中心静脉血氧饱和度监测技术资料
ICU患者中心静脉血氧饱和度监测的临床指南与操作规范
注意监测结果的解读与临床应用。解读:强调医生需对 ScvO2监测结果进行准确解读,并结合患者病情和其他监 测指标,制定合理的治疗方案。
实施过程中的注意事项
注意事项一
严格遵守无菌操作原则。解读: 在进行ScvO2监测时,需严格遵 守无菌操作原则,以降低感染风
险。
注意事项二
选择合适的监测部位和导管。解 读:根据患者具体情况和监测需 求,选择合适的监测部位和导管 ,以确保监测结果的准确性和可
重视中心静脉血氧饱和度监测 在ICU患者治疗中的作用,将其
作为常规监测手段之一。
严格按照临床指南进行操作, 确保监测结果的准确性和患者
安全。
加强医护人员的培训和技能提 升,提高中心静脉血氧饱和度 监测的应用水平。
积极探索新的监测手段和技术 ,为患者提供更优质、更安全 的医疗服务。
THANK YOU
预测多器官功能衰竭
ScvO2持续降低可能提示患者存在多器官功能衰 竭的风险,需密切监测并及时干预。
3
预测感染性并发症
在感染患者中,ScvO2的变化可反映感染的严重 程度和预后,有助于预测感染性并发症的发生。
指导治疗和干预
指导液体复苏
01
通过监测ScvO2的变化,可以评估液体复苏的效果,从而指导
临床医生进行合理的液体管理。
处理方法与流程
感染处理
一旦发生CRBSI,应立即拔除导 管并进行抗感染治疗。
血栓处理
对于无症状的血栓形成,可暂 不处理;对于有症状的血栓形 成,应给予抗凝、溶栓等治疗 。
导管堵塞处理
可采用生理盐水冲管、更换导 管等方法处理导管堵塞。
气胸、血胸处理
应立即停止操作,给予胸腔闭 式引流等相应处理。
ICU中心静脉血氧饱和度监测技术对脓毒症患者治疗的指导作用
导管堵塞处理
01
如发生导管堵塞,可采用生理盐水冲管、更换导管等方法处理
。
导管脱落预防及处理
02
妥善固定导管,避免导管脱落;如发生脱落,应立即压迫止血
并重新置管。
导管感染处理
03
如发生导管感染,应立即拔除导管并进行抗感染治疗。
06
总结回顾与展望未来进展
本次研究成果总结
成功应用ICU中心静脉血氧饱和度监测技术
正常值与异常范围界定
中心静脉血氧饱和度(ScvO2)正常值
通常认为ScvO2的正常范围为70%-80%,但具体数值可能因患者年龄、病情等因素有所不同。
异常范围界定
当ScvO2低于正常范围时,提示患者可能存在组织氧合不足;而ScvO2过高则可能反映心输出量减少或氧摄取障 碍。
监测结果变化趋势分析
持续监测
通过实时监测脓毒症患者的中心静脉血氧饱和度,为临床治疗提供了准确、及时的数据支 持。
揭示了脓毒症患者的病理生理变化
研究发现,脓毒症患者的中心静脉血氧饱和度与病情严重程度密切相关,有助于医生更全 面地了解患者的病情。
提高了脓毒症患者的救治成功率
通过及时干预和治疗,有效改善了脓毒症患者的预后,降低了死亡率。
通过持续监测ScvO2的变化趋势,可 以及时发现患者病情的恶化或好转。
动态评估
结合其他生命体征和实验室检查指标 ,动态评估患者的全身状况和治疗效 果。
结合其他指标综合判断
01
乳酸水平
乳酸是反映组织缺氧的敏感指 标,与ScvO2结合使用可以更 全面地评估患者的氧合状况。
02
血流动力学参数
如心率、血压、心输出量等, 这些参数与ScvO2密切相关, 共同反映患者的循环功能状态
ICU中使用中心静脉血氧饱和度监测的优势和效果
未来发展趋势预测
监测技术不断创新
随着医疗技术的不断发展,未来中心静脉血氧饱和度监测设备将更加智能化、精准化, 提高监测的准确性和舒适性。
应用范围不断扩大
随着对中心静脉血氧饱和度监测重要性的认识不断加深,未来其将在更多领域得到应用 ,如急诊、手术等。
医护培训力度加大
为提高医护人员的操作技能和专业素养,未来医院将加大对医护人员的培训力度,确保 中心静脉血氧饱和度监测的安全和有效进行。
将导管与监测设备连接,通过设备持 续监测ScvO2值,并实时显示数据。
临床应用范围
危重病人监测
评估治疗效果
ScvO2监测适用于ICU中的危重病人,如休 克、严重感染、多发伤等,可帮助医生及 时了解患者的氧合状态,指导治疗。
通过持续监测ScvO2值的变化,可以评估 治疗措施对患者氧合状态的改善效果,为 调整治疗方案提供依据。
中心静脉血氧饱和度监测设备价格昂贵,增加了医院的运 营成本,也限制了其在一些基层医院的推广应用。
操作技术要求高
进行中心静脉血氧饱和度监测需要较高的穿刺和置管技术 ,操作不当可能导致并发症的发生,对医护人员的专业技 能要求较高。
患者接受度有限
由于监测过程需要穿刺和置管,患者可能会感到不适和疼 痛,因此一些患者可能对中心静脉血氧饱和度监测存在抵 触情绪。
导管堵塞
定期冲洗导管,保持导管通畅,防止堵塞。如发生堵塞,可尝试用生 理盐水冲管或更换导管。
其他并发症
密切观察患者病情变化,及时发现并处理其他可能出现的并发症,如 气胸、血胸等。
06
总结与展望
当前应用成果总结
提高诊疗水平
通过实时监测中心静脉血氧饱和 度,医生能够更准确地评估患者 的病情和治疗效果,从而及时调 整治疗方案,提高诊疗水平。
ICU中应用中心静脉血氧饱和度监测的优势与局限
03
局限性与挑战
操作技术要求高
需要专业训练
中心静脉血氧饱和度(ScvO2)监测 是一项专业技术,需要医护人员接受 专门的培训和操作指导。
穿刺技巧要求高
放置中心静脉导管需要较高的穿刺技 巧,以确保导管准确放置并减少并发 症风险。
并发症风险存在
感染风险
中心静脉导管放置过程中存在感染风险,特别是 在长期留置导管的情况下。
预测患者预后情况
ScvO2水平与患者预后密切相关,持 续低ScvO2提示患者预后不良,需加 强监护和治疗。
通过监测ScvO2变化趋势,可预测患 者可能出现并发症的风险,提前做好 防治措施。
提高医疗质量与安全水平
ScvO2监测作为ICU中的一项重要监测手段,有助于提高医 疗质量与安全水平。
通过ScvO2监测与其他生命体征监测相结合,可更全面地评 估患者病情,降低漏诊、误诊风险。同时,有助于及时发现 并处理潜在的医疗安全隐患,保障患者安全。
3
引入智能预警系统,实时监测患者的血氧饱和度 变化,及时发现异常情况并发出预警。
多模态监测融合提升评估效果
将中心静脉血氧饱和度监测与其他生命体征监测手段相结合,形成多模态 监测体系,提高评估效果。
利用多源信息融合技术,对多种监测数据进行综合分析,更全面地评估患 者的病情和预后。
引入虚拟现实技术,构建三维可视化监测平台,为医生提供更直观、更准 确的评估手段。
02
通过持续监测ScvO2,可发现患 者潜在的氧供不足或氧耗增加情 况,为早期干预提供依据。
指导治疗方案调整
ScvO2监测结果可为医生提供患者当 前的循环和氧合状态信息,有助于指 导液体复苏、血管活性药物使用等治 疗方案的调整。
根据ScvO2变化,医生可针对性地进 行机械通气参数、镇静镇痛药物等调 整,以优化治疗效果。
ICU中心静脉血氧饱和度监测对休克患者的诊疗指导
制定标准化流程
组建包括重症医学、心血管、呼吸治疗等 在内的多学科团队,共同制定治疗方案。
根据医院实际情况,制定中心静脉血氧饱 和度监测的标准化操作流程和异常结果处 理流程。
加强培训与教育
实施持续质量改进
定期对医护人员进行相关知识和技能培训 ,提高其对中心静脉血氧饱和度监测的重 视程度和操作能力。
通过收集和分析临床数据,不断优化监测流 程和治疗策略,提高休克患者的救治成功率 。
ScvO2低于70%
当中心静脉血氧饱和度(ScvO2)低 于70%时,通常认为氧输送不足,组 织灌注可能受损。
趋势变化
除了绝对值,ScvO2的趋势变化也具 有重要临床意义,持续下降可能预示 病情恶化。
ScvO2高于90%
过高的ScvO2可能提示心输出量过高 或氧摄取率降低,可能与某些病理状 态相关。
局部皮肤护理
加强穿刺部位皮肤护理,避免皮肤损伤和感 染。
导管脱落防范
妥善固定导管,避免导管脱落或移位。
及时处理异常情况
一旦发现异常情况,如导管内回血、局部肿 胀等,应立即采取措施处理。
06
总结与展望
本次研究主要成果回顾
明确了中心静脉血氧饱和度(ScvO2)监测在休克患者…
通过实时监测ScvO2,可以更准确地评估患者的氧合状况和组织灌注情况,为临床诊疗 提供有力依据。
过敏性休克
由于过敏反应导致血管扩张、 血容量相对不足,出现血压下 降、喉头水肿、支气管痉挛等
临床表现。
休克时血流动力学变化
01
02
03
04
血压下降
休克时,由于血容量减少或心 脏泵血功能衰竭等原因,导致
血压下降。
心率加快
为了维持血压,机体会通过加 快心率来增加心排出量。
中心静脉血氧饱和度(scvo2)
中心静脉血氧饱和度(scvo2)中心静脉血氧饱和度(SCVO2)是指人体中心静脉血液中的氧气饱和度水平。
它是评估患者氧供需平衡的重要指标之一,常用于重症监护领域。
本文将介绍SCVO2的意义、测量方法以及与疾病之间的关系。
SCVO2是反映机体组织氧供需平衡的指标之一。
血液中的氧气主要通过肺部吸入,然后通过心脏泵送到全身各组织细胞供应氧气。
当身体处于正常状态下,氧气的供应与需求保持平衡,维持着组织的正常代谢功能。
而SCVO2则可以反映出机体氧供是否充足,从而判断患者的氧代谢状态。
SCVO2的测量通常通过中心静脉导管进行,导管置入患者的颈内静脉,进入上腔静脉。
通过导管可以采集到上腔静脉血液样本,进而测量SCVO2。
正常情况下,SCVO2的正常范围在60%至80%之间。
当SCVO2低于60%时,意味着氧气供应不足,可能是由于心输出量降低、血容量不足或组织需氧增加等原因引起。
而当SCVO2高于80%时,可能与氧代谢降低、氧气需求减少有关。
SCVO2的测量对于评估重症患者的氧代谢状态具有重要意义。
例如,在重症感染、创伤、心血管疾病等情况下,SCVO2的监测可以帮助医生判断患者的氧代谢状态,及时调整治疗方案。
临床研究也表明,SCVO2与患者的预后密切相关,低于预期的SCVO2水平可能提示患者存在组织缺氧,需要积极干预。
因此,SCVO2的监测对于重症患者的治疗具有重要的指导意义。
除了上述的临床应用,SCVO2还可以帮助医生评估心功能。
由于SCVO2与心脏泵血功能直接相关,当SCVO2下降时,可能提示患者存在心功能不全。
此时,医生可以根据SCVO2的变化调整心脏支持治疗,以改善患者的心功能,并提高SCVO2水平。
在使用SCVO2进行临床监测时,还需要注意一些潜在的限制因素。
例如,导管插入不当、导管位置不准确等因素可能导致SCVO2的测量结果不准确。
此外,还需要考虑到患者自身的特殊情况,如低温、贫血等因素可能影响SCVO2的测量结果。
中心静脉血氧饱和度监测在ICU中的用药监测与调控策略
03
中心静脉血氧饱和度监测在ICU中应用
实时监测与数据分析
持续监测中心静脉血氧饱和度(ScvO2)
通过放置在中心静脉导管中的血氧探头,实时获取ScvO2数据。
数据分析
对获取的ScvO2数据进行实时分析,包括变化趋势、波动范围等,以评估患者的氧合状况和病情严重程度。
原理
利用光谱分析技术,测定血液中氧合 血红蛋白与还原血红蛋白的比例,从 而计算出ScvO2。
临床应用范围
危重病人监测
休克复苏
用于ICU中危重病人的氧合功能和组织灌注 监测,指导治疗和预后评估。
在休克复苏过程中,ScvO2可作为目标导 向治疗(EGDT)的重要参数之一,帮助医 生及时调整治疗方案。
心脏手术及重症心血管病人
中心静脉血氧饱和度监测在ICU中的用药监测与 调控策略
目录 CONTENTS
• 中心静脉血氧饱和度监测基本概念 • ICU患者特点与监测需求 • 中心静脉血氧饱和度监测在ICU中应用 • 用药监测与调控策略制定 • 案例分析与实践经验分享 • 未来发展趋势及挑战
01
中心静脉血氧饱和度监测基本概念
定义与生理意义定义源自中心静脉血氧饱和度(ScvO2) 是指血液中血红蛋白与氧结合达 到饱和程度的百分比,在中心静 脉血中测量。
生理意义
ScvO2反映了全身氧供需平衡状 态,是评估危重病人氧合功能和 组织灌注的重要指标。
监测方法及原理
监测方法
通过中心静脉导管采集血样,使用血 气分析仪或专用监测仪进行测量。
预警机制建立
设定预警阈值
根据患者的病情和生理状态,设定合适的ScvO2预警阈值,如正常值范围为 70%-80%,当ScvO2低于或高于此范围时触发预警。
中心静脉血氧饱和度(scvo2)
中心静脉血氧饱和度(scvo2)中心静脉血氧饱和度(ScvO2)是指血液中的氧饱和度,即血液中所携带的氧气的比例。
它是通过测量中心静脉血液中的氧分压(PaO2)和氧饱和度(SaO2)来确定的。
ScvO2是一种重要的监测指标,可以用于评估机体氧合状态和心脏功能。
ScvO2是通过中心静脉导管或氧合器监测仪器来测量的。
中心静脉导管被置于体内的中心静脉,可以直接测量中心静脉血液的氧分压和氧饱和度。
而氧合器监测仪器可以通过外部传感器测量中心静脉血液中的氧分压和氧饱和度。
ScvO2的正常范围通常为70%至75%。
当ScvO2低于这个正常范围时,可能意味着机体组织的氧供应不足,出现缺氧的情况。
这可能是由于心脏功能不全、血容量不足、呼吸功能障碍等原因引起的。
ScvO2可以用于评估心脏的泵血功能。
当心脏泵血功能减弱时,血液的氧供应会减少,导致ScvO2降低。
这时,可以通过监测ScvO2的变化来评估心脏功能的恢复情况。
ScvO2还可以用于评估机体的氧输送情况。
氧输送是指机体通过血液将氧气输送到组织器官中,以满足其代谢需求。
当机体的氧输送不足时,ScvO2会降低。
因此,通过监测ScvO2的变化,可以及时评估机体的氧输送情况,及时采取相应的治疗措施。
ScvO2还可以用于评估机体的液体平衡情况。
当机体的血容量不足时,ScvO2会降低。
通过监测ScvO2的变化,可以及时发现机体的液体平衡问题,并采取相应的调节措施。
总结起来,中心静脉血氧饱和度(ScvO2)是评估机体氧合状态和心脏功能的重要指标。
通过监测ScvO2的变化,可以及时评估机体的氧供应、心脏功能、氧输送和液体平衡情况,并及时采取相应的治疗措施。
因此,在临床实践中,监测ScvO2的变化是非常必要的。
中心静脉血氧饱和度监测在ICU护理中的应用指南和操作规范
制定完善的质量管理制度和流程 ,确保监测工作的规范化和标准
化。
设立定期的质量评估机制,对监 测结果进行定期分析和反馈,及
时发现问题并改进。
培训计划制定和实施
针对ICU护理人员开展中心静脉血氧饱和度监测的专业培训,提高其操作技能和理 论水平。
定期组织经验交流和案例分析会,分享监测过程中的经验和教训,促进共同进步。
。
将持续改进理念贯穿于日常工 作中,不断优化监测流程和方 法,提高监测质量和效率。
THANKS
感谢观看
并发症预防及处理措施
并发症预防
为减少中心静脉血氧饱和度监测相关并发症的发生,应严格遵循无菌操作原则,选择合适的穿刺部位和导管,避 免反复穿刺和长时间留置导管。同时,应定期评估患者病情和导管功能,及时发现并处理潜在问题。
并发症处理
如发生导管感染、血栓形成、气胸等并发症,应立即停止监测并采取相应治疗措施。对于导管感染,应拔除导管 并给予抗生素治疗;对于血栓形成,可采取溶栓或抗凝治疗;对于气胸等严重并发症,应立即进行胸腔闭式引流 等紧急处理。
常见问题及处理方法
传感器脱落或接触不良
检查传感器连接是否正确、紧密,如有松动或脱落应及时 处理。同时观察监测数据是否异常,如有异常应重新连接 传感器并校准。
皮肤损伤或过敏
在监测过程中,要密切观察患者皮肤情况,如出现红肿、 瘙痒等过敏反应或皮肤损伤,应立即停止监测并处理。可 更换监测部位或选用其他监测方法。
对比分析
将患者的监测结果与同类 患者或正常参考值进行对 比,评估患者病情的严重 程度和治疗效果。
相关性分析
探讨中心静脉血氧饱和度 与患者其他生理指标之间 的相关性,为综合评估患 者病情提供参考。
结果解读与报告撰写要点
ICU中心静脉血氧饱和度监测的应用指南
06
总结与展望
当前存在问题和挑战
监测技术局限性
部分ICU中心静脉血氧饱和度监测设备精度和稳定 性有待提高,可能受到多种因素干扰。
操作规范不统一
不同医院和科室在监测过程中的操作规范存在差 异,可能影响监测结果的准确性和可比性。
医护人员培训不足
部分医护人员对监测技术的掌握程度不够,需要 加强相关培训。
持续监测与记录
02
护士需对患者进行持续的中心静脉血氧饱和度监测,并准确记
录监测数据,及时发现异常情况。
及时报告与处理
03
当监测数据出现异常时,护士需立即报告医生,并根据医嘱采
取相应处理措施。
操作技能培训内容和方法
培训内容
包括中心静脉血氧饱和度监测技术的理论知识、操作技能及异常 情况处理等方面。
培训方法
根据异常原因采取相应治疗措 施,如调整呼吸机参数、给予 药物治疗等。
持续监测与调整
在治疗过程中持续监测ScvO2 变化,并根据病情及时调整治
疗方案。
与其他监测指标关联性分析
动脉血氧饱和度(SaO2 )
ScvO2与SaO2有一定的相关 性,但两者并不完全等同。 ScvO2反映的是中心静脉血的 氧合情况,而SaO2反映的是 动脉血的氧合情况。
改进策略和建议
提升监测技术水平
研发更高精度、更稳定的监测设备,提高监测结果的准确性和可 靠性。
制定统一操作规范
建立统一的监测操作规范,确保不同医院和科室在监测过程中的一 致性和可比性。
加强医护人员培训
加强对医护人员的监测技术培训,提高其对监测技术的掌握程度和 应用能力。
未来发展趋势预测
1 2
监测技术不断创新
感染风险预防与控制措施
中心静脉血氧饱和度的指标是多少
中心静脉血氧饱和度的指标是多少中心静脉血氧饱和度(Central Venous Oxygen Saturation,简称ScvO2)是一种反映心脏供应氧与代谢平衡的重要指标,通常通过中心静脉导管或肺动脉导管监测。
本文将从定义、测量、意义及临床应用等方面综述ScvO2指标。
一、定义ScvO2指的是在中心静脉内血液中的氧气与总可结合氧的百分比,通常以百分比表示。
正常情况下,中心静脉血氧饱和度约为70%-75%。
二、测量方法测量ScvO2可以通过中心静脉导管或肺动脉导管进行监测。
1.中心静脉导管监测中心静脉导管插入至上腔静脉或右心房,经过股静脉或颈内静脉进入体内。
通过监测中心静脉压力波形和抽取血液,可以间接得到ScvO2值。
2.肺动脉导管监测肺动脉导管插入至肺动脉,通过监测肺动脉压力波形和肺动脉血氧饱和度,可以直接得到ScvO2值。
无论是中心静脉导管还是肺动脉导管监测,都需要压力传感器、温度传感器和血氧传感器等装置。
三、意义与生理生化基础ScvO2是一个全身氧输送和氧利用平衡的指标。
它反映了心脏供应氧的能力、组织氧输送状态以及体内代谢情况。
正常情况下,中心静脉血疏各个脏器和组织的代谢产物,并将剩余的氧供应至心脏。
而通过监测ScvO2,可以了解到组织器官的氧输送情况。
ScvO2降低可能说明心脏供应氧量不足,或者组织器官代谢活性增加。
ScvO2降低可能的原因包括但不限于以下几点:1.心脏供应氧减少:例如心脏疾病、心律失常等。
2.氧输送减少:例如出血、休克、低血容量等。
3.组织器官代谢活动增加:例如感染、发热、中毒、癌症等。
同时,ScvO2还可以用于判断血管活性药物使用的指导,以最大程度提高组织氧供。
四、临床应用1. 休克监测:ScvO2可以评估休克患者的组织灌注情况,指导治疗措施。
适应症包括感染性休克、低血容量性休克、心因性休克等。
2. 监测血容量复苏效果:在液体复苏过程中,通过监测ScvO2的变化,可以评估血容量复苏的效果。
ICU中心静脉血氧饱和度监测技术对肺部感染患者治疗策略的指导
预测并发症风险及干预措施
ScvO2降低可能提示患者存在组 织缺氧、器官功能障碍等并发症
风险。
通过持续监测ScvO2,可以及时 发现并预测并发症的发生,为医
生制定干预措施提供依据。
对于ScvO2持续降低的患者,可 以采取积极的干预措施,如增加 氧疗、优化循环等,以改善患者
操作流程与注意事项
01
3. 定期检查设备性能,确保监测 准确可靠。
02
4. 结合其他监测指标和临床表现 ,综合评估患者病情。
02
肺部感染患者病理生理特点
肺部感染类型及危险因素
感染类型
肺部感染可分为社区获得性肺炎和医院获得性肺炎,根据病原体不同又可分为 细菌性、病毒性、真菌性等。
危险因素
年龄、吸烟、慢性肺部疾病、免疫功能低下、机械通气等都是肺部感染的危险 因素。
监测技术原理及意义
原理
中心静脉血氧饱和度(ScvO2)监测技术是通过放置在中心静脉 导管上的血氧饱和度探头,连续、实时地监测中心静脉血液中氧 合血红蛋白的饱和度。
意义
ScvO2反映了全身氧供和氧耗的平衡状态,是评估危重病人氧代 谢和组织灌注的重要指标。对于肺部感染患者,ScvO2监测有助 于及时发现并纠正潜在的氧供不足,优化治疗策略,改善患者预 后。
临床应用范围与适应症
应用范围
ICU病房内的危重病人,尤其是存 在严重感染、休克、多器官功能 衰竭等风险的患者。
适应症
肺部感染患者,特别是那些需要 机械通气、血管活性药物支持或 存在血流动力学不稳定的患者。
操作流程与注意事项
1. 患者准备
ICU中心静脉血氧饱和度监测技术对新生儿窒息患者的救治策略指导
针对可能出现的并发症,如低血糖、低钙血 症等,制定预防措施和处理方案。
多学科团队协作救治模式
组建多学科团队
由新生儿科、儿科重症监护室(PICU)、呼吸科、心血管科等相关 专业医生组成多学科救治团队。
分工协作
团队成员根据各自专业特长,分工协作,共同制定和实施救治方案 。
定期评估与调整
THANKS
感谢观看
窒息发生原因及危险因素
孕母因素
如孕母患有全身性疾病 、产道异常、胎盘因素
等。
分娩因素
如急产、滞产、胎位异 常、手术产等。
胎儿因素
如早产儿、巨大儿、胎 儿畸形、胎儿宫内感染
等。
脐带因素
如脐带绕颈、打结、脱 垂等。
窒息后病理生理变化过程
01
02
03
04
缺氧
窒息后新生儿体内氧分压降低 ,导致组织细胞缺氧。
注意事项
在操作过程中,需要注意无菌操作、避免损伤周围组织和血管等。同时,要密切 监测患儿的生命体征和血氧饱和度变化,及时处理异常情况。
操作规范
医护人员需要接受专业培训,熟练掌握穿刺置管技术和血氧饱和度监测仪的使用 方法。在操作过程中,要遵循相关操作规范和流程,确保患儿的安全和治疗效果 。
02
新生儿窒息患者病理生 理特点
远期随访和健康管理建议
定期随访
对新生儿窒息患者进行定期随访,观察生长发育情况,及时发现 并处理潜在问题。
健康指导
向家长提供健康指导,包括喂养、护理、疾病预防等方面的知识 ,促进患儿康复和健康成长。
心理支持
对家长进行心理支持和疏导,减轻其焦虑和压力,提高家庭护理 能力和患儿生活质量。
06
总结与展望
中心静脉血氧饱和度监测在ICU中对肝功能不全患者的管理
循环支持
根据患者血流动力学变化,给予 适当的液体复苏,维持血压和心 输出量在正常范围内,以保证重 要脏器的灌注。
肝功能保护
在呼吸循环支持治疗过程中,应 注意避免使用对肝脏有损害的药 物,同时给予保肝药物,以减轻 肝脏负担,促进肝细胞再生。
营养支持与代谢调理
营养支持
肝功能不全患者往往存在营养不良和代谢障碍,应根据患 者的营养状况和病情,制定个性化的营养支持方案。
中心静脉血氧饱和度 监测在ICU中对肝功 能不全患者的管理
目录
• 引言 • 中心静脉血氧饱和度监测技术 • 肝功能不全患者的病理生理变化 • 中心静脉血氧饱和度监测在肝功能
不全患者中的应用
目录
• ICU中肝功能不全患者的综合管理 策略
• 案例分析与经验分享
01
引言
背景与目的
重症监护室(ICU) 中肝功能不全患者的 管理至关重要
中心静脉血氧饱和度监测的意义
01
ScvO2反映了全身氧供与氧耗的平衡状态
02
03
可帮助医生判断患者组织器官的灌注和氧合 情况
为调整治疗方案提供重要依据,如优化液体 管理、改善心功能等
04
有助于及时发现并处理潜在的并发症,改善 患者预后
02 中心静脉血氧饱和度监测技术
监测原理与方法
监测原理
中心静脉血氧饱和度(ScvO2)监测是通过测量中心静脉血 液中氧合血红蛋白占全部血红蛋白的百分比来评估全身氧合 状态的一种方法。
正常情况下,肝动脉对肝脏的血流具 有缓冲作用,肝功能不全时,这种缓 冲作用减弱,肝脏血流量更易受全身 血流量的影响。
氧供需平衡失调
01
肝组织缺氧
肝功能不全时,肝脏血流量减少,肝组织缺氧,影响肝 细胞的再生和修复。
中心静脉血氧饱和度中心静脉血氧饱和度
中心静脉血氧饱和度中心静脉血氧饱和度
1.1.SVO2的生理意义及测量方法: SVO2系统动态反映全身组织的氧供需状态,参考值范围为65%-75%。
当氧输送减少或者氧需求大于氧供并且超过机体的代偿能力时,SVO2下降,反之当氧输送增加或者氧需小于氧供时SVO2上升。
SVO2测量通过肺动脉漂浮导管,自肺动脉端或右心房直接取血进行血气分析,目前则是通过一种改良纤维光导导管来进行连续性测量。
1.2.SVO2与ScVO2
深静脉穿刺在危重病人的治疗过程中日益常见,它要比肺动脉漂浮导管放置安全和方便,而且可以在监测ScVO2同时测量中心静脉压,所以目前ScVO2更多地被用来监测未留置或不适合留置肺动脉导管的病人。
SVO2&ScVO2
一般在正常成年人中,ScVO2因为测的是上腔静脉的氧饱和度,反映的是上半身包括脑循环的氧平衡情况,而SVO2则评估的是全身,包括腹部及下肢的氧供需状况,而且由于氧的需要不同,腹部及下肢氧饱和度往往高于上腔静脉,于是SVO2比ScVO2的绝对值要高,所以两者在量值上并无法等同。
但是在动态观察两者时,SVO2和ScVO2的变化趋势具有相关性已经得到了证实。
中心静脉血氧饱和度监测在ICU中对多发性外伤患者的管理
02
中心静脉血氧饱和度 监测技术
监测原理及方法
监测原理
中心静脉血氧饱和度(ScvO2)监测是通过测量中心静脉血液中氧合血红蛋白占全部血 红蛋白的百分比来评估氧合状态。它反映了全身氧供需平衡情况,是评估危重病人氧合
状态的重要指标。
监测方法
ScvO2监测通常通过放置中心静脉导管来实现,如颈内静脉、锁骨下静脉或股静脉等。 导管尖端位于上腔静脉或下腔静脉,通过导管抽取血液样本进行血气分析,从而得到 ScvO2值。
整治疗方案提供依据。
指导治疗方案调整与优化
根据ScvO2监测结果,可调整 机械通气参数、液体复苏策略 等,以改善患者氧合状况。
ScvO2监测有助于及时发现并 处理潜在的循环功能障碍,防 止病情恶化。
通过比较治疗前后ScvO2的变 化,可评估治疗效果,为进一 步优化治疗方案提供参考。
预测并发症风险及预后情况
中心静脉血氧饱和度监测在 ICU中对多发性外伤患者的 管理
contents
目录
• 引言 • 中心静脉血氧饱和度监测技术 • 多发性外伤患者特点及ICU管理需求 • 中心静脉血氧饱和度监测在ICU中应用价
值 • 实际应用案例分析 • 存在问题及挑战 • 总结与展望
01
引言
背景与意义
多发性外伤患者的临床特点
多发性外伤是指由单一致伤因素造成 的两个或两个以上解剖部位的损伤, 且至少有一个部位的损伤是危及生命 的。
分类
根据受伤部位和严重程度,多发性外 伤可分为颅脑外伤、胸部外伤、腹部 外伤、脊柱四肢外伤等。
患者生理病理变化特点
生理变化
多发性外伤患者可出现失血性休克、低氧血症、酸碱平衡紊 乱等生理变化。
病理变化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心静脉血氧饱和度监测技术资料PCCI飞利浦医疗保健2011‐05‐25目 录1.参考文献2.操作指南附:CeVOX导管引导色标CeVOX导管技术参数CeVOX导管使用问答Available online /content/10/6/R158Page 1 of 8(page number not for citation purposes)ResearchMulticentre study on peri- and postoperative central venous oxygen saturation in high-risk surgical patientsCollaborative Study Group on Perioperative ScvO2 MonitoringReceived: 5 Jul 2006Revisions requested: 27 Jul 2006Revisions received: 30 Aug 2006Accepted: 13 Nov 2006Published: 13 Nov 2006Critical Care 2006, 10:R158 (doi:10.1186/cc5094)This article is online at: /content/10/6/R158© 2006 Collaborative Study Group on Perioperative ScvO2 Monitoring; licensee BioMed Central Ltd.This is an open access article distributed under the terms of the Creative Commons Attribution License (/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.For a complete list of authors and their affiliations, see Appendix. Corresponding author: Stephen M JakobAbstractIntroduction Low central venous oxygen saturation (ScvO 2) has been associated with increased risk of postoperative complications in high-risk surgery. Whether this association is centre-specific or more generalisable is not known. The aim of this study was to assess the association between peri- and postoperative ScvO 2 and outcome in high-risk surgical patients in a multicentre setting.Methods Three large European university hospitals (two in Finland, one in Switzerland) participated. In 60 patients with intra-abdominal surgery lasting more than 90 minutes, the presence of at least two of Shoemaker's criteria, and ASA (American Society of Anesthesiologists) class greater than 2,ScvO 2 was determined preoperatively and at two hour intervals during the operation until 12 hours postoperatively. Hospital length of stay (LOS) mortality, and predefined postoperative complications were recorded.Results The age of the patients was 72 ± 10 years (mean ±standard deviation), and simplified acute physiology score(SAPS II) was 32 ± 12. Hospital LOS was 10.5 (8 to 14) days,and 28-day hospital mortality was 10.0%. Preoperative ScvO 2decreased from 77% ± 10% to 70% ± 11% (p < 0.001)immediately after surgery and remained unchanged 12 hours later. A total of 67 postoperative complications were recorded in 32 patients. After multivariate analysis, mean ScvO 2 value (odds ratio [OR] 1.23 [95% confidence interval (CI) 1.01 to 1.50], p = 0.037), hospital LOS (OR 0.75 [95% CI 0.59 to 0.94], p = 0.012), and SAPS II (OR 0.90 [95% CI 0.82 to 0.99],p = 0.029) were independently associated with postoperative complications. The optimal value of mean ScvO 2 to discriminate between patients who did or did not develop complications was 73% (sensitivity 72%, specificity 61%).Conclusion Low ScvO 2 perioperatively is related to increased risk of postoperative complications in high-risk surgery. This warrants trials with goal-directed therapy using ScvO 2 as a target in high-risk surgery patients.IntroductionSeveral randomised controlled clinical studies have shown improved morbidity and mortality in high-risk surgical patients with perioperative optimisation of haemodynamics using strict treatment protocols in the single-centre setting [1-3]. The haemodynamic endpoints in goal-directed studies have been based on values derived from the pulmonary artery catheter [1-4], oesophageal Doppler [5-10], or (very recently) lithium indi-cator dilution and pulse power analysis [11]. Central venous oxygen saturation (ScvO 2) and mixed venous oxygen satura-tion (SvO 2) have been proposed to be indicators of the oxygen supply/demand relationship. However, the relationship between SvO 2 and ScvO 2 remains controversial [12]. Venousoxygen saturations differ among organ systems because dif-ferent organs extract different amounts of oxygen. It is there-fore conceivable that venous oxygen saturation depends on the site of measurement [13]. Redistribution of blood flow and alterations in regional oxygen demand (for example, in shock,severe head injury, general anaesthesia, as well as microcircu-latory disorders) may affect the difference between ScvO 2 and SvO 2. Although ScvO 2 principally reflects the relationship of oxygen supply and demand, mainly from the brain and the upper part of the body [13], it correlates reasonably well with concomitantly measured SvO 2 [12,13], which is more dependent on changes in oxygen extraction in the gastrointes-tinal tract.HDC = high-dependency care; ICU = intensive care unit; LOS = length of stay; OR = odds ratio; ROC = receiver operator characteristic; SAPS II = simplified acute physiology score; ScvO 2 = central venous oxygen saturation; SvO 2 = mixed venous oxygen saturation.Critical Care Vol 10 No 6Page 2 of 8(page number not for citation purposes)In patients with severe sepsis and septic shock, early ScvO 2-driven haemodynamic treatment was found to reduce mortality [14]. More recently, low postoperative ScvO 2 values were associated with an increased risk of complications in high-risk surgical patients [11]. Despite increasing evidence of benefi-cial effects on outcome, goal-directed therapies are not widely used in clinical practice. The reasons are a lack of demon-strated effect in large multicentre studies, the need for postop-erative intensive care resources, the necessity of instituting complex protocols, as well as the need for monitoring tech-niques that are not routinely used in these specific patient groups. Using the ScvO 2 as a potential target variable for haemodynamic optimisation is attractive because central venous catheterisation is routinely used in high-risk patients undergoing major surgery, ScvO 2 can be screened, pre-emp-tive treatment is possible, and no major changes are neces-sary for the infrastructure in the operation area.The present investigation was a pilot study designed to assess the incidence of low perioperative ScvO 2 in high-risk surgical patients and the association of low ScvO 2 with outcome in a multicentre setting. The aim was to evaluate whether the asso-ciation of ScvO 2 and postoperative complications in a strictly protocolised, interventional single-centre study on goal-directed haemodynamic management in high-risk surgical patients [11] could be confirmed in a purely observational,multicentre setting. Specifically, this pilot study was designed to clarify (a) the recruitment rate of patients scheduled for major surgery in a multicentre setting, (b) the range of periop-erative ScvO 2 in such patients, (c) the number of postopera-tive complications, and (d) the potential association between ScvO 2 and complications. With these data, it should be possi-ble to define whether a trial with goal-directed therapy using ScvO 2 as a target is reasonable to conduct.Materials and methodsTwo university hospitals in Finland and one in Switzerland par-ticipated in the study. The study was approved by the appro-priate ethics committee for each institution, and written informed consent was obtained from each patient. Patients were screened for inclusion and exclusion criteria between September 20 and December 20, 2004.Inclusion criteriaFor a patient to be included in the study, both of the following criteria had to be fulfilled: (a) increased surgical risk based on intra-abdominal or retroperitoneal surgery with an expected duration of at least 90 minutes or on abdominal aortic surgery and (b) two or more of Shoemaker's criteria of high risk [2].These criteria include patient history (more than 70 years old with limited major physiological function, previous severe car-diopulmonary or vascular illness, and severe nutritional disor-ders), current clinical condition (severe multiple trauma,massive acute blood loss, shock, septicaemia or septic shock,respiratory failure, acute abdominal catastrophe, and acuteintestinal or renal failure), the surgical procedure (extensive surgery for cancer or prolonged surgery more than eight hours), ASA (American Society of Anesthesiologists) class of greater than two, and a perioperative need for a central venous catheter.Exclusion criteriaExclusion criteria for the study were a contraindication for a central venous catheter, unstable angina pectoris, primary hepatic or hepato-biliary surgery, the refusal of blood prod-ucts, and the inability to give informed consent or refusal to consent.Study protocolAnaesthesia, operation, and postoperative treatment were performed according to the local standards. All patients were postoperatively admitted either to an intensive care unit (ICU)or another high-dependency care (HD C) area (intermediate care unit or postanaesthesia care unit). Blood samples for the measurement of ScvO 2 and haemoglobin were taken after induction of anaesthesia and thereafter at two hour intervals up to 12 hours postoperatively. Blood gas analyses were per-formed by intermittent blood sampling and co-oximetry (ABL 725; Radiometer, Copenhagen, Denmark [centres 1 and 2];GEM Premier 3000; Instrumentation Laboratory, Barcelona,Spain [centre 3]).ComplicationsComplications and deaths occurring within 28 days of enrol-ment were included in the data analysis. Complications were prospectively defined and were diagnosed by clinical staff.Length of stay in the study hospital was censored at 28 days,and the patient's location at 28 days was recorded.StatisticsData are presented as mean ± standard deviation when nor-mally distributed, as medians (interquartile range) when not normally distributed, or (for categorical variables) as a percent-age of the group from which they were derived. Normality was tested with the Kolmogorov-Smirnov test. Categorical data were tested with Fisher's exact test. Continuous data were tested with the t test when normally distributed and with the Mann-Whitney U test when not normally distributed. Trends in physiological parameters over time were compared with repeated-measures analysis of variance.Univariate analysis was performed to test associations with complications and death. For data recorded hourly during the study period, the baseline values, the lowest values, and the mean over the 12-hour study period were tested. A multiple logistic regression model was used to identify independent risk factors for postoperative complications. A stepwise approach was used to enter new terms into the logistic regres-sion model, where p < 0.05 was set as the limit for inclusion of new terms. Results of logistic regression are reported asAvailable online /content/10/6/R158Page 3 of 8(page number not for citation purposes)adjusted odds ratios (ORs) with 95% confidence intervals (CIs). Receiver operator characteristic (ROC) curves were constructed to identify optimal cutoff values for association with outcome. The optimum cutoff was defined as the value associated with the highest sum of sensitivity and specificity.Analysis was performed with SPSS version 12.01 (SPSS Inc.,Chicago, IL, USA) and Sigma Plot version 10.01 (Systat Soft-ware, Inc., Richmond, CA, USA) software, and significance was set at p < 0.05.ResultsOf 218 screened patients, 60 patients fulfilled requirements for both inclusion and exclusion criteria and gave written informed consent (21 females, 39 males). Their mean age was 72 ± 10 years, and simplified acute physiology score (SAPS II) was 32 ± 12. In two centres, all patients were elective sur-gical cases, whereas in the third centre, 12 out of 21 patients were emergencies. Demographics and outcome data as well as indications for laparatomy stratified for the three centres are indicated in Table 1. Mean SAPS II scores in the three centres were 30, 26, and 40, respectively, and the associated mortal-ity rates were 0%, 6%, and 24%, respectively.As compared with preoperative values, ScvO 2 was lower immediately after surgery. Haemoglobin decreased (preopera-tive 110 ± 19 g/l versus 102 ± 17 g/l immediately after sur-gery, p = 0.003).Overall length of stay in the ICU/HDC was 1.0 (0 to 1) days,and hospital LOS was 10.5 (8 to 14) days (observation period 28 days). Six patients died (28-day mortality 10%); three of them were emergency cases (28-day mortality in emergency cases 25%).Sixty-seven postoperative complications were recorded in 32patients (20 cardiorespiratory, 23 surgical, 19 infectious, and 5 other; between 1.0 and 1.3 per patient per centre). Univari-ate analysis identified nine variables associated with postoper-ative complications (Table 2). Six of them were ScvO 2variables (Figure 1a,b). Additionally, haemoglobin (111 ± 18versus 105 ± 23 g/l, p = 0.018), SAPS II (27 ± 11 versus 45± 26, p = 0.003), and hospital LOS (10 [8 to 12] versus 14[10 to 17] days, p = 0.001) were associated with postopera-tive complications.After multivariate analysis, mean ScvO 2 value (OR 1.23 [95%CI 1.01 to 1.50], p = 0.037), hospital LOS (OR 0.75 [95% CI 0.59 to 0.94], p = 0.012), and SAPS II (OR 0.90 [95% CI 0.82 to 0.99], p = 0.029) were independently associated with postoperative complications. ROC curves for these variables are displayed in Figure 2. The areas under the ScvO 2 and SAPS II, but not LOS, ROC curves were significantly different from 0.5 (p = 0.004 and 0.002, respectively). The optimal value of mean ScvO 2 for discriminating between patients who did or did not develop complications was 73% (sensitivityTable 1Demographics and outcome data stratified for the three centresAll centres (n = 60)Centre 1 (n = 17)Centre 2 (n = 22)Centre 3 (n = 21)Age in years 72 ± 1068 ± 1172 ± 974 ± 10Male/female 40/2013/418/416/5SAPS II a32 ± 1226 ± 1030 ± 440 ± 14Emergency surgery (percentage)200057Aortic/iliacal aneurysm/dissection (percentage)47825014Carcinoma upper abdomen (percentage)121255Carcinoma lower abdomen (percentage)2464138Infection (percentage)70419Other (percentage)100024Duration of operation (minutes)218 ± 111323 ± 92178 ± 81177 ± 99Hospital LOS (days)11 (8 to 14)13 (11 to 15)8 (4 to 10)11 (9 to 14)Patients at home on day 28 (percentage)65239038Patients in hospital/nursing facility on day 28 (percentage)2265538Unknown patient location on day 28 (percentage)3650Mortality (percentage)10624a One-way analysis of variance (p < 0.01). LOS, length of stay; SAPS II, simplified acute physiology score.Critical Care Vol 10 No 6Page 4 of 8(page number not for citation purposes)72%, specificity 61%). The relation between ScvO 2 and hos-pital LOS in survivors and non-survivors is displayed in Figure 3.DiscussionThe main finding of this study was that in the multicentre set-ting, low ScvO 2 during the peri- and postoperative period was associated with an increased risk of postoperative complica-tions in high-risk patients undergoing major surgery. Our results support the feasibility of testing ScvO 2 as a target var-iable to improve outcome in high-risk surgery. The criteria to define patients at high risk were pragmatic and clinically ori-ented and resulted in a sufficient recruitment rate. Further-more, despite the relative heterogeneity of the patient population, ScvO 2 had a reasonable predictive value for post-operative complications.Pearse et al . [11] found that low minimum ScvO 2 values during the first eight postoperative hours were associated with increased risk of postoperative complications. Their findingsTable 2Variables associated with postoperative complicationsPatients with complications (n = 32)Patients without complications (n = 28)P value aScvO 2 (percentage)Preoperative 74 ± 1080 ± 90.031IntraoperativeAfter 1 hour of surgery 74 ± 1080 ± 90.046After 2 hours of surgery 73 ± 1280 ± 110.022After 3 hours of surgery 71 ± 1181 ± 80.001Lowest 60 ± 764 ± 70.036Mean70 ± 574 ± 60.005Haemoglobin at ICU admission (g/l)95 ± 17105 ± 130.018SAPS II41 ± 1427 ± 110.003Hospital LOS (days)13 ± 710 ± 40.001a Univariate analysis of variance. ICU, intensive care unit; LOS, length of stay; SAPS II, simplified acute physiology score; ScvO2, central venousoxygen saturation.Figure 1Intraoperative (a) and postoperative (b) ScvO 2 variables in patients who did and did not develop postoperative complications. P values correspond to univariate analysis of variance. ICU, intensive care unit; IMC, intermediate care unit; intraop, intraoperative; preop, preoperative; postop, postoper-ative; ScvO 2, central venous oxygen saturation.Available online /content/10/6/R158Page 5 of 8(page number not for citation purposes)Figure 2Receiver operator characteristic (ROC) analysis for (a) mean ScvO 2, (b) SAPS II score, and (c) hospital length of stay (LOS). Outcome parameter for ROC analysis is occurrence of postoperative complications. Area under the curve (AUC) was 0.74 for mean ScvO 2 (p = 0.004), 0.78 for SAPS II score (p = 0.002), and 0.61 for LOS (p = 0.15). SAPS II, simplified acute physiology score; ScvO 2, central venous oxygen saturation.Figure 3Central venous oxygen saturation (ScvO 2) (percentage) in survivors and non-survivors and in patients with high and low mean ScvO 2 values. The numbers above the error bars indicate the corresponding LOS data for the different sub-groups. *Wilcoxon signed rank test versus preoperative (p < 0.05). #Mann-Whitney test versus ScvO 2 >73% (p= 0.001). ICU/IMC, intensive care unit/intermediate care unit; LOS, length of stay in hospital.Critical Care Vol 10 No 6Page 6 of 8(page number not for citation purposes)come from a strictly protocolised, interventional single-centre study on goal-directed haemodynamic management in high-risk surgical patients. Our results further confirm the associa-tion between ScvO 2 and postoperative complications in a purely observational, multicentre setting. Furthermore, intraop-eratively, we were able to demonstrate a significant difference in ScvO 2 between patients who did and did not develop com-plications. Taken together, the present study and that of Pearse et al . suggest that the overall peri- and postoperative course of ScvO 2 should be taken into account if ScvO 2-tar-geted interventions are considered for testing in large-scale clinical trials.Despite the relative similarity of the participating centres and the presence of comparable infrastructures for postoperative care, the hospital LOS varied widely between the centres. The reason for this is certainly multifactorial and likely to include,among other things, care processes within the individual cen-tres, discharge policies, and variations in local health care organisation. These variations were likely to dilute any associ-ation between ScvO 2 and length of stay in the relatively small sample size. Hence, we used clinically relevant predefined complications as the main outcome measure. The hospital mortality in the present study was comparable with the recent study of Pearse et al . [11] and clearly lower than what would be expected from several previous studies on high-risk sur-gery. Due to the small sample size and different proportions of emergency patients, relevant between-centre comparisons cannot be made.The prognostic significance of ScvO 2 less than 65% has been demonstrated in myocardial infarction [15], trauma [16],severe sepsis [17], and cardiac failure [18]. However, the only interventional trial of ScvO 2 conducted so far used a target of 70% [14]. In the study of Pearse et al . [11], a level of 65%seemed to discriminate best between patients with and without complications. This may be related to the lower tissue oxygen delivery in surgical patients as compared with patients with sepsis. D espite complex physiology, the association between ScvO 2 and outcome after major surgery seems to be similar to the association between cardiac index and outcome or between oxygen delivery and outcome [19-22].The best cutoff for ScvO 2 in predicting complications in our study was 73%. This corresponds well with the mean ScvO 2of 75% found by Pearse et al . [11] in patients who did not develop complications. The observed cutoff value of ScvO 2should be interpreted with some caution due to the sample size. Nevertheless, the somewhat higher best cutoff of ScvO 2for predicting complications in our study could be related to the fact that our study was observational, whereas Pearse et al . used protocolised treatment. When using protocols, the fluctuation in ScvO 2 is likely to be reduced. This may also explain why in our study the mean ScvO 2, rather than the min-imum ScvO 2, had predictive value.In our study, the perioperative mean of ScvO 2 was 74% in patients who did not develop postoperative complications.This is comparable with previous measurements in healthy subjects [23] and in patients after surgery [11,22] but is higher than in patients with favourable outcome after severe sepsis, trauma, cardiac failure, or myocardial infarction [15-18]. Accordingly, targets for ScvO 2 in future prospective trials should probably be adapted to the specific study groups.We believe that our results encourage trials with goal-directed therapy using ScvO 2 as a target in high-risk surgery patients.Based on our data and in agreement with results from others [11], target values should be in the range of 70% to 75%, and values less than 65% should be strictly avoided. In patients with cardiac failure or trauma, lower targets (at approximately 65%) may be appropriate [15,16].Obviously, in a multicentre approach, the inclusion of 60patients with an observed 28-day mortality of 10% is enough to be able to demonstrate a benefit in terms of complication rate but not in terms of length of stay and mortality. To demon-strate a relative reduction in 28-day mortality of 34% (as in the study of Rivers et al . [14], with a beta error of 80% and an alpha error of 5%, the sample size in a patient group similar to that in this study would be 85 for both groups. Although the risk factors for postoperative complications agree well with previous studies, the small sample size for the multivariate analysis should be considered in interpreting our results.Because oxygen demands are normally well controlled during general anaesthesia, efforts to increase ScvO 2 should target oxygen delivery (arterial oxygen saturation, haemoglobin, and cardiac output). In fact, in this trial, preoperative haemoglobin concentrations were significantly lower in patients with com-plications as compared with patients without. To avoid sudden drops in ScvO 2 as a consequence of the combination of hypo-volaemia and anaemia during surgical bleeding, it may be pru-dent to correct low (<10 g/dl) preoperative haemoglobin concentrations.A drop in ScvO 2 was noted between the end of surgery and the first readings in the ICU. This finding is consistent with pre-vious findings on ScvO 2 [11] and SvO 2 [19,21] in surgical patients. Both decreased systemic oxygen delivery and increased oxygen consumption may have contributed. Pearse et al . [11] reported unchanged cardiac output in the postoper-ative period. If this was the same in our patients, oxygen deliv-ery still could have decreased due to the significantly lower postoperative haemoglobin concentrations. Postoperative oxygen consumption is determined by various factors, includ-ing pain, emergence from anaesthesia, body temperature, and shivering. To avoid low postoperative ScvO 2, all of these fac-tors may have to be controlled.Available online /content/10/6/R158Page 7 of 8(page number not for citation purposes)ConclusionIn our study, low ScvO 2 was frequently observed in patients during and after major surgery and was related to postopera-tive complications. In prospective trials using ScvO 2 as a goal,the specific patient group has to be taken into account when target levels are peting interestsThe authors declare that they have no competing interests. No author received individual funding in connection with this study.Authors' contributionsHB performed programming of databases for all centres, data acquisition, data analysis, calculation of statistics and manu-script revision. VE, DI, SL, IP, CR, and AV provided data acqui-sition and manuscript revision. MH carried out data acquisition and interpretation and manuscript revision. SMJ participated in the study design and coordination, performed the measure-ments, and wrote a first draft of the manuscript. HL and SN recruited patients, performed data acquisition, data analysis and interpretation, and manuscript revision. KM and PM carried out patient recruitment, data acquisition, and manu-script revision. MN and ER performed data interpretation and manuscript revision. JT provided study conception and design,data interpretation, and manuscript revision. All authors were given the opportunity to read and approve the final manuscript.AppendixThe Collaborative Study Group on Perioperative ScvO 2 Moni-toring is composed of authors from three centres:Bern:Hendrik Bracht 1, Verena Eigenmann 2, Matthias Haenggi 1,Daniel Inderbitzin 3, Stephan M Jakob 1 (co-principal investiga-tor), Stefanie Loher 1, Christine Raeber 1, Jukka Takala 1 (coordi-nating investigator), Andreas Vogt 7Kuopio:Kimmo Mäkinen 5, Pekka Miettinen 5, Minna Niskanen 6, Ilkka Parviainen 6 (co-principal investigator)Tampere:Heli Leppikangas 4, Silvia Nunes 4, Esko Ruokonen 4 (co-princi-pal investigator)1Department of Intensive Care Medicine, University HospitalBern, CH-3010 Bern, Switzerland2D epartment of Cardiovascular Surgery, University HospitalBern, CH-3010 Bern, Switzerland3Department of Visceral and Transplantation Surgery, Univer-sity Hospital Bern, CH-3010 Bern, Switzerland4Department of Intensive Care, Tampere University Hospital,P.O. Box 2000, 33521 Tampere, Finland5Department of Surgery, Kuopio University Hospital, P.O. Box1777, 70211 Kuopio, Finland6Department of Anesthesia and Intensive Care Medicine, Kuo-pio University Hospital, P.O. Box 1777, 70211 Kuopio,Finland7Department of Anesthesiology, University Hospital Bern, CH-3010 Bern, SwitzerlandAcknowledgementsThis study was supported by a grant from Edwards Lifesciences.References1.Boyd O, Grounds RM, Bennett ED: A randomized clinical trial of the effect of deliberate perioperative increase of oxygen deliv-ery on mortality in high-risk surgical patients. JAMA 1993,270:2699-2707.2.Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS: Pro-spective trial of supranormal values of survivors as therapeu-tic goals in high-risk surgical patients. Chest 1988,94:1176-1186.3.Wilson J, Woods I, Fawcett J, Whall R, D ibb W, Morris C,McManus E: Reducing the risk of major elective surgery: ran-domised controlled trial of preoperative optimisation of oxy-gen delivery. BMJ 1999, 318:1099-1103.4.Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J: Aprospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 2000,90:1052-1059.5.McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, SingerM: Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ 2004, 329:258.6.Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, MorettiE, D wane P, Glass PS: Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 2002, 97:820-826.7.Mythen MG, Webb AR: Perioperative plasma volume expan-sion reduces the incidence of gut mucosal hypoperfusion dur-ing cardiac surgery. Arch Surg 1995, 130:423-429.8.Sinclair S, James S, Singer M: Intraoperative intravascular vol-ume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ 1997, 315:909-912.9.Venn R, Steele A, Richardson P, Poloniecki J, Grounds M, New-man P: Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and periopera-tive morbidity in patients with hip fractures. Br J Anaesth 2002,88:65-71.10.Wakeling HG, McFall MR, Jenkins CS, Woods WG, Miles WF,Barclay GR, Fleming SC: Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 2005,95:634-642.Key messages• Low ScvO 2 perioperatively is related to increased risk ofpostoperative complications in high-risk surgery.• Trials with goal-directed therapy using ScvO 2 as a tar-get in high-risk surgery patients are warranted.。