【贝叶斯统计答案】第二章+第三章
贝叶斯统计-习题答案)
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(63631171463163631533853381<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x e x x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<-(实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯统计习题答案
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯统计习题答案
贝叶斯统计习题答案第⼀章先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从⽽有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=?+??=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==?+??=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为⼀卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语⾔求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从⽽有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1)由题意知 ()1,01πθθ=<< 从⽽有)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语⾔求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1714631636315338533810<<-==-=--=--=----==--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语⾔求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<==<<=+<<-==+<<-=??θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=??θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝?∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ix e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝?∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==?∏∏?∏∏====θθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=?=-?因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2)由题意可知./(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{221221121212121 2122111<<∝===<<==<<<==?∏∏?∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x n ni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=?=?因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝?∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中⼈的⾼度,则2(,5)XN θ∴25(,)10XNθ∴2由题意可知 2(172.72)5.08()θπθ--=⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------∝?∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222222251()()11252()1122525eσθθθσσσ+----+?--+∝∝因此 222251(,)112525u x xN σθσσ+++⼜由于21112525σ≤+ 所以θ的后验标准差⼀定⼩于151.11 解:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(7687787321321321433213213321>?====≥=>=====<<=∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ从⽽有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从⽽有 ()()()()x x p x πθπθθπθ∝?00111n n n ααααθθθθθ++++∝?∝因此θ的后验分布仍是Pareto 分布。
贝叶斯统计及其推断(PowerPoint 123页)
1.先验矩法
历史数据得的估计值1,..., k
计算
1 +...+k
k
, S2
1 k 1
k
(i
i 1
)2
令E =
Var
(
)2 (
1)
S2
解得 , 的一个估计 ,
先验分布的确定
2.利用先验分位数
若历史经验得 ( )的下P1和上P2分位数L和U
则有
L 0
( ) 1(1 ) 1d ( )T ( )
解:m(x) p(x, )d p(x | ) ( )d , ( | x) p(x, ) / p(x, )d p(x | ) ( ) / m(x).
求解的例子
设x b(n, ), ~ U (0,1).求m(x), ( | x)
解:m(x)
1 0
Cnx
x
(1
)nx
1d
Cnx
函数为P(x)=c.h(x)
则称h(x)为P(x)的核
由于 ch(x)dx 1(或 ch(x) 1) x
c
1
从而P(x) h( x)
h(x)dx
h(x)dx
即P( x)由核唯一确定,
除了相差一个常数倍外,核也由P(x)唯一确定
计算的简化---边缘密度的核
例3.1.设x ~ N (1, 4)
可信区间——选择标准
由上例知的1 可信区间a, b不唯一
选择区间长度最短的。假如,某人年龄的两个
1 可信区间为30,40和38,41,则38,41更好,
精度更高,信息更精确
可信区间——选择标准
a, b为1 可信区间,则
b
a ( | x)d 1
贝叶斯统计茆诗松版大部分课后习题答案word精品
加 I —W)W j04/(l -疔36840 (1 ) ,011.6习题讲解一、1,3,5,6,10,11,12,15 1.1记样本为X. p(x 0.1) Cs *0.1 2 *0.960.1488 p(x 0.2) C ;*0.22*0.86 0.2936 后验分布: 0.1 x 0.2 x 0.1488*0.70.1488*0.7 0.2936*0.3 0.2936*0.30.1488*0.7 0.2936*0.30.5418 0.4582苴它1o<e<iJ n1 m x 0p(x| ) [2(1® aG<e<i其它1 d°C ; 3(1)5*2(1 )d1112 3(1 )6d12( X)i …氏 设辱心…血 是栗ri 泊松分布praj 的 个样本swe 匚此样木的似然函数为匕现収仙也[分•仃Ga(fiL Q 粹为泊松分巾均们A 的址验匕们•即―oo < a v +c©的后验分布为192/ 7 6 86 192—87参故久的百验分布为兀(几斗)板I A)^(Z)'X /J+M jA服从伽玛分布Go辽対+桟申一八r-1 1.11由题意设x 表示等候汽车的时间,则其服从均匀分布 U(0,)P(X )亠 0 X 0, 其它 因为抽取3个样本,即X (x 1,x 2, x 3),所以样本联合分布为丄 p(X) 3,0, X i ,X 2,X 3其它又因为 192/ 0, 所以,利用样本信息得 h(X, ) p(X )() 1 ~3 192 ~4 192 (~7 (8,0 X i ,X 2,X 3 )于是 m(X) 8 h(X,)d192 , rdp(x\A) = —Xi—, -OC < XIX/ < +OCh(X,) m(X)21p(x )— ,0 x0,即(x) ( n)1/0,即得证。
1.151样本的似然函数:p(x )1e服从伽马分布Ga n, nx-0.00024,20000.0.000121.12样本联合分布为:(X)6 867~0, (x) p(x )()1/1max 0,%丄,人因此的后验分布的核为1/n 1,仍表现为Pareto 分布密度函数的核参数的后验分布 (x) p(x )()n 1( nx)enX in— i 1en nxe1,2,3,5,6,7,8,10,11,12 2乙11)讥刈8)二&(1一&)\兀(&) = 1p 何0)兀(0)= &(1—胖 〜尿(2,4)E(&|X )"E =±W2)讽申)=,(1 — &)叫兀(&) = 1二 诃x) * p(x 0)兀(8)=护(1 一 0)10 〜%(4,11)i ・44E(& x) = 3¥ = -------- =——E 11 + 4 152.2解:由题意,变量t 服从指数分布: p(t )由伽玛分布性质知:0.2nt i 20 3.8 76,所以 ni 1由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布0.04, 0.2又已知n=20,t 3.8(|t) P (T| )( )neti1en 1e (t i)即后验分布为Ga( n,t i ) Ga(20.04,76.2)E T() n t i20.0476.20.2631服从倒伽玛分布IGa(n,t i ) IGa(20.04,76.2)样本联合分布p(T )neti且~Ga(,)〒0 , E()0.2 Var (n20.04, t ii 176.2t-E T ( ) E |T (1) ---------- 4.002n 1n 12.8 由 x ~ Ga( , ), ~ IGa(,)可以得出(1}e(1) 的后验分布为:(3)样本分布函数为:的后验期望估计的后验方差为11 162.5 n 36.2.7的先验分布为:()/ 1, 0, 令1 max 0必丄,X -可得后验分布为:(x)(n) 1 n/0,后验方差为: Var( x)E( x)十, n 1 (n) 122(n 1) (n 2)(xpn -2n -2X1 xe 2 ,x 0(x)p(x 1)e^即为倒伽玛分布IGa(-,2所以的后验分布为IGa(n2 )的核。
(完整版)贝叶斯统计-习题答案)
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
第二章_贝叶斯推断课后答案
第二章 贝叶斯推断2.1 解:由题意可知 ()1,01πθθ=<<设12,,...,n X X X 是从随机变量X 中抽取的随机样本,则11()()(1)nii n x ni i p x p x θθθθ==∑==-∏从而有 ()()1()(1),01nii x nx p x πθθπθθθθ=∑∝∙∝-<<所以 1(1,1)ni i x Be n x θ=++∑(1) 由题意可知 n=1,x=3∴(2,4)x Be θ∴21ˆ243Eθ==+ (2) 由题意可知 1233,3,2,5n x x x ====∴(4,11)x Be θ∴44ˆ41115Eθ==+ 2.2 解:设X 为银行为顾客服务的时间,则()x p x e λλλ-=设λ的先验分布为(,)Ga αβ,则20.20.040.21ααβαββ⎧=⎪=⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 由题意可知 3.8x =从而有 ()()()x p x πλλπλ∝∙()11111n ni ii i x x nx n n n ee ee λβλλβαλβααλλλλ==⎛⎫⎪-+- ⎪-+--+-+-⎝⎭∑∑∝∙==因此有 (,)(20.04,76.2)x Ga n nx Ga λαβ++=所以有 20.04ˆ()0.2676.2E x λλ=== ()()()1110ˆ() 4.0021nnx n nx nx E x e d n n αλβαββθλλλλαα++∞-+--+-++==∙==Γ++-⎰ 2.3 解:设X 为磁带的缺陷数,则()X p θ∴3133311()()!ii x i i i i e p x p x x θθθθ=-==∑==∏∏由题意可知 ()21,02e θπθθθ-=>从而有 ()()3132104()i i x x p x e e e θθθπθθπθθθθ=---∑∝∙∝=因此 (11,4)x Ga θ11ˆ()()16EMSE Var x θθ== 2.4 解:设X 为n 个产品中不合格数,则(,)X bin n θ 由题意可知 ()49(1),01πθθθθ∝-<< (1) 由题意可知(20,)X bin θ∴317()(1)p x θθθ∝-∴()()()x p x πθθπθ∝∙31749726(1)(1)(1)θθθθθθ∝-∙-=- 因此 (8,27)x Be θ又626725()7(1)26(1)0x πθθθθθ'∝---所以 7ˆ33MD θ=(2) 由题意可知(20,)X bin θ 且()726(1)πθθθ=-∴20()(1)p x θθ∝-∴()()()x p x πθθπθ∝∙72620746(1)(1)(1)θθθθθ∝-∙-=-因此 (8,47)x Be θ所以 78ˆˆ,5355MD E θθ== 2.5 解:设2(,2)X N θ ,则222σ= 令2204nnσσ==设(,1)N u θ ,则1τ=,且211(,)x N u θτ其中 2201222200u x u στστστ------=+++22210111τστ=+214ˆ()()0.14EMSE Var x n θθτ===≤+ 2.6 解:设X 为1000名成年人中投赞成票的人数,则(1000,)X bin θ(1)由题意可知 7107102901000(710)(1),01p C θθθθ=-<<a.()()710290711290710(710)(1)(1)A p πθθπθθθθθθ∝∙∝-∙=-∴710(712,291)Be θb.()()7102903713290710(710)(1)(1)B p πθθπθθθθθθ∝∙∝-∙=-∴710(714,291)Be θ(2)a.712ˆ(710)0.7098712291E E θθ===+b. 714ˆ(710)0.7104714291E E θθ===+ (3)由题意可知10001000()(1),01xx x p x C θθθθ-=-<<a.()()100011000()(1)(1)x x x x A x p x πθθπθθθθθθ-+-∝∙∝-∙=-∴(2,1001)x Be x x θ+-∴2ˆ()1003EAx E x θθ+== b.()()1000331000()(1)(1)x x x x B x p x πθθπθθθθθθ-+-∝∙∝-∙=-∴(4,1001)x Be x x θ+-∴4ˆ()1005EB x E x θθ+==∴ˆEA θ-ˆEB θ=21003x +-41005x +=2.7 解:由题意可知 1(),0p x x θθθ=<<1(),0,1,2,...,i n p x x i n θθθ∴=<<=令{}1012max ,,,...,n x x x θθ=,则()101()()()n m x p x d n ααθαθθπθθαθ+∞+=∙=+⎰从而有 ()()111()(),()n n p x n x m x ααθπθαθπθθθθ++++==>11111()1ˆ()(1)n E n n n E x d n αααθαθθθθθθαθ++∞+++-+===+-⎰1221121()1()(2)n n n n E x d n αααθαθθθθθαθ++∞+++-+==+-⎰22222(1)1111ˆ()()()()(2)(1)En n MSE Var x E x E x n n ααθθθθαθαθ+-+-==-=-+-+- 2.8 解:(1)由题意可知 21221()2n x n p x x e θθθ--⎛⎫∝ ⎪⎝⎭()(1)e βαθπθθ--+∝因此 ()221(1)(1)22212xnx nn x x e e eββααθθθπθθθθ+-----++-+⎛⎫∝∝⎪⎝⎭所以 (,)22n xx IGa θαβ++(2)222()1222x Var x n n βθαα⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭2()12x E x nβθα+=+- (3) 由题意可知 2221()n nx p x eθθθ-⎛⎫∝ ⎪⎝⎭()22(1)2nx nx eβαθπθθ+--++∝2(,)22n nxx IGa θαβ∴++22ˆ12MDnx n βθα+∴=++ 22ˆ12E nxn βθα+=+-。
贝叶斯统计第二版第二章答案
(2) 由题意可知且 因此 所以 2.5 解:设,则 令 设,则,且 其中
2.6 解:设X为1000名成年人中投赞成票的人数,则 (1)由题意可知 a. b. (2)a.
b. (3)由题意可知 a. b. -=-= 2.7 解:由题意可知 令,则 从而有 2.8 解: (1)由题意可知 因此 所以 (2)
(3) 由题意可知第二章 贝 Nhomakorabea斯推断2.1 解:由题意可知 设是从随机变量X中抽取的随机样本,则 从而有 所以
(1) 由题意可知 n=1,x=3 (2) 由题意可知 2.2 解:设X为银行为顾客服务的时间,则 设的先验分布为,则 由题意可知 从而有
因此有 所以有 2.3 解:设X为磁带的缺陷数,则 由题意可知 从而有 因此 2.4 解:设X为n个产品中不合格数,则 由题意可知
贝叶斯统计_先验分布的确定
贝叶斯统计_先验分布的确定第三章先验分布的确定3.1 主观概率3.1.1概率的公理化定义定义:设Ω为⼀个样本空间,F 为Ω的某些⼦集组成的⼀个事件域,如果对任⼀事件A ∈F ,定义在F 上⼀个实值函数P(A)满⾜下列条件:(1)⾮负性公理:对于每⼀事件A ,有P(A)≥0;(2)正则性(规范性)公理:P(Ω)=1;(3)可列可加性(完全可加性)公理:设A 1,A 2,…是互不相容的事件,即对于i≠j ,A i A j =?,i ,j=1,2,…,则有11()()i i i i P A P A ∞∞===∑U则称P (A )为事件A 的概率(Probability),称三元素(Ω,F ,P)为概率空间(Probability space)。
概率是定义在σ-域F 上的⼀个⾮负的、正则的、可列可加的集函数。
3.1.2主观概率在经典统计中,概率是⽤三条公理定义的:1)⾮负性;2)正则性;3)可加性。
概率确定⽅法有两种:1)古典⽅法;2)频率⽅法。
实际中⼤量使⽤的是频率⽅法,所以经典统计的研究对象是能⼤量重复的随机现象,不是这类随机现象就不能⽤频率的⽅法去确定其有关事件的概率。
这⽆疑把统计学的应⽤和研究领域缩⼩了[1]。
在经典统计中有⼀种习惯,对所得到的概率都要给出频率解释,这在有些场所是难于做出的。
譬如,天⽓预报:“明天下⾬的概率是0.8”。
贝叶斯统计中要使⽤先验信息,⽽先验信息主要是指经验和历史资料。
因此如何⽤⼈们的经验和过去的历史资料确定概率和先验分布是贝叶斯学派要研究的问题。
贝叶斯学派是完全同意概率的公理化定义,但认为概率也是可以⽤经验确定。
这是与⼈们的实践活动⼀致。
这就可以使不能重复或不能⼤量重复的随机现象也可谈及概率。
同时也使⼈们积累的丰富经验得以概括和应⽤。
贝叶斯学派认为:⼀个事件的概率是⼈们根据经验对该事件发⽣可能性所给出个⼈信念。
这样给出的概率称为主观概率。
下⾯举⼏个例⼦:⼀个企业家认为“⼀项新产品在未来市场上畅销”的概率是0.8,这⾥的0.8是根据他⾃⼰多年的经验和当时⼀些市场信息综合⽽成的个⼈信念。
【贝叶斯统计答案】第二章+第三章
【贝叶斯统计答案】第二章+第三章第二章,,tpte(),,,2.2 解: 由题意,变量t服从指数分布:,,tni,pTe(),,,样本联合分布,,,,1,,,~(,),0Gae,,且, E()0.2,,Var()1,,,,,,,,(),由伽玛分布性质知:,,0.2,,,,0.04,0.2,,, ,,,,,1,2,,,t,3.8 又已知 n=20,nnnt,,,,,,20.04,76.2t,,,203.876,i,i ,所以 ,1,1ii由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布,,,,,,tt(),,,,,nn,,,11,,ii()()()tpTeee,,,,,,,,,,, GantGa(,)(20.04,76.2),,,,,即后验分布为 ,i,,n20.04,|TE()0.263,,,, ,t76.2,,i,1IGantIGa(,)(20.04,76.2),,,,,服从倒伽玛分布 ,,,,i,,t,i,,||1,TT()()4.002EE,,,,, 1,,n,11,,2.3可以算出的后验分布为,的后验期望估计的后验方差为. Ga(11,4)16 n,362.5只有个别人算错了,答案是.2.6大家差不多都做对了.,,,1,,,,,,/,,00,2.7的先验分布为:(), ,,,0,,,,0,,,,max,,,xx令 ,,101n,,,,,nn1,()/,,,,,,,,n11可得后验分布为:()x, ,,,0,,,,,1(),,,n1,Ex(),则的后验期望估计为:, ,n,,1,2(),,,n1后验方差为:. Varx(),,2(1)(2)nn,,,,,,n1,,,2.8由xGaIGa~(,),~(,)可以得出 22,n12()1n,,1x,2,22 pxxex,,,(),0n,()2,,,,(1),,,,(),0,,e ,,,,,(),,(1)的后验分布为:x,2,n,,,,(1),22, ,,,,,,()()()xpxe,,nxIGa(,),,,,即为倒伽玛分布的核。
贝叶斯统计学3
确定图形的曲线形式,并确定相应的超参 数和进行检验。
2020/7/20
14
3.3利用边缘分布m(x)确定先验分布
1.边缘分布m(x)特征 2.混合分布 3.先验分布选择的ML-Ⅱ方法 4 先验分布选择的矩法
)
2
2020/7/20
29
所以 m(x
,
2
)
2
(
2
2
)
n 2
exp
1 2
n i 1
( xi
xx
2
2
)2
2
(
2
2
)
n 2
exp
1 2
n
(xi x)2
i 1
2
2
n(x )2
2
2
2
(
2
2
)
n 2
exp
1 2
n
(xi x)2
i 1
2
2
exp
的合理程度。这里,把m(x)记为 m (x),表
示m(x)依赖于先验分布及其超参数,当观测值
x对二个不同的先验分布1和 2 有
m1 (x) m2 (x) 时的,支人持们。自这然样会人认们为也数自据然x对就会1比想对到利2 用提m供(更x)多这
一特征来确定先验分布(假定先验分布形式已 定时,实际上是先验分布的超参数)。
20
所以 m(x)
1
2
exp
1 2
C
B2 A
1
2 1
exp
1 21
贝叶斯统计茆诗松版大部分课后习题答案(精编新修订)
习题讲解一、1,3,5,6,10,11,12,151.1记样本为x.()()22682268(0.1)*0.1*0.90.1488(0.2)*0.2*0.80.29360.1488*0.70.10.54180.1488*0.70.2936*0.30.2936*0.30.20.45820.1488*0.70.2936*0.3p x C p x C x x θθπθπθ==≈==≈==≈+==≈+后验分布:()()()()()1113353680362(|)(1)*2(1)112(1)15(|)840(1),01m x p x d C d d p x x m x θπθθθθθθθθθθπθπθθθθ==--=-===-<<⎰⎰⎰1.61.11 由题意设x 表示等候汽车的时间,则其服从均匀分布(0,)U θ1,0()0,x p x θθ⎧<<⎪=⎨⎪⎩其它因为抽取3个样本,即,所以样本联合分布为123(,,)X x x x =12331,0,,()0,x x x p X θθ⎧<<⎪=⎨⎪⎩其它 又因为4192/,4()0,4θθπθθ⎧≥=⎨<⎩所以,利用样本信息得1233471192192(,)()() (8,0,,)h X p X x x x θθπθθθθθθ==⋅=≥<<于是788192()(,)m X h X d d θθθθ+∞+∞==⎰⎰的后验分布为θ76778(,)192/68()192()h X X m X d θθπθθθθ+∞⨯===⎰6768,8()0,8X θπθθθ⎧⨯≥⎪=⎨⎪<⎩1.12样本联合分布为:1(),0np x x θθθ=<< 1000/,()0,αααθθθθπθθθ+⎧>=⎨≤⎩{}110101()()()/1/,max ,,,n n n x p x x x αααπθθπθαθθθθθθ++++∝=∝>= 因此的后验分布的核为,仍表现为Pareto 分布密度函数的核θ11/n αθ++即1111()/,()0,n n n x αααθθθθπθθθ+++⎧+>=⎨≤⎩即得证。
贝叶斯统计大部分课后习题答案
贝叶斯统计大部分课后习题答案习题讲解一、1,3,5,6,10,11,12,151.1记样本为x.226pxC(0.1)*0.1*0.90.1488,,,,8226pxC(0.2)*0.2*0.80.2936,,,,8后验分布:0.1488*0.7,,,0.10.5418x,,,,0.1488*0.70.2936*0.3,0.2936*0.3,,,0.20.4582x,,,,0.1488*0.70.2936*0.3,111233536mxpxdCdd,,,,,,,(|)(1)*2(1)112(1),,,,,,,,,,,,,,,8,,,00015 px(|),,,,,36,,,,,x840(1),01,,,,,,,mx,,1.61.11 由题意设x表示等候汽车的时间,则其服从均匀分布 U(0,), 1,,,0,,x,,px(), ,,0,其它,Xxxx,(,,)因为抽取3个样本,即,所以样本联合分布为 123 1,,,0,,,,xxx,1233 ,,pX(),,其它0,,4,192/,4,,, 又因为 (),,,,0,4,,,所以,利用样本信息得1192192,,,,,,,,,,,,,hXpXxxx(,)()() (8,0,,) 123347,,, ,,,,192,,,,,mXhXdd()(,)于是 7,,88,,的后验分布为76hX(,)192/68,,, ()X,,,,,7,,192mX(),d,,78,6,68,,8,,,7 ()X,,,,,,0,8,,,1.12样本联合分布为:1pxx,,,,,(),0n,,,,1,,,,,,/,,00(),,,,0,,,,,0,,,,,,,nn11 ,,,,,,,,,,,,()()()/1/,max,,,xpxxx,,,,,,,0101n ,,,n1,因此的后验分布的核为,仍表现为Pareto分布密度函数的核 1/, ,,,,,nn1,()/,,,,,,,,n11即 ()x,,,,0,,,,,1即得证。
模式识别 第二章 贝叶斯决策论习题答案
2
= min p (ω1 x ) , p (ω2 x ) max p (ω1 x ) , p (ω2 x )
= p ω1 x p ω2 x
(
) (
)
所以, p ω1 x p ω2 x 能过给出误差率的下界。 d) 因为:
(
) (
)
pβ ( error ) = ∫ β p (ω1 x ) p ( ω2 x ) p ( x ) dx
α 4
∫
Hale Waihona Puke +∞p ( x ) dx <
显而易见: pα ( error ) < p ( error ) ,因此当 α < 2 时,无法得到误差率的上界。 c) 因为:
p ( error x ) ≥ p ( error x ) − p ( error x ) = p ( error x ) 1 − p ( error x )
i =1 ωi ≠ωmax
∑ P (ω x ) p ( x ) d x
i
c
= ∫ 1 − P (ωmax x ) p ( x ) dx = 1 − ∫ P (ωmax x ) p ( x ) dx
d) 续上式:
(
)
P ( error ) = 1 − ∫ P (ωmax x ) p ( x ) dx ≤ 1− ∫ 1 1 c −1 p ( x ) dx = 1 − = c c c
n t
′ ′ ′ Σ′ = ∑ ( x′ k − μ )( x k − μ )
k =1 n
= ∑ Tt ( x 0 k − μ )( x 0 k − μ ) T
t k =1
n t = Tt ∑ ( x 0 k − μ )( x 0 k − μ ) T k =1 = T t ΣT
贝叶斯统计知识整理
只能据先验分布对 作出推断。在有样本观察值 x=( x1 ,…, xn )之后,我们依据 h(x, ) 对 作出推断。为此我们需把 h(x, ) 作如下分解:
h(x, ) ( x)m(x)
其中 m(x)是 x 的边缘密度函数。
m(x) h(x, )d p(x ) ( )
它与 无关,或者说,m(x)中不含 的任何信息。因此能用来对 作出推断
中有关 的一切信息,而又是排除一切与 无关的信息之后所得到的的结果。
(三)贝叶斯公式的离散形式
是离散随机变量时,先验分布可用先验分布列 (i ) ,i=1,2,…,表示。这
时后验分布也是离散形式。
( i | x )
p ( x | i ) ( i ) ,i 1,2, p ( x | j ) ( j )
( ) 0
( )
Var ( X ) 2
4.伽马分布的特性
(1)当α=1,伽玛分布就是指数分布 (2)当α=1/2 1/ 2 时,伽马分布称为自由度为 n 的卡方分布。 (二)贝塔分布
1.贝塔函数
B(a,b) 1 xa1(1 x)b1dx 0
称为贝塔函数,其中参数 a>0,b>0 贝塔函数的性质 2.
2.二项分布中的成功概率 的共轭先验分布是贝塔分布。 设总体 X ~ b(n, ) ,其密度函数中与 有关的部分为 x (1 )nx 。又设 的 先验分布为贝塔分布 Be( , ) ,其核为 1(1 ) 1 ,其中 , 已知,从而可 写出 的后验分布
,
立即可以看出,这是贝塔分布
的核,故此后验密度为
(1)B(a,b) B(b, a) (2)B(a,b) (a)(b) (a b)
3.贝塔分布
若随机变量 X 具有概率密度函数:
贝叶斯统计茆诗松版大部分课后习题答案培训讲学
贝叶斯统计前诗松版大部分课后习题答案习题讲解一、1,3,5,6,10,11,12,15 1.1记样本为X.p{x\e = 0.1) = C ;* 0.12 * 0.96 « 0.1488 p{x\O = 0.2) = C ; *0.22 *0.86 « 0.2936 后验分布:11 / g \(x) = j p (x\e )7i (e )do = J 0\\-o )5den cA 彳丿心)= /^尹)=504心)「<°<]O<0<1其它=£ p (x | o )7t[oye=£ c^(i-oy * 2(i - o )do=J ;ii2 夕(i —&)%&=£ 龙(即)_84o/(i&)G ,O <<9<1' 7m(x)1.6龙(0 = 0・1卜)=0.1488*0.70.1488*0.7 + 0.2936*0.3 a 0.5418 ^•(<9 = 0.2 |x) = 0.2936*030.1488*0.7 + 0.2936*0.3 « 0.45821.3⑴兀(兀)=]介0<0<1苴它检验8个产品力• 3个不合格77710 0(2)证明:iiLYl.X?…助 是来门泊松分布尸(久)的•个样木观察值C 此样木的似然函数为:现取伽玛分布Ga(a^)作为泊松分布J5jfiU 的先验分布,即旳=鬆几3几<+°°参数几的后验分俗为兀(久X )X p(x | A)TT(A) GC A 服从伽坞分布Ga (工F + Q 少+ “)r=lMl 由题意设x 表示等候汽车的时间,贝IJ 其服从均匀分布"(09)因为抽取3个样本,即X=3心应),所以样本联合分布为所以,利用样本信息得1 [92 io?h(X^)= p(X \0)^0)= — — = —(恥&0 <心兀,兀<&) 于是加(x )= J ; °的后验分布为pg 几)=話曲°次・—00 < XI,…,< +00y Xi^a-i1=1丘-(0+")几P W =I , O<X<00, 其它p(X) = ” '0<x p x 2,x 3 <0其它又因为龙(&) =192/护, 0.<9>4 <9<41.12样本联合分布为:龙(&卜)oc P (xI&)%(&) = a 琉 / 严皿1 oc 1 / 严出,& > q = max {q 片…,x n }因此&的后验分布的核为l/r +n+1.仍表现为Pmeto 分布密度函数的核即得证。
贝叶斯统计-习题答案)
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(53531161453153531533853381<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x e x x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯分析第2章
§2.4假设检验一、假设检验经典统计中处理假设检验问题的基本步骤:1.提出检验假设又称无效假设,符号是H 0;备择假设的符号是H 1。
Θ∈00:θH , Θ∈11:θH其中10ΘΘ和是参数空间中互不相交的两个非空子集。
H 0和H 1假设都是对总体特征的检验假设,相互联系且对立。
H 0总是假设样本差别来自抽样误差,零假设。
H 1是来自非抽样误差,有单双侧之分,备择假设。
预先设定的检验水准为05.0;当检验假设为真,但被错误地拒绝的概率,记作α,通常取05.0=α或1.0=α。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如x 2值、t 值等。
根据资料的类型和特点,可分别选用Z 检验,T 检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性p 的大小并判断结果。
若α>p ,结论为按α所取水准不显著,不拒绝0H ,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果α≤p ,结论为按所取α水准显著,拒绝H 0,接受H 1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。
p 值的大小一般可通过查阅相应的界值表得到。
大家可以看到用经典统计十分繁琐,而且在抽样分布不确定时我们无法进行即可计算二个假设检验10H H 和的后验概率:0,当后验概率比进一步搜集先验信息。
从上面两种方法可以看出,贝叶斯假设检验是简单的,无需选择检验统计量,确定抽样分布,也无需事先给出显著性水平,确定其拒绝域,此外,贝叶斯假设检验也容易推广到多重假设检验场合,当有三个和是三个以上假设时,应接受具有最大后验概率的假设。
二、贝叶斯因子定义2.4 设两个假设0Θ与1Θ的先验概率分别为0π与1π,后验概率分别为0α与1α,则称:为贝叶斯因子。
从这个定义可见,贝叶斯因子既依赖于数据x 又依赖于先验分布π,对两种机会比相除,很多人认为,这会减弱先验分布的影响,突出数据的影响,从这个角度看,贝叶斯因子()x B π是数据x 支持0Θ的程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【贝叶斯统计答案】第二章+第三章第二章
,,tpte(),,,2.2 解: 由题意,变量t服从指数分布:
,,tni,
pTe(),,,样本联合分布
,,,,1,,,~(,),0Gae,,且, E()0.2,,Var()1,,,,,,,,(),
由伽玛分布性质知:
,,0.2,,,,0.04,0.2,,, ,,,,,1,2,,,
t,3.8 又已知 n=20,
nn
nt,,,,,,20.04,76.2t,,,203.876,i,i ,所以 ,1,1ii
由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布,,,,,,tt(),,,,,nn,,,11,,ii()()()tpTeee,,,,,,,,,,, GantGa(,)(20.04,76.2),,,,,即后验分布为 ,i
,,n20.04,|TE()0.263,,,, ,t76.2,,i
,1IGantIGa(,)(20.04,76.2),,,,,服从倒伽玛分布 ,,,,i
,,t,i,,||1,TT()()4.002EE,,,,, 1,,n,
11,,2.3可以算出的后验分布为,的后验期望估计的后验方差为. Ga(11,4)16 n,362.5只有个别人算错了,答案是.
2.6大家差不多都做对了.
,,,1,,,,,,/,,00,2.7的先验分布为:(), ,,,0,,,,0,
,,,max,,,xx令 ,,101n
,,,,,nn1,()/,,,,,,,,n11可得后验分布为:()x, ,,,0,,,,,1
(),,,n1,Ex(),则的后验期望估计为:, ,n,,1,2(),,,n1后验方差为:. Varx(),,2(1)(2)nn,,,,,,
n1,,,2.8由xGaIGa~(,),~(,)可以得出 22,
n12()1n,,1x,2,22 pxxex,,,(),0n,()2
,,,,(1),,,,(),0,,e ,,,,,(),
,(1)的后验分布为:
x,2,n,,,,(1),22, ,,,,,,()()()xpxe,,
nxIGa(,),,,,即为倒伽玛分布的核。
22
nxIGa(,),,,,,所以的后验分布为 22
x,,x,2,2(2)后验均值为 Ex(),,,nn22,,,1,,,2
x2(),,2后验方差为 Varx(),,nn2(1)(2),,,,,,22
(3)样本分布函数为:
nnn,1,,n,xnn2i,,1(2),,2,,,1i2
pxpxxe()(),,,,ii,,,,n(/2),,,11ii,,,,
,所以的后验分布为:
nx,2,i,2n,1i,,,,(1),22,,,,,,,()()()xpxe ,,
n
x,2in,1i(,),,,,即为IGa的核。
22
n1n21(),n,,xni,,,1,2,,,(1)n,,2,12i,
(xpxxee,,)()()[]*,,,,,,i,n,(),,1i,()2(dx,,)令 ,0d,
即:
nnnn1,,22,,xxii,,222x,,
2()nnn,2i,,,11iin,,,,,,,,,121,,n,n,1i222222,,xee,,,,,[][(1)*]0,,,i,2n,( )22,,,1i,()2
n
xn,i,1ix,2,,,,i,2,1i,,可得 ,MD22nn,,22,,,1,2
n
xn,i,1ix,2,,,,i,2,1i,,而由公式得 ,E22nn,,22,,,1,2
因此,倒伽玛分布的这两个估计是不一样的,原因是它不对称。
2.10解:已知 xNN~(,1),~(3,1),,
2,N(,),,设的后验分布为 11
可得:
,22,,x,,,,0,,1,,22 ,,,0
111
,,222 ,,,10
2,243,,,12由已知得:x,,3, ,,,03n3
333111,,,2,, ?,,,,3,1131134,,
,所以的95,的可信区间为: [30.51.96,30.51.96],,,,即为. [2.02,3.98] 222.11已知 xNIGa~0,,~,,,,,,,,,
nn1,,22可得的后验分布为 ,,IGax,,,,,i,,22,1i,,
n12,x,,i2,1iˆ后验均值为: ,,En,,1,2
2n1,,2,,x,i,,2i,12,,Varx,后验方差为: ,,,
2nn,,,,,,,,12,,,,,,22,,,,
变换:
n11n,,2 ,,~,Gax,,,i,,222,,1i,,
n1,,n,,,,22 ,,,2~2,,x,i,,,,2,,2,,,,1,,i,,
n,,1,,22Pxn,,,令:220.9,,,, ,,,0.1,,i,,2,,1,,i,,
n22,,x,i2,1i可得的0.9可信上限为. ,2n,2,,,,0.1
,,,1,,,,,,/,,00,2.12的先验分布为:(), ,,,0,,,,0,,,,max,,,xx
令 ,,101n
,,,,,nn1,()/,,,,,,,,n11可得后验分布为: ()x,,,,0,,,,,1
,1,,设的可信上限为, U,U则 ,,,,xd,,1,,,,1
带入有:
,U,,,nn1,,()/1,,,,,,,,nd1,,1
,n,,1 ,,,,n,,U
1,n1,,,,,U1,,,,,,,
三、10,11,12,13
3.10解:依题意
1x,,pxxexp,0,,,,,,,,,,,,
0.01,,,20.01exp,0,,,,,,,,,,,,,,
,,0.01x,,,,3则mxpxdd0.01exp,,, ,,,,,,,,,,,,,,,,0,,,,
0.01,0x,,2x0.01,,,
该元件在时间之前失效的概率200:
2002000.01pmxdxdx,,,0.99995,,2,,00x0.01,,,
3.11:解依题意
xi,,,iipxe,,,,iix!i
,,,,1i,,,,,e,0,,,,,,iii,,,,
xi,,,,,,1i ii,,,,,,mxpxdeed,,,,,,,,iiiiiii,,,,,,,,0x!,,,i,, ,,,,,x,,ix,i,,,,1!x,,,,i,,nnn,,,,
x,,,i,mxmx,,,,,,,,,,,ix,i,,ii,,11,,,,1!x,,,,,i,,
3.12,,解:超参数和的似然函数为
333,,,335,,,,,,,xf,,,,,,,,,,,,,,,,,,i,,L,,,,其中,,,,338383x,,,,,,i1i,7201!13!5!1,,,x,,,,,,,,,,,,,,,,,,,i,,,,,,
2221234.f,,,,,,,,,,,,,,,,,,,,,
由
,,,L ,,,,38,,0,,,,,,,,,,,1,,,,,,3ln,,Lff,,,,,,,,,,,,,,0,,,, ,,,,,从而有:
38,,,,3lnff,,,,,,,,3,,,,,
3,1.033599=0.3875996利用软件计算,可得,,,,,83.13证明:泊松分布的期望和方差分别为
2,.,,,,,,,,,,,,
,,1,,,,,,=,0,e,,,,,,,,,,,,
,,,,,,,,,,,,ed,,m,,,,,,0,,,,,
x,22,,,,,,,,,,,EE,,,,,,,,,,,,,221,
2,,,,2,,,,,,,,,,,,,,,,,,,,,,,,,,,EE,,,,
m,,,,22,,,,,,,,,,,,,,,,,,
2,,,,,,,m2,,,,,利用样本矩代替边际分布的矩,列出如下方程: ,,,x,,,,,,2,,,S2,,,,
2 ,,x,,2,,Sx,,,,x,,2,,Sx,,。