概率论第二章习题解答
概率论第二章习题答案
概率论第二章习题答案习题1:离散型随机变量及其分布律设随机变量X表示掷一枚公正的六面骰子得到的点数。
求X的分布律。
解答:随机变量X的可能取值为1, 2, 3, 4, 5, 6。
由于骰子是公正的,每个面出现的概率都是1/6。
因此,X的分布律为:\[ P(X=k) = \frac{1}{6}, \quad k = 1, 2, 3, 4, 5, 6 \]习题2:连续型随机变量及其概率密度函数设随机变量Y表示从标准正态分布中抽取的数值。
求Y的概率密度函数。
解答:标准正态分布的概率密度函数为高斯函数,其形式为:\[ f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad -\infty < y < \infty \]习题3:随机变量的期望值已知随机变量X的分布律为:\[ P(X=k) = p_k, \quad k = 1, 2, ..., n \]求X的期望值E(X)。
解答:随机变量X的期望值定义为:\[ E(X) = \sum_{k=1}^{n} k \cdot p_k \]习题4:随机变量的方差继续使用习题3中的随机变量X,求X的方差Var(X)。
解答:随机变量X的方差定义为期望值的平方与每个值乘以其概率之和的差:\[ Var(X) = E(X^2) - (E(X))^2 \]其中,\( E(X^2) = \sum_{k=1}^{n} k^2 \cdot p_k \)习题5:二项分布设随机变量X表示n次独立伯努利试验中成功的次数,每次试验成功的概率为p。
求X的分布律和期望值。
解答:X服从参数为n和p的二项分布。
其分布律为:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n \]X的期望值为:\[ E(X) = np \]结束语:以上是概率论第二章的一些典型习题及其解答。
概率论第二章习题解答
概率论第二章习题1 考虑为期一年的一保险单,若投保人在投保一年意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。
若投保人在一年因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。
解 设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010;2.(1)一袋中装有5只球,编号为1,2,3,4,5。
在袋中同时取3只,以X 表示取出的3只球中的最大,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。
解 (1)在袋中同时取3个球,最大的是3,4,5。
每次取3个球,其总取法:35541021C ⋅==⋅,若最大是3,则有取法只有取到球的编号为1,2,3这一种取法。
因而其概率为 22335511{3}10C P X C C ==== 若最大为4,则为有1,2,4;1,3,4; 2,3,4共3种取法, 其概率为23335533{4}10C P X C C ==== 若最大为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为 25335566{5}10C P X C C ==== 一般地 3521)(C C x X p x -==,其中21-x C 为最大是x 的取法种类数,则随机变量X 的分布律为(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,则样本点为S={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件,X的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X==;最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X==;最小点数为3的共有7种,7 {3}36P X==;最小点数为4的共有5种,5 {4}36 P X==;最小点数为5的共有3种,3 {5}36P X==;最小点数为6的共有1种,1 {6}36 P X==3 设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品的次数,(1)求X的分布律;(2)画出分布律的图形。
概率论第二章习题解答
a
b X t
ba
0
F
t
t b
a a
1
ta at b bt
2024年8月31日7时2分
P44 2.4.1 X ~ U 0,10,均匀分布 0, x 0
概率密度f
方程x2
x
1
=10
,
0,
Xx 1
0 x 10 分布函数F 其它
0有实根,
x
x 10 1
0 x 10 10 x
=X 2 4 0 X 2
1 P A1 A2 A3 1 P A1 A2 A3 1 P A1A2 A3
1 P A1 P A2 P A3 1 0.9730633 0.078654
设Y “3人维修的90台设备发生故障的台数”
近似
则Y ~ B 90,0.01, 2 =np 90 0.01 0.9,Y ~ 0.9
Probability
2024年8月31日7时2分
第二章 随机变量及其分布 P35练习2.2
1
P
X
k
k
A
k 1
k
1, 2,
,且
k 1
k
A
k 1
1
1
k 1
k
A
k 1
A
k 1
k
1
k 1
A 11
1 2
1 2
1 3
1 3
1 4
A
A1
2024年8月31日7时2分
P35练习2.2
2 解:设X =8次射击击中目标次数,则X ~ N 8,0.3
2024年8月31日7时2分
P49 2.5.1 Y sin X 1,0,1
X
概率论第二章习题及答案
三、一些常用的离散型随机变量
1) Bernoulli分布 如果随机变量 X 的分布律为
PX 0 1 p q , PX 1 p
或
P{ X k } p q
X P
k 1 k
(k 0 , 1)
1 p
0 1-p
则称随机变量 X 服从参数为 p 的 Bernoulli分布. 记作 X ~ B1 , p . 其中0 p 1 为参数
第二章 随机变量及其分布
一、 随机变量的定义
设E是一个随机试验,S是其样本空间.若对每一个
S , 都有唯一确定的一个实 数X 与之对应 , 则称
X 为一个随机变量.
S
X
R
第二章 习题课
二、离散型随机变量的分布律
设离散型随机变量 X 的所有可能取值为 x1 , x2 , , xk , 并设
如果连续型随机变量X 的密度函数为 (I)
1 2 2 x f x e 2 其中 , 0 为参数, 则称随机变量X 服从参数为 , 2 的
正态分布.记作
f (x)
x 2
X ~ N ,
2
0
第二章 随机变量及其分布
4)几 何 分 布
若随机变量 X 的分布律为
PX k q k 1 p
k 1, 2,
其中 p 0,q 0,p q 1
则称随机变量 X 服从参数为 p的几何分布.
返回主目录
第二章 随机变量及其分布
5)超 几 何 分 布
如果随机变量 X 的分布律为
x
f ( t )dt,
概率论课本答案2(龙版)
第二章 (证明题略)练习2-1练习题1. 2. 3. 见教材P259页解答。
4.解:X: 甲投掷一次后的赌本。
Y :乙……… 21214020p x 21213010Y p⎪⎩⎪⎨⎧≥<≤<=40,14020,2120,0)(F ~x x x x x X ⎪⎩⎪⎨⎧≥<≤<=30,13010,2110,0)(F ~Y x x x y Y5.解(1)∑∑∑∑=====⇒=⇒=⇒==10011001100110012112121)(i ii i i i ia a a i x p(2)31211112112121)(1111=⇒=--⇒=⇒=⇒=⇒==∑∑∑∑∞=∞=∞=∞=a a a a ai x p i i i i i i i6.解 21 51 101512 0 25X --p 7.解(1)X:有放回情形下的抽取次数。
P (取到正品)=107C C 11017=P (取到次品)=103 107)103( 107)103( 107103,107i 3 2 1X 1-i 2 ⋅p(2)Y:无放回情形下。
778192103 87 92103 97 103 1074 3 2 1 Y ⋅⋅⋅⋅⋅⋅p8.解54511)5(1)3(1)3P(=-=-=-=-≤-=->X p X p X 542)P(X 0)P(X )2()33()3X P(==+=+-==<<-=<X p X p 107)5()2()3()1()21P(2)1()21X P(=-=+==-<+>=-<++>+=>+X p X p X p X p X X p9.解(1)根据分布函数的性质11)1()(2lim 1lim 1=⇒=⇒=++→→A Ax F x F x x(2))5.0()8.0()8.05.0(F F X P -=≤<225.08.0-==0.3910.解:依据分布满足的性质进行判断: (1)+∞<<∞-x单调性:+∞<<<⇒<x x F x F x x 0).()(2121在时不满足。
概率论第二章习题解答(全)
概率论第二章习题1考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。
解设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010;0.9988,于是得分布律为X20(万)5万0xp 0.00020.00100.99882.(1)一袋中装有5只球,编号为1,2,3,4,5。
在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。
解(1)在袋中同时取3个球,最大的号码是3,4,5。
每次取3个球,其总取法:35541021C ⋅==⋅,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。
因而其概率为22335511{3}10C P X C C ====若最大号码为4,则号码为有1,2,4;1,3,4;2,3,4共3种取法,其概率为23335533{4}10C P X C C ====若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为25335566{5}10C P X C C ====一般地3521)(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为X 345xp 101103610(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,则样本点为S ={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件,X 的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X ==;最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X ==;最小点数为3的共有7种,7{3}36P X ==;最小点数为4的共有5种,5{4}36P X ==;最小点数为5的共有3种,3{5}36P X ==;最小点数为6的共有1种,1{6}36P X ==于是其分布律为X 123456kp 11369367365363361363设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品的次数,(1)求X 的分布律;(2)画出分布律的图形。
《概率论与数理统计》习题及答案 第二章
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论第二章练习答案
《概率论》第二章练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。
2. 设连续型随机变量的概率密度函数为:ax+b 0<x<1f (x) =0 其他且EX =31,则a = _____-2___________, b = _____2___________。
3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE 5. 已知X 的密度为=)(x ϕ 0b ax + 且其他,10<<x P (31<x )=P(X>31) , 则a = ,b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。
7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则P (ξ=)= 0 ;)62.0(<<ξP = 。
8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。
2100xx≥100 ∴ϕ(x)=0 其它P (ξ≥150)=1-F(150)=1-⎰⎰=-+=+=150100150100232132********x dx x [P(ξ≥150)]3=(32)3=2789. 设随机变量X 服从B (n, p )分布,已知EX =,DX =,则参数n =___________,P =_________________。
概率论第二章练习答案解析
《概率论》第二章 练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x 其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。
⎰==≤412021)21(xdx X P649)43()41()2(1223===C Y p 2. 设连续型随机变量的概率密度函数为:ax+b 0<x<1f (x) =0 其他 且EX =31,则a = _____-2___________, b = _____2___________。
⎪⎪⎩⎪⎪⎨⎧=+=+→⎰⎰解之31)(011)(01dx b ax x dx b ax 3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE =+)104(ξD []32161622=-=)(ξξξE E D 5. 已知X 的密度为=)(x ϕ 0b ax + 且其他,10<<x P (31<x )=P(X>31) ,则a = , b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:4723=-=b a ,6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。
7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则 P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。
8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。
概率统计(概率论)第二章练习题答案及解析
第二章习题与答案同学们根据自己作答的实际情况,并结合总正误率和单个题目正误统计以及答案解析来总结和分析习题!!!标红表示正确答案标蓝表示解析1、为掌握商品销售情况,对占该地区商品销售额60%的10家大型商场进行调查,这种调查方式属于( )。
A普查B抽样调查【解析:抽取一部分单位进行调查;习惯上将概率抽样(根据随机原则来抽取样本)称为抽样调查】C重点调查【解析:在调查对象中选择一部分重点单位进行调查的一种非全面调查】D统计报表2、人口普查规定标准时间是为了()。
A确定调查对象和调查单位B避免资料的重复和遗漏。
C使不同时间的资料具有可比性D便于登记资料【解析:规定时间只是为了统计该时间段内的人口数据,没有不同时间数据对比的需要】3、对一批灯泡的使用寿命进行调查,应该采用( )。
A普查 B重点调查 C典型调查D抽样调查4、分布数列反映( )。
A总体单位标志值在各组的分布状况B总体单位在各组的分布状况【解析:课本30页1.分布数列的概念一段最后一句】C总体单位标志值的差异情况D总体单位的差异情况5、与直方图比较,茎叶图( )。
A没有保留原始数据的信息B保留了原始数据的信息【解析:直方图展示了总体数据的主要分布特征,但它掩盖了各组内数据的具体差异。
为了弥补这一局限,对于未分组的原始数据则可以用茎叶图来观察其分布。
课本P38】C更适合描述分类数据D不能很好反映数据的分布特征6、在累计次数分布中,某组的向上累计次数表明( )。
A大于该组上限的次数是多少B大于该组下限的次数是多少C小于该组上限的次数是多少【解析:向上累计是由变量值小的组向变量值大的组累计各组的次数或频率,各组的累计次数表明小于该组上限的次数或百分数共有多少。
课本P33】D小于该组下限的次数是多少7、对某连续变量编制组距数列,第一组上限为500,第二组组中值是750,则第一组组中值为 ( )。
A. 200B. 250C. 500D. 300【解析:组中值=下限+组距/2=上限+组距/2】8、下列图形中最适合描述一组定量数据分布的是( )。
概率论与数理统计第二章课后习题及参考答案.
概率论与数理统计第二章课后习题及参考答案1.离散型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=≤=.4,1,42,7.0,21,2.0,1,0)()(x x x x x X P x F 求X 的分布律.解:)0()()(000--==x F x F x X P ,∴2.002.0)01()1()1(=-=----=-=F F X P ,5.02.07.0)02()2()2(=-=--==F F X P ,3.07.01)04()4()4(=-=--==F F X P ,∴X 的分布律为2.设k a k X P 32()(==, ,2,1=k ,问a 取何值时才能成为随机变量X 的分布律.解:由规范性,a a a n n k k 2321]32(1[32lim)32(11=--=⋅=+∞→∞+=∑,∴21=a ,此时,k k X P 32(21)(⋅==, ,2,1=k .3.设离散型随机变量X 的分布律为求:(1)X 的分布函数;(2)21(>X P ;(3))31(≤≤-X P .解:(1)1-<x 时,0)()(=≤=x X P x F ,11<≤-x 时,2.0)1()()(=-==≤=X P x X P x F ,21<≤x 时,7.0)1()1()()(==+-==≤=X P X P x X P x F ,2≥x 时,1)2()1()1()()(==+=+-==≤=X P X P X P x X P x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=.2,1,21,7.0,11,2.0,1,0)(x x x x x F .(2)方法1:8.0)2()1()21(==+==>X P X P X P .方法2:8.02.01)21(121(1)21(=-=-=≤-=>F X P X P .(3)方法1:1)2()1()1()31(==+=+-==≤≤-X P X P X P X P .方法2:101)01()3()31(=-=---=≤≤-F F X P .4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的概率都是0.4,而当第一组成功时,每年的销售额可达40000元;当第二组成功时,每年的销售额可达60000元,若失败则分文全无.以X 记这两种新药的年销售额,求X 的分布律.解:设=i A {第i 组取得成功},2,1=i ,由题可知,1A ,2A 相互独立,且4.0)()(21==A P A P .两组技术人员试制不同类型的新药,共有四种可能的情况:21A A ,21A A ,21A A ,21A A ,相对应的X 的值为100000、40000、60000、0,则16.0)()()()100000(2121====A P A P A A P X P ,24.0)()()()40000(2121====A P A P A A P X P ,24.0)()()()60000(2121====A P A P A A P X P ,36.0)()()()0(2121====A P A P A A P X P ,∴X 的分布律为5.对某目标进行独立射击,每次射中的概率为p ,直到射中为止,求:(1)射击次数X 的分布律;(2)脱靶次数Y 的分布律.解:(1)由题设,X 所有可能的取值为1,2,…,k ,…,设=k A {射击时在第k 次命中目标},则k k A A A A k X 121}{-== ,于是1)1()(--==k p p k X P ,所以X 的分布律为1)1()(--==k p p k X P , ,2,1=k .(2)Y 的所有可能取值为0,1,2,…,k ,…,于是Y 的分布律为1)1()(--==k p p k Y P , ,2,1,0=k .6.抛掷一枚不均匀的硬币,正面出现的概率为p ,10<<p ,以X 表示直至两个面都出现时的试验次数,求X 的分布律.解:X 所有可能的取值为2,3,…,设=A {k 次试验中出现1-k 次正面,1次反面},=B {k 次试验中出现1-k 次反面,1次正面},由题知,B A k X ==}{,=AB ∅,则)1()(1p p A P k -=-,p p B P k 1)1()(--=,p p p p B P A P B A P k X P k k 11)1()1()()()()(---+-=+=== ,于是,X 的分布律为p p p p k X P k k 11)1()1()(---+-==, ,3,2=k .7.随机变量X 服从泊松分布,且)2()1(===X P X P ,求)4(=X P 及)1(>X P .X 100000060000400000P0.160.240.240.36解: )2()1(===X P X P ,∴2e e2λλλλ--=,∴2=λ或0=λ(舍去),∴224e 32e !42)4(--===X P .)1()0(1)1(1)1(=-=-=≤-=>X P X P X P X P 222e 31e 2e 1----=--=.8.设随机变量X 的分布函数为⎩⎨⎧<≥+-=-.0,0,0,e )1(1)(x x x x F x 求:(1)X 的概率密度;(2))2(≤X P .解:(1)⎩⎨⎧<≥='=-.0,0,0,e )()(x x x x F x f x ;(2)2e 31)2()2(--==≤F X P .9.设随机变量X 的概率密度为xx Ax f e e )(+=-,求:(1)常数A ;(2))3ln 210(<<X P ;(3)分布函数)(x F .解:(1)⎰⎰+∞∞--+∞∞-+==xAx x f xx d e e d )(1A A x A x x x 2|e arctan d e 21e 2π==+=∞+∞-∞+∞-⎰,∴π2=A .(2)61|e arctan 2d e e 12)3ln 210(3ln 2103ln 210==+=<<⎰-x xx x X P ππ.(3)x xx x xx t t f x F e arctan 2d e e 12d )()(ππ=+==⎰⎰∞--∞-.10.设连续型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<-+-≤=.a x a x a a x B A a x x F ,1,,arctan ,,0)(其中0>a ,试求:(1)常数A ,B ;(2)概率密度)(x f .解:(1) 2arcsin (lim )0()(0)(π⋅-=+=+-=-=+-→B A a x B A a F a F a x ,1)(lim )0()(2==+==⋅++→x F a F a F B A a x π,∴21=A ,π1=B .(2)⎪⎩⎪⎨⎧≥<-='=.a x a x x a x F x f ,0,,1)()(22π.11.设随机变量X 的概率密度曲线如图所示,其中0>a .(1)写出密度函数的表达式,求出h ;(2)求分布函数)(x F ;(3)求)2(a X aP ≤<.解:(1)由题设知⎪⎩⎪⎨⎧≤≤-=其他.,0,0,)(a x x ah h x f 2d )(d )(10ahx x a h h x x f a=-==⎰⎰+∞∞-,∴ah 2=,从而⎪⎩⎪⎨⎧≤≤-=其他.,0,0,22)(2a x x a a x f .y hO a x(2)0<x 时,0d 0d )()(===⎰⎰∞-∞-xxt t t f x F ,a x <≤0时,220202d )22(d 0d )()(a x a x t t a a t t t f x F xx-=-+==⎰⎰⎰∞-∞-,a x ≥时,1)(=x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.a x a x axa x x x F ,1,0,2,0,0)(22.(3)41411(1)2()()2(=--=-=≤<a F a F a X a P .12.设随机变量X 在]6,2[上服从均匀分布,现对X 进行三次独立观察,试求至少有两次观测值大于3的概率.解:由题意知⎪⎩⎪⎨⎧≤≤=其他.,0,62,41)(x x f ,记3}{>=X A ,则43d 41)3()(63==>=⎰x X P A P ,设Y 为对X 进行三次独立观测事件}3{>X 出现的次数,则Y ~43,3(B ,所求概率为)3()2()2(=+==≥Y P Y P Y P )(()(333223A P C A P A P C +=3227)43(41)43(333223=+⋅=C C .13.设随机变量X 的概率密度为⎩⎨⎧<<=其他.,0,10,3)(2x x x f 以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,求:(1)}21{≤X 至少出现一次的概率;(2)}21{≤X 恰好出现两次的概率.解:由题意知Y ~),3(p B ,其中81d 321(2102==≤=⎰x x X P p ,(1)}21{≤X 至少出现一次的概率为512169)811(1)1(1)0(1)1(33=--=--==-=≥p Y P Y P .(2)}21{≤X 恰好出现两次的概率为51221811(81()1()2(223223=-=-==C p p C Y P .14.在区间],0[a 上任意投掷一个质点,以X 表示这个质点的坐标.设这个质点落在],0[a 中任意小区间内的概率与这个小区间的长度成正比例.试求X 的分布函数.解:0<x 时,事件}{x X ≤表示X 落在区间],0[a 之外,是不可能事件,此时0)()(=≤=x X P x F ;a x ≤≤0时,事件}{x X ≤发生的概率等于X 落在区间],0[x 内的概率,它与],0[x 的长度x 成正比,即x k x X P x F =≤=)()(,a x =时,1)(=≤x X P ,所以a k 1=,则此时axx F =)(;a x ≥时,事件}{x X ≤是必然事件,有1)(=x F ,综上,⎪⎪⎩⎪⎪⎨⎧≥<≤<=,a x a x a x x x F ,1,0,,0,0)(.15.设X ~),2(2σN ,又3.0)42(=<<X P ,求)0(>X P .解:)24222()42(σσσ-<-<-=<<X P X P 3.0)0(2(=Φ-Φ=σ,∴8.03.0)0()2(=+Φ=Φσ,∴8.0)2()2(1)0(1)0(=Φ=-Φ-=≤-=>σσX P X P .16.设X ~)4,10(N ,求a ,使得9.0)10(=<-a X P .解:)10()10(a X a P a X P <-<-=<-)22102(a X a P <-<-=)2()2(a a -Φ-Φ=9.01)2(2=-Φ=a,∴95.0)2(=Φa,查标准正态分布表知645.12=a,∴290.3=a .17.设X ~)9,60(N ,求分点1x ,2x ,使得X 分别落在),(1x -∞,),(21x x ,),(2∞x 的概率之比为3:4:5.解:由题知5:4:3)(:)(:)(2211=><<<x X P x X x P x X P ,又1)()()(2211=>+<<+<x X P x X x P x X P ,∴25.041)(1==<x X P ,33.031)(21==<<x X x P ,125)(2=>x X P ,则5833.0127)(1)(22==>-=≤x X P x X P .25.0)360()360360()(111=-Φ=-<-=<x x X P x X P ,查标准正态分布表知03601<-x ,∴03601>--x ,则75.0)360(1)360(11=-Φ-=--Φx x 查标准正态分布表,有7486.0)67.0(=Φ,7517.0)68.0(=Φ,75.02)68.0()67.0(=Φ+Φ,∴675.0268.067.03601=+=--x ,即975.571=x .5833.0360()360360()(222=-Φ=-≤-=≤x x X P x X P ,查标准正态分布表知5833.0)21.0(=Φ,∴21.03602=-x ,即63.602=x .18.某高校入学考试的数学成绩近似服从正态分布)100,65(N ,如果85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?解:设X 为考生的数学成绩,则X ~)100,65(N ,于是)85(1)85(≤-=>X P X P )1065851065(1-≤--=X P 0228.09772.01)2(1=-=Φ-=,即数学成绩为“优秀”的考生大致占总人数的2.28%.19.设随机变量X 的分布律为求2X Y =的分布律.解:Y 所有可能的取值为0,1,4,9,则51)0()0(====X P Y P ,307)1()1()1(==+-===X P X P Y P ,51)2()4(=-===X P Y P ,3011)3()9(====X P Y P ,∴Y 的分布律为20.设随机变量X 在)1,0(上服从均匀分布,求:(1)X Y e =的概率密度;(2)X Y ln 2-=的概率密度.解:由题设可知⎩⎨⎧<<=其他.,0,10,1)(x x f ,(1)当0≤y 时,=≤}{y Y ∅,X 2-1-013P5161511513011X 0149P51307513011∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;e 0<<y 时,)e ()()(y P y Y P y F X Y ≤=≤=)(ln )ln (y F y X P X =≤=,此时,yy f y y y F y F y f X XY X 1)(ln 1)(ln )(ln )()(=='⋅'='=;e ≥y 时,1)()(=≤=y Y P y F Y ,0)(=y f Y ;∴⎪⎩⎪⎨⎧<<=其他.,0,e 0,1)(y y y f Y .(2)当0≤y 时,=≤}{y Y ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;当0>y 时,)e ()ln 2()()(2y Y X P y X P y Y P y F -≥=≤-=≤=)e (1)e (122y X y F X P ---=<-=,此时,222e 21)e ()e ()()(yy y X Y X F y F y f ---='⋅'-='=;∴⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY .21.设X ~)1,0(N ,求:(1)X Y e =的概率密度;(2)122+=X Y 的概率密度;(3)X Y =的概率密度.解:由题知22e 21)(x X xf -=π,+∞<<∞-x ,(1)0≤y 时,=≤=}e {y Y X ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;0>y 时,)(ln )ln ()e ()()(y F y X P y P y Y P y F X X Y =≤=≤=≤=,此时,2)(ln 2e 21)(ln 1)(ln )(ln )()(y X XY X y f yy y F y F y f -=='⋅'='=π;综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2)(ln 2y y y f y Y π.(2)1<y 时,=≤+=}12{2y X Y ∅,∴0)()(=≤=y Y P y F Y ;1≥y 时,21()12()()(22-≤=≤+=≤=y X P y X P y Y P y F Y )2121(-≤≤--=y X y P 当1=y 时,0)(=y F Y ,故1≤y 时,0)(=y F Y ,0)(=y f Y ;当1>y 时⎰⎰------==210221212d e22d e21)(22y x y y x Y x x y F ππ,此时,41e)1(21)()(---='=y Y Y y y F y f π,综上,⎪⎩⎪⎨⎧≤>-=--.1,0,1,e )1(21)(41y y y y f y Y π.(3)0<y 时,=≤=}{y X Y ∅,∴0)()()(=≤=≤=y X P y Y P y F Y ,0≥y 时,)()()()(y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,0=y 时,0)(=y F Y ,∴0≤y 时,有0)(=y F Y ,0)(=y f Y ;0>y 时,22e 22)()()()()(y X X Y Y Y yf y f y F y F y f -=-+=-'+'=π,综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 22)(22y y y f yY π.22.(1)设随机变量X 的概率密度为)(x f ,+∞<<∞-x ,求3X Y =的概率密度.(2)设随机变量X 的概率密度为⎩⎨⎧>=-其他.,00,e )(x x f x 求2X Y =的概率密度.解:(1)0=y 时,0)()(=≤=y Y P y F Y ,0)(=y f Y ;0≠y 时,)()()()()(333y F y X P y X P y Y P y F X Y =≤=≤=≤=,3233331())(()()(-⋅=''='=y y f y y F y F y f XY Y ;∴⎪⎩⎪⎨⎧=≠=-.0,0,0),(31)(332y y y f y y f Y .(2)由于02≥=X Y ,故当0<y 时,}{y Y ≤是不可能事件,有0)()(=≤=y Y P y F Y ;当0≥y 时,有)()(()()()(2y F y F y X y P y X P y Y P y F X X Y --=≤≤-=≤=≤=;因为当0=y 时,0)0()0()(=--=X X Y F F y F ,所以当0≤y 时,0)(=y F Y .将)(y F Y 关于y 求导数,即得Y 的概率密度为⎪⎩⎪⎨⎧≤>-+=.,;,000)](([21)(y y y f y f y y f X X Y ,⎪⎩⎪⎨⎧≤>+=-.0,0,0),e e (21y y yyy .23.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他.,0,0,2)(2ππx xx f 求X Y sin =的概率密度.解:由于X 在),0(π内取值,所以X Y sin =的可能取值区间为)1,0(,在Y 的可能取值区间之外,0)(=y f Y ;当10<<y 时,使}{y Y ≤的x 取值范围是),arcsin []arcsin ,0(ππy y - ,于是}arcsin {}arcsin 0{}{ππ<≤-≤<=≤X y y X y Y .故)arcsin ()arcsin 0()()(ππ<≤-+≤<=≤=X y P y X P y Y P y F Y ⎰⎰-+=ππyX y X x x f x x f arcsin arcsin 0d )(d )(⎰⎰-+=ππππyy x xx xarcsin 2arcsin 02d 2d 2,上式两边对y 求导,得22222121)arcsin (21arcsin 2)(yyy yyy f Y -=--+-=ππππ;综上,⎪⎩⎪⎨⎧<<-=其他.,0,10,12)(2y y y f Y π.。
概率论第二章自测题答案与提示
03
重点与难点解析
重点概念解析
概率
描述随机事件发生的可能性大小,取值 范围在0到1之间,其中0表示不可能事
件,1表示必然事件。
期望值
描述随机变量取值的平均水平,计算 公式为E(X)=x1p1+x2p2+…+xnpn
。
独立性
若两随机事件之间没有相互影响,则 称它们是独立的。
方差
描述随机变量取值分散程度,计算公 式为D(X)=E(X^2)-[E(X)]^2。
难点问题解析
如何判断随机事件的独立性
通过计算事件之间的联合概率来判断,如果联合概率等于各事件概率的乘积,则两事件独立。
如何计算随机变量的期望值和方差
期望值通过将每个可能取值的概率乘以该取值得到,方差则通过计算每个取值的平方与相应概率的乘积后求和, 再减去期望值的平方得到。
易错点解析
混淆概率与频率
件,事件A包含1个基本事件,因此$P(A) = frac{1}{3}$。
03
填空题3
答案为$2$。此题考查数学期望的计算公式,$E(X) = sum x_i p_i$,
其中$x_i$是随机变量X的可能取值,$p_i$是对案为$frac{1}{4}$。此题考查概率的加法公式,$P(A cup B) = P(A) + P(B) - P(A cap B)$。
选择题3
正确答案为D。此题考查独立性的定义,若事件 A和B独立,则$P(AB) = P(A)P(B)$。
填空题解析与提示
01
填空题1
答案为$frac{1}{2}$。此题考查概率的基本性质,事件A和B是对立事件,
因此$P(A) = 1 - P(B)$。
02
填空题2
概率论第二章课后习题答案
概率论与数理统计第二章习题[])()()()()式,有利用(显然)()(则若))(()()(从而)()()()(的可加性,有:互不相容,因此由概率与而)(则解:AB P A P AB A P B A P A AB AB A P B A P A B B P A P B A P B A P B P B A B P A P B A B C A B A A B -=-=-⊂-=-⊄-=--+=-=--=⊂**.132)(1)()()(1)()()()|()4(2.05.01.0)()()|()3(25.04.01.0|)2(8.0)1(.2=--=--=========-+=B P AB P A P B P B A P B P B A P B A P A P AB P A B P B P AB P B A P AB P B P A P B A P )()()()()()()(解:7.0)(1)|(1)|()4(4.0)(1)|(1)|()3(72.0)()()()()()()()()2(3.0)()()()()()()|(1.3=-=-==-=-==⋅-+=-+===⋅==A PB A P B A P B P A B P A B P B P A P B P A P AB P B P A P B A P B P B P B P A P B P AB P B A P )解:()()()()()(”成立时“或当)()(”成立时“)(当)()()()()()()(解:B P A P B A P A P AB P A AB B A B AB P A P B A A AB P B A P B P A P AB P B P A P B A P +≤≤≤∴⊆=∅==≤∴⊆==≥+∴-+= 0.4)()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()解:(C P B A P C P B A P C P B P A P C B A P C B A P C P AB P C P B P A P ABC P C AB P B A P C P AB P B P A P C P B P A P B P A P C P C P B P A P C P B P C P A P ABC P BC P AC P BC AC P C B A P ⋅-=⋅=⋅⋅==-⋅=⋅⋅===-+=-+=-+=-+==][][3][2][][][1.7832.04.03.06.03.04.03.06.04.06.03.04.06.0)()()()()()()()()(3.04.0200150)(4.06.0150100)(6.020*******.8=⨯⨯+⨯-⨯-⨯-++=+---++===⨯==⨯======ABC P CA P BC P AB P C P B P A P C B A P D P C P B P A P D C B A )(“击中目标”米处射击”“相距米处射击”“相距米处射击”“相距解:设2112632112|31812|6)2(3.0185|8)1(.9222222222222111111111=++++============ )()()()()()()(”“点数和大于“点数和为奇数”)()()()()(”“点数和为“点数和为偶数”解:B P B A P B A P A P B A P A B P B A A P B P A P B A P A B P B A5360160126047514131413141513151413151413151.10=+-=⨯⨯+⨯-⨯-⨯-++=+---++=======)()()()()()()()()(,)(,)(“丙破译密码”“乙破译密码”“甲破译密码”解:ABC P BC P AC P AB P C P B P A P C B A P C P B P A P C B A61|1011|.11110=====)()()()()()(解:B P AB P B A P C A P AB P A B P1025515510530520|12C C C C C A B P A P AB P B A ⋅⋅=⋅===)()()(球各半”“第二次取出的黄、白球”“第一次取出的全是黄。
概率论与数理统计答案第2章
P{ X = −3} =
2 1 3 1 1 = , P{ X = 1} = = , P{ X = 2} = , 6 3 6 2 6 1 1 2 2⎞ 1⎟; ⎟ 6⎠ 1 , 3 1 1 5 + = , 3 2 6
⎛− 3 故 X 的分布列为 X ~ ⎜ 1 ⎜ ⎝ 3
当 x < −3 时,F (x) = P{X ≤ x} = P (∅) = 0, 当 −3 ≤ x < 1 时, F ( x) = P{ X ≤ x} = P{ X = −3} =
k 故概率为 P{ X ≤ 3} = ∑ P{ X = k} = ∑ C100 ⋅ 0.01k ⋅ 0.99100− k = 0.9816 . k =0 k =0 3 3
2
注:此题 n = 100 很大,p = 0.01 很小,n p = 1 较小,可用泊松分布近似计算, 取λ = n p = 1, X ~ & P (1) ,查表得 P{X ≤ 3} = 0.9810. 9. 假设一小时内进入学校图书馆的学生人数服从泊松分布, 已知一小时无学生进入图书馆的概率为 0.01, 求一小时内至少有 2 名学生进入图书馆的概率. 解:设 X 表示一小时内进入图书馆的学生人数,有 X ~ P (λ ),且 P{X = 0} = e −λ = 0.01, 则λ = − ln0.01 = 4.6052, 故概率为 P{X ≥ 2} = 1 − P{X = 0} − P{X = 1} = 1 − e −λ − λ e −λ = 1 − 0.01 − 0.0461 = 0.9439. 注:此题查表可得此概率的近似值,由 X ~ P (λ ),且 P{X = 0} = 0.01,查表可得λ ≈ 4.5, 故 P{X ≥ 2} = 1 − P{X ≤ 1} = 1 − 0.0611 = 0.9389.
概率论第二章练习答案
概率论第二章练习答案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】《概率论》第二章练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x 其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。
2. 设连续型随机变量的概率密度函数为: ax+b 0<x<1f (x) =0 其他且EX =31,则a = _____-2___________, b = _____2___________。
3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE 5. 已知X 的密度为=)(x ϕb ax + 且其他,10<<x P (31<x )=P(X>31) , 则a = , b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。
7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则P (ξ=)= 0 ;)62.0(<<ξP = 。
8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。
2100xx≥100 ∴ ϕ(x)= 0 其它P (ξ≥150)=1-F(150)=1-⎰⎰=-+=+=150100150100232132********x dx x [P(ξ≥150)]3=(32)3=2789. 设随机变量X 服从B (n, p )分布,已知EX =,DX =,则参数n =___________,P =_________________。
(完整版)概率论第二章随机变量及其分布答案
概率论与数理统计练习题系 专业 班 姓名 学号第二章 随机变量及其分布(一)一.选择题:1.设X 是离散型随机变量,以下可以作为X 的概率分布是 [ B ](A )1234111124816Xx x x x p (B ) 123411112488X x x x x p (C )1234111123412Xx x x x p(D ) 1234111123412X x x x x p -2.设随机变量ξ的分布列为 01230.10.30.40.2X p )(x F 为其分布函数,则)2(F =[ C ](A )0.2 (B )0.4 (C )0.8 (D )1 二、填空题:1.设随机变量X 的概率分布为0120.20.5X p a ,则a = 0.32.某产品15件,其中有次品2件。
现从中任取3件,则抽得次品数X 的概率分布为 P{X=0}=22/35;P{X=1}=12/35; P{X=2}=1/353.设射手每次击中目标的概率为0.7,连续射击10次,则击中目标次数X 的概率分布为 P{X=k}=k kkC -⨯10103.07.0,10,,0Λ=k 或X~B(10,0.7)三、计算题:1.同时掷两颗骰子,设随机变量X 为“两颗骰子点数之和”求: (1)X 的概率分布; (2)(3)P X ≤; (3)(12)P X >(1) P{X=2}= P{X=12}=1/36; P{X=3}= P{X=11}=1/18;P{X=4}= P{X=10}=1/12; P{X=5}= P{X=9}=1/9;P{X=6}= P{X=8}=5/36;P{X=7}=1/6(2) P{X=2}=1/36; P{X=3}=1/18 (3) P{X>12}=02.产品有一、二、三等品及废品四种,其中一、二、三等品及废品率分别为60%,10%,20%及10%,任取一个产品检查其质量,试用随机变量X 描述检查结果。
概率论第二章习题参考解答
概率论第二章习题参考解答1. 用随机变量来描述掷一枚硬币的试验结果. 写出它的概率函数和分布函数. 解: 假设ξ=1对应于"正面朝上",ξ=0对应于反面朝上. 则 P (ξ=0)=P (ξ=1)=0.5 . 其分布函数为⎪⎩⎪⎨⎧≥<≤<=11105.000)(x x x x F 2. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 写出ξ的分布律和分布函数.解: 根据题意有 P (ξ=1)=2P (ξ=0) (1) 并由概率分布的性质知 P (ξ=0)+P (ξ=1)=1 (2) 将(1)代入(2)得3P (ξ=0)=1, 即P (ξ=0)=1/3 再由(1)式得 P (ξ=1)=2/3因此分布律由下表所示ξ0 1 P 1/32/3而分布函数为⎪⎩⎪⎨⎧>=<≤<=11103/100)(x x x x F 3. 如果ξ的概率函数为P {ξ=a }=1, 则称ξ服从退化分布. 写出它的分布函数F (x ), 画出F (x )的图形. 解: ⎩⎨⎧≥<=ax a x x F 10)(, 它的图形为ax1 0F (x )4. 一批产品分一,二,三级, 其中一级品是二级品的两倍, 三级品是二级品的一半, 从这批产品中随机地抽取一个检验质量, 用随机变量描述检验的可能结果, 写出它的概率函数. 解 设ξ取值1,2,3代表取到的产品为一,二,三级, 则根据题意有 P (ξ=1)=2P (ξ=2) (1)P (ξ=3)=P (ξ=2)/2 (2) 由概率论性质可知P (ξ=1)+P (ξ=2)+P (ξ=3)=1 (3)(1),(2)代入(3)得:2P (ξ=2)+P (ξ=2)+P (ξ=2)/2=1解得P (ξ=2)=2/7, 再代回到(1)和(2)得 P (ξ=1)=4/7, P (ξ=3)=1/7 则概率函数为)3,2,1(271)(3=⨯==-i i P i ξ或列表如下: ξ 123P 4/7 2/7 1/75. 一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求这4个中的次品数ξ的分布律.解: 基本事件总数为420C n =,有利于事件{ξ=i }(i =0,1,2,3,4)的基本事件数为ii i C C n -=4155, 则001.01731911718192051234)4(031.0171952121545171819201234)3(2167.01718191415231212141545171819201234)2(4696.01718191314151231314155171819201234)1(2817.01719137123412131415171819201234)0(445420115354202152542031515420415=⋅⋅=⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===C C P C C C P C C C P C C C P C C P ξξξξξ ξ1234P 0.2817 0.4696 0.2167 0.031 0.0016. 一批产品包括10件正品, 3件次品, 有放回地抽取, 每次一件, 直到取得正品为止, 假定每件产品被取到的机会相同, 求抽取次数ξ的概率函数.解: 每次抽到正品的概率相同, 均为p =10/13=0.7692, 则每次抽到次品的概率q =1-p =0.2308则ξ服从相应的几何分布, 即有),3,2,1(1331310)(1=⎪⎭⎫⎝⎛⋅===-i pq i P i i ξ7. 上题中如果每次取出一件产品后, 总以一件正品放回去, 直到取得正品为止, 求抽取次数ξ的分布律.解: 这样抽取次数就是有限的, 因为总共只有3件次品, 即使前面三次都抽到次品,第四次抽时次品 已经全部代换为正品, 因此必然抽到正品, 这样ξ的取值为1,2,3,4. 不难算出,0027.0131132133)4(0328.01312132133)3(1953.01311133)2(7692.01310)1(=⋅⋅===⋅⋅===⋅=====ξξξξP P P Pξ 1234P 0.7692 0.1953 0.0328 0.00278. 自动生产线在调整之后出现废品的概率为p , 当在生产过程中出现废品时立即重新进行调整, 求在两次调整之间生产的合格品数ξ的概率函数.解: 事件ξ=i 说明生产了i 次正品后第i +1次出现废品, 这是i +1个独立事件的交(1次发生i 次不发生, 因此有P (ξ=i )=p (1-p )i , (i =0,1,2,…)9. 已知随机变量ξ只能取-1,0,1,2四个值, 相应概率依次为cc c c 167,85,43,21, 确定常数c 并计算P {ξ<1|ξ≠0}.解: 根据概率函数的性质有1}2{}1{}0{}1{==+=+=+-=ξξξξP P P P即1167854321=+++cc c c 得2.3125163716710128167854321==+++=+++=c 设事件A 为ξ<1, B 为ξ≠0, (注: 如果熟练也可以不这样设)则32.0258167852121}2{}1{}1{}1{)0{}01{)()(}0|1{==++==+=+-=-==≠≠⋂<==≠<ξξξξξξξξξP P P P P P B P AB P P 10. 写出第4题及第9题中各随机变量的分布函数. 解: 第4题:⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=31327/6217/410)(x x x x x F第9题:当x <-1时: F (x )=P (ξ≤x )=0 当-1≤x <0时: F (x )=P (ξ≤x )=P (ξ=-1)=2162.03125.22121=⨯=c 当0≤x <1时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)=5405.03125.243214321=⎪⎭⎫ ⎝⎛+=+c c 当1≤x <2时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)+P (ξ=1)=8108.03125.2854321854321=⎪⎭⎫ ⎝⎛++=++c c c 当x ≥2时: F (x )=P (ξ≤x )=1 综上所述, 最后得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤--<=21218108.0105405.0012162.01)(x x x x x x F 11. 已知ξ~⎪⎩⎪⎨⎧<<=其它1021)(x xx ϕ, 求ξ的分布函数F (x ), 画出F (x )的图形.解: 当x <0时: F (x )=0;当0≤x <1时:xx xt x t dt t dt t dt dt t x F xxx=-==+-⋅==+==+--∞-∞-⎰⎰⎰⎰00012112121210)()(12102100ϕ 当x ≥1时: F (x )=1 综上所述, 最后得⎪⎩⎪⎨⎧≥<≤<=111000)(x x xx x F 图形为10 xF (x )112. 已知ξ~⎩⎨⎧<<=其它0102)(x x x ϕ, 求P {ξ≤0.5}; P (ξ=0.5);F (x ).解: 25.005.020)(}5.0{225.0025.005,0|=-==+==≤⎰⎰⎰∞-∞-x xdx dx dx x P ϕξ, 因ξ为连续型随机变量, 因此取任何点的概率均为零, 所以P {ξ=0.5}=0,求F (x ): 当x <0时, F (x )=0 当0≤x <1时, 220|20)()(x t tdt dt dt t x F xxx==+==⎰⎰⎰∞-∞-ϕ 当x ≥1时, F (x )=1 综上所述, 最后得:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F 13. 某型号电子管, 其寿命(以小时计)为一随机变量, 概率密度⎪⎩⎪⎨⎧≥=其它0100100)(2x x x ϕ, 某一个电子设备内配有3个这样的电子管, 求电子管使用150小时都不需要更换的概率.解: 先求一个电子管使用150小时以上的概率P (ξ≥150)为:3215010012100100)()150(|150121502150==+-===≥∞++-+∞+∞⎰⎰x dx xdx x P ϕξ 则3个这样的电子管构成贝努里独立试验概型, 试验三次发生三次的概率为2963.027832)3(33==⎪⎭⎫⎝⎛=p14. 设连续型随机变量ξ的分布函数为:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Ax x x F 求系数A ; P (0.3<ξ<0.7); 概率密度φ(x ).解: 因ξ是连续型随机变量, 因此F (x )也必是连续曲线, 则其在第二段(0,1)区间的曲线必能和第三段(1,+∞)的曲线接上, 则必有 A ×12=1, 即A =1. 则分布函数为⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F P (0.3<ξ<0.7)=F (0.7)-F (0.3)=0.72-0.32=0.49-0.09=0.4概率密度φ(x )为⎩⎨⎧<≤='=其它0102)()(x x x F x ϕ15. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B arctg x , 求常数A ,B ;P {|ξ|<1}以及概率密度φ(x ). 解: 由F (-∞)=0, 得A +Barctg (-∞)=02=-πB A(1)再由F (+∞)=1,得12)arctg(=+=+∞+πB A B A(2)综和(1),(2)两式解得π1,21==B A 即x x F arctg 121)(π+=5.0214411111)1()1()11()1|(|==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--==--=--=<<-=<πππππξξarctg arctg F F P P2111)()(x x F x +⋅='=πϕ16. 服从拉普拉斯分布的随机变量ξ的概率密度||)(x Ae x -=ϕ, 求系数A 及分布函数F (x ).解: 这实际上是一个分段函数, φ(x )可重新写为⎩⎨⎧<≥=-0)(x Aex Ae x xxϕ 根据性质1)(=⎰+∞∞-dx x ϕ, 又因φ(x )为偶函数, 因此有1222)(|==-==∞+-+∞-+∞∞-⎰⎰A Aedx Aedx x x xϕ, 则有A =1/2因此⎪⎩⎪⎨⎧<≥==--02102121)(||x e x e ex x x x ϕ.求分布函数F (x ). 当x <0时, 有xxtxt x e e dt e dt t x F 212121)()(====∞-∞-∞-⎰⎰ϕ当x ≥0时, 有x x xtxt t x e e e dt e dt e dt t x F ----∞-∞--=+-=-=+==⎰⎰⎰21121212121212121)()(00ϕ 综上所述, 最后得⎪⎩⎪⎨⎧≥-<=-0211021)(x e x ex F x x17. 已知⎩⎨⎧<<+-=其它01031212)(~2x x x x ϕξ, 计算P {ξ≤0.2|0.1<ξ≤0.5}解: 设事件A ={ξ≤0.2}, B ={0.1<ξ≤0.5}, 则要计算的是条件概率P (A |B ), 而)()()|(B P AB P B A P =, 而事件AB ={ξ≤0.2}∩{0.1<ξ≤0.5}={0.1<ξ≤0.2} 因此有148.03.006.0004.06.024.0032.0)1.0301.06001.04()2.0304.06008.04()364(d )31212()(}2.01.0{)(2.01.0232.01.022.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-==≤<=⎰⎰x x x xx x dx x P AB P ϕξ256.03.006.0004.05.15.15.0)1.0301.06001.04()5.0325.06125.04()364(d )31212()(}5.01.0{)(5.01.0235.01.025.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-===≤<=⎰⎰x x x xx x dx x P B P ϕξ最后得5781.0256.0148.0)()()|(}5.01.0|2.0{====≤<≤B P AB P B A P P ξξ18. 已知xxce x +-=2)(~ϕξ, 确定常数c .解: 首先证明普阿松广义积分π=⎰+∞∞--x e xd 2, 因为函数2x e -并不存在原函数, 因此需要一技巧. 令⎰+∞∞--=x eI x d 2, 则⎰⎰⎰+∞∞-+∞∞-+-+∞∞--=⎥⎦⎤⎢⎣⎡=y x e x e I y x x d d d )(22222作极坐标代换, 令θθsin ,cos r y r x ==, 则积分区间为全平面, 即θ从0积到2π, r 从0积到+∞, 且θd d d d r r y x =, 因此有πππθπ====∞+-+∞-+∞-⎰⎰⎰020202222)d(212rr r e r e rdr ed I , 所以I =π.现确定常数c , 由性质1)(=⎰+∞∞-dx x ϕ,1d d 41)21(414141212222====⎰⎰⎰+∞∞---+∞∞-+-⋅⋅+-+∞∞-+-πcedx ecex cex cex x x xx得421πe c =19. 已知⎩⎨⎧>>=-其它)0()(~λλϕξλa x e c x x, 求常数c 及P {a -1<ξ≤a +1}.解: 由性质1)(=⎰+∞∞-dx x ϕ得1d d 0)(|==-=+=-∞+-+∞-∞-+∞∞-⎰⎰⎰aax ax ace ce x e c x dx x λλλλϕ 解得 aec λ=, 因此有⎩⎨⎧>>=--其它)0()()(λλϕλa x e x a x则λλλλλλϕξ---+---+--=-==+==+≤<-⎰⎰⎰⎰e e due x ex x x a a P u u a aa x a a a a 1d d 0d )()11(|111)(111η ξ 01234560 0.202 0.174 0.113 0.062 0.049 0.023 0.004 1 0 0.099 0.064 0.040 0.031 0.020 0.006 2 0 0 0.031 0.025 0.018 0.013 0.008 30.001 0.002 0.004 0.011求边缘概率分布, 与是否独立?解: 按下表计算ξ与η的边缘分布: η ξ 0123456p i (1)0 0.202 0.174 0.113 0.062 0.049 0.023 0.004 0.627 1 0 0.099 0.064 0.040 0.031 0.020 0.006 0.260 2 0 0 0.031 0.025 0.018 0.013 0.008 0.095 3 00.001 0.0020.004 0.011 0.018 p j (2)0.202 0.273 0.208 0.128 0.100 0.060 0.029ξ0 1 2 3 P0.6270.260 0.095 0.018 以及的边缘分布如下表所示:η0 1 2 3 4 5 6 P0.2020.2730.2080.1280.10.060.029当i =1及j =0时,因202.026.0}0{}1{0}0,1{)2(0)1(110⨯====≠====ηξηξP P p p P p因此ξ与η相互间不独立.21. 假设电子显示牌上有3个灯泡在第一排, 5个灯泡在第二排. 令ξ,η分别表示在某一规: η ξ 0 1 2 3 4 5 0 0.01 0.01 0.03 0.05 0.07 0.09 1 0.01 0.02 0.04 0.05 0.06 0.08 2 0.01 0.03 0.05 0.05 0.05 0.06 30.010.010.040.060.060.05试计算在规定时间内下列事件的概率: (1) 第一排烧坏的灯泡数不超过一个; (2) 第一排与第二排烧坏的灯泡数相等;(3) 第一排烧坏的灯泡数不超过第二排烧坏的灯泡数.解: 假设事件A 为第一排烧坏的灯泡数不超过一个, B 为第一排与第二排烧坏的灯泡数相等, C 为第一排烧坏的灯光数不超过第二排烧坏的灯泡数. 则事件A 发生的概率为上表中头两排概率之和52.008.006.005.004.002.001.009.007.005.003.001.001.0)(104=++++++++++++==∑∑==i j ij p A P事件B 发生的概率为上表中从0行0列开始的斜对角线之和14.006.005.002.001.0)(3=+++==∑=i ii p B P事件C 发生的概率为上表中斜对角线上右的各个数相加(包括斜对角线上的数), 但为减少运算量, 也可以考虑其逆事件C 的概率, 然后用1减去它. 而C 的概率为上表中斜对角线的左下角的所有概率之和(不包括斜对角线):89.011.01)04.001.003.001.001.001.0(1)(1)(=-=+++++-=-=C P C P22. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 因为有两个2一个1, 因此第一次取到2号的概率为P (ξ=2)=2/3, 第一次取到1号的概率为P (ξ=1)=1/3. 第一次取到2号后还剩下一个2号一个1号, 则在此条件下第二次取到1号的概率P (η=1|ξ=2)=P (η=2|ξ=2)=1/2. 而第一次取到1号后还剩下两个2号, 因此这时P (η=1|ξ=1)=0, P (η=2|ξ=1)=1. 综上所述并用乘法法则可得312132)2|2()2()2,2(312132)2|1()2()1,2(31131)1|2()1()2,1(0031)1|1()1()1,1(22211211=⨯=========⨯=========⨯=========⨯========ξηξηξξηξηξξηξηξξηξηξP P P p P P P p P P P p P P P pη ξ 1 2 1 0 1/3 21/31/3)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 列出(ξ,η)的概率分布表, 写出关于η的边缘分布. 解: 从上面数组可知ξ只取-1,0,2这三个值, 而η只取0,31,1这三个值, 因此总共可构成九个. 概率分布表及η的边缘分布计算如下 η ξ 0 1/3 1 -1 0 1/12 1/3 0 1/62 5/12 0 0p j(2) 7/12 1/12 1/3η0 1/3 1P7/12 1/12 1/324. 袋中装有标上号码1,2,2,3的4个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 第一次取到号码1,2,3的概率为P{ξ=1}=P(ξ=3)=1/4P{ξ=2}=1/2在第一次取到号码i条件下,第二次取到号码j的概率各为P{η=1|ξ=1}=P{η=3|ξ=3}=0P{η=2|ξ=1}=P{η=2|ξ=3}=2/3P{η=3|ξ=1}=P{η=1|ξ=3}=1/3P{η=1|ξ=2}=P{η=3|ξ=2}=1/3P{η=2|ξ=2}=1/3则p11=P{ξ=1,η=1}=P{ξ=1}P{η=1|ξ=1}=0p12=P{ξ=1,η=2}=P{ξ=1}P{η=2|ξ=1}=1/6p13=P{ξ=1,η=3}=P{ξ=1}P{η=3|ξ=1}=1/12p21=P{ξ=2,η=1}=P{ξ=2}P{η=1|ξ=2}=1/6p22=P{ξ=2,η=2}=P{ξ=2}P{η=2|ξ=2}=1/6p23=P{ξ=2,η=3}=P{ξ=2}P{η=3|ξ=2}=1/6p31=P{ξ=3,η=1}=P{ξ=3}P{η=1|ξ=3}=1/12p32=P{ξ=3,η=2}=P{ξ=3}P{η=2|ξ=3}=1/6p33=P{ξ=3,η=3}=P{ξ=3}P{η=3|ξ=3}=0即联合概率分布表如下表所示ηξ 1 2 31 0 1/6 1/122 1/6 1/6 1/63 1/12 1/6 025. 表示随机地在1-4的4个整数中取出的一个整数,η表示在1-ξ中随机地取出的一个整数值,求(ξ,η)的联合概率分布.解: 因ξ取四个数中的任何一个概率相等, 因此有P{ξ=i}=1/4, (i=1,2,3,4)而在ξ=i的条件下, (i=1,2,3,4), η取1到i的概率也相同,为1/i, 即P{η=j|ξ=i}=1/i, (i=1,2,3,4;j=1-i)因此有p ij=P{ξ=i,η=j}=P{ξ=i}P{η=j|ξ=i}=1/(4i), (i=1,2,3,4; j=1-i),联合概率分布如下表所示:η ξ 1 2 3 4 1 1/4 0 0 0 2 1/8 1/8 0 0 3 1/12 1/12 1/12 0 41/161/161/161/1626. 已知(ξ,η)~⎪⎩⎪⎨⎧≤≤+=其它04,0)sin(),(πϕy x y x c y x ,试确定常数c 并求η的边缘概率密度.解: 根据性质1),(=⎰⎰+∞∞-+∞∞-dydx y x ϕ, 有1)12(]220122[)]4sin([sin )]4cos([cos )]cos([)sin(40440404040=-=+--=+-=+-=+-=+⎰⎰⎰⎰c c x x c x x dx c y x dx c dydx y x c ππππππππ解得12)12)(12(12121+=+-+=-=c ,因此,⎪⎩⎪⎨⎧≤≤++=其它04,0)sin()12(),(πϕy x y x y x求η的边缘概率密度: 当40π≤≤y 时:)8sin(22)12()]4cos()[cos 12()cos()12()sin()12(),()(4042ππϕϕκπ+-+==+-+==++-=++==⎰⎰∞+∞-y y y y x dx y x dx y x y上式后一等式利用了三角函数公式2sin 2sin2cos cos A B A B B A -+=-, 而计算三角函数8sin π的值, 又是在已知224cos=π的前提下,利用半角公式2cos 12sin θθ-=得222222124cos18sin-=-=-=ππ当y 取区间]4,0[π之外的值时, 0)(1=y ϕ.因此最后得:⎪⎩⎪⎨⎧≤≤+-+=其它040)8sin(22)12()(2ππϕy y y27. 已知ξ服从参数p =0.6的0-1分布, 在ξ=0及ξ=1条件下, 关于η的条件分布分别如下二表所示:η 1 2 3 P {η|ξ=0}1/4 1/2 1/4 η 1 2 3 P {η|ξ=1}1/21/61/3求二元随机变量(,)的联合概率分布, 以及在≠1时关于的条件分布. 解: 根据题意已知P {ξ=0}=1-p =1-0.6=0.4, P {ξ=1}=p =0.6 则根据乘法法则有:p 01=P {ξ=0,η=1}=P {ξ=0}P {η=1|ξ=0}=0.4×(1/4)=0.1 p 02=P {ξ=0,η=2}=P {ξ=0}P {η=2|ξ=0}=0.4×(1/2)=0.2 p 03=P {ξ=0,η=3}=P {ξ=0}P {η=3|ξ=0}=0.4×(1/4)=0.1 p 11=P {ξ=1,η=1}=P {ξ=1}P {η=1|ξ=1}=0.6×(1/2)=0.3 p 12=P {ξ=1,η=2}=P {ξ=1}P {η=2|ξ=1}=0.6×(1/6)=0.1 p 13=P {ξ=1,η=3}=P {ξ=1}P {η=3|ξ=1}=0.6×(1/3)=0.2 η ξ 1 2 3 0 0.1 0.2 0.1 10.30.10.2由表中可以算出P {η≠1}=1-P {η=1}=1-(p 01+p 11)=1-0.4=0.6 P {ξ=0,η≠1}=p 02+p 03=0.2+0.1=0.3 P {ξ=1,η≠1}=p 12+p 13=0.1+0.2=0.3 因此有5.06.03.0}1{}1,1{}1|1{5.06.03.0}1{}1,0{}1|0{==≠≠==≠===≠≠==≠=ηηξηξηηξηξP P P P P P则在η≠1时关于ξ的条件分布律如下表所示:ξ0 1 P {ξ|η≠0} 0.5 0.528. 第22题中的两个随机变量ξ与η是否独立?当ξ=1时η的条件分布是什么? : η ξ 1 2 1 0 1/3 21/31/3, 因为 P {ξ=1}=1/3, P {η=1}=1/3 而P {ξ=1,η=1}=0≠P {ξ=1}P {η=1} 在ξ=1条件下, 因13/13/1}1{}2,1{}1|2{03/10}1{}1,1{}1|1{================ξηξξηξηξξηP P P P P P因此在此条件下η服从单点分布或退化分布, 只取值为2, 取值为2的条件概率为1.ξ-2 -1 0 1/2 P 1/4 1/3 1/12 1/3η-1/2 1 3 P1/21/41/4=p i (1)p j (2), 算得联合分布律如下表所示 η ξ -1/2 1 3 -2 1/8 1/16 1/16 -1 1/6 1/12 1/12 0 1/24 1/48 1/48 1/21/61/121/12根据此联合分布律可算出43129611211)2/1,2/1()1,1(1)0(1)0(121484481161)1,0()3,2()1(==--==-==-=-=-==+-=≠+==+===+=-===+ηξηξηξηξηξηξηξP P P P P P P30. 测量一矩形土地的长与宽, 测量结果得到如下表所示的分布律(长与宽相互独立), 求周长度ξ 29 30 31 P 0.30.50.2解: 因ζ=2ξ+2η, 可知ζ的取值为96,98,100,102,104, 又因ξ与η独立, 因此有 P {ζ=96}==P {ξ=29}P {η=19}=0.3×0.3=0.09P {ζ=98}=P {ξ=29}P {η=20}+P {ξ=30}P {η=19}=0.3×0.4+0.5×0.3=0.27 P {ζ=100}=P {ξ=29}P {η=21}+P {ξ=30}P {η=20}+P {ξ=31}}P {η=19}==0.3×0.3+0.5×0.4+0.2×0.3=0.35P {ζ=102}=P {ξ=30}P {η=21}+P {ξ=31}P {η=20}=0.3×0.5+0.2×0.4=0.23 P {ζ=104}=P {ξ=31}P {η=21}=0.2×0.3=0.06 因此ζ的分布律如下表所示: 周长ζ 96 98 100 102 104 P0.090.270.350.230.06η的分布.R 10 11 12 13 P0.10.40.30.2, ξ的取值为62.83, 69.12,ξ62.83 69.12 75.4 81.68 P 0.1 0.4 0.3 0.2 η314.16 380.13 452.39 530.93 P0.10.40.30.232. 一个商店每星期四进货, 以备星期五,六,日3天销售, 根据多周统计, 这3天销售件数 ξ110 11 12 P 0.2 0.7 0.1 ξ213 14 15 P 0.30.60.1宽度η 19 20 21 P0.30.40.3ξ317 18 19 P 0.1 0.8 0.1问三天销售总量∑==31i iξη这个随机变量可以取哪些值?如果进货45件, 不够卖的概率是多少? 如果进货40件, 够卖的概率是多少?解: 因η的取值为ξ1,ξ2,ξ3三个随机变量可能取值之和, 因此可能的取值为从10+13+17=40到12+15+19=46之间的每一个整数值, 即40,41,42,43,44,45,46. 因此, 如进货15件, 不够卖的概率在η取值为46时出现, 即 P {η=46}=P {ξ1=12}P {ξ2=15}P {ξ3=19}=0.1×0.1×0.1=0.001 如进货40件, 够卖的概率发生在η取值为40时出现, 即P {η=40}=P {ξ1=10}P {ξ2=13}P {ξ3=17}=0.2×0.3×0.1=0.006 33. 求出第22题中ξ+η的分布律.ξ与η的联合分布律如下表: η ξ 1 2 1 0 1/3 21/31/3则P {+=2}=P {=1,=1}=0P {ξ+η=3}=P {ξ=1,η=2}+P {ξ=2,η=1}=2/3 P {ξ+η=4}=P {ξ=2,η=2}=1/3 ξ+η3 4 P 2/3 1/334. 求出第23题中ξ-η的分布律 解: 因(ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12.因此ξ-η也只取0-0=0, -1-1=-2, -1-1/3=-4/3, 2-0=2这四个值, 相应的概率也还是依次为1/6, ξ-η-2 -4/3 0 2 P 1/3 1/12 1/6 5/1235. 已知P {ξ=k }=a /k , P {η=-k }=b /k (k =1,2,3), ξ与独立, 确定a ,b 的值; 求出(ξ,η)的联合概率分布以及ξ+η的概率分布. 解: 由概率分布的性质有131211}{31=⎪⎭⎫⎝⎛++==∑=a k P k ξ, 解得 5455.0116312111==++=a,191411}{31=⎪⎭⎫⎝⎛++=-=∑=b k P k η 解得 7347.04936914111==++=b 因此有P {ξ=1}=0.5455, P {ξ=2}=0.5455/2=0.2727, P {ξ=3}=0.1818 P {η=-1}=0.7347, P {η=-2}=0.1837, P {η=-3}=0.0816 因ξ与η独立, 则有p 11=P {ξ=1,η=-1}=P {ξ=1}P {η=-1}=0.5455×0.7347=0.4008 p 12=P {ξ=1,η=-2}=P {ξ=1}P {η=-2}=0.5455×0.1837=0.1002 p 13=P {ξ=1,η=-3}=P {ξ=1}P {η=-3}=0.5455×0.0816=0.0445 p 21=P {ξ=2,η=-1}=P {ξ=2}P {η=-1}=0.2727×0.7347=0.2004 p 22=P {ξ=2,η=-2}=P {ξ=2}P {η=-2}=0.2727×0.1837=0.0501 p 23=P {ξ=2,η=-3}=P {ξ=2}P {η=-3}=0.2727×0.0816=0.0223 p 31=P {ξ=3,η=-1}=P {ξ=3}P {η=-1}=0.1818×0.7347=0.1336 p 32=P {ξ=3,η=-2}=P {ξ=3}P {η=-2}=0.1818×0.1837=0.0333 p 33=P {ξ=3,η=-3}=P {ξ=3}P {η=-3}=0.1818×0.0816=0.0148 η ξ -1-2-31 0.4008 0.1002 0.0445 2 0.2004 0.0501 0.0223 30.1336 0.0333 0.0148计算+的概率分布: P {ξ+η=-2}=p 13=0.0445P {ξ+η=-1}=p 12+p 23=0.1002+0.0223=0.1225P {ξ+η=0}=p 11+p 22+p 33=0.4008+0.0501+0.0148=0.4657 P {ξ+η=1}=p 21+p 32=0.2004+0.0333=0.2337 P {ξ+η=2}=p 31=0.1336即ξ+η的概率分布率如下表所示ξ+η-2 -1 0 1 2 P 0.0445 0.1225 0.4657 0.2337 0.133636. 已知服从区间[0,1]上的均匀分布, 求的函数=3+1的概率分布. 解: 根据题意知ξ的概率密度φξ(x )为⎩⎨⎧≤≤=其它0101)(x x ξϕ 则η的分布函数为)31(}31{}13{}{)(-=-≤=≤+=≤=x F x P x P x P x F ξηξξη 对其求导得η的概率密度与ξ的概率密度间的关系为⎪⎩⎪⎨⎧≤≤=⎪⎩⎪⎨⎧≤-≤=-=-'='=其它其它041310131031)31(31)31(31)()(x x x x F x F x ϕϕξηη即η服从在区间[1,4]上的均匀分布.37. 已知ξ~⎪⎩⎪⎨⎧>+=其它0)1(2)(2x x x πϕ, ξηln =, 求η的概率密度.解: 求η的分布函数F η(x )为)(}{}{ln }{)(x x e F e P x P x P x F ξηξξη=≤=≤=≤=因e x 总大于0, 而当x 大于0时F ξ(x )为x t t t dt t x F x xxarctg 2arctg 2d )1(2)()(|002πππϕξ==+==⎰⎰∞- 因此有x x e e F x F arctg 2)()(πξη==则η的概率密度为其分布函数的求导:xx ee x F x 212)()(+⋅='=πϕηη。
(完整版)概率论第二章答案
习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生.写出随机变量X 的分布律.解 P {X =1}=p , P {X =0}=1-p . 或者2. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P . 解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c=. 所求概率为 P {X <1| X0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若{P X ≥51}9=, 求{P Y ≥1}.解 注意p{x=k}=kk n k n C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213qp =-=. 从而{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 从1,2,3,4,5中随机取3个,以X 表示3个数中的最大值,X 的可能取值是3,4,5,在5个数中取3个共有1035=C 种取法.{X =3}表示取出的3个数以3为最大值,P{X =3}=2235C C =101;{X =4}表示取出的3个数以4为最大值,P{X =4}=1033523=C C ;{X =5}表示取出的3个数以5为最大值,P{X =5}=533524=C C .X 的分布律是1. 设X求分布函数解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩ 于是 11()arctan ,.2F x x x π=+-∞<<+∞(2) {11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.5. 假设随机变量X 的绝对值不大于1;11{1},{1}84P X P X =-===; 在事件{11}X -<<出现的条件下, X 在(-1,1)内任一子区间上取值的条件概率与该区间的长度成正比. (1) 求X 的分布函数(){F x P X =≤x }; (2) 求X 取负值的概率p .解 (1) 由条件可知, 当1x <-时, ()0F x =; 当1x =-时,1(1)8F -=;当1x =时, F (1)=P {X ≤1}=P (S )=1. 所以115{11}(1)(1){1}1.848P X F F P X -<<=---==--=易见, 在X 的值属于(1,1)-的条件下, 事件{1}X x -<<的条件概率为{1P X -<≤|11}[(1)]x X k x -<<=--,取x =1得到 1=k (1+1), 所以k =12. 因此{1P X -<≤|11}12x X x -<<=+. 于是, 对于11x -<<, 有 {1P X -<≤}{1x P X =-<≤,11}x X -<<{11}{1|11}≤P X P X x X =-<<-<-<< 5155.8216x x ++=⨯=对于x ≥1, 有() 1.F x = 从而0,1,57(),11,161,1.x x F x x x <-+=-<<⎧⎪⎪⎨⎪⎪⎩≥ (2) X 取负值的概率7{0}(0){0}(0)[(0)(0)](0).16p P X F P X F F F F =<=-==---=-=习题2-41. 选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩ 如果c =( ), 则()f x 是某一随机变量的概率密度函数. (A)13. (B) 12. (C) 1. (D) 32.解 由概率密度函数的性质()d 1f x x +∞-∞=⎰可得02d 1cx x =⎰, 于是1=c , 故本题应选(C ).(2) 设~(0,1),XN 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1.解 因为{}{}P X c P X c =<≥, 所以1{}{}P X c P X c -<=<,即2{}1P X c <=, 从而{}0.5P X c <=,即()0.5c Φ=, 得c =0. 因此本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A)cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C)22()2,0,()0,0.≥x x f x x μσ--=<⎧⎩ (D) e ,0,()0,0.≥x x f x x -=<⎧⎨⎩ 解 由概率密度函数的性质()1f x dx +∞-∞=⎰可知本题应选(D).(4) 设随机变量2~(,4)XN μ, 2~(,5)Y N μ, 1{X P P =≤4μ-}, {2P P Y =≥5μ+}, 则( ).(A) 对任意的实数12,P P μ=. (B) 对任意的实数12,P P μ<. (C) 只对实数μ的个别值, 有12P P =. (D) 对任意的实数12,P P μ>. 解 由正态分布函数的性质可知对任意的实数μ, 有12(1)1(1)P P ΦΦ=-=-=. 因此本题应选(A).(5) 设随机变量X 的概率密度为()f x , 且()()f x f x =-, 又F (x )为分布函数, 则对任意实数a , 有( ).(A)()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-.(C) ()()F a F a -=. (D) ()2()1F a F a -=-.解 由分布函数的几何意义及概率密度的性质知答案为(B). (6) 设随机变量X服从正态分布211(,)N μσ,Y服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1 <μ2. (D) μ1 >μ2.解 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A)2u α . (B) 21α-u. (C)1-2u α. (D) α-1u .解 答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成立, 应当怎样选择数k ?解 因为随机变量X 服从参数为λ的指数分布, 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它, 要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解 由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5a x x =⎰,因此a =.4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 根据分布函数与概率密度的关系()()F x f x '=,可得2,01,()0,其它.x x f x <<⎧=⎨⎩ (2)22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ⎧⎨⎩≤≤ 其它, 求P {X ≤12}与P {14X <≤2}.解{P X ≤12201112d 224}x x x ===⎰;1{4P X <≤12141152}2d 1164x x x ===⎰. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰,于是2A =;(2) 由公式()()d x F x f x x -∞=⎰可得当x ≤0时,()0F x =;当0x <≤1时, 201()d 2xF x x x x ==⎰;当1x <≤2时, 2101()d (2)d 212x x F x x x x x x =+-=--⎰⎰;当x >2时,()1F x =.所以220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率.解 根据概率密度与分布函数的关系式{P a X <≤}()()()d bab F b F a f x x =-=⎰,可得2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=. 8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 随机变量X 的概率密度为105,()50,,x f x <=⎧⎪⎨⎪⎩≤其它,若方程有实根, 则21632X -≥0, 于是2X ≥2. 故方程有实根的概率为 P {2X ≥2}=21{2}P X -<1{P X =-<<1d 5x =-15=-.9. 设随机变量)2,3(~2N X.(1) 计算{25}P X <≤, {410}P X -<≤, {||2}P X >, }3{>X P ; (2) 确定c 使得{}{};P X c P X c >=≤ (3) 设d 满足{}0.9P X d >≥, 问d 至多为多少?解 (1) 由P {a <x ≤b }=P {33333}()()22222a Xb b a ΦΦ-----<=-≤公式, 得到P {2<X ≤5}=(1)(0.5)0.5328ΦΦ--=, P {-4<X ≤10}=(3.5)( 3.5)0.9996ΦΦ--=,{||2}P X >={2}P X >+{2}P X <-=123()2Φ--+23()2Φ--=0.6977,}3{>X P =133{3}1()1(0)2P X ΦΦ-=-=-≤=0.5 .(2) 若{}{}≤P X c P X c >=,得1{}{}P X c P x c -=≤≤,所以{}0.5P X c =≤由(0)Φ=0推得30,2c -=于是c =3. (3){}0.9≥P X d > 即13()0.92d Φ--≥, 也就是3()0.9(1.282)2d ΦΦ--=≥,因分布函数是一个不减函数, 故(3)1.282,2d --≥ 解得 32( 1.282)0.436d +⨯-=≤.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从而2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=. 习题2-51. 选择题(1) 设X 的分布函数为F (x ), 则31Y X =+的分布函数()G y 为( ).(A) 11()33F y -. (B) (31)F y +.(C)3()1F y +. (D)1133()F y -. 解 由随机变量函数的分布可得, 本题应选(A).(2) 设()~01,XN ,令2Y X =--, 则~Y ( ).(A)(2,1)N --. (B)(0,1)N . (C)(2,1)N -. (D)(2,1)N .解 由正态分布函数的性质可知本题应选(C).2. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度. 解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++ 这里1,μσ==, 所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 求解 (1)(2)4. ()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 先求Y 的分布函数)(y F Y :)(y F Y ={P Y ≤}{2y P X =-≤}{y P X=≥2}y -1{2}P Xy =-<-=1-2()d yX f x x --∞⎰.于是可得Y 的概率密度为()(2)(2)Y X f y f y y '=---=12(2)ln 20,.,124,其它y y -⎧<-<⎪⎨⎪⎩即 121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2YX =的概率密度.解 由题意可知随机变量X 的概率密度为()0,.1,22,4其它X f x x =⎧-<<⎪⎨⎪⎩因为对于0<y <4,(){Y F y P Y =≤2}{y P X =≤}{y P =X}(X X F F =-.于是随机变量2YX =的概率密度函数为()Y fy (X X f f =+0 4.y =<<即()04,0,.其它f y y =<<⎩总习题二1. 一批产品中有20%的次品, 现进行有放回抽样, 共抽取5件样品. 分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.解 以X 表示抽取的5件样品中含有的次品数. 依题意知~(5,0.2)X B .(1) 恰好有3件次品的概率是P {X =3}=23358.02.0C .(2) 至多有3件次品的概率是k k k k C-=∑5358.02.0.2. 一办公楼装有5个同类型的供水设备. 调查表明, 在任一时刻t 每个设备被使用的概率为0.1. 问在同一时刻(1) 恰有两个设备被使用的概率是多少? (2) 至少有1个设备被使用的概率是多少? (3) 至多有3个设备被使用的概率是多少? (4) 至少有3个设备被使用的概率是多少?解 以X 表示同一时刻被使用的设备的个数,则X ~B (5,0.1),P {X =k }=k kkC -559.01.0,k =0,1, (5)(1) 所求的概率是P {X =2}=0729.09.01.03225=C ; (2)所求的概率是P {X ≥1}=140951.0)1.01(5=--;(3) 所求的概率是 P {X ≤3}=1-P{X =4}-P {X =5}=0.99954;(4) 所求的概率是P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=0.00856. 3. 设随机变量X 的概率密度为e ,0,()00,≥,x k x f x x θθ-=<⎧⎪⎨⎪⎩且已知1{1}2P X>=, 求常数k , θ.解 由概率密度的性质可知e d 1xkx θθ-+∞=⎰得到k =1.由已知条件111e d 2xx θθ-+∞=⎰, 得1ln 2θ=.4. 某产品的某一质量指标2~(160,)X N σ, 若要求{120P ≤X ≤200}≥0.8, 问允许σ最大是多少?解 由{120P ≤X ≤}200120160160200160{}X P σσσ---=≤≤=404040()(1())2()1ΦΦΦσσσ--=-≥0.8,得到40()Φσ≥0.9, 查表得40σ≥1.29, 由此可得允许σ最大值为31.20.5. 设随机变量X 的概率密度为φ(x ) = A e -|x |, -∞<x <+∞.试求: (1) 常数A ; (2) P {0<X <1}; (3) X 的分布函数.解 (1) 由于||()d e d 1,x x x A x ϕ+∞+∞--∞-∞==⎰⎰即02e d 1x A x +∞-=⎰故2A = 1, 得到A =12.所以 φ(x ) =12e -|x |.(2) P {0<X <1} =111111e e d (e )0.316.0222xxx ----=-=≈⎰(3) 因为||1()e d ,2xx F x x --∞=⎰ 得到 当x <0时, 11()e d e ,22x x xF x x -∞==⎰当x ≥0时, 00111()e d e d 1e ,222x x x xF x x x ---∞=+=-⎰⎰所以X 的分布函数为 1,0,2()11,0.2xx x F x x -⎧<⎪⎪=⎨⎪-⎪⎩e e ≥。
第二章 概率论解析答案习题解答
第二章 随机变量及其分布I 教学基本要求1、了解随机变量的概念以及它与事件的联系;2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质;3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用;4、会求简单随机变量函数的分布.II 习题解答A 组、1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω=以X 表示两个产品中的合格品数.(1) 写出X 与样本点之间的对应关系;(2) 若此产品的合格品率为p ,求(1)p X = 解:(1) 10ω→、21ω→、31ω→、42ω→;(2) 12(1)(1)2(1)p X C p p p p ==-=-.2、下列函数是否是某个随机变量的分布函数(1) 021()2021x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩; (2) 21()1F x x =+ ()x -∞<<+∞. :解:(1) 显然()F x 是单调不减函数;0()1F x ≤≤,且()0F -∞=、()1F +∞=;(0)()F x F x +=,故()F x 是某个随机变量的分布函数.(2) 由于()01F +∞=≠,故()F x 不是某个随机变量的分布函数. 3、设X 的分布函数为(1)0()00x A e x F x x -⎧-≥=⎨<⎩求常数A 及(13)p X <≤解:由()1F +∞=和lim (1)xx A e A -→+∞-=得1A =;(13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=- 3113(1)(1)e e e e ----=---=-.4、设随机变量X 的分布函数为>200()0111x F x Ax x x ≤⎧⎪=<≤⎨⎪>⎩求常数A 及(0.50.8)p X <≤解:由(10)(1)F F +=得1A =;(0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=.5、设随机变量X 的分布列为()ap X k N==(1,2,,)k N =求常数a解:由11ii p+∞==∑得>11Nk a N==∑1a ⇒=.6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、5,且0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、3210905100(3)C C p X C ==、4110905100(4)C C p X C ==、5010905100(5)C C p X C ==于是X 的分布列为510905100()k kC C p X k C -== (0,1,,5)k =.7、设10件产品中有2件次品,进行连续无放回抽样,直至取到正品为止,以X 表示抽样次数,求(1) X 的分布列; (2) X 的分布函数\解:(1) 由题意知X 是离散型随机变量,其所有可能取值为1、2、3,且84(1)105p X ===、288(2)10945p X ==⨯=、2181(3)109845p X ==⨯⨯=于是X(2) 由(1)可知的分布函数为014125()44234513x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.8、设随机变量X 的分布函数为010.211()0.3120.52313x x F x x x x <-⎧⎪-≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩ 求X 的分布列解:X 的分布列为9、求在同一时刻(1) 恰有2个设备被使用的概率; (2) 至少有3个设备被使用的概率; .(3) 至多有3个设备被使用的概率解:设X 表示被同时使用的供水设备数,则~(5,0.1)X b (1) 恰有2个设备被使用的概率为2235(2)(0.1)(0.9)0.0729p X C ===;(2) 至少有3个设备被使用的概率为(3)(3)(4)(5)p X p X p X p X ≥==+=+=33244550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=;(3) 至多有3个设备被使用的概率为(3)1(4)(5)p X p X p X ≤=-=-=44550551(0.1)(0.9)(0.1)(0.9)0.99954C C =--=.!10、经验表明:预定餐厅座位而不来就餐的顾客比例为20%,如今餐厅有50个座位,但预定给了52位顾客,求到时顾客来到餐厅而没有座位的概率是多少解:设X 表示预定的52位顾客中不来就餐的顾客数,则~(52,0.2)X b ,由于“顾客来到餐厅没有座位”等价于“52位顾客中至多有1位不来就餐”,于是所求概率为005211515252(1)(0)(1)(0.2)(0.8)(0.2)(0.8)p X p X p X C C ≤==+==+0.0001279=.11、设某城市在一周内发生交通事故的次数服从参数为的泊松分布,求 (1) 在一周内恰好发生2次交通事故的概率; (2) 在一周内至少发生1次交通事故的概率解:设X 表示该城市一周内发生交通事故的次数,则~(0.3)X P (1) 在一周内恰好发生2次交通事故的概率20.30.3(2)0.03332!p X e -===;,(2) 在一周内至少发生1次交通事故的概率00.30.3(1)1(0)10.2590!p X P X e -≥=-==-=.12、设X 服从泊松分布,已知(1)(2)p X p X ===,求(4)p X =解:由(1)(2)p X p X ===得22ee λλλλ--=2λ⇒=422(4)0.09024!p X e -⇒===.13、一批产品的不合格品率为,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品,分别用以下方法求拒收的概率:(1) 用二项分布作精确计算; (2) 用泊松分布作的似计算 …解:设X 表示抽取的40件产品中的不合格品数,则~(40,0.02)X b (1) 拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-=0040113940401(0.02)(0.98)(0.02)(0.98)0.1905C C =--=;(2) 由于400.020.8λ=⨯=,于是拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-= 0.80.810.80.1912e e --≈--=.14、设随机变量X 的密度函数为201()0x x f x ≤≤⎧=⎨⎩其它求X 的分布函数 *解:由()()xF x f t dt -∞=⎰得当0x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当01x ≤≤时2200()()02|x xxF x f t dt dt tdt t x -∞-∞==+==⎰⎰⎰当1x >时0121001()()020|1x xF x f t dt dt tdt dt t -∞-∞==++==⎰⎰⎰⎰于是所求分布函数为200()0111x F x x x x <⎧⎪=≤≤⎨⎪>⎩. 15、设随机变量X 的密度函数为 ~212(1)12()0x f x x⎧-≤≤⎪=⎨⎪⎩其它求X 的分布函数解:由()()xF x f t dt -∞=⎰得当1x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当12x ≤≤时1121111()()02(1)2()|2(2)xxx F x f t dt dt dt t x t t x-∞-∞==+-=+=+-⎰⎰⎰ 当2x >时122121211()()02(1)02()|1xx F x f t dt dt dt dt t t t-∞-∞==+-+=+=⎰⎰⎰⎰于是所求分布函数为 ·011()2(2)1212x F x x x x x <⎧⎪⎪=+-≤≤⎨⎪>⎪⎩.16、设随机变量X 的密度函数为cos ()220A x x f x ππ⎧-≤≤⎪=⎨⎪⎩其它求(1) 常数A ;(2) X 的分布函数;(3) (0)4p X π<≤解:(1) 由()1f x dx +∞-∞=⎰得2222220cos 0sin |21dt A xdx dt A x A ππππππ-+∞--∞-++===⎰⎰⎰12A ⇒=; (2) 当2x π<-时()()00xxF x f t dt dt -∞-∞===⎰⎰当22x ππ-≤≤时]2221111()()0cos sin |sin 2222xxxF x f t dt dt tdt t x πππ---∞-∞-==+==+⎰⎰⎰当2x π>时22222211()()0cos 0sin |122xx F x f t dt dt tdt dt t ππππππ---∞-∞-==++==⎰⎰⎰⎰ 于是所求分布函数为0211()sin 222212x F x x x x ππππ⎧<-⎪⎪⎪=+-≤≤⎨⎪⎪>⎪⎩;(3) (0)()(0)()(0)444p X p X p X F F πππ<≤=≤-≤=-1111sin sin 0242224π=+--=. 17、设随机变量X 的分布函数为1()ln 11x F x xx e x e<⎧⎪=≤≤⎨⎪>⎩求(1) (03)p X <≤、(2)p X <、(2 2.5)p X <<;(2) X 的密度函数]解:(1) (03)(3)(0)(3)(0)101p X p X p X F F <≤=≤-≤=-=-=(2)(2)(2)(2)ln 2p X p X p X F <=≤-===5(2 2.5)(2 2.5)(2.5)(2)ln 2.5ln 2ln 4p X p X F F <<=<≤=-=-=;(2) 由于在()F x 的可导点处,有()()f x F x '=,于是X 的密度函数为11()0x ef x x⎧≤≤⎪=⎨⎪⎩其它.18、设~(1,6)K U ,求方程210x Kx ++=有实根的概率 解:由~(1,6)K U 得K 的密度函数为116()5k f k ⎧<<⎪=⎨⎪⎩其它又由于方程210x Kx ++=有实根等价于240K -≥,即||2K ≥,于是方程有实根的概率为22(||2)(2)(2)()()p K p K p K f k dk f k dk -+∞-∞≥=≤-+≥=+⎰⎰?621455dk ==⎰. 19、调查表明某商店从早晨开始营业起直至第一个顾客到达的等待时间X (单位:分钟)服从参数为0.4的指数分布,求下述事件的概率(1) X 至多3分钟; (2) X 至少4分钟;(3) X 在3分钟至4分钟之间; (4) X 恰为3分钟解:(1) X 至多3分钟的概率为0.43 1.2(3)(3)11p X F e e -⨯-≤==-=-;(2) X 至少4分钟的概率为0.44 1.6(4)1(4)1(4)1(1)p X p X F e e -⨯-≥=-<=-=--=;?(3) X 在3分钟至4分钟之间的概率为(34)(4)(3)(4)(3)p X p X p X F F ≤≤=≤-<=- 0.440.43 1.2 1.6(1)(1)e e e e -⨯-⨯--=---=-;(4) X 恰为3分钟的概率为(3)0p X ==.20、设~(0,1)X N ,求下列事件的概率( 2.35)p X ≤;( 1.24)p X ≤-;(|| 1.54)p X ≤ 解:( 2.35)(2.35)0.9906p X ≤=Φ=;( 1.24)( 1.24)1(1.24)10.89250.1075p X ≤-=Φ-=-Φ=-=; (|| 1.54)( 1.54 1.54)(1.54)( 1.54)p X p X ≤=-≤≤=Φ-Φ-(1.54)[1(1.54)]2(1.54)120.938210.8764=Φ--Φ=Φ-=⨯-=.&21、设~(3,4)X N ,(1) 求(25)p X <≤、(||2)p X >、(3)p X >;(2) 确定c ,使得()()p X c p X c >=≤;(3) 若d 满足()0.9p X d >≥,则d 至多为多少解:(1) 23353(25)()222X p X p ---<≤=≤≤ (1)(0.5)(1)(0.5)10.84130.691510.5328=Φ-Φ-=Φ+Φ-=+-=23323(||2)1(||2)1()222X p X p X p ---->=-≤=-≤≤ 1(0.5)( 2.5)1(0.5)(2.5)=-Φ-+Φ-=+Φ-Φ10.69150.99380.6977=+-= 333(3)1(3)1()22X p X p X p -->=-≤=-≤ 1(0)10.50.5=-Φ=-=;(2) 由()()p X c p X c >=≤得1()()p X c p X c -≤=≤?3330.5()()()222X c c p X c p ---⇒=≤=≤=Φ3032c c -⇒=⇒=; (3) 由()0.9p X d >≥得3330.9()1()1()1()222X d d p X d p X d p ---≤>=-≤=-≤=-Φ 33()0.11()0.122d d--⇒Φ≤⇒-Φ≤ 33()0.9 1.2820.43622d d d --⇒Φ≥⇒≥⇒≤.22、从甲地飞住乙地的航班,每天上午10:10起飞,飞行时间X 服从均值为4h ,标准差为20min 的正态分布.(1) 该航班在下午2:30以后到达乙地的概率; (2) 该航班在下午2:20以前到达乙地的概率;(3) 该航班在下午1:50至2:30之间到达乙地的概率 *解:(1) 该航班在下午2:30以后到达乙地的概率为240260240240(260)()1(1)202020X X p X p p ---≥=≥=-< 1(1)10.84130.1587=-Φ=-=;(2) 该航班在下午2:20以前到达乙地的概率为240250240(250)()(0.5)0.69152020X p X p --≤=≤=Φ=; (3) 该航班在下午1:50至2:30之间到达乙地的概率为220240240260240(220260)()202020X p X p ---≤≤=≤≤(1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.23、某地抽样调查结果表明,考生的外语成绩(百分制)近似地服从2(72,)N σ,已知96分以上的人数占总数的%,试求考生的成绩在60分至84分之间的概率解:设考生的外语成绩为X ,则2~(72,)X N σ】由96分以上的人数占总数的%得0.023(96)p X =>729672240.977(96)()()X p X p σσσ--⇒=≤=≤=Φ242σ⇒=12σ⇒=于是,考生的成绩在60分至84分之间的概率为6072728472(6084)()121212X p X p ---≤≤=≤≤ (1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.24求cos Y X =的分布列解:由X于是Y25求2Y X =的分布列解:由26、设随机变量的密度函数为2311()2X xx f x ⎧-<<⎪=⎨⎪⎩其它求随机变量3Y X =+的密度函数解:由题意知,当2y ≤时,有()()0Y F y p Y y =≤=当24y <<时,有()()(3)(3)(3)Y X F y p Y y p X y p X y F y =≤=+≤=≤-=-当4y ≥时,有()()1Y F y p Y y =≤=¥即Y 的分布函数02()(3)2414Y X y F y F y y y ≤⎧⎪=-<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(3)240XF y y '-<<⎧=⎨⎩其它23(3)2420y y ⎧-<<⎪=⎨⎪⎩其它.27、设随机变量~(0,1)X U ,求随机变量XY e =的密度函数 解:由题意知,当1y ≤时,有()()0Y F y p Y y =≤=当1y e <<时,有()()()(ln )(ln )X Y X F y p Y y p e y p X y F y =≤=≤=≤=:当y e ≥时,有()()1Y F y p Y y =≤=即Y 的分布函数1()(ln )11Y X y F y F y y e y e≤⎧⎪=<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(ln )10XF y y e'<<⎧=⎨⎩其它110y ey ⎧<<⎪=⎨⎪⎩其它.28、随机变量X 的密度函数为()0xX e x f x x -⎧>=⎨≤⎩ 求随机变量2Y X =的密度函数~解:由于20Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=;当0y ≥时,有2()()()(Y F y p Y y p X y p X =≤=≤=≤≤0()1x X f x dx dx e -===-即Y 的分布函数10()0Y e y F y y ⎧-≥⎪=⎨<⎪⎩于是,Y 的密度函数0()()00Y Y y f y F y y >'==≤⎩.29、设随机变量~(0,1)X N ,试求随机变量||Y X =的密度函数 解:由于||0Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=;$当0y ≥时,有()()(||)()2()1Y F y p Y y p X y p y X y y =≤=≤=-≤≤=Φ-即Y 的分布函数2()10()00Y y y F y y Φ-≥⎧=⎨<⎩于是,Y 的密度函数()()Y Y f y F y '=2()00y y y 'Φ>⎧=⎨≤⎩22000yy y ->=≤⎩.B 组1、A2、B3、D4、B5、B6、B7、C8、C9、C10、C:11、设随机变量X 的分布函数为0111()21232x a x F x a x a b x <-⎧⎪-≤<⎪⎪=⎨-≤<⎪⎪+≥⎪⎩且1(2)2p X==,求常数a、b解:由()1F+∞=及()()(0)p X a F a F a==--得()121(2)(2)(20)()()32F a bp X F F a b a+∞=+=⎧⎪⎨==--=+--=⎪⎩1726a ba b+=⎧⎪⇒⎨+=⎪⎩1656ab⎧=⎪⎪⇒⎨⎪=⎪⎩.12求常数a解:由11 ii p+∞==∑得20.5121a a+-+=12a⇒=±|再由11202a a-≥⇒≤,可得1a=13、口袋中有5个球,编号为1、2、3、4、5,从中任取3个,以X表示取出的3个球中的最大号码.(1) 求X的分布列;(2) 求X的分布函数解:(1) 由题意知X是离散型随机变量,其所有可能取值为3、4、5,且22351(3)10C p X C ===、23353(4)10C p X C ===、24356(5)10C p X C ===于是X(2) 由(1)可知的分布函数为030.134()0.44515x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩.14、设随机变量X 的密度函数为||()x af x Ce -= (0)a >-求(1) 常数C ;(2) X 的分布函数;(3) (||2)p X <解:(1) 由()1f x dx +∞-∞=⎰得||()2221x xa a f x dx C e dx C e dx aC +∞+∞+∞---∞====⎰⎰⎰12C a⇒=; (2) 当0x <时 ||111()()222t t xa a a x x x F x f t dt e dt e dt e a a --∞-∞-∞====⎰⎰⎰ 当0x ≥时||||0011()()22t t a a xx F x f t dt e dt e dt a a ---∞-∞==+⎰⎰⎰001111222t t x a a a x e dt e dt e a a ---∞=+=-⎰⎰ 于是102()1102xa x a e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩;(3) 22211(||2)(22)(2)(2)1122a a ap X p X F F e e e ---<=-<<=--=--=-.15、设随机变量X 的密度函数为201()0x x f x ≤≤⎧=⎨⎩其它以Y 表示对X 的三次独立重复观察中事件1{}2X ≤出现的次数,求(2)P Y =解:由题意知:事件1{}2X ≤在一次观察中出现的概率为1112222001()02|4p f x dx dt xdx x -∞-∞==+==⎰⎰⎰ 且~(3,)Y b p ,于是223139(2)()()4464P Y C ===. 16、设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从指数分布,其密度函数为510()5x e x f x x -⎧>⎪=⎨⎪≤⎩某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,求(1)p Y ≥解:由题意知:顾客在窗口等待服务的时间超过10分钟的概率为5521010101()|5x x p f x dx e dx e e +∞+∞--+∞-===-=⎰⎰且~(5,)Y b p ,于是02025255(1)1(0)1()(1)1(1)0.5167P Y P Y C e e e ---≥=-==--=--=.17、设随机变量2~(2,)X N σ且(24)0.3p X <<=,求(0)p X < 解:由2~(2,)X N σ得224242(24)()()(0)0.3p X p X σσσ---<<=<<=Φ-Φ=2()0.8σ⇒Φ=0222(0)()()1()10.80.2p X p X σσσ-⇒<=<=Φ-=-Φ=-=.18、设随机变量X 的分布函数为()F x ,试求随机变量()Y F X =的密度函数 解:由于0()1F X ≤≤,故当0Y <时,有()()0Y F y p Y y =≤=; 当01y ≤≤时,有11()()(())(())(())Y F y p Y y p F X y p X F y F F y y --=≤=≤=≤==当1y >时,有()()1Y F y p Y y =≤= 即Y 的分布函数00()0111Y y F y yy y <⎧⎪=≤≤⎨⎪>⎩于是,Y 的密度函数()()Y Y f y F y '=101y <<⎧=⎨⎩其它即随机变量Y 服从区间(0,1)上的均匀分布.。
概率论第二章习题(答案)
A.1 e1
. 设随机变量 X 的方差为 2,则根据切比雪夫不等式有(C)
A. P X EX 2 1
4
C. P X EX 2 1
2
B. P X EX 2 3
4
D. P X EX 2 1
2
二.填空与计算题
1. 设随机变量 X 服从参数为 1 的泊松分布,则 P X EX 2 .
C. E( X C)2 E( X )2 D. E( X C)2 E( X )2
16. 设随机变量 X 的分布函数为 F (x) ,则随机变量Y 2 X 1的分布函数为(D)
A.
F
y 2
1
B.
2F(y) 1
C. 1 F ( y) 1
2
2
D.
F
y 2
1 2
17. 设随机变量 X 的密度函数为 f (x) ,则随机变量Y 3 2 X 的密度函数为(B)
度,
f (x) af1(x), bf2 (x),
x 0, (a 0,b 0)
x0
为概率密度,则 a,b 应满足(A).
A .2a 3b 4 ; B .3a 2b 4 ; C .a b 1; D .a b 2 .
11.
设随机变量 X
服从正态分布
N
(1
,
2 1
)
,随机变量 Y
服从正态分布
解: 由 EX 2 2 , P X EX 2 P X 2 e1 . 2
2. 设 随 机 变 量 X 概 率 分 布 为 P X k C (k 0,1, 2,) , 则
A. a 3 5,b 2 5 ; B. a 2 3, b 2 3 ;
C. a 1 2 , b 3 2 ; D. a 1 2 ,b 3 2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论第二章习题1 考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。
若投保人在一年内因意外死亡的概率为,因其它原因死亡的概率为,求公司赔付金额的分崣上。
解 设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为;;2.(1)一袋中装有5只球,编号为1,2,3,4,5。
在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。
解 (1)在袋中同时取3个球,最大的号码是3,4,5。
每次取3个球,其总取法:35541021C ⋅==⋅,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。
因而其概率为 22335511{3}10C P X C C ====若最大号码为4,则号码为有1,2,4;1,3,4; 2,3,4共3种取法,其概率为23335533{4}10C P X C C ====若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为 25335566{5}10C P X C C ====一般地 3521)(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为(2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,则样本点为S={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件,X的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X==;最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X==;最小点数为3的共有7种,7 {3}36P X==;最小点数为4的共有5种,5 {4}36 P X==;最小点数为5的共有3种,3 {5}36P X==;最小点数为6的共有1种,1 {6}36 P X==3 设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品的次数,(1)求X的分布律;(2)画出分布律的图形。
解从15只产品中取3次每次任取1只,取到次品的次数为0,1,2。
在不放回的情形下,从15只产品中每次任取一只取3次,其总的取法为:315151413P=⨯⨯,其概率为若取到的次品数为0,即3次取到的都是正品,其取法为313131211P=⨯⨯其概率为13121122 {0}15141335 p X⨯⨯===⨯⨯若取到的次品数为1,即有1次取正品,2次取到次品,其取法为112 3213321312C C P=⨯⨯⨯其概率为 32131212{1}15141335p X ⨯⨯⨯===⨯⨯若取到的次品数为2,,其概率为22121{2}1{0}{1}1353535p X p X p X ==-=-==--=。
于是其分布律为(24 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为1q p =-(01p <<),(1)将试验进行到出现一次成功为止,以X 表示所需要的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)。
(2)将试验进行到出现r 次成功为止,以Y 表示所需要的试验次数,求Y 的分布律。
(此时称Y 服从以r ,p 为参数的巴斯卡分布或负二项分布。
)解 (1)X 的取值为1,2,,,n L L ,对每次试验而言,其概率或为1,或为q 所以其分布律为(2)Y 的取值为,1,,,r r n +L L ,对每次试验而言,其概率或为1,或为q 所以其分布律为5.一房间有3扇同样大小的窗子,其中只有一扇是打开的。
有一只鸟自开着的窗子飞往了房间,它只能从开着的窗子飞出去,鸟在房子里飞来飞去,试图飞出房间。
假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。
(1)以X 表示鸟为了飞出房间试飞的次数,求X 的分布律。
(2)户主声称,他养的一只鸟是有记忆的,它飞向任一窗子的尝试不多于一次。
以Y 表示这只聪明鸟为了飞出房间试飞的次数,如房主所说的是确实的,试求Y 的分布律。
(3)求试飞次数X 小于Y 的概率;求试飞次数Y 小于X 的概率。
解 (1)X 服从1=p 的几何分布,其分布律为(2)Y 所有可能的取值为1,2,3.方法一 31}1{==Y p 312132}2{=⋅==Y p3112132}3{=⋅⋅==Y p方法二 由于鸟飞向扇窗是随机的,鸟飞出指定窗子的尝试次数也是等可能的,即 31}3{}2{}1{======Y p Y p Y p 即Y 的分布律为(3) }3,2{}3,1{}2,1{}{==+==+===<Y X p Y X p Y X p Y X p319231313131⋅+⋅+⋅=278=}{}3,2{}3,1{}2,1{}{4∑∞==+==+==+===<i i X p X Y p X Y p X Y p X Y p31)32(31)32(3131)32(319231422⋅+⋅⋅+⋅⋅+⋅=∑∞=i i8138=6.一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备被使用的概率为,问在同一时刻(1)恰有2个设备被使用的概率是多少?(2)至少有3个设备被使用的概率是多少? (3)至多有3个设备被使用的概率是多少? (4)至少有1个设备被使用的概率是多少?解 设对每个设备的观察为一次试验,则试验次数为5且各次试验相互独立,于是)1.0,5(~B X(1)恰有2个设力被使用,即{2}X =:0729.0)1.01(1.0}2{3225=-⋅⋅==C X p(2)至少有3个设备被使用,即{3}X ≥:}5{}4{}3{}3{=+=+==≥X p X p X p X p55544523351.09.01.09.01.0⋅+⋅⋅+⋅⋅=C C C 00856.0=(3)至多有3个设备被使用,即{3}X ≤:}5{}4{1}3{=-=-=≤X p X p X p 5554451.0)1.01(1.01C C --⋅⋅-= 99954.0=(4)至少有一个设备被使用,即{1}X ≤{1}1{0}p X p X ≥=-=5005)1.01(1.01-⋅-=C 40951.0= 7 设事件A 在每次试验中发生的概率为,A 发生不少于3次时指示灯发出信号,(1)进行5次重复独立试验,求指示灯发出信号的概率; (2)进行7次重复独立试验,求指示灯发出信号的概率。
解 设A 发生的次数为X ,则(,0.3)X B n :,5,7n =,设B “指示灯发出信号”(1) 5553(){3}(0.3)(0.7)k k k k P B P X C-==≥=∑33244550555(0.3)(0.7)(0.3)(0.7)(0.3)(0.7)C C C =++100.2704950.00810.70.00243016308=⨯⨯+⨯⨯+=或 2514223220()1{}1(0.7)0.3(0.7)(0.3)(0.7)0.163k P B P X k C C ==-==--⨯-=∑同理可得 (2)7753(){3}(0.3)(0.7)0353k k k k P B P X C-==≥==∑或 2716225770()1{}1(0.7)(0.3)(0.7)(0.3)(0.7)0.353k P B P X k C C ==-==---=∑8.甲、乙两人投篮,投中的概率分别为,,今各投3次,求(1)两人投中的次数相等的概率;(2)甲比乙投中次数多的概率。
解 记甲投中的次数为X ,乙投中的次数为Y ,则)6.0,3(~B X ,)7.0,3(~B Y ,00333{0}(0.6)(0.4)(0.4)0.064p X C ====288.0)4.0)(6.0(}1{213===C X p 432.0)4.0()6.0(}2{223===C X p 33033{3}(0.6)(0.4)(0.6)0.216p X C ====同理,027.0)3.0(}0{3===Y p189.0)3.0)(7.0(}1{213===C Y p 441.0)3.0()7.0(}2{223===C Y p343.0)7.0(}3{3===Y p若记A 为事件“两人投中次数相等”,B 为事件“甲比乙投中的次数多”,则 }{}{},{)(330i Y p i X p i Y i X p A p i i ======∑∑==32076.0=0.0640.0270.2880.1890.4320.4410.2160.343=⨯+⨯+⨯+⨯ 0.0017280.0544320.1905120.074088=+++32076.0=又 {1,0}{1}{0}0.2880.0270.007776P X Y P X P Y ======⨯={2,0}{2}{0}0.4320.0270.011664P X Y P X P Y ======⨯={3,0}{3}{0}0.2160.0270.005832P X Y P X P Y ======⨯= {2,1}{2}{1}0.4320.1890.081648P X Y P X P Y ======⨯= {3,1}{3}{1}0.2160.1890.040824P X Y P X P Y ======⨯= {3,2}{3}{2}0.2160.4410.095256P X Y P X P Y ======⨯=所以 }{)(Y X p B p >=}0,3{}0,2{}0,1{==+==+===Y X p Y X p Y X p {2,1}{3,1}p X Y p X Y +==+=={3,2}p X Y +==0.0077760.0116640.0058320.0816480.0408240.095256=+++++ 0.243=9.有一大批产品,其验收方案如下,先作第一次检验:从中任取10件,经检验无次品,接受这批产品,次品大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品。
若产品的次品率为10%,求 (1)这批产品经第一次检验就能接受的概率。
(2)需作第二次检验的概率。
(3)这批产品按第二次检验的标准被接受的概率。
(4)这批产品在第一次检验未能作决定且第二次检验时被通过的概率。
(5)这批产品被接受的概率解 设X 为“第一次检验出的次品数”,Y 为“第二次检验出的次品数”,则)1.0,10(~B X ,)1.0,5(~B Y(1)这批产品第一次检验后接收,即没有发现次品,也就是X =0,而349.0)9.0()9.0()1.0(}0{1090010≈===C X p(2)需作第二次检验,即第一次检验发现次品数为1或2件:{12}X ≤≤}2{}1{}21{=+==≤≤X p X p X p210192281010101(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)ii i i CC C -===+∑581.0≈(3)这批产品按第二次检验的标准接收,即在第二次取出的5件产品中没有次品:{0}Y =59005)9.0()9.0()1.0(}0{===C Y p 590.0≈(4) 这批产品在第一次检验未能作决定且第二次检验时被通过,即:{0,12}Y X =≤≤}21,0{≤≤=X Y p }21{}0{≤≤⋅==X p Y p (两事件相互独立)581.0590.0⨯=343.0≈ (5)})21,0{}0({≤≤=⋃=X Y X p343.0349.0+=692.0=.10.有甲、乙两种味道和颜色都极为相似的名酒各4杯,如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。