长方体和正方体体积计算之课件1讲解学习
合集下载
最新人教版五年级数学下册《第3单元3.第2课时 长方体和正方体的体积(1)》精品PPT优质课件
第2课时 长方体和正方体的体积(1)
R·五年级下册
回顾
物体所占空间的大小叫做物体的( 体积 )。
计量体积要用体积单位,常用的体积单位 有( 立方厘米 )、( 立方分米 )和 ( 立方米 ),可以分别写成( cm3 )、 ( dm3)和( m3 ) 。
苹果醋饮料箱:长、宽、高分别是70厘米、50厘米、60厘米; 芒果汁饮料箱:长、宽、高分别是80厘米、60厘米、40厘米; 它们的体积分别是多少?
a·a·a也可以写作“a3”, 读作“a的立方”,表 示3个a相乘。
正方体的体积公式一般写成: V=a3
计算下面图形的体积。
V=a b h =7×3×4 =84(cm3)
V=a3 =63 =6×6×6 =216(dm3)
乘飞机的行李规定 ◎生活中的数学◎
50cm 65cm 40cm
机场行李托运一般不超过此规格。
12
12
观察上表,你发现了什么?
1.长方体所含体积单位的数量就是长方体的体积。 2.长方体的体积正好等于长×宽×高的积。
长方体的体积=长×宽×高
如果用字母V表示长方体的体积,用a,
b,h分别表示长方体的长、宽、高,那么
V=a b h
根据长方体和正方体
的关系,你能想出正
方体的体积怎样计算 吗?
正方体的体积=棱长×棱长×棱长 V=a ·a ·a
最小
最大
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
V=a b h
V=a ·a ·a
课堂作业
1.从书本练习中选择题目, 完成与本课时相关练习;
2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
R·五年级下册
回顾
物体所占空间的大小叫做物体的( 体积 )。
计量体积要用体积单位,常用的体积单位 有( 立方厘米 )、( 立方分米 )和 ( 立方米 ),可以分别写成( cm3 )、 ( dm3)和( m3 ) 。
苹果醋饮料箱:长、宽、高分别是70厘米、50厘米、60厘米; 芒果汁饮料箱:长、宽、高分别是80厘米、60厘米、40厘米; 它们的体积分别是多少?
a·a·a也可以写作“a3”, 读作“a的立方”,表 示3个a相乘。
正方体的体积公式一般写成: V=a3
计算下面图形的体积。
V=a b h =7×3×4 =84(cm3)
V=a3 =63 =6×6×6 =216(dm3)
乘飞机的行李规定 ◎生活中的数学◎
50cm 65cm 40cm
机场行李托运一般不超过此规格。
12
12
观察上表,你发现了什么?
1.长方体所含体积单位的数量就是长方体的体积。 2.长方体的体积正好等于长×宽×高的积。
长方体的体积=长×宽×高
如果用字母V表示长方体的体积,用a,
b,h分别表示长方体的长、宽、高,那么
V=a b h
根据长方体和正方体
的关系,你能想出正
方体的体积怎样计算 吗?
正方体的体积=棱长×棱长×棱长 V=a ·a ·a
最小
最大
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
V=a b h
V=a ·a ·a
课堂作业
1.从书本练习中选择题目, 完成与本课时相关练习;
2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
长方体和正方体体积计算之课件
干海子小学
李兵
怎样知道这个魔方的体积呢?
2 厘 米 4厘米 3厘米
9
思考:是否能用一个公式把它 计算出来呢?
观察操作
探究长方体的体积公式
例1 用准备好的24块1立方厘米 的正方体积木,任意摆出不同的 长方体,然后把相关数据填入下 表。
54×44.5×38=91314(立方厘米) 答:它的体积是91314立方厘米
棱 长
a
吗积正 ?公方 式体 你的 会体
棱长 a
棱长 a
正方体的体积=棱长×棱长×棱长 V=a×a×a
3
=a
例2 光明纸盒厂生产一种正方体 纸箱,棱长是5分米。体积是 多少立方分米?
当堂作业
请同学们
审题认真
书写规范
1、口答:
思考:长方体所含小正方体的个数,与长宽高有什么
关系?
长
(厘米)
宽
(厘米)
高
(厘米)
积木的数量 长方体体积
(立方厘米)
8
3
1
24
24
4
3
3
2
2
4 4
24
24
24
24
2
3
24
24
观发现
长方体的体积等于长方体所含体
积单位的数量,所含体积单位的数 量正好等于长方体长、宽、高的乘 积。
1厘米
1厘米 4厘米
二、常用的体积单位有立方厘米,立方分米 3, 3 , 3。 和立方米,可以分别写成成 cm dm m
三、 1、棱长是1cm的正方体,体积是1 cm 3
2、棱长是1dm的正方体,体积是1 dm3 3 3、棱长是1m的正方体,体积是1 m
李兵
怎样知道这个魔方的体积呢?
2 厘 米 4厘米 3厘米
9
思考:是否能用一个公式把它 计算出来呢?
观察操作
探究长方体的体积公式
例1 用准备好的24块1立方厘米 的正方体积木,任意摆出不同的 长方体,然后把相关数据填入下 表。
54×44.5×38=91314(立方厘米) 答:它的体积是91314立方厘米
棱 长
a
吗积正 ?公方 式体 你的 会体
棱长 a
棱长 a
正方体的体积=棱长×棱长×棱长 V=a×a×a
3
=a
例2 光明纸盒厂生产一种正方体 纸箱,棱长是5分米。体积是 多少立方分米?
当堂作业
请同学们
审题认真
书写规范
1、口答:
思考:长方体所含小正方体的个数,与长宽高有什么
关系?
长
(厘米)
宽
(厘米)
高
(厘米)
积木的数量 长方体体积
(立方厘米)
8
3
1
24
24
4
3
3
2
2
4 4
24
24
24
24
2
3
24
24
观发现
长方体的体积等于长方体所含体
积单位的数量,所含体积单位的数 量正好等于长方体长、宽、高的乘 积。
1厘米
1厘米 4厘米
二、常用的体积单位有立方厘米,立方分米 3, 3 , 3。 和立方米,可以分别写成成 cm dm m
三、 1、棱长是1cm的正方体,体积是1 cm 3
2、棱长是1dm的正方体,体积是1 dm3 3 3、棱长是1m的正方体,体积是1 m
数学_长方体和正方体的体积(1)_课件
② 宽/cm
2 2 2 2
③ 高/cm
④ 小正方体的个数
1
8
2
16
3
18
3
30
体积/cm3
8 16 18 30
六年级数学名师课程
10 用1立方厘米的小正方体摆出下面的长方体,各
需要多少个?先想一想,再摆一摆。ຫໍສະໝຸດ 4个12个4cm3
12cm3
24cm3
这3个长方体的体积各是多少立方厘米?
24个
六年级数学名师课程
正方体的体积=棱长×棱长×棱长
如果用V表示正方体的体积,用 a 表示正方体的
棱长,上面的公式可以写成:
a
V = a· a·a
a a
a·a·a也可以写成 a3,读作a的立方。 a3 表示三个a相乘。
正方体的体积公式一般写成:
V = a3
六年级数学名师课程
计算。
33=27
53 =125 13=1
103=1000 0.13=0.001
六年级数学名师课程
h ab 长方体的体积 = 长×宽×高
V=abh
a a
a 正方体的体积 = 棱长×棱长×棱长
V = a3
六年级数学名师课程
计算下面长方体和正方体包装盒的体积。
10cm 12cm
30 cm
12 cm
30×8×10=2400(立方厘米) 123=12×12×12=1728(立方厘米)
从例9、例10中,你发现长方体的体积与什么有关? 可以怎样求长方体的体积?
12cm3
4cm3
12cm3
长方体的体积=长×宽×高
如果用V表示长方体的体积,用a、b、h
分别表示长方体的长、宽、高,上面的公式可 以可以写成:
五年级下册长方体与正方体体积课件人教版(34张PPT)
A.4
B.6
C.8
D.12
4.长方体玻璃缸,长4dm,宽3dm,高5dm,缸中的水深2.5dm,水
的体积是( )dm3
A.30
B.37.5
C.50
D.60
5
填上合适的数.
10m3= ( )dm3
3020cm3= (
230mL= ( )L
3.05L3= (
2.7m3= (
)dm3= (
)L
)dm3 )cm3
长方体与正方体体积
1
你来填写
1.一个长方体截去一个棱长为5厘米的正方体后,所剩 下的 长方体的体积是75立方厘米,则原长方体的最长的棱是 ______厘米. 2.一个长方体表面积为40平方厘米,上、下两个面为正方形, 如果正好可以截成两个相等体积的正方体,则这个长方体的 体积是_____立方厘米. 3.一个长方体,长与宽之比是2:1,宽与高之比是3:2,已 知全部棱长之和是220cm,长方体的体积是______立方厘米
的体ቤተ መጻሕፍቲ ባይዱ是( )dm3
A.30
B.37.5
C.50
D.60
4
你来选择
1.一个棱长是8厘米的正方体的体积与一个长方体体积相等,这个长方
体高16厘米,它的底面积是( )
A.32厘米2 B.9厘米 C.15厘米 D.120厘米
2.至少需要( )个小正方体可以拼成大正方体.
A.4
B.6
C.8
D.12
3.正方体的表面积是底面积的( )倍.
2
你来填写
1.一个长方体截去一个棱长为5厘米的正方体后,所剩 下的长方体的体积是75立方厘 米,则原长方体的最长的棱是8厘米. 解:75÷(5×5)=75÷25=3(厘米),3+5=8(厘米), 2.一个长方体表面积为40平方厘米,上、下两个面为正方形,如果正好可以截成两个 相等体积的正方体,则这个长方体的体积是 16立方厘米. 解:40÷10=4(平方厘米),因为2×2=4,所以小正方体的棱长是2厘米,则体积是: 2×2×2×2=16(立方厘米) 3.一个长方体,长与宽之比是2:1,宽与高之比是3:2,已知全部棱长之和是220cm, 长方体的体积是4500立方厘米 解:根据“长与宽之比为2:1,宽与高之比为3:2”,可得:长:宽:高=6:3:2, 利用棱长总和求出一组长宽高的和是:220÷4=55厘米,由此再利用长宽高的比分别求 出这个长方体的长宽高,再根据长方体3的体积公式V=abh,即可解答.
人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件
公有的质因数
2 18 30 3 9 15 35
独有的质因数
所以,18和30的最大公因数=2×3=6; 18和30的最小公倍数= 2×3×3×5=90。 为了便于区分,可以简单归纳为: 最大公因数乘半边,最小公倍数乘半圈。
6 18
30
3
5
求两个数的最大公因数与最小公 倍数时,用合数作除数有助于提 高计算速度。
计量体积就要用体积单位,常用的体积单位有
立方厘米 立方分米 立方米
1立方厘米
棱长1厘米的正方体,体积是1立方厘米
1立方厘米
棱长1分米的正方体,体积是1立方分米
1米
1分米
1分米
1立方分米
棱长1米的正方体,体积是1立方米
1米
1立方厘米
上图含( 4个 )1立方厘米, 体积就是(4立方厘米 )
一个物体里含有多少个体积 单位,它的体积就是多少。
长/分米 宽/分米
长
5
方
4
体
10
1 3 2 棱长/米
正
6
方 体
30
0.4
高/分米 2 5 4
体积/分米 3
10 60 80
体积/米3
216 27000 0.064
3、判断正误并说明理由。 ( 1)0.2 3=0.2×0.2×0.2;( √ )
( 2)5X 3=10X;( × )
( 3 )一个正方体棱长4分米,它的体
(分数的意义)
一个物体、一些物体等都可以看作一个整体, 把这个整体平均分成若干份,这样的一份或 几份都可以用分数来表示。
单位“1”与分数单位的区别
单位“1”表示:一个物体、一些物体等都可 以看作一个整体,一个整体可以用自然数1来 表示,通常把它叫做“1”。 分数单位表示:把单位“1”平均分成若干份, 表示其中一份的数叫分数单位。
小学数学人教版五年级下册《长方体和正方体的体积1》课件
180÷12=15(cm) V=a3 153 =15×15×15
=3375(cm3) 答:它的体积是3375cm3
课堂练习
4、有一个长20cm,宽10cm的长方体水缸,小明把一块石头浸没 在水里,水面上升了2cm,这块石头的体积是多少立方厘米?
V=a b h 20×10×2 =400(cm3)
答:这块石头的体积是400cm3 5、下面是一个长方体的展开图,请列式计算它的体积和表面积。 (单位:cm) 11-6=5(cm) 7×5×2+7×3×2+5×3×2 =70+42+30 =142(平方厘米) 7×5×3 =105(cm3 答:它的表面积是142平方厘)米,体积是105立方厘米。
说一说你是怎么摆的? 用12个体积为1cm3的小正方体摆成不同的长方体。
(1)
(2)
(3)
(4)
新知讲解
将摆法不同的长方体的相关数据填入下表。
长
宽
高
小正方体 长方体 的数量 的体积
(1) 12 1
1
12
12
(2) 6 2
1
12
12
(3) 4 3
1
12
12
(4) 3 2
2
12
12
1.长方体所含体积 单位的数量就是长 方体的体积。
思考
怎样求得长方体和正方 体的体积是多少呢?
新知讲解
我们知道长方形的面积与长和宽有关,长方体的体积可能与什么有关?
长、宽相等的时候,越高,体积越大; 长、高相等的时候,越宽,体积越大; 宽、高相等的时候,越长,体积越大;
长方体的体积 与长、宽、高都 有关系。
新知讲解
能不能先测再计算出体积呢?
用体积为1cm3的小正方体摆成不同的长方体。
=3375(cm3) 答:它的体积是3375cm3
课堂练习
4、有一个长20cm,宽10cm的长方体水缸,小明把一块石头浸没 在水里,水面上升了2cm,这块石头的体积是多少立方厘米?
V=a b h 20×10×2 =400(cm3)
答:这块石头的体积是400cm3 5、下面是一个长方体的展开图,请列式计算它的体积和表面积。 (单位:cm) 11-6=5(cm) 7×5×2+7×3×2+5×3×2 =70+42+30 =142(平方厘米) 7×5×3 =105(cm3 答:它的表面积是142平方厘)米,体积是105立方厘米。
说一说你是怎么摆的? 用12个体积为1cm3的小正方体摆成不同的长方体。
(1)
(2)
(3)
(4)
新知讲解
将摆法不同的长方体的相关数据填入下表。
长
宽
高
小正方体 长方体 的数量 的体积
(1) 12 1
1
12
12
(2) 6 2
1
12
12
(3) 4 3
1
12
12
(4) 3 2
2
12
12
1.长方体所含体积 单位的数量就是长 方体的体积。
思考
怎样求得长方体和正方 体的体积是多少呢?
新知讲解
我们知道长方形的面积与长和宽有关,长方体的体积可能与什么有关?
长、宽相等的时候,越高,体积越大; 长、高相等的时候,越宽,体积越大; 宽、高相等的时候,越长,体积越大;
长方体的体积 与长、宽、高都 有关系。
新知讲解
能不能先测再计算出体积呢?
用体积为1cm3的小正方体摆成不同的长方体。
《长方体和正方体的体积》ppt课件
06 课堂小结与回顾
关键知识点总结
长方体和正方体的体积公式
长方体的体积V=a×b×c,正方体的体积V=a^3,其中a、 b、c分别为长方体的长、宽、高,a为正方体的棱长。
体积单位的认识与换算
常见的体积单位有立方厘米(cm³)、立方分米(dm³)、立方 米(m³)等,需掌握各单位之间的换算关系。
实际问题的应用
提出改进方案
03
针对可能出现的误差,提出相应的改进方案,如提高测量精度、
使用更精确的计算方法等。
05 拓展延伸:不规则物体体 积估算方法
排水法原理及应用
原理
将不规则物体完全浸没于水中,通过计算物体排开水的体积来估 算物体的体积。
应用
适用于易溶于水或与水发生反应的物体以外的任何不规则物体。 如石块、金属块等。
公式应用注意事项
单位统一
在应用公式计算体积时,需要确 保长度、宽度和高度的单位统一,
避免出现错误结果。
公式适用范围
长方体和正方体的何体需要采用其他方
法进行计算。
公式变形应用
在实际应用中,可以根据需要对 公式进行变形,如已知体积和其
中两个维度求第三个维度等。
体积单位换算
1立方米=1000立方分米,1立 方分米=1000立方厘米。
实物体积感受
常见物体体积
列举生活中常见物体的体积,如 一个苹果的体积约为200立方厘米, 一个电冰箱的体积约为0.5立方米
等。
体积比较
通过比较不同物体的体积大小,让 学生感受体积的概念。
体积估算
通过估算物体的体积,培养学生的 空间想象力和估算能力。
02 长方体和正方体认识
长方体特点与性质
01
02
六年级数学上册一长方体和正方体体积单位间的进率教学课件苏教版
b.〔1〕大、小齿轮齿数比是
c.〔a.4 〕∶〔a.1 〕。
a.〔2〕大、小齿轮每分转数的比是 〔 a.〕1 ∶〔 a.4〕。
b.〔3〕这两个比能组成比例吗 ?
a.3.判断每组的两个量是否成比例。如 果成比例 , 是成什么比例 ? a.〔1〕生产一批化肥 , 每天生产吨数与 需要时间。6)a.=(48÷8):(40÷8) 00)
b.=2:1
b.=6:5
b.=15:30
5: 1 66
=
5 6
6
:
1 6
6
7 :3 12 8
=
7 12
24
:
3 8
24
c.0=.112:25:5
=
0.125
81000
:
5 8
1000
125 : 625
b.高,茄子钙磷含量比最低。
a.6.
a.不対 , 应该是1.55:1。 a.1.55:1=(1.55×100):(1×100)
a.=155:10 0a.=(155÷5):(100÷5) a.=31:20
a.7.甲数和乙数的比是2 : 3 , 乙数和丙数的
比是4 :5。甲数和丙数的比是多少?
a.甲数:乙数=2:3 b.2:3=(2×4):(3×4)=8:12 c.乙数:丙数=4:5 d.4:5=(4×3):(5×3)=12:1 5 e.甲数:乙数:丙数=8:12:15 f.所以甲数:丙数=8:15
aa.a.yx.=k(一定)
a.反比例的意义
a. 两种相关联的量 , 一种量扩大或缩 小假设干倍 , 另一种量反而缩小或扩大相 同的倍数 , 这两种量相対应的两个数的积 一定的。这两种量就叫做成反比例的量 , 它们的关系叫做反比例关系。
c.〔a.4 〕∶〔a.1 〕。
a.〔2〕大、小齿轮每分转数的比是 〔 a.〕1 ∶〔 a.4〕。
b.〔3〕这两个比能组成比例吗 ?
a.3.判断每组的两个量是否成比例。如 果成比例 , 是成什么比例 ? a.〔1〕生产一批化肥 , 每天生产吨数与 需要时间。6)a.=(48÷8):(40÷8) 00)
b.=2:1
b.=6:5
b.=15:30
5: 1 66
=
5 6
6
:
1 6
6
7 :3 12 8
=
7 12
24
:
3 8
24
c.0=.112:25:5
=
0.125
81000
:
5 8
1000
125 : 625
b.高,茄子钙磷含量比最低。
a.6.
a.不対 , 应该是1.55:1。 a.1.55:1=(1.55×100):(1×100)
a.=155:10 0a.=(155÷5):(100÷5) a.=31:20
a.7.甲数和乙数的比是2 : 3 , 乙数和丙数的
比是4 :5。甲数和丙数的比是多少?
a.甲数:乙数=2:3 b.2:3=(2×4):(3×4)=8:12 c.乙数:丙数=4:5 d.4:5=(4×3):(5×3)=12:1 5 e.甲数:乙数:丙数=8:12:15 f.所以甲数:丙数=8:15
aa.a.yx.=k(一定)
a.反比例的意义
a. 两种相关联的量 , 一种量扩大或缩 小假设干倍 , 另一种量反而缩小或扩大相 同的倍数 , 这两种量相対应的两个数的积 一定的。这两种量就叫做成反比例的量 , 它们的关系叫做反比例关系。
《长方体和正方体的体积》精品PPT课件
课程目标
掌握长方体和正方体 的体积计算公式。
培养学生的空间观念 和几何直觉,提高解 决几何问题的能力。
能够运用公式解决实 际问题,如计算容积、 体积等。
02
长方体的体积
长方体的定义
总结词
长方体的定义
详细描述
长方体是一种三维图形,由六个矩形面组成,相对的两个面完全相同。它的三 个边分别是长度、宽度和高度。
06
总结与回顾
本节课的重点回顾
计算长方体和正方体的体积公式 掌握长方体和正方体的体积计算方法
理解体积的概念和意义 了解体积单位的应用
本节课的难点解析
如何理解体积的概念 如何正确应用长方体和正方体的体积公式进行计算
如何解决与体积相关的实际问题
下节课预告
学习圆柱体的体积计算方法 了解圆锥体的体积计算公式
《长方体和正方体的 体积》精品ppt课件
• 引言 • 长方体的体积 • 正方体的体积 • 体积的单位和换算 • 练习与巩固 • 总结与回顾
目录
01
引言
课程背景
01
长方体和正方体是生活中常见的 几何形状,了解其体积计算方法 对于解决实际问题具有重要意义 。
02
学生已经学习了长方形和正方形 的面积计算,在此基础上进一步 学习长方体和正方体的体积计算 有助于巩固几何知识体系。
学习如何解决与立体几何相关的实际问题
感谢观看
THANKS
体积计算公式
正方体的体积可以通过其 棱长的三次方来计算,即 V = a^3,其中a是正方体 的棱长。
公式推导
正方体的体积可以通过其 底面积和高的乘积来推导, 即 V = a^2 × a = a^3。
单位换算
正方体的体积单位通常是 立方单位,如立方米、立 方厘米等,根据需要可以 进行单位换算。
北师大版五年级数学下册《长方体和正方体的体积》PPT课件
长方体的体积=长×宽×高
h
a
V = abh
b
棱长 棱长 棱长
正 长方体的体积 = 棱长 长 × 棱长 宽 × 棱长 高
a 棱长
棱长 a 棱长 a
V = a a a 棱长 棱长 正方体的体积 = 棱长 长 × 宽 × 高 V = a3
底面
底面
长方体或正方体底面的面积叫底面积。
h
a
b
底面积
长方体的体积=长×宽×高
( 4 )一个长方体,长5分米,宽4分米,高3厘米,它 的体积是60dm . ( ×)
建筑工地要挖一个长50m,宽30m,深 50cm的长方体土坑,控出多少方的土?
挖一个长和宽都是5米的长方体菜窖,要 使菜窖的窖是50立方米,应挖多少米深?
长方体和正方体体积
长方体体积=长X宽X 高 V = abh
V = sh
a
a
a
底面积
正方体的体积=棱长×棱长×棱长
V = sh
底面
底面
长方体(或正方体)的体积=底面积×高
V = sh
努 力 吧 !
计算下面立体图形的表面积和体积。 (单位:分米)
5 5 5 9
2 1.5
填一填
判断正误并说明理由。
(1)0.2 =0.2×0.2×0.2;(√ )
(2)5X3 =15X;( ×) ( 3 )一个正方体棱长4分米,它的体积是:43 =12 (立方分米) (× )
正方体体积=棱长X棱长X棱长 V = a3
长方体(或正方体)体积=底面积X高
V
=
Sh
谢
谢
长方体和正 方体的体积
摆 一 摆
层 数 = 高
每排个数=长
苏教版六年级上册数学《体积和体积单位》长方体和正方体PPT课件
2.先求总份数,再求各部分占总量 的百分之几或几分之几。最后求各部分量。 例1.六年1班有45人,男生与女生人数的比 是4:5,男生和女生各有多少人? 例2.学校运进120本儿童读物,按3:4:5分 配给四、五、六年级,三个年级各分多少本?
2、稍复杂的按比例分配应用题 特点:已知一个数的量(部分量或相差量)和各部分 量的比,求总量或其他部分量。 方法:1.(归一法)先求每份数,再求几份数是多少。
7立方厘米 6立方厘米 10立方厘米
9、在括号里填上合适的单位名称:
橡皮的体积大约是 集装箱的体
6( 立方厘米)
积大约是40
( 立方米 )
9、在括号里填上合适的单位名称:
水桶的容积大 西瓜的体积大约 约是12( 升 ) 是4(立方分米)
谢谢观看!
分数、百分数应用题
(归类总结)
分百应用题是六年级上册的重点,也是 一个难点,它涉及了第二,第三,第五以及 第六单元的部分内容,所占比例很大。要想 让学生们准确地掌握好各个类型应用题的特 点,以及解答方法,首先,要对应用题进行 分类,让学生掌握应用题的解题策略。其次, 对于一些平时练习出现的易混易错的典型应 用题进行对比,归类,从而掌握其正确的解 答方法。最后还要对学生进行不同类型应用 题的分组练习,从而进一步提高学生分析解 决应用题的能力。
方法:用单位“1”已知的量×分率=对应量 对应量÷对应分率=所求单位“1”的量。
例:公园里有20颗杨树,柳树的棵树是杨树的3/5, 同时又是柏树的75%,柏树有多少棵?
分数除法应用题的解题策略
1、从分率句入手,找准单位“1” 单位“1”的量未知,可以设为ⅹ。
2、用单位“1”的量(x)×对应分率=对 应的数量。
2.(按比例分配法)先求总份数,再求 部分量占总量的几分之几,最后求出各部分量或总量。
2、稍复杂的按比例分配应用题 特点:已知一个数的量(部分量或相差量)和各部分 量的比,求总量或其他部分量。 方法:1.(归一法)先求每份数,再求几份数是多少。
7立方厘米 6立方厘米 10立方厘米
9、在括号里填上合适的单位名称:
橡皮的体积大约是 集装箱的体
6( 立方厘米)
积大约是40
( 立方米 )
9、在括号里填上合适的单位名称:
水桶的容积大 西瓜的体积大约 约是12( 升 ) 是4(立方分米)
谢谢观看!
分数、百分数应用题
(归类总结)
分百应用题是六年级上册的重点,也是 一个难点,它涉及了第二,第三,第五以及 第六单元的部分内容,所占比例很大。要想 让学生们准确地掌握好各个类型应用题的特 点,以及解答方法,首先,要对应用题进行 分类,让学生掌握应用题的解题策略。其次, 对于一些平时练习出现的易混易错的典型应 用题进行对比,归类,从而掌握其正确的解 答方法。最后还要对学生进行不同类型应用 题的分组练习,从而进一步提高学生分析解 决应用题的能力。
方法:用单位“1”已知的量×分率=对应量 对应量÷对应分率=所求单位“1”的量。
例:公园里有20颗杨树,柳树的棵树是杨树的3/5, 同时又是柏树的75%,柏树有多少棵?
分数除法应用题的解题策略
1、从分率句入手,找准单位“1” 单位“1”的量未知,可以设为ⅹ。
2、用单位“1”的量(x)×对应分率=对 应的数量。
2.(按比例分配法)先求总份数,再求 部分量占总量的几分之几,最后求出各部分量或总量。
人教版《长方体和正方体》完美版课件24(共18张PPT)
那就让我 们开动
脑筋吧!
A
B
C
D
思考:上面的长方体是由体积1立方厘米的小正方体品拼摆出来的,如何快速地数出上图中各长方体中小 正方体的个数?
名称
长方体A 长方体B 长方体C 长方体D
每排个数
4 4
4 4
排数
3 3
3 3
1 2
3
4
层数
小正方体个数 长方体体积(单位 :cm³)
4×3×1=12
12
4×3×2=24
24
4×3×3=36 36
4×3×4=48 48
为什么长方体中小正方体的个数和长方体 体积的数量相同呢?
每排个数与长方体的长有什么关系?
排数与长方体的宽有什么关系?
层数与长方体的高有什么关系?
结论:小正方体个数=每排个数 × 排数 × 层数
长方体的体积就是长方体所 含体积单位的数量
猜想:长方体体积 = 长 × 宽 × 高
长方体体 积(单位 :cm³)
12
12
12
12
观察表格中的数据想一想: 1.比较这些长方体的摆法有什么共同点和不同点?
(这些长方体形状不同,体积相同) 2.为什么这些长方体形状不同而体积相同呢?
(因为它们都含有12个小正方体,也就是说它们含有同样多的体积单 位)
让我们 一起来
揭秘
知识讲解,难点突破
1 、什么是物体的体积?
物体所占空间的大小叫做
物体的体积。
粉笔
以旧引新,复习导入
2、常用的体积单位有( 立方)厘米 ( 立方分米)和( )立方。米
3、体积是 4 立方厘米的长方体里含有 ( 4)个体积是1立方厘米的小正方体。
(沪教版)五年级数学下册课件 长方体和正方体的体积
72 (cm3) = 6×4×3
V
= a b h
6 × 4 × 3 = 72 (cm3)
《九章算术》是中国古典数学最重要的著作。 这部著作距今有三千年的历史了,它采用问题集 的形式,全书246个问题,分成九章,依次为: 方田,粟米,衰分,少广,商功,均输,盈不足, 方程,勾股。其中所包含的数学成就是丰富和多 方面的。 “方田”、“商功”和“勾股”三章处 理几何问题,其中“方田”章讨论面积计算, “商功”章讨论体积计算,“勾股”章则是关于 勾股定理的应用。 瞧,我们的祖先多了不起,从生活中找到了 这么多数学规律。
求长方体的体积
解:V = abh = 4×4×10 = 160(cm3)
答:这个长方体的体积是 160立方厘米。
4cm 10cm
4cm 10cm
4cm
4cm
4cm
4cm
4cm
4cm
4cm
4cm
4cmΒιβλιοθήκη 4cm4cm4cm
4cm
4cm
4cm
4cm
4cm
4cm
4cm
学校需要在新校区新建一个长方体的领操台,它 的长为8米,宽为5米,高为2米,这个领操台的体积
是多少立方米?
解:V
=
abh
= 8 ×5×2
3 = 80 (m )
答:这个领操台的体积是80立方米。
求长方体的体积?
4m 5m
解:V
= abh = 4×3×5 = 60 (m3 )
答:这个长方体的体积是 60立方米。
= ( 0.5 )×( 0.5 )×( 0.5 ) =(0.125 )
n×n×n 可以简写为( n3 )
求正方体的体积?
长方体和正方体整理与复习PPT课件
典型例题解析
例题1
解析
一个长方体的长、宽、高分别为5cm、3cm、 2cm,求它的表面积。
根据长方体表面积公式S = 2(ab + bc + ac), 将长、宽、高分别代入公式,得到S = 2(5×3 + 3×2 + 5×2) = 98cm^2。
例题2
解析
一个正方体的棱长为4cm,求它的表面积。
根据正方体表面积公式S = 6a^2,将棱长代 入公式,得到S = 6×4^2 = 96cm^2。
长方体和正方体整理 与复习ppt课件
目录
CONTENTS
• 长方体与正方体基本概念 • 长方体和正方体表面积计算 • 长方体和正方体体积计算 • 长方体和正方体在生活中的应用 • 拓展内容:不规则物体体积计算 • 课程总结与回顾
01 长方体与正方体基本概念
长方体定义及性质
长方体定义
长方体是由六个矩形围成的立体 图形,相对的两个面相等且平行 。
学习态度与习惯
我始终保持积极的学习态度和良 好的学习习惯,认真听讲、积极 思考、及时复习,这些都有助于
我取得更好的学习效果。
下一步学习计划建议
深入探究相关知识点
在掌握了长方体和正方体的基本知识点后, 我将进一步探究与之相关的知识点,如圆柱 体、圆锥体等立体图形的性质与计算。
拓展学习领域
除了本课程的知识点外,我还将积极拓展 学习领域,了解更多的数学知识和应用实 例,提高自己的数学素养和综合能力。
问题类型
不规则物体体积计算问题常常出现在各 种实际场景中,如工程测量、物体设计 等。
VS
解决方法
针对不同类型的问题,可以选择合适的间 接方法进行求解。例如,对于难以直接计 算的不规则物体,可以通过构建长方体或 球体等规则物体,利用它们的体积公式进 行间接计算。
五年级下册数学_2长方体与正方体的表面积与体积人教版(39张)精品课件
(2)30×20×3÷6=1800÷6=300(分钟) 答:200分钟后水深能到达2m,300分钟后能将池塘注满水. 解:(1)30×20×2÷6=1200÷6=200(分钟)
(2)30×20×3÷6=1800÷6=300(分钟) 答:200分钟后水深能到达2m,300分钟后能将池塘注满水. 这个游泳池可装多少立方米的水? 5平方分米= ()平方厘米 先求出假山和水一共的体积:46×25×28=32200(立方厘米) 拼成的这个长方体的表面积比原来16个小正方体的表面积之和少了多少平方分米?
(2)同理,用池塘的容积,除以每分钟注水量6立方米,即可求 出注水的时 间.
29
真题训练营
2.小明家门前有一个长30m,宽20m,深3m的池塘,现在要养鱼,需 要往池塘注水,如果每分钟能注水6m3,那么多少分钟后水深能到达 2m,多少分钟后能将池塘注满水? 解:(1)30×20×2÷6=1200÷6=200(分钟)
没第?三关---实物5实0验×班25×2=2500(立方米)
6
旧识回顾
在一个长60cm,宽30cm的水箱中放入两个大小一样的西瓜(西瓜完 全浸没),水面上升了8cm,平均每个西瓜的体积是多少?
7
旧识回顾
在一个长60cm,宽30cm的水箱中放入两个大小一样的西瓜(西瓜完 全浸没),水面上升了8cm,平均每个西瓜的体积是多少? 解:根据长方体体积公式:长×宽×高
14
3.长方体与正方体的体积之会旧友
什么是体积:物体所占空间的大小叫做物体的体积 计量体积要用体积单位:常用的体积单位有立方厘米(cm^3)、立 方分米(dm^3)、立方米(m^3)
15
3.制胜宝典
长方体体积=长×宽×高 (V=abh)或底面积×高(V=sh) 正方体体积=棱长×棱长×棱长(V=a*a*a) • 长方体或正方体底面的面积叫做底面积
(2)30×20×3÷6=1800÷6=300(分钟) 答:200分钟后水深能到达2m,300分钟后能将池塘注满水. 这个游泳池可装多少立方米的水? 5平方分米= ()平方厘米 先求出假山和水一共的体积:46×25×28=32200(立方厘米) 拼成的这个长方体的表面积比原来16个小正方体的表面积之和少了多少平方分米?
(2)同理,用池塘的容积,除以每分钟注水量6立方米,即可求 出注水的时 间.
29
真题训练营
2.小明家门前有一个长30m,宽20m,深3m的池塘,现在要养鱼,需 要往池塘注水,如果每分钟能注水6m3,那么多少分钟后水深能到达 2m,多少分钟后能将池塘注满水? 解:(1)30×20×2÷6=1200÷6=200(分钟)
没第?三关---实物5实0验×班25×2=2500(立方米)
6
旧识回顾
在一个长60cm,宽30cm的水箱中放入两个大小一样的西瓜(西瓜完 全浸没),水面上升了8cm,平均每个西瓜的体积是多少?
7
旧识回顾
在一个长60cm,宽30cm的水箱中放入两个大小一样的西瓜(西瓜完 全浸没),水面上升了8cm,平均每个西瓜的体积是多少? 解:根据长方体体积公式:长×宽×高
14
3.长方体与正方体的体积之会旧友
什么是体积:物体所占空间的大小叫做物体的体积 计量体积要用体积单位:常用的体积单位有立方厘米(cm^3)、立 方分米(dm^3)、立方米(m^3)
15
3.制胜宝典
长方体体积=长×宽×高 (V=abh)或底面积×高(V=sh) 正方体体积=棱长×棱长×棱长(V=a*a*a) • 长方体或正方体底面的面积叫做底面积
《长方体和正方体的表面积、体积》完整版ppt课件
21
0.4m
做一个微波炉的包装箱, 至少要用多少平方米的硬纸板?
这里要求的是这个长方 体包装箱的表面积。
上、下每个面,长_0_._7_m_,宽_0_._5_m_,面积是_0_._3_5_m__2; 前、后每个面,长_0_._7_m_,宽_0_._4_m_,面积是_0_._2_8_m__2; 左、右每个面,长_0_._5_m_,宽_0_._4_m_,面积是_0_._2_m__2_。
精选ppt课件2021
7
折叠后,哪些图形能围成左侧的正 方体?在括号中画“√”。
(√)
(√)
(×)
精选ppt课件2021
8
亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易 衣柜换布罩(如下图,没有底面)。至少需要用布多少 平方米?
0.75×0.5+0.5×1.6×2+0.75×1.6×2 =0.375+1.6+2.4 =4.375(m2) 答:至少需要用布4.375m2。
★解法一:
7×5 ×5-7 ×5 ×3 =175 -105 =70(立方分米)
答:这个铁球的体积是70立方分米。
★解法二
7×5 ×(5-3) =35 ×2 =70(立方分米)
答:这个铁球的体积是70立方分米。
精选ppt课件2021
44
一根长方体木料,长5m,横截面的 面积是0.06m2。这根木料的体积是多少?
精选ppt课件2021
24
计量体积要用体积单位,常用的体积单位有: 立方厘米,立方分米和立方米。
可以分别写成cm3,dm3和m3。 (1)棱长是1cm的正方体,体积是1cm3。
一个手指尖的体积 大约是1cm3。
1cm3
(2)棱长是1dm的正方体,体积是1dm3。
《长方体和正方体的体积》ppt课件
长方体和正方体的实际应用
建筑与工程
长方体和正方体的体积计算在建筑和工程领域中广泛应用,用于计算材料的数量运输行业,长方体和正方体的体积计算用于优化货物的装载和运输空间的利用。
家居设计
长方体和正方体的体积计算在家居设计中起着重要的作用,用于规划家具的摆放和布局。
正方体的图示
以下是一个正方体的示意图,展示了其各个面以及 边长的标记。
如何测量长方体和正方体的体积
1 长方体的测量方法
使用尺子分别测量长方体的长度、宽度和高度,并将这些值代入体积公式中进行计算。
2 正方体的测量方法
使用尺子测量正方体的边长,并将边长值代入体积公式中进行计算。
计算示例和练习
让我们通过一些实际的计算示例和练习,加深对长方体和正方体体积计算的理解和应用能力。
《长方体和正方体的体积》
欢迎来到《长方体和正方体的体积》ppt课件。在这个课程中,我们将探索长 方体和正方体的定义、计算公式以及测量体积的方法。
长方体和正方体的定义
长方体是一个具有六个面的几何体,其中的对立面平行且相等。正方体是一 个特殊的长方体,其六个面都是正方形。
长方体的公式和图示
长方体的公式
结论和要点
长方体和正方体的体积计算是应用广泛且重要的数学概念。通过理解其定义、公式和实际应用,我们可以应用 这些知识解决现实生活中各种问题。
长方体的图示
长方体的体积可以通过公式 V = l × w × h 来计算,
以下是一个长方体的示意图,展示了其各个面以及
其中 l、w 和 h 分别代表长方体的长度、宽度和高度。 长度、宽度和高度的标记。
正方体的公式和图示
正方体的公式
正方体的体积可以通过公式 V = a × a × a 来计算, 其中 a 代表正方体的边长。
《长方体和正方体的认识》PPT课件
正方体性质
正方体具有长方体的所有性质;此外, 正方体的每个面都是中心对称和轴对 称的图形;正方体的体对角线长度等 于棱长的根号3倍。
03
长方体和正方体表面积计算
表面积概念引入
表面积定义
长方体或正方体六个面的面积之和。
与体积的区别
表面积是物体外部的大小,体积是物 体内部空间的大小。
为什么要学习表面积
空间想象力培养方法
观察实物模型
通过观察实物模型,了解几何体的形状、结构 和空间位置关系。
绘制三视图
通过绘制几何体的三视图(主视图、俯视图、 左视图),培养空间想象力和图形表达能力。
制作几何体模型
通过动手制作几何体模型,加深对几何体形状 和结构的理解。
实际应用场景举例
机械制造领域
在机械制造中,需要运用几何体 知识来设计和制造各种零部件和 机器设备,如发动机、齿轮等。
正方体体积计算公式推导
引导学生理解正方体的特点,即长、 宽、高都相等。
让学生通过具体计算,掌握正方体体 积的计算方法。
通过实例演示,推导出正方体体积的 计算公式:体积 = 边长 × 边长 × 边 长。
空间观念培养方法
通过观察实物和图形,培养学生的空间想象力。 引导学生通过动手操作,理解物体的空间位置和关系。
长方体与正方体的关系
01
正方体是长方体的特例,当长方体的长、宽、高都相等时,就
变成了正方体。
相似性质
02
长方体和正方体都有六个面、十二条棱和八个顶点;它们的对
面都是平行且相等的;它们的角都是直角。
不同之处
03
长方体的长、宽、高可以不相等,而正方体的长、宽、高必须
相等。
其他相似几何体介绍
正方体具有长方体的所有性质;此外, 正方体的每个面都是中心对称和轴对 称的图形;正方体的体对角线长度等 于棱长的根号3倍。
03
长方体和正方体表面积计算
表面积概念引入
表面积定义
长方体或正方体六个面的面积之和。
与体积的区别
表面积是物体外部的大小,体积是物 体内部空间的大小。
为什么要学习表面积
空间想象力培养方法
观察实物模型
通过观察实物模型,了解几何体的形状、结构 和空间位置关系。
绘制三视图
通过绘制几何体的三视图(主视图、俯视图、 左视图),培养空间想象力和图形表达能力。
制作几何体模型
通过动手制作几何体模型,加深对几何体形状 和结构的理解。
实际应用场景举例
机械制造领域
在机械制造中,需要运用几何体 知识来设计和制造各种零部件和 机器设备,如发动机、齿轮等。
正方体体积计算公式推导
引导学生理解正方体的特点,即长、 宽、高都相等。
让学生通过具体计算,掌握正方体体 积的计算方法。
通过实例演示,推导出正方体体积的 计算公式:体积 = 边长 × 边长 × 边 长。
空间观念培养方法
通过观察实物和图形,培养学生的空间想象力。 引导学生通过动手操作,理解物体的空间位置和关系。
长方体与正方体的关系
01
正方体是长方体的特例,当长方体的长、宽、高都相等时,就
变成了正方体。
相似性质
02
长方体和正方体都有六个面、十二条棱和八个顶点;它们的对
面都是平行且相等的;它们的角都是直角。
不同之处
03
长方体的长、宽、高可以不相等,而正方体的长、宽、高必须
相等。
其他相似几何体介绍
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学第十册 衡阳县界牌镇银瓷完小 邓辉
1 会推导长方体和正方体的体积公式 2 记住长方体和正方体的体积公式 3 会应用公式正确计算长方体和正方 体的体积
怎样才能知道这个魔方的体积呢?
2 厘 米
3厘米 4厘米
9
观察操作
例1
用一些体积是1立方厘米的 正方体积木拼长方体。
1厘米
1厘米 3厘米
4厘米
木块的总数是:4×3×1=12(个) 它的体积是: 4×3×1=12(立方厘米)
2厘米 4厘24 (个) 它的体积是: 4×3×21=1224 (立方厘米)
小正方体 长方体体
的个数 积(平方厘米)
用棱长1厘米的正方体木块摆成下面的长方 体和正方体。它们的长、宽、高各是多少? 算出它们的体积各是多少。
选做题:你能用不同的方法计算吗
建筑工地要挖一个长50m,宽30m, 深50cm的长方体土坑,挖出多少方的土? (1m =1方3)
思考题
棱长3厘米的正方体里面包含多 少个棱长1厘米的小正方体?
棱 长
a 棱长 a
公正 式方 你体 会的 吗体 ?积
正方体的体积=棱长×棱长×棱长
V=a×a×a
=a
例3
一块正方体的石料,棱长是6分 米,这块石料的体积是多少立 方分米?
V=a 3=6 3=6×6×6=216(立方厘米)
答:它的体积是216立方厘米。
课堂作业
请同学们 认真审题 书写规范
1、口答:
12
12
长
(厘米)
宽
(厘米)
高
(厘米)
43 1
24
24
43 2
30
30
52 3
72
72
38 3
你能总结出长方体的体积计算公式吗
长a
高
h 宽b
长方体的体积=长×宽×高
V=abh
例2
一个长方体,长7厘米,宽4厘米,高3 厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米
棱长 a
1 会推导长方体和正方体的体积公式 2 记住长方体和正方体的体积公式 3 会应用公式正确计算长方体和正方 体的体积
怎样才能知道这个魔方的体积呢?
2 厘 米
3厘米 4厘米
9
观察操作
例1
用一些体积是1立方厘米的 正方体积木拼长方体。
1厘米
1厘米 3厘米
4厘米
木块的总数是:4×3×1=12(个) 它的体积是: 4×3×1=12(立方厘米)
2厘米 4厘24 (个) 它的体积是: 4×3×21=1224 (立方厘米)
小正方体 长方体体
的个数 积(平方厘米)
用棱长1厘米的正方体木块摆成下面的长方 体和正方体。它们的长、宽、高各是多少? 算出它们的体积各是多少。
选做题:你能用不同的方法计算吗
建筑工地要挖一个长50m,宽30m, 深50cm的长方体土坑,挖出多少方的土? (1m =1方3)
思考题
棱长3厘米的正方体里面包含多 少个棱长1厘米的小正方体?
棱 长
a 棱长 a
公正 式方 你体 会的 吗体 ?积
正方体的体积=棱长×棱长×棱长
V=a×a×a
=a
例3
一块正方体的石料,棱长是6分 米,这块石料的体积是多少立 方分米?
V=a 3=6 3=6×6×6=216(立方厘米)
答:它的体积是216立方厘米。
课堂作业
请同学们 认真审题 书写规范
1、口答:
12
12
长
(厘米)
宽
(厘米)
高
(厘米)
43 1
24
24
43 2
30
30
52 3
72
72
38 3
你能总结出长方体的体积计算公式吗
长a
高
h 宽b
长方体的体积=长×宽×高
V=abh
例2
一个长方体,长7厘米,宽4厘米,高3 厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米
棱长 a