等量代换得到∵2=∵5+∵F,2∵2=2∵5+∵E,再进行等量代换可得到∵F=12∵E.【详解】解:∵BD、CD分别平分∵ABC、∵ACB,∵A=60°,∵∵DBC=12∵ABC,∵DCB=12∵ACB,∵∵DBC+∵DCB=12(∵ABC+∵ACB)=12(180°-∵A)=12×(180°-60°)=60°,∵∵MBC+∵NCB=360°-60°=300°,∵BE、CE分别平分∵MBC、∵BCN,∵∵5+∵6=12∵MBC,∵1=12∵NCB,∵∵5+∵6+∵1=12(∵NCB+∵NCB)=150°,∵∵E=180°-(∵5+∵6+∵1)=180°-150°=30°,∵BF、CF分别平分∵EBC、∵ECQ,∵∵5=∵6,∵2=∵3+∵4,∵∵3+∵4=∵5+∵F,∵2+∵3+∵4=∵5+∵6+∵E,即∵2=∵5+∵F,2∵2=2∵5+∵E,∵2∵F=∵E,∵∵F=12∵E=12×30°=15°.故答案为:15°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了三角形外角性质.三、解答题4.(2020·安陆市涢东学校八年级月考)平面内,四条线段AB,BC,CD,DA首尾顺次连接,△ABC=24°,△ADC=42°.(1)△BAD和△BCD的角平分线交于点M(如图1),求△AMC的大小.(2)点E 在BA 的延长线上,△DAE 的平分线和△BCD 平分线交于点N (如图2),求△ANC .【答案】(1)33°;(2)123°【分析】(1)AM 与BC 交于E ,AD 与MC 交于F ,利用角平分线性质和三角形外角性质可得,BEM ∠是ABE △和MCE 的外角,MFD ∠是MAF △和FCD 的外角,列出关于AMC ∠的方程组,计算得出AMC ∠的度数.(2)AN 与BC 交于点G ,AD 与BC 交于点F ,根据角平分线性质和三角形外角性质可得,BFD ∠是ABF 和FCD 的外角,AGC ∠是NGC 和ABG 的外角,列出关于ANC ∠的方程组,计算得出ANC ∠的度数.【详解】解:(1)AM 与BC 相交于E ,AD 与MC 相较于F ,如图:∵MA 和MC 是∵BAD 和∵BCD 的角平分线,∵设∵BAM=∵MAD=a ,∵BCM=∵MCD=b ,∵∵BEM 是∵ABE 和∵MCE 的外角,∵∵M+∵BCM=∵B+∵BAM ,即:∵M+b=24°+a①,又∵∵MFD 是∵MAF 和∵CDF 的外角,可得∵M+a=42°+b②,①式+②式得2∵M=24°+42°,解得:∵M=33°,∵=33AMC ∠︒.(2)AN 与BC 相交于G ,AD 与BC 相较于F ,如图:∵NA 和NC 是∵EAD 和∵BCD 的角平分线,∵设∵EAN=∵NAD=m ,∵BCN=∵NCD=n ,∵∵BFD 是∵ABF 和∵FCD 的外角,∵∵B+∵BAD=∵D+∵BCD ,即:24°+(180°-2m )=42°+2n ,可得m+n=81°①,又∵∵AGC 是∵NGC 和∵ABG 的外角,可得∵N+n=24°+(180°-m ),得∵N=204°-(m+n )②,①式代入②式,得∵N=204°-81°=123°,∵123ANC∠=︒.【点睛】 本题考查了角平分线的性质和三角形外角性质,用设未知数列方程组的方法计算角度是解题关键. 5.(2020·辽宁葫芦岛市·八年级期中)如图1,点A 、B 分别在射线OM 、ON 上运动(不与点O 重台),AC 、BC 分别是BAO ∠和ABO ∠的角平分线,BC 延长线交OM 于点G .(1)若60MON ∠=,则ACG ∠=________;(直接写出答案)(2)若MON n ∠=,求出ACG ∠的度数;(用含n 的代数式表示)(3)如图2.若80MON ∠=,过点C 作//CF OA 交AB 于点F ,求BGO ∠与ACF ∠数量关系.【答案】(1)60°;(2)1902ACG n ∠=-; (3)50BGO ACF ∠-∠= 【分析】(1)根据三角形内角和定理求出∵BAO+∵ABO ,根据角平分线的定义、三角形的外角性质计算,得到答案;(2)仿照(1)的解法解答;(3)根据平行线的性质得到∵ACF=∵CAG ,根据(2)的结论解答.【详解】解:(1)∵∵MON=60°,∵∵BAO+∵ABO=120°,∵AC 、BC 分别是∵BAO 和∵ABO 的角平分线, ∵∵CBA=12∵ABO ,∵CAB=12∵BAO , ∵∵CBA+∵CAB=12(∵ABO+∵BAO )=60°, ∵∵ACG=∵CBA+∵CAB=60°,故答案为:60°;(2)∵MON n ∠=,∵180BAO ABO n ∠+∠=-,∵AC 、BC 分别是BAO ∠和ABO ∠的角平分线, ∵12CBA ABO ,12CAB BAO , ∵11()9022CBA CAB ABO BAO n ∠+∠=∠+∠=-, ∵1902ACG CBA CAB n ∠=∠+∠=-; (3)∵//CF OA ,∵ACF CAG ,∵50BGO ACF BGO CAG ACG ∠-∠=∠-∠=∠=. ∵50BGO ACF ∠-∠=【点睛】本题考查的是角平分线的定义、平行线的性质、三角形的外角性质,掌握两直线平行、内错角相等是解题的关键.。

山东济南中考数学第25题(反比例函数)、第26题、第27题(二次函数)解答题整理试题以及答案

山东济南中考数学第25题(反比例函数)、第26题、第27题(二次函数)解答题整理试题以及答案

九年级中考数学解答题练习试题一、解答题。

(第25题反比例函数)(x>0)的图象经过点A(2√3,1),射1、(2014年济南中考)如图1,反比例函数y=kx线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC 相交于点N,连接CM,求△CMN面积的最大值.2、(2015年济南中考)如图1,点A(8,1)、B(n,8)都在反比例函数y=m(x>0)x的图象上,过点A作AC⊥x轴,于点C,过点B作BD⊥y轴于点D。

(1)求m的值和直线AB的函数关系式;(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D 时,点Q也停止运动,设运动的时间为t秒.①设△OPQ的面积为S,写出S与t的函数关系式;②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O’PQ,是否存在某时刻t,使得点Q’恰好落在反比例函数的图象上?若存在,求Q’的坐标和t的值;若不存在,请说明理由.3、(2016年济南中考)如图1,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=m(x>0)的图象经过点A(1,4).x(1)求反比例函数的关系式和点B的坐标;(2)如图2,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP.①求△AOP的面积;②在▱OABC的边上是否存在点M,使得△POM是以PO为斜边的直角三角形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.4、(2017年济南中考)如图1,平行四边形OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=k(x>0)的图象经过点B.x(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=k(x>0)于点D,过B,D的直线分别交x轴,y轴于xE,F两点,请探究线段ED与BF的数量关系,并说明理由.5、(2018年济南中考)如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=k(x>0)的图象恰好经过C、D两点,连接AC、BD.x(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=k(x>0)的图象上的一个点,若△xCMN是以CM为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.6、(2019年济南中考)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=k(x>0)的图象经过点B.x(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.的值;①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求DEEF②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三形,求所有满足条件的m的值.图1 图27、(2020年济南中考)如图,矩形OABC的顶点A、C分别落在x轴、y轴正半轴上,顶点为(2,2√3),反比例函数y=k x (x >0)的图象与BC 、AB 分别交于D 、E ,BD=12. (1)求反比例函数表达式和点E 的坐标; (2)写出DE 、AC 的位置关系,并说明理由;(3)点F 在直线AC 上,点G 是坐标系内一点,当四边形BCFG 是菱形,求出点G 的坐标并判断点G 是否在反比例图象上;8、(2021年济南中考)如图,直线y=32x 与双曲线y=kx 交于A 、B 两点,点A 坐标为(m ,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD。

中考数学第26题专项训练

中考数学第26题专项训练

1.如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。

P 为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C。

过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。

(1)当点C在第一象限时,求证:△OPM≌△PCN;(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。

第1题图2.关于x的二次函数y=-x2+(k2-4)x+2k-2以y轴为对称轴,且与y轴的交点在x轴上方.(1)求此抛物线的解析式,并在直角坐标系中画出函数的草图;(2)设A是y轴右侧抛物线上的一个动点,过点A作AB垂直x轴于点B,再过点A作x 轴的平行线交抛物线于点D,过D点作DC垂直x轴于点C, 得到矩形ABCD.设矩形ABCD的周长为l,点A的横坐标为x,试求l关于x的函数关系式;(3)当点A在y轴右侧的抛物线上运动时,矩形ABCD能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.3.如图所示, 在平面直角坐标系xoy中, 矩形OABC的边长OA、OC分别为12cm、6cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=ax2+bx+c经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动, 同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.①移动开始后第t秒时, 设△PBQ的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.②当S取得最大值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在, 求出R点的坐标, 如果不存在, 请说明理由.第3题图4.已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?5.如图示已知点M 的坐标为(4,0),以M 为圆心,以2为半径的圆交x 轴于A 、B ,抛物线c bx x y ++=261过A 、B 两点且与y 轴交于点C . (1)求点C 的坐标并画出抛物线的大致图象 (2)已知点Q (8,m ),P 为抛物线对称轴上一动点, 求出P 点坐标使得PQ +PB 值最小,并求出最小值. (3)过C 点作⊙M 的切线CE ,求直线OE 的解析式.6.如图,在ABC ∆中,∠A 90=°,10=BC , ABC ∆的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE ∥BC ,交AC 于点E .设x DE =以DE 为折线将△ADE 翻折,所得的DE A'∆与梯形DBCE 重叠部分的面积记为y. (1).用x 表示∆ADE 的面积;(2).求出0﹤x ≤5时y 与x 的函数关系式; (3).求出5﹤x ﹤10时y 与x 的函数关系式; (4).当x 取何值时,y 的值最大?最大值是多少?第5题图CBA7.如图,直线334y x=+和x轴y轴分别交与点B、A,点C是OA的中点,过点C向左方作射线CM⊥y轴,点D是线段OB上一动点,不和B重合,DP⊥CM于点P,DE⊥AB于点E,连接PE。

福建省福州市2020年中考数学试题(含答案)

福建省福州市2020年中考数学试题(含答案)

年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题! 毕业学校 姓名 考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项) 1.下列实数中的无理数是A .0.7B .21C .πD .-8 2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角 4.下列算式中,结果等于a 6 的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a 25.不等式组⎩⎨⎧>->+0301x x 的解集是A .x >-1B .x >3C .-1<x <3D .x <36.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 ) 9.如图,以O 为圆心,半径为1 的弧交坐标轴于A ,B 两点,P 是⌒AB 上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是A .(sin α,sin α)B .( cos α,cos α)C .(cos α,sin α)D .(sin α,cos α) 10.下表是某校合唱团成员的年龄分布第2题年龄/岁 13 14 15 16 频数515x10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是A .平均数,中位数B .众数,中位数C .平均数,方差D .中位数,方差 11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0 二、填空题(共6小题,每题4分,满分24分) 13.分解因式:x 2-4= .14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 . 15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)17.若x +y =10,xy =1 ,则x 3y +xy 3= .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-38+(- )0 .20.(7分)化简:a -b -ba b a ++2)(21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .x y O x y O x y O x y O22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张? 23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是 万人; (3)预测 福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM . (1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.25.如图,在△ABC 中,AB =AC =1,BC =215 ,在AC 边上截取AD =BC ,连接BD . (1)通过计算,判断AD 2与AC ·CD 的大小关系; (2)求∠ABD 的度数. 26.(13分)如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM . (1)当AN 平分∠MAB 时,求DM 的长; (2)连接BN ,当DM =1时,求△ABN 的面积;(3)当射线BN 交线段CD 于点F 时,求DF 的最大值.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.。

2020年中考数学复习专题练:《分式方程实际应用 》(含答案)

2020年中考数学复习专题练:《分式方程实际应用 》(含答案)

2020年中考数学复习专题练:《分式方程实际应用》1.在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.(1)求甲、乙两条生产线每天的产能各是多少?(2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?(3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?2.某口罩生产厂在春节期间接到紧急任务,要求几天内生产出70万只口罩,为了战胜疫情,口罩厂工人愿意奉献自己的休息时间来完成这项任务,厂长决定开足全厂口罩生产线进行生产,结果每天比原来多生产3万只,而且提前了3天完成了任务,问原来要求几天完成这项紧急任务?3.在我县创建“生态保护示范县”活动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天,求甲,乙两工程队每天各能完成多少面积的绿化?4.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?5.某服装加工厂甲、乙两个车间共同加工一款休闲装,且每人每天加工的件数相同,甲车间比乙车间少10人,甲车间每天加工服装400件,乙车间每天加工服装600件.(1)求甲、乙两车间各有多少人;(2)甲车间更新了设备,平均每人每天加工的件数比原来多了10件,乙车间的加工效率不变,在两个车间总人数不变的情况下,加工厂计划从乙车间调出一部分人到甲车间,使每天两个车间加工的总数不少于1314件,求至少要从乙车间调出多少人到甲车间.6.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.7.哈市红十字预计在2019年儿童节前为郊区某小学发放学习用品,联系某工厂加工学习用品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍.(1)求手工每小时加工产品的数量;(2)经过调查该小学的小学生的总数不超过1332名,每名小学生分发两个学习用品,工厂领导打算在两天内(48小时)完成任务,打算以机器加工为主,同时人工也参与加工(人工与机器加工不能同时进行),为了保证按时完成加工任务,人工至多加工多少小时?8.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?9.为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包,乙工程队单独施工140天后甲工程队加入,甲、乙两个工程队合作40天后,共完成总工程的,且甲工程队每天的施工量是乙工程队的3倍.(1)求甲工程队单独完成这项工程需要多少天?(2)若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?10.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?11.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.比亚迪油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为96元;若完全用电做动力行驶,则费用为36元.已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?12.某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克?(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的100千克按照标价的半价出售.售完全部水果后,利润不低于1700元,则最初每千克水果的标价至少是多少?13.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?14.某体育用品商场预测某品牌运动服能够畅销,用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场第一次购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%.)15.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?16.一项工程,甲队单独完成比乙队单独完成少用8天,甲队单独做3天的工作乙队单独做需要5天.(1)甲、乙两队单独完成此项工程各需几天?(2)甲队每施工一天则需付给甲队工程款5.5万元,乙队每施工一天则需付给乙队工程款3万元.该工程先由甲、乙两队合作若干天后,再由乙队完成剩下的工程.若要求完成此项工程的工程款不超过65万元,则甲、乙两队最多合作多少天?17.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?18.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?19.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?20.某学校计划选购A、B两种图书.已知A种图书每本价格是B种图书每本价格的2.5倍,用1200元单独购买A种图书比用1500元单独购买B种图书要少25本.(1)A、B两种图书每本价格分别为多少元?(2)如果该学校计划购买B种图书的本数比购买A种图书本数的2倍多8本,且用于购买A、B两种图书的总经费不超过1164元,那么该学校最多可以购买多少本B种图书?参考答案1.解:(1)设乙条生产线每天的产能是x万个,则甲条生产线每天的产能是2x万个,依题意有﹣=2,解得x=20,经检验,x=20是原方程的解,2x=2×20=40,故甲条生产线每天的产能是40万个,乙条生产线每天的产能是20万个;(2)设安排乙生产线生产y天,依题意有0.5y+1.2×≤40,解得y≥32.故至少应安排乙生产线生产32天;(3)(40+20)×3+[40×(1+50%)+20×2]×13=180+1300=1480(万个),1440万个<1480万个,故再满负荷生产13天能完成任务.2.解:设原来每天生产x万只口罩,则实际每天生产(x+3)万只口罩,依题意,得:﹣=3,解得:x=7,经检验,x=7是原分式方程的解,且符合题意,∴==10.答:原来要求10天完成这项紧急任务.3.解:设乙工程队每天能完成xm2的绿化,则甲工程队每天能完成2xm2的绿化,依题意,得:﹣=6,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天能完成100m2的绿化,乙工程队每天能完成50m2的绿化.4.解:设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意得﹣=,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.5.解:(1)设甲车间有x人,乙车间有(x+10)人,则:,解得:x=20,经检验:x=20是原分式方程的解.答:甲车间有20人,乙车间有30人.(2)设从乙车间调a人到甲车间;则:,解得:a≥11.4.因为a为正整数,所以a的最小值为12.答:从乙车间至少调12人到甲车间.6.解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意得,=,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.7.解:(1)设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意,得:×=,解得x=27,经检验:x=27是原分式方程的解,答:手工每小时加工产品27件;(2)设人工要加工a小时,根据题意,得:27a+(2×27+9)(48﹣a)≥2×1332,解得a≤10,答:人工至多加工10小时.8.解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+15)天根据题意得经检验x=30是原方程的解,则x+15=45(天)答:甲队单独完成此项任务需45天,乙队单独完成此项任务需30天.(2)解:设甲队再单独施工y天,依题意,得,解得y≥4.答:甲队至少再单独施工4天.9.解:(1)设甲工程队单独完成这项工程需要x天,则甲每天的施工量为,乙每天的施工量为,由题意得140×+40(+)=∴+=∴x=200经检验x=200是原方程的解,且符合问题的实际意义.答:甲工程队单独完成这项工程需要200天.(2)由(1)可知,乙工程队单独完成这项工程需要3×200=600天设甲工程队至少要施工y天,由题意得≤300∴y≥199答:甲工程队至少要施工199天.10.解:(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据题意得:﹣=25,解得x=4.经检验,x=4是原分式方程的解,且符合题意,则1.5x=6答:实际每天挖掘6米.(2)设每天还应多挖掘y米,由题意,得(70﹣)(6+y)≥500﹣300,解得y≥4.答:每天还应多挖掘4米.11.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:=,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是36÷0.3=120(千米);(2)汽车行驶中每千米用油费用为0.3+0.5=0.8(元),设汽车用电行驶ykm,可得:0.3y+0.8(120﹣y)≤50,解得:y≥92,所以至少需要用电行驶92千米.12.解:(1)设第一次购进水果x千克,依题意可列方程:.解得x=200.经检验:x=200是原方程的解.答:第一次购进水果200千克;(2)由(1)可知,二次共购进水果600千克,设最初水果标价为y元,依题意可列不等式:500y+100×﹣3800≥1700.解得y≥10.答:最初每千克水果标价至少为10元.13.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.14.解:(1)设该商场第一次购进这种运动服x套,第二次购进2x套,由题意得,﹣=10,解得:x=200,经检验:x=200是原分式方程的解,且符合题意,答:该商场第一次购进200套;(2)设每套售价是y元,两批运动服总数:200+400=600由题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200,答:每套售价至少是200元.15.解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.16.解:(1)设甲队单独完成此项工程需x天,乙队单独完成此项工程需(x+8)天根据题意得:=解得x=12经检验x=12是原方程的解当x=12时,x+8=20答:甲队单独完成此项工程需12天,乙队单独完成此项工程需20天.(2)设甲乙两队合作m天,根据题意得:5.5m+×3≤65,解得m≤10;又∵(+)m≤1,∴m≤7.5,∴甲乙两队最多合作7天.答:甲乙两队最多合作7天.17.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.18.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.19.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w值随m值的增大而增大,∴当m=20时,完成此项工程总费用最少,此时n=90﹣m=60,w=780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.20.解:(1)设B种图书每本价格为x元,则A种图书每本价格为2.5x元,依题意,得:﹣=25,解得:x=40.8,经检验,x=40.8是原方程的解,且符合题意,∴2.5x=102.答:A种图书每本价格为102元,B种图书每本价格为40.8元.(2)设购买y本A种图书,则购买(2y+8)本B种图书,依题意,得:102y+40.8(2y+8)≤1164,解得:y≤4.∵y为整数,∴y的最大值为4,∴(2y+8)的最大值为16.答:该学校最多可以购买16本B种图书.。

2020年中考数学复习:几何 专项练习题(含答案)

2020年中考数学复习:几何 专项练习题(含答案)

2020年中考数学复习:几何 专项练习题一、选择题1.如图,直角三角板ABC 的斜边AB=12cm ,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6cmB.4cmC.cmD.cm2.如图,△ABC 和△DEF 是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B 与点D 重合,点A ,B (D ),E 在同一条直线上,将△ABC 沿DE 方向平移,至点A 与点E 重合时停止.设点B ,D 之间的距离为x ,△ABC 与△DEF 重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( )A B C D 二、填空题3.如图,将两块直角三角板的斜边重合,E 是两直角三角形公共斜边AC 的中点.D 、B 分别为直角顶点,连接DE 、BE 、DB ,∠DAC=60°,∠BAC=45°.则∠EDB 的度数为_______.(6-()64.如图,一块直角三角形木板△ABC,将其在水平面上沿斜边AB所在直线按顺时针方向翻滚,使它滚动cm.三、解答题5.如图,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.(1)EF+AC =AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与点A1运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图,AF1平分∠B A1C1,交BD于F1,过F1作F1E1⊥A1C1,垂足为E1,试猜想F1E1,A1C1与AB之间的数量关系,并证明你的猜想.(3)在(2)的条件下,当A1 E1=3,C1 E1=2时,求BD的长.21216.如图,等腰Rt△ABC 中,∠C=90°,AC=6,动点P 、Q 分别从A 、B 两点同时以每秒1个单位长的速度按顺时针方向沿△ABC 的边运动,当Q 运动到A 点时,P 、Q 停止运动.设Q 点运动时间为t 秒,点P 运动的轨迹与PQ 、AQ 围成图形的面积为S.求S 关于t 的函数解析式.7.正方形ABCD中,点F为正方形ABCD 内的点,△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合. (1)如图1,若正方形ABCD 的边长为2,BE=1,FC=,求证:AE ∥BF ;(2)如图2,若点F 为正方形ABCD 对角线AC 上的点,且AF :FC=3:1,BC=2,求BF 的长.8.将正方形ABCD 和正方形BEFG 如图1摆放,连DF .∠DMC=_____;∠DMC 的值,并证明你的结论;3∠DMC=_________.请画出图形,并直接写出你的结论(不用证明).9.已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.10.将正方形ABCD和正方形CGEF如图1摆放,使D点在CF边上,M为AE中点,(1)连接MD、MF,则容易发现MD、MF间的关系是______________(2)操作:把正方形CGEF绕C点旋转,使对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M,探究线段MD、MF的关系,并加以说明;(3)将正方形CGEF绕点C旋转任意角度后(如图3),其他条件不变,(2)中的结论是否仍成立?直接写出猜想,不需要证明.DMDC交射线ON 于点B ,且使∠APB+∠MON=180°. (1)利用图1,求证:PA=PB ;(2)如图2,若点C 是AB 与OP 的交点,当S △POB =3S △PCB 时,求PB 与PC 的比值;(3)若∠MON=60°,OB=2,射线AP 交ON 于点D ,且满足且∠PBD=∠ABO ,请借助图3补全图形,并求OP 的长.12、在中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=,AE=1,在①的条件下,设CP 1=,S =,求与之间的函数关系式,并写出自变量的取值范围.图1 备用图13、已知:如图,N 、M 是以O 为圆心,1为半径的圆上的两点,B 是上一动点(B 不与点M 、N 重合),ABCD Y 90o90o 90o43x 11P FC V y y xx ¼MN∠MON=90°,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)四边形EPGQ (填“是”或者“不是”)平行四边形; (2)若四边形EPGQ 是矩形,求OA 的值.14、已知如图,在梯形中,点是的中点,是等边三角形.(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变.设 求与的函数关系式;(3)在(2)中,当取最小值时,判断的形状,并说明理由.15、已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处. (1)当=1 时,CF=______cm , (2)当=2 时,求sin∠DAB′ 的值; (3)当= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).ABCD 24AD BC AD BC ==∥,,,M AD MBC △ABCD P Q BC MC 60MPQ =︒∠PC x MQ y ==,,y x y PQC△CEBECEBECEBE16、在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,,CD=,求线段CP 的长.(用含的式子表示)17、已知:如图(1),射线射线,是它们的公垂线,点、分别在、 上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合), 在运动过程中始终保持,且. (1)求证:∽;(2)如图(2),当点为边的中点时,求证:;(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示的周长;若无关,请说明理由.3=BC xx //AM BN AB D C AM BN D A C B E AB E A B EC DE ⊥a AB DE AD ==+ADE ∆BEC ∆E AB CD BC AD =+m AE =BEC ∆m m BEC∆18、已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接. (1)直接写出线段与的数量关系;(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)参考答案 一、选择题 1.【答案】C. 2.【答案】B. 二、填空题 3.【答案】15°.4.三、解答题5.【答案与解析】(1)证明:如图1,过点F 作FM ⊥AB 于点M ,在正方形ABCD 中,AC ⊥BD 于点E . ∵AF 平分∠BAC , ∴EF=MF , 又∵AF=AF ,ABCD E BD E EF BD ⊥BC F DF G DF EG CG ,EG CG BEF ∆B 45︒DF G EG CG ,BEF ∆B 图3图2图1FEABCDABC DEFGGFED C BA∴Rt △AMF ≌Rt △AEF , ∴AE=AM ,∵∠MFB=∠ABF=45°, ∴MF=MB,MB=EF , ∴EF+AC=MB+AE=MB+AM=AB .(2)E 1F 1,A 1C 1与AB 三者之间的数量关系:E 1F 1+A 1C 1=AB 证明:如图2,连接F 1C 1,过点F 1作F 1P ⊥A 1B 于点P ,F 1Q ⊥BC 于点Q , ∵A 1F 1平分∠BA 1C 1,∴E 1F 1=PF 1;同理QF 1=PF 1,∴E 1F 1=PF 1=QF 1, 又∵A 1F 1=A 1F 1,∴Rt △A 1E 1F 1≌Rt △A 1PF 1, ∴A 1E 1=A 1P ,同理Rt △QF 1C 1≌Rt △E 1F 1C 1, ∴C 1Q=C 1E 1, 由题意:A 1A=C 1C ,∴A 1B+BC 1=AB+A 1A+BC -C 1C=AB+BC=2AB , ∵PB=PF 1=QF 1=QB ,∴A 1B+BC 1=A 1P+PB+QB+C 1Q=A 1P+C 1Q+2E 1F 1, 即2AB=A 1E 1+C 1E 1+2E 1F 1=A 1C 1+2E 1F 1, ∴E 1F 1+A 1C 1=AB . (3)解:设PB=x ,则QB=x , ∵A 1E 1=3,QC 1=C 1E 1=2,Rt △A 1BC 1中,A 1B 2+BC 12=A 1C 12, 即(3+x )2+(2+x )2=52, ∴x 1=1,x 2=-6(舍去), ∴PB=1, ∴E 1F 1=1, 又∵A 1C 1=5,121212126.【答案与解析】当P运动到C点时:t=6当Q运动到A点:t=∴分两种情况讨论(1)当0≤t≤6时,如图:作PH⊥AB于H,则△APH为等腰直角三角形此时AP=t,BQ=t,则AQ=-tPH=APsin45°=t∴S△AQP=AQ·PH=·(-t)·t=t2+3t(2)当6<t≤时,如图:过P过PH⊥AB于H,此时△PBH为等腰直角三角形AC+CP=t,BQ=t∴BP=AC+CB-(AC+CP)=12-t∴PH=BPsin45°=(12-t)∴S四边形AQPC=S△ABC-S△BPQ=AC·BC-BQ·PH=·6·6-·t·(12-t)=18-t+t2=t2-t+18.综上,.7.【答案与解析】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC在△BFC中,BC2=22=4∴BF2+FC2=BC2∴∠BFC=90°…(3分)∴∠AEB+∠EBF=180°∴AE ∥BF …(4分)(2)解:∵Rt △ABC 中,AB=BC=2,由勾股定理,得∵AF :FC=3:1,∵△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合∵四边形ABCD 是正方形∴∠ABC=90°∴∠BAC+∠ACB=90° ∴∠EAB+∠BAC=90°即∠EAF=90° 在Rt △EBF 中,EF 2=BE 2+BF 2∵BE=BF8.【答案与解析】(1)如图2,连接BF ,∵四边形ABCD 、四边形BEFG 是正方形,∴∠FBC=∠CBD=45°,∴∠CBD=∠GBC=90°,而BF=BG ,BD=BC ,∴△BFD ∽△BGC ,22而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,(2)如图3,∵将图1中的正方形BEFG 绕B 点顺时针旋转45°,DF 的延长线交CG 于M ,∴B 、E 、D 三点在同一条直线上,而四边形ABCD 、四边形BEFG 是正方形,∴△BFD ∽△BGC ,而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,即∠DMC=45°;9.【答案与解析】(1)CE ⊥BD .(2)延长CE 交BD 于M ,设AB 与EM 交于点F .∵∠BAC=∠DAE=90°, ∴∠CAE=∠BAD .又∵△ABC ≌△ADE ,∴AC=AE ,AB=AD , ∴∠ACE=,∠ABD=,∴∠ACE=∠ABD .又∵∠AFC=∠BFM ,∠AFC+∠ACE=90°,∴∠ABD+∠BFM=90°,∴∠BMC=90°,∴CE ⊥BD .(3)过C ′作C ′G ⊥AM 于G ,过D 作DH ⊥AM 交延长线于点H .∵∠∠E ′NA=∠AGC ′=90°,∴∠NE ′A+∠NAE ′=90°,∠NAE ′+∠C ′AG=90°,∴∠NE ′A=∠C ′AG ,∵AE ′=AC ′∴△ANE ′≌△C ′GA (AAS ),∴AN=C ′G .同理可证△BNA ≌△AHD ,AN=DH .∴C ′G=DH .在△C ′GM 与△DHM 中,∠C ′GM=∠DHM=90°,∠C ′MG=∠DMH ,C ′G=DH ,∴△C ′GM ≌△DHM ,∴C ′M=DM ,01802CAE -∠01802BAD -∠10.【答案与解析】如图1,延长DM交FE于N,图1∵正方形ABCD、CGEF,∴CF=EF,AD=DC,∠CFE=90°,AD∥FE,∴∠1=∠2,又∵MA=ME,∠3=∠4,∴△AMD≌△EMN,∴MD=MN,AD=EN.∵AD=DC,∴DC=NE.又∵FC=FE,∴FD=FN.又∵∠DFN=90°,∴FM⊥MD,MF=MD;(2)MD=MF,MD⊥MF.如图2,延长DM交CE于N,连接FD、FN.∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2.又∵AM=EM,∠3=∠4,∴△ADM≌△ENM,∴AD=EN,MD=MN.∵AD=DC,∴DC=NE.又∵正方形CGEF,∴∠FCE=∠NEF=45°,FC=FE,∠CFE=90°.又∵正方形ABCD,∴∠BCD=90°,∴∠DCF=∠NEF=45°,∴△FDC≌△FNE,∴FD=FN,∠5=∠6,∠DFN=∠5+∠CFN=∠6+∠CFN=90°,∴△DFN为等腰直角三角形,且FM为斜边DN上的中线,∴MD=MF,MD⊥MF;(3)FM⊥MD,MF=MD.如图3,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.∴∠ADC=∠H,AD∥EH,∴∠3=∠4.∵AM=ME,∠1=∠2,∴△AMD≌△EMN,∴DM=NM,AD=EN.∵正方形ABCD、CGEF,∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°.∴∠H=90°,∠5=∠NEF,DC=NE.∴∠DCF+∠7=∠5+∠7=90°,∴∠DCF=∠5=∠NEF.∵FC=FE,∴△DCF≌△NEF.∴FD=FN,∠DFC=∠NFE.∵∠CFE=90°,∴∠DFN=90°.∴FM⊥MD,MF=MD.11、 【答案】(1)作PE ⊥OM ,PF ⊥ON ,垂足为E 、F ∵四边形OEPF 中,∠OEP=∠OFP=90°, ∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB ,即∠EPA+∠APF=∠APF+∠FPB ,∴∠EPA=∠FPB , 由角平分线的性质,得PE=PF ,∴△EPA ≌△FPB ,即PA=PB ;(2)∵S △POB =3S △PCB ,∴PO=3PC ,由(1)可知△PAB 为等腰三角形,则∠PBC=(180°-∠APB )=∠MON=∠BOP , 又∵∠BPC=∠OPB (公共角),∴△PBC ∽△POB ,∴, 即PB 2=PO •PC=3PC 2,∴ (3)作BH ⊥OT ,垂足为H ,当∠MON=60°时,∠APB=120°,由PA=PB ,得∠PBA=∠PAB=(180°-∠APB )=30°, 又∵∠PBD=∠ABO ,∠PBD+∠PBA+∠ABO=180°,∴∠ABO=(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°, 在△OBP 中,∵∠BOP=30°,∴∠BPO=45°,在Rt △OBH 中,BH=OB=1,OH=, 1212PB PC PO PB=3PB PC=1212123在Rt △PBH 中,PH=BH=1,∴OP=OH+PH=+1.12、【答案与解析】(1)①直线与直线的位置关系为互相垂直.证明:如图1,设直线与直线的交点为.∵线段分别绕点逆时针旋转90°依次得到线段,∴.∵,, ∴. ∴. ∴. ∵,∴, ∴.31FG CD 1FG CD H 1EC EP 、E 1EF EG 、111190PEG CEF EG EP EF EC ∠=∠===°,,1190G EF PEF ∠=-∠°1190PEC PEF ∠=-∠°11G EF PEC ∠=∠11G EF PEC △≌△11G FE PCE ∠=∠EC CD ⊥190PCE ∠=°190G FE ∠=°FDC BAE 图1 G 2 G 1P 1 H P 2∴.∴.∴.②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直.(2)∵四边形是平行四边形,∴.∵, ∴. 可得. 由(1)可得四边形为正方形.∴. ①如图2,当点在线段的延长线上时,∵, ∴. 90EFH ∠=°90FHC ∠=°1FG CD ⊥12G G CD ABCD B ADC ∠=∠461tan 3AD AE B ===,,45tan tan 3DE EBC B =∠==,4CE =EFCH 4CH CE ==1P CH 1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯⨯=△D G 1P 1 H C BAE F∴. ②如图3,当点在线段上(不与两点重合)时, ∵, ∴. ∴. ③当点与点重合时,即时,不存在.综上所述,与之间的函数关系式及自变量的取值范围是或. 13、【答案】(1)是.证明:连接OB ,如图①,212(4)2y x x x =->1P CH C H 、1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯=△212(04)2y x x x =-+<<1P H 4x =11PFG △y x x 212(4)2y x x x =->212(04)2y x x x =-+<<FG 1 P 1 CAB E D H∵BA ⊥OM ,BC ⊥ON , ∴∠BAO=∠BCO=90°, ∵∠AOC=90°, ∴四边形OABC 是矩形.∴AB ∥OC ,AB=OC ,∵E 、G 分别是AB 、CO 的中点,∴AE ∥GC ,AE=GC ,∴四边形AECG 为平行四边形.∴CE ∥AG ,∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,∴GF ∥OB ,DE ∥OB ,∴PG ∥EQ ,∴四边形EPGQ 是平行四边形;(2)解:如图②,∵口EPGQ 是矩形.∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE .∴△AED ∽△BCE ,∴, AD AE BE BC得y 2=2x 2,又∵OA 2+AB2=OB 2, 即x 2+y 2=12.∴x 2+2x 2=1,14、【答案与解析】(1)证明:∵是等边三角形∴∵是中点∴∵∴∴∴∴梯形是等腰梯形.(2)解:在等边中, ∴ ∴ ∴∴ MBC △60MB MC MBC MCB ===︒,∠∠M AD AM MD =AD BC ∥60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠AMB DMC △≌△AB DC =ABCD MBC △4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠120BMP BPM BPM QPC +=+=︒∠∠∠∠BMP QPC =∠∠BMP CQP △∽△PC CQ BM BP=∵∴∴∴(3)解:为直角三角形,∵∴当取最小值时,∴是的中点,而∴∴∴为直角三角形.15、【答案与解析】(1)CF=6cm;(2)①如图1,当点E在BC上时,延长AB′交DC于点M,PC x MQ y==,44BP x QC y=-=-,444x yx-=-2144y x x=-+PQC△()21234y x=-+y2x PC==P BC MP BC⊥,60MPQ=︒∠,30CPQ=︒∠,90PQC=︒∠PQC△图1∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴ . ∵ =2, ∴ CF=3. ∵ AB ∥CF,∴∠BAE=∠F .又∠BAE=∠B ′ AE , ∴ ∠B ′ AE=∠F .∴ MA=MF .设MA=MF=k ,则MC=k -3,DM=9-k .在Rt △ADM 中,由勾股定理得:k 2=(9-k)2+62, 解得 k=MA=. ∴ DM=. ∴ sin ∠DAB ′=; ②如图2,当点E 在BC 延长线上时,延长AD 交B ′ E 于点N ,同①可得NA=NE .设NA=NE=m ,则B ′ N=12-m .在Rt △AB ′ N 中,由勾股定理,得m 2=(12-m)2+62, 解得 m=AN=. ∴ B ′N=. ∴ sin ∠DAB ′=. (3)①当点E 在BC 上时,y=; FCAB CE BE =CEBE 13252135=AM DM 1529253='AN N B 18x x 1+图2②当点E 在BC 延长线上时,y=. 16、【答案与解析】(1)结论:CF ⊥BD ; 证明如下:AB=AC ,∠ACB =45º,∴∠ABC=45º.由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º,∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD .∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .(2)CF ⊥BD .(1)中结论仍成立.理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q ,①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴DQ=4-x ,易证△AQD ∽△DCP ,∴ ,∴, .18x 18x-ΘCP CD DQ AQ =44CP x x =-24x CP x ∴=-+②点D 在线段BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x .过A 作AQ ⊥BC , ∴∠Q=∠FQC=90°,∠ADQ=∠AFC ,则△AQD ∽△ACF .∴CF ⊥BD ,∴△AQD ∽△DCP ,∴, ∴, . 17、【答案】(1)证明:∵,∴.∴.又∵,∴.∴.∴∽.(2)证明:如图,过点作,交于点,∵是的中点,容易证明. CD DQ AQ 4+4x x =24x CP x ∴=+EC DE ⊥︒=∠90DEC ︒=∠+∠90BEC AED ︒=∠=∠90B A ︒=∠+∠90EDA AED EDA BEC ∠=∠ADE ∆BEC ∆E EF BC //CD F E AB )(21BC AD EF +=在中,∵ ,∴ . ∴ . ∴ .(3)解:的周长,. 设,则.∵ ,∴ .即.∴ . 由(1)知∽,∴ . ∴ 的周长的周长. ∴ 的周长与值无关.18、【答案与解析】(1)(2)(1)中结论没有发生变化,即.证明:连接,过点作于,与的延长线交于点. 在与中,∵,∴.∴.DEC Rt ∆CF DF =CD EF 21=)(21BC AD +CD 21=CD BC AD =+AED ∆DE AD AE ++=m a +=m a BE -=x AD =x a DE -=︒=∠90A 222AD AE DE +=22222x m x ax a +=+-am a x 222-=ADE ∆BEC ∆的周长的周长BEC ∆∆ADE BEAD =m a a m a --=222a m a 2+=BEC ∆⋅+=m a a 2ADE ∆a 2=BEC ∆m CG EG =CG EG =AG G MN AD ⊥M EF N DAG ∆DCG ∆AD CD ADG CDG DG DG =∠=∠=,,DAG DCG ∆∆≌AG CG =在与中,∵, ∴.∴在矩形中,在与中,∵,∴.∴.∴(3)(1)中的结论仍然成立.DMG ∆FNG ∆DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,DMG FNG ∆∆≌MG NG =AENM AM EN =Rt AMG ∆Rt ENG ∆AM EN MG NG ==,AMG ENG ∆∆≌AG EG =EG CG =M N图2A B CDE F GG图3FE A B CD。

2020年《冲刺中考·数学》最新模考分类冲刺小卷27: 《图形的旋转》(全国通用)(包含答案)

2020年《冲刺中考·数学》最新模考分类冲刺小卷27: 《图形的旋转》(全国通用)(包含答案)

最新模考分类冲刺小卷27:《图形的旋转》一.选择题1.(2020•河南模拟)如图△ABO的顶点分别是A(3,1),B(0,2),O(0,0),点C,D分别为BO,BA的中点,连AC,OD交于点G,过点A作AP⊥OD交OD的延长线于点P.若△APO绕原点O顺时针旋转,每次旋转90°,则第2020次旋转结束时,点P的坐标是()A.(2,1)B.(2,2)C.(1,2)D.A(1,1)2.(2020•碑林区校级三模)如图,矩形ABCD中,AB=7,BC=12,E为边AD的中点,点F 为边CD上一点,将线段EF绕点E顺时针旋转90°得到EH,若点H恰好在线段BF上,则CF的长是()A.3 B.3.5 C.4 D.4.5 3.(2020•九龙坡区校级模拟)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,将△ABC绕点C逆时针旋转得到△A′B′C,且B′恰好落在AB上,M是BC的中点,N是A′B′的中点,连接MN,则C到MN的距离是()A.B.C.D.4.(2020•顺德区校级模拟)在平面直角坐标系中,点(﹣6,5)关于原点的对称点的坐标是()A.(6,5)B.(6,5)C.(6,﹣5)D.(﹣6,﹣5)5.(2020•蜀山区校级模拟)如图,等边△ABC的边长为4,点D是边AC上的一动点,连接BD,以BD为斜边向上作等腰Rt△BDE,连接AE,则AE的最小值为()A.1 B.C.2 D.2 6.(2020•南岗区校级一模)如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=()A.5 B.5.5 C.6 D.7 7.(2020•安阳模拟)如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O 逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)8.(2020•河南模拟)如图,已知点O(0,0),P(1,2),将线段PO绕点P按顺时针方向以每秒90°的速度旋转,则第19秒时,点O的对应点坐标为()A.(0,0)B.(3,1)C.(﹣1,3)D.(2,4)9.(2020•锦江区校级模拟)如图,将△AOB绕点O按逆时针方向旋转40°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.45°B.55°C.60°D.65°10.(2020•南昌模拟)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕A顺时针旋转90°后,得到△AFB,连接EF,则下列结论不正确的是()A.∠EAF=45°B.△EBF为等腰直角三角形C.EA平分∠DAF D.BE2+CD2=ED211.(2020•河南模拟)如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A .(22019,22019)B .(﹣22019,22019)C .(﹣22020,22020)D .(22020,22020) 12.(2020•河北模拟)如图所示,A 1(1,),A 2(),A 3(2,),A 4(3,0).作折线A 1A 2A 3A 4关于点A 4的中心对称图形,再做出新的折线关于与x 轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P 从原点O 出发,沿着折线一每秒1个单位的速度移动,设运动时间为t .当t =2020时,点P 的坐标为( )A .(1010,)B .(2020,)C .(2016,0)D .(1010,)二.填空题13.(2020•武汉模拟)如图,在直角三角形△ABC 内部有一动点P ,∠BAC =90°,连接PA ,PB ,PC ,若AC =6,AB =8,求PA +PB +PC 的最小值 .14.(2020•哈尔滨模拟)如图,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF现将小长方形CEFD绕点C顺时针旋转至长方形CE'F'D'旋转角为α,当点D'恰好落在EF边上时,旋转角α的大小为°.15.(2020•和平区模拟)在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,若线段MA绕点M旋转得线段MA'.(Ⅰ)如图①,线段MA'的长=.(Ⅱ)如图②,连接A'C,则A'C长度的最小值是.16.(2020•江西模拟)如图,△ABC中,∠A=60°,∠ABC=80°,将△ABC绕点B逆时针旋转,得到△DBE,若DE∥BC,则旋转的最小度数为.17.(2020•市中区一模)如图,正方形ABCD的边长为8,E为BC的四等分点(靠近点B 的位置),F为B边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.18.(2020•市中区一模)如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG =.其中正确的结论是.(填入正确的序号)19.(2020•道里区模拟)如图,在△ABC中,∠BAC=90°,AB=AC=4cm,点D为△ABC 内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC 重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为cm.20.(2020•江津区校级模拟)如图,正方形ABCD中,AB=2,O是BC边的中点,点E 是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为.三.解答题21.(2020•福建模拟)如图,在△ABC中,∠ABC=90°,∠ACB=60°,将△ABC绕点C 逆时针旋转60°得到△DGC,再将△ABC沿AB所在直线翻折得到△ABE,连接AD,BG,延长BG交AD于点F,连接CF.(1)求证:四边形ABCF是矩形;(2)若GF=2,求四边形AECD的面积.22.(2020•槐荫区一模)△ABC和△CDE都是等腰三角形,∠BAC=∠EDC=120°.(1)如图1,A、D、C在同一直线上时,=,=.(2)在图1的基础上,固定△ABC,将△CDE绕C旋转一定的角度α(0°<α<360°),如图2,连接AD、BE.①的值有没有改变?请说明理由.②拓展研究:若AB=1,DE=,当B、D、E在同一直线上时,请计算线段AD的长.23.(2020•河南模拟)如图,已知△ABC和△ADE均为等腰三角形,AC=BC,DE=AE,将这两个三角形放置在一起.(1)问题发现如图①,当∠ACB=∠AED=60°时,点B、D、E在同一直线上,连接CE,则∠CEB的度数为,线段AE、BE、CE之间的数量关系是;(2)拓展探究如图②,当∠ACB=∠AED=90°时,点B、D、E在同一直线上,连接CE.请判断∠CEB 的度数及线段AE、BE、CE之间的数量关系,并说明理由;(3)解决问题如图③,∠ACB=∠AED=90°,AC=2,AE=2,连接CE、BD,在△AED绕点A旋转的过程中,当DE⊥BD时,请直接写出EC的长.24.(2020•烟台一模)如图1,在Rt△OAB中,∠AOB=90°,OA=OB,D为OB边上一点,过D点作DC⊥AB交AB于C,连接AD,E为AD的中点,连接OE、CE.观察猜想(1)①OE与CE的数量关系是;②∠OEC与∠OAB的数量关系是;类比探究(2)将图1中△BCD绕点B逆时针旋转45°,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;拓展迁移(3)将△BCD绕点B旋转任意角度,若BD=,OB=3,请直接写出点O、C、B在同一条直线上时OE的长.25.(2020•历下区一模)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.26.(2020•长春模拟)【问题情境】如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB中点,连结CD,点E为CB 上一点,过点E且垂直于DE的直线交AC于点F.易知:BE=CF.(不需要证明)【探索发现】如图②,在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB中点,连结CD,点E为CB 的延长线上一点,过点E且垂直于DE的直线交AC的延长线于点F.【问题情境】中的结论还成立吗?请说明理由.【类比迁移】如图③,在等边△ABC中,AB=4,点D是AB中点,点E是射线AC上一点(不与点A、C 重合),将射线DE绕点D逆时针旋转60°交BC于点F.当CF=2CE时,CE=.参考答案一.选择题1.解:∵点C,D分别为BO,BA的中点,∴点G是三角形的重心,∴AG=2CG,∵B(0,2),∴C(0,1),∵A(3,1),∴AC=3,AC∥x轴,∴CG=1,AG=2,∵OC=1,∴OC=CG∴△COG是等腰直角三角形,∴∠CGO=45°,∴∠AGP=45°,∵AP⊥OD,∴△AGP是等腰直角三角形,∴AG边上的高为1,∵AG边上的高也是中线,∴P(2,2),∵2020=4×55,∴每4次一个循环,第2020次旋转结束时,P点返回原处,∴点P的坐标为(2,2).故选:B.2.解:过H点作MN⊥AD,则MN∥CD,∵AB=7,BC=12,E为边AD的中点,∴AE=ED=6,∵∠FEH=90°,∴∠MEH +∠DEF =90°, ∵∠DEF +∠DFE =90°, ∴∠MEH =∠DFE , 在△MEH 和△DFE 中∴△MEH ≌△DFE (AAS ), ∴ME =DF ,MH =DE =6, ∴HN =7﹣6=1, 设CF =x .则DF =7﹣x , ∴ME =7﹣x ,∴BN =AM =6﹣(7﹣x )=x ﹣1, ∵NH ∥CF , ∴△BNH ∽△BCF , ∴=,即=,整理为x 2﹣x ﹣12=0,解得x 1=4,x 2=﹣3(舍去) ∴CF 的长是4, 故选:C .3.解:如图,作CH ⊥MN 于H ,连接NC ,作MJ ⊥NC 交NC 的延长线于J .∵∠ACB=90°,BC=4,∠A=30°,∴AB=A′B′=2BC=8,∠B=60°.∵CB=CB′,∴△CBB′是等边三角形,∴∠BCB′=60°,∵BN=NA′,∴CN=NB′=A′B′=4,∵∠CB′N=60°,∴△CNB′是等边三角形,∴∠NCB′=60°,∴∠BCN=120°,在Rt△CMJ中,∵∠J=90°,MC=2,∠MCJ=60°,∴CJ=MC=,MJ=CJ=3,∴MN===2,∵•NC•MJ=•MN•CH,∴CH=,故选:A.4.解:点P(﹣6,5)关于原点对称点的坐标是(6,﹣5),故选:B.5.解:如图,过点B作BH⊥AC于H点,作射线HE,∵△ABC是等边三角形,BH⊥AC,∴AH=2=CH,∵∠BED=∠BHD=90°,∴点B,点D,点H,点E四点共圆,∴∠BHE=∠BDE=45°,∴点E在∠AHB的角平分线上运动,∴当AE⊥EH时,AE的长度有最小值,∵∠AHE=45°,∴AH=AE=2,∴AE的最小值为,故选:B.6.解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=4,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE==5,∴BD=5.故选:A.7.解:∵矩形OABC的顶点O(0,0),B(﹣2,2),∴D(﹣1,),过D作DE⊥x轴于点E,则OD=2,DE=2,∴,tan∠DOE=,∴∠DOE=60°,∵60°×2017÷360°=336,∵,又∵旋转336周时,D点刚好回到起始位置,∴第2017秒时,矩形绕点O逆时针旋转336周,此时D点在x轴负半轴上,∴此时D点的坐标为(﹣2,0),故选:C.8.解:如图所示,∵线段PO绕点P按顺时针方向以每秒90°的速度旋转,每4秒一个循环,19=4×4+3,∴3×90°=270°,∴19秒后点O旋转到点O'的位置,∠OPO'=90°,如图所示,过P作MN⊥y轴于点M,过O'作O'N⊥MN于点N,则∠OMP=∠PNO'=90°,∠POM=∠O'PN,OP=PO',∴△OPM≌△PO'N(AAS),∴O'N=PM=1,PN=OM=2,∴MN=1+2=3,点O'离x轴的距离为2﹣1=1,∴点O'的坐标为(3,1),故选:B.9.解:∵将△AOB绕点O按逆时针方向旋转40°后得到△COD,∴∠AOB=∠COD=15°,∠AOC=∠BOD=40°,∴∠AOD=∠AOB+∠BOD=55°,故选:B.10.解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°;故选项A不合题意;∵△DAC≌△FAB,∴AD=AF,∠DAC=∠FAB,∴∠FAD=90°,∵∠DAE=45°,∴∠DAC+∠BAE=∠FAB+∠BAE=∠FAE=45°,∴∠FAE=∠DAE=45°,∴EA平分∠DAF,故选项C不合题意;在△FAE和△DAE中∴△FAE≌△DAE(SAS),∴EF=ED.在Rt△ABC中,AB=AC,∴∠BAC=90°,∠ABC=∠C=45°,∵将△ADC绕点A顺时针旋转90°后,得到△AFB,∴∠BAF=CAD,AF=AD,BF=CD,∠ABF=∠C=45°,∴∠EBF=90°,∴BE 2+BF 2=EF 2,∴BE 2+DC 2=DE 2;故选项D 不合题意; 由题意无法得到△EBF 是等腰直角三角形; 故选项B 符合题意, 故选:B .11.解:∵△AOB 是等腰直角三角形,OA =1, ∴AB =OA =1, ∴B (1,1),将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO , 再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O …,依此规律,∴每4次循环一周,B 1(2,﹣2),B 2(﹣4,﹣4),B 3(﹣8,8),B 4(16,16), ∵2020÷4=505,∴点B 2020与B 同在一个象限内, ∵﹣4=﹣22,8=23,16=24, ∴点B 2020(22020,22020). 故选:D .12.解:由题意OA 1=A 3A 4=A 4A 5=A 7A 8=2,A 1A 2=A 2A 3=A 5A 6=A 6A 7=1, ∴点P 从O 运动到A 8的路程=2+1+1+2+2+1+1+2=12, ∴t =12,把点P 从O 运动到A 8作为一个循环, ∵2020÷12=168余数为4,∴把点A 3向右平移168×3个单位,可得t =2020时,点P 的坐标,∵A(2,),168×6=1008,1008+2=1010,3∴t=2020时,点P的坐标(1010,),故选:A.二.填空题(共8小题)13.解:如图,将△ACP绕点C顺时针旋转60°得到△ECF,连接PF,BE,作EH⊥BA交BA 的延长线于H.由旋转的旋转可知:PA=EF,△PCF,△ACE是等边三角形,∴PF=PC,∴PA+PB+PC=EF+FP+PB,∵EF+FP+PB≥BE,∴当B,P,F,E共线时,PA+PB+PC的值最小,∵∠BAC=90°,∠CAE=60°,∴∠HAE=180°﹣90°﹣60°=30°,∵EH⊥AH,AE=AC=6,∴EH=AE=3.AH=EH=3,∴BE===2,∴PA+PB+PC的最小值为2.故答案为2.14.解:∵将小长方形CEFD绕点C顺时针旋转至长方形CE'F'D'旋转角为α,∴CD=CD'=2,∵cos∠D'CE==,∴∠D'CE=60°,∴∠DCD'=α=30°,故答案为:30.15.解:(Ⅰ)∵M是AD边的中点,∴MA=1,∵线段MA绕点M旋转得线段MA'.∴MA'=1,故答案为:1;(Ⅱ)如图②,作ME⊥CD于点E.∵菱形ABCD中,∠A=60°,∴∠EDM=60°,在直角△MDE中,DE=MD•cos∠EDM=×1=,ME=MD•sin∠EDM=,则EC=CD+ED=2+=,在直角△CEM中,MC===,当A'在MC上时A'C最小,则A′C长度的最小值是:﹣1,故答案为﹣1.16.解:∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点B逆时针旋转,得到△DBE,∴∠E=∠C=40°,∵DE∥BC,∴∠CBE=∠E=40°,∴旋转的最小度数为40°,故答案为:40°.17.解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=2+3=5,故答案为:5.18.解:∵正方形ABCD的边长为1,∴∠BCD=∠BAD=90°,∠CBD=45°,BD=,AD=CD=1.由旋转的性质可知:∠HGD=BCD=90°,∠H=∠CBD=45°,BD=HD,GD=CD,∴HA=BG=﹣1,∠H=∠EBG=45°,∠HAE=∠BGE=90°,∴△HAE和△BGE均为直角边为﹣1的等腰直角三角形,∴AE=GE.在Rt△AED和Rt△GED中,,∴Rt△AED≌Rt△GED(HL),∴∠AED=∠GED=(180°﹣∠BEG)=67.5°,AE=GE,∴∠AFE=180°﹣∠EAF﹣∠AEF=180°﹣45°﹣67.5°=67.5°=∠AEF,∴AE=AF.∵AE=GE,AF⊥BD,EG⊥BD,∴AF=GE且AF∥GE,∴四边形AEGF为平行四边形,∵AE=GE,∴平行四边形AEGF是菱形,故①正确;∵HA=﹣1,∠H=45°,∴AE=﹣1,∴△HED的面积=DH×AE=(﹣1+1)(﹣1)=1﹣,故②正确;∵四边形AEGF是菱形,∴∠AFG=∠GEA=2×67.5°=135°,故③正确;∵四边形AEGF是菱形,∴FG=AE=﹣1,∴BC+FG=1+﹣1=,故④不正确.故答案为:①②③.19.解:过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF中,∠AFD=∠AED+∠CAE=60°,在Rt△ADG中,AG=DG==3cm,在Rt△AFG中,GF==cm,AF=2FG=2cm,∴CF=AC﹣AF=4﹣2=2cm,故答案为:2.20.解:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD==5,∴OM==5,∵OF+MF≥OM,∴OF≥5﹣2,∴线段OF长的最小值为5﹣2.故答案为:5﹣2.三.解答题(共6小题)21.证明:(1)∵△ABC绕点C旋转得到△DGC,∴AC=CD,∠DCG=∠ACB=60°,CG=CB,∴△ACD是等边三角形,△CBG是等边三角形,∴∠DAC=60°,∠CGB=∠AGF=60°,BG=BC=CG,∴△AFG是等边三角形,∴AG=FG,∵∠ABC=90°,∠ACB=60°,∴AC=2BC,且BC=CG,∴AG=CG,∴AG=BG=FG=CG,∴四边形ABCD是平行四边形,且∠ABC=90°,∴四边形ABCF是矩形;(2)∵△ABC绕点C旋转得到△DGC,△ABC沿AB所在直线翻折得到△ABE,∠ABC=90°,∠ACB=60°,∴DC=AC=AE,∠DCG=∠ACB=∠AEC=60°,∴∠AEC+∠DCE=180°,∴DC∥AE,且AD∥CE,∴四边形AECD为平行四边形.又∵AC=2CB,∴AC=CE=AE,∴四边形AECD为菱形,∵GF=2,∴AC=CE=4,CB=2,∴AB===6,∴S=4×6=24.四边形AECD22.解:(1)如图1,过点A作AH⊥BC于H,∵∠BAC=120°,AB=AC,AH⊥BC,∴∠ABC=∠ACB=30°,BH=CH,∴AC=2AH,CH=AH,∴BC=2AH,∵∠BAC=∠EDC=120°,∴AB∥DE,∴,故答案为:,;(2)①没有改变,理由如下:∵将△CDE绕C旋转一定的角度α(0°<α<360°),∴∠ACD=∠BCE,∵AB=AC,DE=CD,∴,且∠BAC=∠EDC=120°,∴△ABC∽△DEC,∴=,且∠ACD=∠BCE,∴△ACD∽△BCE,∴;②如图2,当B、D、E在同一直线上时,过点C作CN⊥BE于N,连接AD,∵AC=AB=1,∴BC=,∵∠CDE=120°,∴∠BDC=60°,且CD=DE=,CN⊥BE,∴DN=CD=,CN=DN=∵BN===,∴BE=,∵,∴AD=.23.解:(1)在△ABC为等腰三角形,AC=BC,∠ACB=60°,∴△ABC是等边三角形,∴AC=AB,∠CAB=60°,同理:AE=AD,∠ADE=∠EAD=60°,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∴△ACE≌△ABD(SAS),∴CE=AD,∠AEC=∠ADB,∵点B、D、E在同一直线上,∴∠ADB=180°﹣∠ADE=120°,∴∠AEC=120°,∵DE=AE,∴BE=DE+BD=AE+CE,故答案为120°,BE=AE+CE;(2)在等腰三角形ABC中,AC=BC,∠ACB=90°,∴AB=AC,∠CAB=45°,同理,AD=AE,∠ADE=∠DAE=45°,∴,∠DAE=∠CAB,∴∠EAC=∠DAB,∴△ACE∽△ABD,∴,∴∠AEC=∠ADB,BD=CE,∵点B、D、E在同一条直线上,∴∠ADB=180°﹣∠ADE=135°,∴∠AEC=135°,∵DE=AE,∴BE=DE+BD=AE+CE;(3)由(2)知,△ACE∽△ABD,∴BD=CE,在Rt△ABC中,AC=2,∴AB=AC=2,①当点E在点D上方时,如图③,过点A作AP⊥BD交BD的延长线于P,∵DE⊥BD,∴∠PDE=∠AED=∠APD,∴四边形APDE是矩形,∵AE=DE,∴矩形APDE是正方形,∴AP=DP=AE=2,在Rt△APB中,根据勾股定理得,BP==6,∴BD=BP﹣AP=4,∴CE=BD=2;②当点E在点D下方时,如图④同①的方法得,AP=DP=AE=2,BP=4,∴BD=BP+DP=8,∴CE=BD=4,即:CE的长为2或4.24.解:(1)①如图1中,∵CD⊥AB,∴∠ACD=90°,∵∠AOD=90°,AE=DE,∴OE=AD,EC=AD,∴OE=OC.②∵EO=EA=ED,EC=EA=ED,∴∠EAO=∠EOA,∠EAC=∠ECA,∵∠OED=∠EAO+∠EOA=2∠EAO,∠DEC=∠EAC+∠ECA=2∠EAC,∵OA=OB,∠AOB=90°,∴∠OAB=45°,∴∠OEC=2(∠OAE+∠EAC)=90°,∴∠OEC=2∠OAB,故答案为OE=EC,∠OEC=2∠OAB.(2)结论成立.理由:如图2中,延长OE到H,使得EH=OE,连接DH,CH,OC.由题意△AOB,△BCD都是等腰直角三角形,∴∠A=∠ABO=∠DBC=∠CDB=45°,∵AE=ED,∠AEO=∠DEH,OE=EH,∴△AEO≌△DEH(SAS),∴AC=DH,∠A=∠EDH=45°,∴∠CDH=∠OBC=90°,∵OA=OB,BC=CD,∴DH=OB,∴△HDC≌△OBC(SAS),∴CH=OC,∠HCD=∠OCB,∴∠HCO=∠DCB=90°,∴∠COE=∠CHE=45°,∵OE=EH,∴CE⊥OE,∴∠OEC=90°,∴∠OEC=2∠OAB,OE=OC.(3)①如图3﹣1中,当点C落在OB上时,连接EC.由(1)(2)可知△OEC是等腰直角三角形,∵BC=BD=1,OB=3,∴OC=OB﹣BC=3﹣1=2,∴OE=OC=.②如图3﹣2中,当点C落在OB的延长线上时,连接EC.同法可得OE=OC=(3+1)=2,综上所述,OE的长为或2.25.解:(1)①∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由旋转知,AD=AE,∠DAE=60°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,故答案为60°;②由(1)知,△ABD≌△ACE,∴BD=CE,∴BC=BD+CD=CE+CD,∵△ABC是等边三角形,∴AC=BC,∴AC=CE+CD,故答案为AC=CE+CD;(2)在△ABC中,AB=AC,∠BAC=90°,∴BC=AC,由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,∴AC=CE+CD;(3)由(2)知,△ABD≌△ACE,∴ACE=∠ABD,在△ABC中,AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,∴∠BCE+∠DAE=180°,∴点A,D,C,E在以DE为直径的圆上,∵AC与DE交于点F,∴AF是直径DE上的一点到点A的距离,即:当AF⊥DE时,AF最小,∴∠CFD=90°,∴∠CDF=90°﹣∠ACB=45°,∵∠ADE=45°,∴∠ADC=90°,∴四边形ADCE是矩形,∴AF最小=AC=4.26.解:【问题情境】证明:∵在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB中点,∴CD⊥AB,CD=BD=AD=AB,∠BCD=∠B=45°,∴∠BDC=90°,∵∠EDF=90°,∴∠CDF=∠BDE,在△BDE与△CDF中,,∴△BDE≌△CDF(ASA),∴BE=CF;【探索发现】成立,理由:∵在Rt△ABC中,D为AB中点,∴CD=BD,又∵AC=BC,∴DC⊥AB,∴∠DBC=∠DCB=45°,∵DE⊥DF,∴∠EDB+∠BDF=∠CDF+∠BDF=90°,∴∠CDF=∠BDE,∴∠ADF=∠CDE,∴AF=CE,∴CF=BE;【类比迁移】∵△ABC是等边三角形,∴∠A=∠B=60°,∵∠FDE=60°,∴∠BDF=120°﹣∠ADE,∠AED=120°﹣∠ADE,∴∠BDF=∠AED,∴△ADE∽△BDF,∴,∵点D为AB中点,AB=4,∴AD=BD=2,AC=BC=4,∵CF=2CE,∴设CE=x,则CF=2x,当点E在线段AC上时,∴AE=4﹣x,BF=4﹣2x,∴=,解得:x=3﹣,x=3+(不合题意,舍去),∴CE=3﹣,如图④,当点E在AC的延长线上时,∵AE=4+x,BF=4﹣2x,∴=,解得:x=﹣1+,(负值舍去),∴CE=﹣1+.综上所述,CE=3﹣或﹣1+,故答案为:3﹣或﹣1+.。

专题26数据的收集整理与描述(共52题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原

专题26数据的收集整理与描述(共52题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原

备战2023年中考数学必刷真题考点分类专练(全国通用)专题26数据的收集整理与描述(共52题)一.选择题(共20小题)1.(2022•桂林)下列调查中,最适合采用全面调查的是()A.了解全国中学生的睡眠时间B.了解某河流的水质情况C.调查全班同学的视力情况D.了解一批灯泡的使用寿命2.(2022•玉林)垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率②整理采访记录并绘制空矿泉水瓶投放频数分布表③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比正确统计步骤的顺序应该是()A.②→③→①B.②→①→③C.③→①→②D.③→②→①3.(2022•雅安)在射击训练中,某队员的10次射击成绩如图,则这10次成绩的中位数和众数分别是()A.9.3,9.6B.9.5,9.4C.9.5,9.6D.9.6,9.84.(2022•孝感)下列调查中,适宜采用全面调查方式的是()A.检测“神舟十四号”载人飞船零件的质量B.检测一批LED灯的使用寿命C.检测黄冈、孝感、咸宁三市的空气质量D.检测一批家用汽车的抗撞击能力5.(2022•广元)如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是()A.平均数是6B.众数是7C.中位数是11D.方差是86.(2022•台州)从A,B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是()A.平均数B.中位数C.众数D.方差7.(2022•泰安)某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是()A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.78.(2022•武威)2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神舟十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是()A.完成航天医学领域实验项数最多B.完成空间应用领域实验有5项C.完成人因工程技术实验项数比空间应用领域实验项数多D.完成人因工程技术实验项数占空间科学实验总项数的24.3%9.(2022•苏州)为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图.若参加“书法”的人数为80人,则参加“大合唱”的人数为()A.60人B.100人C.160人D.400人10.(2022•台湾)某国主计处调查2017年该国所有受雇员工的年薪资料,并公布调查结果如图的直方图所示.已知总调查人数为750万人,根据图中信息计算,该国受雇员工年薪低于平均数的人数占总调查人数的百分率为下列何者?()A.6%B.50%C.68%D.73%11.(2022•福建)2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1B.F6C.F7D.F1012.(2022•赤峰)某中学对学生最喜欢的课外活动进行了随机抽样调查,要求每人只能选择其中的一项.根据得到的数据,绘制的不完整统计图如下,则下列说法中不正确的是()A.这次调查的样本容量是200B.全校1600名学生中,估计最喜欢体育课外活动的大约有500人C.扇形统计图中,科技部分所对应的圆心角是36°D.被调查的学生中,最喜欢艺术课外活动的有50人13.(2022•遵义)2021年7月,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,明确要求初中生每天的书面作业时间不得超过90分钟.某校随机抽取部分学生进行问卷调查,并将调查结果制成如下不完整的统计图表.则下列说法不正确的是()作业时间频数分布表组别作业时间(单位:分钟)频数A60<t≤708B70<t≤8017C80<t≤90mD t>905A.调查的样本容量为50B.频数分布表中m的值为20C.若该校有1000名学生,作业完成的时间超过90分钟的约100人D.在扇形统计图中B组所对的圆心角是144°14.(2022•温州)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有()A.75人B.90人C.108人D.150人15.(2022•金华)观察如图所示的频数分布直方图,其中组界为99.5~124.5这一组的频数为()A.5B.6C.7D.816.(2022•重庆)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时17.(2022•广西)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图18.(2022•黑龙江)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人B.14人C.4人D.6人19.(2021•盘锦)空气是由多种气体混合组成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是()A.条形图B.扇形图C.折线图D.直方图20.(2021•盘锦)下列调查中,适宜采用抽样调查的是()A.调查某班学生的身高情况B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况C.调查某批汽车的抗撞击能力D.调查一架“歼20”隐形战斗机各零部件的质量二.填空题(共4小题)21.(2022•长沙)为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有名.22.(2022•株洲)A市安排若干名医护工作人员援助某地新冠疫情防控工作,人员结构统计如下表:人员领队心理医生专业医生专业护士4%★56%占总人数的百分比则该批医护工作人员中“专业医生”占总人数的百分比为.23.(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是鱼池.(填甲或乙)24.(2022•岳阳)聚焦“双减”政策落地,凸显寒假作业特色.某学校评选出的寒假优质特色作业共分为四类:A(节日文化篇),B(安全防疫篇),C(劳动实践篇),D(冬奥运动篇).下面是根据统计结果绘制的两幅不完整的统计图,则B类作业有份.三.解答题(共28小题)25.(2022•临沂)省农科院为某县选育小麦种子,为了解种子的产量及产量的稳定性,在该县的10个乡镇中,每个乡镇选择两块自然条件相近的实验田分别种植甲、乙两种小麦,得到其亩产量数据如下(单位:kg):甲种小麦:804 818 802 816 806 811 818 811 803 819乙种小麦:804 811 806 810 802 812 814 804 807 809画以上甲种小麦数据的频数分布直方图,甲乙两种小麦数据的折线图,得到图1,图2(1)图1中,a=,b=;(2)根据图1,若该县选择种植甲种小麦,则其亩产量W(单位:kg)落在内的可能性最大;A.800≤W<805B.805≤W<810C.810≤W<815D.815≤W<820(3)观察图2,从小麦的产量或产量的稳定性的角度,你认为农科院应推荐种植哪种小麦?简述理由.26.(2022•吉林)为了解全国常住人口城镇化率的情况,张明查阅相关资料,整理数据并绘制统计图如下:(以上数据来源于《中华人民共和国2021年国民经济和社会发展统计公报》)注:城镇化率=×100%.例如,城镇常住人口60.12万人,总人口100万人,则城镇化率为60.12%.回答下列问题:(1)2017﹣2021年年末,全国常住人口城镇化率的中位数是%.(2)2021年年末全国人口141260万人,2021年年末全国城镇常住人口为万人.(只填算式,不计算结果)(3)下列推断较为合理的是(填序号).①2017﹣2021年年末,全国常住人口城镇化率逐年上升,估计2022年年末全国常住人口城镇化率高于64.72%.②全国常住人口城镇化率2020年年末比2019年年末增加1.18%,2021年年末比2020年年末增加0.83%,全国常住人口城镇化率增加幅度减小,估计2022年年末全国常住人口城镇化率低于64.72%.27.(2022•哈尔滨)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.28.(2022•黑龙江)为进一步开展“睡眠管理”工作,某校对部分学生的睡眠情况进行了问卷调查.设每名学生平均每天的睡眠时间为x小时,其中的分组情况是:A组:x<8.5B组:8.5≤x<9C组:9≤x<9.5D组:9.5≤x<10E组:x≥10根据调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,求D组所对应的扇形圆心角的度数;(4)若该校有1500名学生,请估计该校睡眠时间不足9小时的学生有多少人?29.(2022•大庆)中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分.为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下:抽取的200名学生成绩统计表组别海选成绩人数A组50≤x<106030B组60≤x<7040C组70≤x<80aD组80≤x<90E组90≤x≤70100请根据所给信息解答下列问题:(1)填空:①a=,②b=,③θ=度;(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A组数据中间值为55分),请估计被选取的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?30.(2022•威海)某学校开展“家国情•诵经典”读书活动.为了解学生的参与程度,从全校学生中随机抽取200人进行问卷调查,获取了他们每人平均每天阅读时间的数据(m/分钟).将收集的数据分为A,B,C,D,E五个等级,绘制成如下统计图表(尚不完整):平均每天阅读时间统计表等级人数(频数)A(10≤m<20)5B(20≤m<30)10C(30≤m<40)xD(40≤m<50)80E(50≤m≤60)y请根据图表中的信息,解答下列问题:(1)求x的值;(2)这组数据的中位数所在的等级是;(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“阅读达人”予以表扬.若全校学生以1800人计算,估计受表扬的学生人数.31.(2022•包头)2022年3月28日是第27个全国中小学生安全教育日.某校为调查本校学生对安全知识的了解情况,从全校学生中随机抽取若干名学生进行测试,测试后发现所有测试的学生成绩均不低于50分.将全部测试成绩x(单位:分)进行整理后分为五组(50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100),并绘制成频数分布直方图(如图).请根据所给信息,解答下列问题:(1)在这次调查中,一共抽取了名学生;(2)若测试成绩达到80分及以上为优秀,请你估计全校960名学生对安全知识的了解情况为优秀的学生人数;(3)为了进一步做好学生安全教育工作,根据调查结果,请你为学校提一条合理化建议.32.(2022•泰州)农业、工业和服务业统称为“三产”,2021年泰州市“三产”总值增长率在全省排名第一.观察下列两幅统计图,回答问题.(1)2017﹣2021年农业产值增长率的中位数是%;若2019年“三产”总值为5200亿元,则2020年服务业产值比2019年约增加亿元(结果保留整数).(2)小亮观察折线统计图后认为:这5年中每年服务业产值都比工业产值高.你同意他的说法吗?请结合扇形统计图说明你的理由.33.(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?34.(2022•无锡)育人中学初二年级共有200名学生,2021年秋学期学校组织初二年级学生参加30秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:育人中学初二学生30秒跳绳测试成绩的频数分布表跳绳个数(x)x≤5050<x≤6060<x≤7070<x≤80x>80频数(摸底测试)192772a17频数(最终测试)3659b c(1)表格中a=;(2)请把下面的扇形统计图补充完整;(只需标注相应的数据)(3)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?35.(2022•齐齐哈尔)“双减”政策实施后,某校为了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,回答下列问题:(1)表中m=,n=,p=;(2)将条形图补充完整;(3)若制成扇形图,则C组所对应的圆心角为°;(4)若该校学生有2000人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生约有多少人?组别锻炼时间(分钟)频数(人)百分比A0≤x≤305025%B30<x≤60m40%C60<x≤9040pD x>90n15%36.(2022•福建)学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),按同样的分组方法制成如下扇形统计图.其中A 组为0≤t<1,B组为1≤t<2,C组为2≤t<3,D组为3≤t<4,E组为4≤t<5,F组为t≥5.(1)判断活动前、后两次调查数据的中位数分别落在哪一组;(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h的人数.37.(2022•桂林)某校将举办的“壮乡三月三”民族运动会中共有四个项目:A跳长绳,B抛绣球,C拔河,D跳竹竿舞.该校学生会围绕“你最喜欢的项目是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:项目内容百分比A跳长绳25%B抛绣球35%C拔河30%D跳竹竿舞a请结合统计图表,回答下列问题:(1)填空:a=;(2)本次调查的学生总人数是多少?(3)请将条形统计图补充完整;(4)李红同学准备从抛绣球和跳竹竿舞两个项目中选择一项参加,但她拿不定主意,请你结合调查统计结果给她一些合理化建议进行选择.38.(2022•湖北)为了解我市中学生对疫情防控知识的掌握情况,在全市随机抽取了m名中学生进行了一次测试,随后绘制成如下尚不完整的统计图表:(测试卷满分100分,按成绩划分为A,B,C,D四个等级)等级成绩x频数A90≤x≤48100nB80≤x<9032C70≤x<80D0≤x<708根据以上信息,解答下列问题:(1)填空:①m=,n=,p=;②抽取的这m名中学生,其成绩的中位数落在等级(填A,B,C或D);(2)我市约有5万名中学生,若全部参加这次测试,请你估计约有多少名中学生的成绩能达到A等级.39.(2022•永州)“风华中学”计划在劳动技术课中增设剪纸、陶艺,厨艺、刺绣、养殖等五类选择性“技能课程”,加大培养学生的劳动习惯和实践操作能力,为了解学生选择各“技能课程”的意向,从全校随机抽取了部分学生进行问卷调查,将调查结果整理并绘制如下不完整统计图表:样本中选择各技能课程的人数统计表技能课程人数A:剪纸B:陶艺20C:厨艺aD:刺绣20E:养殖请根据上述统计数据解决下列问题:(1)扇形统计图中m=.(2)所抽取样本的样本容量是,频数统计表中a=.(3)若该校有2000名学生,请你估计全校有意向选择“养殖”技能课程的人数.40.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.41.(2022•常德)2020年7月,教育部印发的《大中小学劳动教育指导纲要(试行)》中明确要求中小学劳动教育课平均每周不少于1课时,初中生平均每周劳动时间不少于3小时.某初级中学为了解学生劳动教育的情况,从本校学生中随机抽取了500名进行问卷调查.如图是根据此次调查结果得到的统计图.请根据统计图回答下列问题:(1)本次调查中,平均每周劳动时间符合教育部要求的人数占被调查人数的百分比为多少?(2)若该校有2000名学生,请估计最喜欢的劳动课程为木工的有多少人.(3)请你根据本次问卷调查的结果给同学和学校各提一条合理化建议.42.(2022•山西)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代•奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.43.(2022•河北)某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,(1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.44.(2022•宿迁)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:(1)m=,n=;(2)补全条形统计图;(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.45.(2022•娄底)按国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》要求,各中小学校积极行动,取得了良好的成绩.某中学随机抽取了部分学生对他们一周的课外阅读时间(A:10h以上,B:8h~10h,C:6h~8h,D:6h以下)进行问卷调查,将所得数据进行分类,统计绘制了如下不完整的统计图.请根据图中的信息,解答下列问题:(1)本次调查的学生共名;(2)a=,b=;(3)补全条形统计图.46.(2022•湘潭)百年青春百年梦,初心献党向未来.为热烈庆祝中国共产主义青年团成立10周年,继承先烈遗志,传承“五四”精神.某中学在“做新时代好少年,强国有我”的系列活动中,开展了“好书伴我成长”的读书活动.为了解5月份八年级学生的读书情况,随机调查了八年级20名学生读书数量(单位:本),并进行了以下数据的整理与分析:数据收集2 53 54 6 15 3 43 6 7 5 8 34 7 3 4数据整理本数0<x≤22<x≤44<x≤66<x≤8组别A B C D频数2m63数据分析绘制成不完整的扇形统计图:依据统计信息回答问题:(1)在统计表中,m=;(2)在扇形统计图中,C部分对应的圆心角的度数为;(3)若该校八年级学生人数为200人,请根据上述调查结果,估计该校八年级学生读书在4本以上的人数.47.(2022•宜昌)某校为响应“传承屈原文化•弘扬屈原精神”主题阅读倡议,进一步深化全民阅读和书香宜昌建设,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到的数据,整理后得到下列不完整的图表:时间段/分30≤x<60≤x<90≤x<120≤x<钟6090120150组中值75105135频数/人6204数据分组后,一个小组的两个端点的数的平均数,叫做这个小组的组中值.请你根据图表中提供的信息,解答下面的问题:(1)扇形统计图中,120~150分钟时间段对应扇形的圆心角的度数是;a=;样本数据的中位数位于~分钟时间段;(2)请将表格补充完整;(3)请通过计算估计该校八年级学生周末课外平均阅读时间.48.(2022•台湾)一副完整的扑克牌有4种花色,且每种花色皆有13种点数,分别为2、3、4、5、6、7、8、9、10、J、Q、K、A,共52张.某扑克牌游戏中,玩家可以利用「牌值」来评估尚未发出的牌之点数大小.「牌值」的计算方式为:未发牌时先设「牌值」为0;若发出的牌点数为2至9时,表示发出点数小的牌,则「牌值」加1;若发出的牌点数为10、J、Q、K、A时,表示发出点数大的牌,则「牌值」减1.例如:从一副完整的扑克牌发出了6张牌,点数依序为3、A、8、9、Q、5,则此时的「牌值」为0+1﹣1+1+1﹣1+1=2.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)若一副完整的扑克牌发出了11张点数小的牌及4张点数大的牌,则此时的「牌值」为何?(2)已知一副完整的扑克牌已发出28张牌,且此时的「牌值」为10.若剩下的牌中每一张牌被发出的机会皆相等,则下一张发出的牌是点数大的牌的机率是多少?49.(2022•苏州)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如表表格:培训前成绩(分)678910划记正正正正人数(人)124754培训后成绩(分)678910。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

休 休DLeabharlann B休休休休
休休

AC O
y
A0
B1
x
A1
B2
A2
B3
A3
第 13 题图
第 14 题图
14. 二次函数 y 2 x2 的图象如图所示,点 A0 位于坐标原点,A1,A2,A3,…,A2013 在 y 轴的负半轴上,B1, 3
B2,B3,…,B2013 在二次函数 y 2 x2 第三象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2012B2013A2013 3
2020 年中考数学小题专项训练(二十七)
姓名:
用时:
一、选择题(每小题 4 分,共 32 分)
1. 计算:2a·3a=【 】
A.5a
B.6a
2. 下图中,能说明∠1=∠2 的是【 】
日期: C.5a2
得分: D.6a2
12 休 1休
A.(1)(2)(3)
1
12
2
休 2休
休 3休
B.(1)(2)(4)
12. 如图,在梯形 ABCD 中,AB∥CD,∠A+∠B=90°,CD=5,AB=11,点 M,N 分别为 AB,CD 的中点,则线段 MN=_________.
13. 如图是某公园的一角,∠AOB=90°,弧 AB 的半径 OA 的长是 8 米,C 是 OA 的中点,点 D 在弧 AB 上,CD∥ OB,则图中休闲区(阴影部分)的面积是_______.
B.-2<x<-1 D.-1<x<0
8. 如 图 , 已 知 梯 形 ABCO 的 底 边 AO 在 x 轴 上 , BC∥ AO, AB⊥ AO, 过 点 C 的 双 曲 线 y k 交 OB 于 D, 且 x
OD:DB=1:2,若△OBC 的面积等于 3,则 k 的值【 】
y
A.等于 2
3
B.等于
欲望以提升热忱,毅力以磨平高山。
65° A
65°.为了监控整个展厅,最少需在圆形边缘上安装这样的监视器【 】台.
A.3
B.4
C.5
D.6
7. 如图,直线 y=kx+b 经过点 A(-1,-2)和点 B(-2,0),直线 y=2x 过点 A,则不等式 2x<kx+b<0 的解集为 【】
y
B
Ox
A
A.x<-2 C.-2<x<0
都为等边三角形,则△A2012B2013A2013 的边长为_________.
欲望以提升热忱,毅力以磨平高山。
y
O
x
A.
B.
C.
D.
5. 抛物线 y=-2x2-4x-5 经过平移得到 y=-2x2,平移方法是【 】
A.向左平移 1 个单位,再向下平移 3 个单位
B.向左平移 1 个单位,再向上平移 3 个单位
C.向右平移 1 个单位,再向下平移 3 个单位
D.向右平移 1 个单位,再向上平移 3 个单位
6. 如图,有一圆形展厅,在其圆形边缘上的点 A 处安装了一台监视器,它的监控角度是
12 休 4休
C.(1)(3)(4)
D.(2)(3)(4)
3. 三角形两边的长是 3 和 4,第三边的长是方程 x2-12x+35=0 的根,则该三角形的周长为【 】
A.14
B.12
C.12 或 14
D.以上都不对
4. 如图,是张老师出门散步时离家的距离 y 与时间 x 之间的函数关系的图象,若用黑点表示张老师家的位置, 则张老师散步行走的路线可能是【 】
4
24
C.等于
5
D.无法确定
C
B
D
O
Ax
二、填空题(每小题 3 分,共 18 分)
9. 如图,平行四边形 ABCD 绕点 A 逆时针旋转 30°,得到平行四边形 AB′C′D′(点 B′与点 B 是对应点,点 C′与点 C 是对应点,点 D′与点 D 是对应点),点 B′恰好落在 BC 边上,则∠C=_________.
D′
A
D
C′
y
B
AO
x
D NC
B B′
C
A
M
B
第 9 题图
第 11 题图
第 12 题图
10. 小明要给刚结识的朋友小林打电话,他只记住了电话号码的前 4 位,后 3 位是 3,6,8 三个数字的某一种排 列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是_________.
11. 如图,点 A 的坐标为(-1,0),点 B 在直线 y=2x-4 上运动,当线段 AB 最短时,点 B 的坐标是___________. 欲望以提升热忱,毅力以磨平高山。
相关文档
最新文档