中心静脉血氧饱和度监测技术资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心静脉血氧饱和度监测
技术资料
PCCI
飞利浦医疗保健
2011‐05‐25
目 录
1.参考文献
2.操作指南
附:CeVOX导管引导色标
CeVOX导管技术参数
CeVOX导管使用问答
Available online /content/10/6/R158
Page 1 of 8
(page number not for citation purposes)
Research
Multicentre study on peri- and postoperative central venous oxygen saturation in high-risk surgical patients
Collaborative Study Group on Perioperative ScvO2 Monitoring
Received: 5 Jul 2006Revisions requested: 27 Jul 2006Revisions received: 30 Aug 2006Accepted: 13 Nov 2006Published: 13 Nov 2006Critical Care 2006, 10:R158 (doi:10.1186/cc5094)
This article is online at: /content/10/6/R158
© 2006 Collaborative Study Group on Perioperative ScvO2 Monitoring; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.For a complete list of authors and their affiliations, see Appendix. Corresponding author: Stephen M Jakob
Abstract
Introduction Low central venous oxygen saturation (ScvO 2) has been associated with increased risk of postoperative complications in high-risk surgery. Whether this association is centre-specific or more generalisable is not known. The aim of this study was to assess the association between peri- and postoperative ScvO 2 and outcome in high-risk surgical patients in a multicentre setting.
Methods Three large European university hospitals (two in Finland, one in Switzerland) participated. In 60 patients with intra-abdominal surgery lasting more than 90 minutes, the presence of at least two of Shoemaker's criteria, and ASA (American Society of Anesthesiologists) class greater than 2,ScvO 2 was determined preoperatively and at two hour intervals during the operation until 12 hours postoperatively. Hospital length of stay (LOS) mortality, and predefined postoperative complications were recorded.
Results The age of the patients was 72 ± 10 years (mean ±standard deviation), and simplified acute physiology score
(SAPS II) was 32 ± 12. Hospital LOS was 10.5 (8 to 14) days,and 28-day hospital mortality was 10.0%. Preoperative ScvO 2decreased from 77% ± 10% to 70% ± 11% (p < 0.001)immediately after surgery and remained unchanged 12 hours later. A total of 67 postoperative complications were recorded in 32 patients. After multivariate analysis, mean ScvO 2 value (odds ratio [OR] 1.23 [95% confidence interval (CI) 1.01 to 1.50], p = 0.037), hospital LOS (OR 0.75 [95% CI 0.59 to 0.94], p = 0.012), and SAPS II (OR 0.90 [95% CI 0.82 to 0.99],p = 0.029) were independently associated with postoperative complications. The optimal value of mean ScvO 2 to discriminate between patients who did or did not develop complications was 73% (sensitivity 72%, specificity 61%).
Conclusion Low ScvO 2 perioperatively is related to increased risk of postoperative complications in high-risk surgery. This warrants trials with goal-directed therapy using ScvO 2 as a target in high-risk surgery patients.
Introduction
Several randomised controlled clinical studies have shown improved morbidity and mortality in high-risk surgical patients with perioperative optimisation of haemodynamics using strict treatment protocols in the single-centre setting [1-3]. The haemodynamic endpoints in goal-directed studies have been based on values derived from the pulmonary artery catheter [1-4], oesophageal Doppler [5-10], or (very recently) lithium indi-cator dilution and pulse power analysis [11]. Central venous oxygen saturation (ScvO 2) and mixed venous oxygen satura-tion (SvO 2) have been proposed to be indicators of the oxygen supply/demand relationship. However, the relationship between SvO 2 and ScvO 2 remains controversial [12]. Venous
oxygen saturations differ among organ systems because dif-ferent organs extract different amounts of oxygen. It is there-fore conceivable that venous oxygen saturation depends on the site of measurement [13]. Redistribution of blood flow and alterations in regional oxygen demand (for example, in shock,severe head injury, general anaesthesia, as well as microcircu-latory disorders) may affect the difference between ScvO 2 and SvO 2. Although ScvO 2 principally reflects the relationship of oxygen supply and demand, mainly from the brain and the upper part of the body [13], it correlates reasonably well with concomitantly measured SvO 2 [12,13], which is more dependent on changes in oxygen extraction in the gastrointes-tinal tract.
HDC = high-dependency care; ICU = intensive care unit; LOS = length of stay; OR = odds ratio; ROC = receiver operator characteristic; SAPS II = simplified acute physiology score; ScvO 2 = central venous oxygen saturation; SvO 2 = mixed venous oxygen saturation.