中考数学 专题 几何三大变换问题之轴对称(折叠)问题(含解析)
中考数学专题复习图形的折叠型题PPT课件
(2)请你通过操作和猜想,将第3、第4和第n次裁剪后
所得扇形的总个数(S)填入下表.
等分圆及扇形面的次数(n) 1 2 3 4 **** n
所得扇形的总个数(S)
47
***
(3)请你推断,能不能按上述操作过程,将本来的圆形 纸板剪成33个扇形?为什么?
例26、如图,若把边长为1的正方形ABCD的四个
例25、如图,⊙O表示一圆形纸板,根
O
据要求,需通过多次剪裁,把它剪成若 干个扇形面,操作过程如下:第1次剪,
第25题图
将圆形纸板等分为4个扇形;第2次剪裁,将上次得的
扇形面中的一个再等分成4个扇形;以后按第2次剪裁
的作法进行下去.(1)请你在⊙O中,用尺规作出第2次
剪裁后得到的7个扇形(保留痕迹不写作法).
角(阴影部分)剪掉,得一四边形A1B1C1D1.试问怎 样剪,才能使剩下的图形仍为正方形,且剩下图
形的面积为原正方形面积的 5 ,请说明理由(写
出证明及计算过程).
9
E
A M DA M
例22、电脑CPU蕊片由一种叫“单晶硅”的材料制
成,未切割前的单晶硅材料是一种薄型圆片,叫 “晶圆片”。现为了生产某种CPU蕊片,需要长、 宽都是1cm 的正方形小硅片若干。如果晶圆片的直 径为10.05cm。问一张这种晶圆片能否切割出所需尺 寸的小硅片66张?请说明你的方法和理由。(不计 切割损耗)
典例精析
一.折叠后求度数 例1、将一张长方形纸片按如图所示的方式折 叠,BC、BD为折痕,则∠CBD的度数为( ) A.600 B.750 C.900 D.950
例2、如图,把一个长方形纸片沿EF折叠后,点D、C
分别落在D′、C′的位置,若∠EFB=65°,则 ∠AED′等于( ) A.50° B.55° C.60° D.65°
2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)
几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。
初中数学中考二轮复习重难突破专题04 折叠问题(含答案)
专题04 折叠问题重点分析在中考,这是必考内容,主要考查形式包括:单纯判断对称图形的识别;利用对称图形的性质求点坐标;利用折叠的对称性性质的相关计算与证明。
难点解读考点:轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′性质对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.真题演练1.如图,在矩形中,,将此矩形折叠,使点C与点A重合,点D落在点处,折痕为,则的长为____,的长为____.【答案】①. ②.【解析】由折叠得,,,设DF=x,则AF=8-x,,由勾股定理得DF=,,过作,过D作DM⊥于M,根据面积法可得,,再由勾股定理求出,根据线段的和差求出,最后由勾股定理求出;【详解】解:∵四边形ABCD是矩形,∴CD=AB=6,由折叠得,,设DF=x,则AF=8-x,又Rt中,,即解得,,即DF=∴过作,过D作DM⊥于M,∵∴,解得,∵∴,解得,∴∴∴;故答案为:6;.【点拨】此题主要考查了矩形的折叠问题,勾股定理等知识,正确作出辅助线构造直角三角形运用勾股定理是解答此题的关键.2.如图,在中.,点是边上一动点.连接,将沿折叠,点落在处,当点在内部(不含边界)时,长度的取值范围是___________.【答案】【解析】分别求出当落在AC和BC上时的长度即可.【详解】∵∠ABC=90°,AB=2,BC=4,∴,当点落在AC上时,如图,∵将△ABD沿BD折叠,点A落在处,∴∠ADB==90°,∵,∴,当点落在BC上时,如图,过点D作DH⊥AB于H,∵将△ABD沿BD折叠,点A落在处,∴∠ABD=∠DBC=45°,∵DH⊥AB,∴∠HDB=∠HBD=45°,∴BH=DH,∵,∴HD=2AH=BH,∵AB=AH+BH=2AH+AH=2,∴,,∴,∴当点在△ABC内部(不含边界)时,AD长度的取值范围为.【点拨】本题考查折叠问题,解题的关键是考虑两种极端情况.还可以利用相似来解题.3.如图,长方形ABCD中,AD=BC=8,AB=CD=17,∠DAB=∠B=∠C=∠D=90°.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,DE的长为______.【答案】或【解析】分两种情况:点E在DC线段上,点E为DC延长线上的一点,进一步分析探讨得出答案即可.【详解】如图1,∵折叠,∴△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B.D′、E三点共线,又∵ABD′∽△BEC,AD′=BC,∴ABD′≌△BEC,∴BE=AB=17,∵BD′==15,∴DE=D′E=17﹣15=2;如图2,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,∠D″=∠BCE,AD″=BC,∠CBE=∠BAD″,∴△ABD″≌△BEC,∴BE=AB=17,∴DE=D″E=17+15=32.综上所知,DE=2或32.故答案为2或32.【点拨】本题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.4.在菱形ABCD中,∠B=60°,BC=2 cm,M为AB的中点,N为BC上一动点(不与点B重合),将△BMN 沿直线MN折叠,使点B落在点E处,连接DE,CE,当△CDE为等腰三角形时,线段BN的长为_____.【答案】或2【解析】分两种情况:①如图1,当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=2,AD ∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=,BG=BC+CG=3,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=120°,证出D.E.N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如图2,当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(含CE=DE这种情况).【详解】解:分两种情况,①如图1,当DE=DC时,连接DM,作DG⊥BC于G,∵四边形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D.E.N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:(3-x)²+()² =(x+2)²,解得:x=,即BN=;②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(符合题干要求);综上所述,当△CDE为等腰三角形时,线段BN的长为或2;故答案为或2.【点拨】本题考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、三点共线、勾股定理、直角三角形的性质、等腰三角形的性质等知识,熟练掌握并灵活运用是解题的关键.5.如图,在矩形ABCD中,AB=4,BC=3,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B′的对应点落在矩形ABCD的对角线上时,BP=__________________________.【答案】或.【解析】分两种情况探讨:①点B落在矩形对角线BD上,②点B落在矩形对角线AC上,由三角形相似得出比例式,即可得出结果.【详解】①点A落在矩形对角线BD上,如图1所示.∵矩形ABCD中,AB=4,BC=3∴∠ABC=90°,AC=BD,∴AC=BD==5.根据折叠的性质得:PC⊥BB′,∴∠PBD=∠BCP,∴△BCP∽△ABD,∴,即,解得:BP=.②点A落在矩形对角线AC上,如图2所示.根据折叠的性质得:BP=B′P,∠B=∠PB′C=90°,∴∠AB′A=90°,∴△APB′∽△ACB,∴,即,解得:BP=.故答案为或.【点拨】本题考查了折叠问题、勾股定理,矩形的性质以及三角形相似的判定与性质;熟练掌握矩形的性质,由三角形相似得出比例式是解决问题的关键.6.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.【答案】或10【解析】【详解】试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.7.如图,在矩形纸片中,,,点是的中点,点是边上的一个动点,将沿所在直线翻折,得到,连接,,则当是以为腰的等腰三角形时,的长是________.【答案】或【解析】存在两种情况:当=DC时,连接ED,根据勾股定理可得ED的长,可判断E,A´,D三点共线,根据勾股定理即可得出结论;当=时,证明AEA´F是正方形,于是得出结论.【详解】解:①当=DC时,如图1,连接ED,∵点是的中点,,,四边形是矩形,∴AD=BC=,∠A=90°,∴DE=,∵将沿所在直线翻折,得到,∴A´E=AE=2,A´D=DC=AB=4,∴DE=A´E+A´D=6,∴点E,A´,D三点共线,∵∠A=90°,∴∠FA´E=∠FA´D=90°,设AF=x,则A´F=x,FD=-x,在Rt△FA´D中,,解得x=,∴FD=3;②当=时,如图2,∵=,∴点A´在线段CD的垂直平分线上,∴点A´在线段AB的垂直平分线上,∵点是的中点,∴EA´是AB的垂直平分线,∴∠AEA´=90°,∵将沿所在直线翻折,得到,∴∠A=∠EA´F=90°,AF=FA´,∴四边形AEA´F是正方形,∴AF=AE=2,∴DF=.故答案为或.【点拨】本题考查了翻折变换,矩形的性质,等腰三角形的性质,正方形的判定与性质,勾股定理.分类讨论思想的运用是解题的关键.8.如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE 所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为____或___【答案】3或【解析】△AB′F为直角三角形,应分两种情况进行讨论.当∠AFB′为直角时,利用勾股定理求出B′E,也就是BE的长,便求出AE.当∠AB′F为直角时,过A作AN⊥EB′,交EB′的延长线于N,构造Rt△B′EF,利用勾股定理便可求出AE.【详解】解:①当B′D⊥AE时,△AB′F为直角三角形,如下图:根据题意,BE=B′E,BD= B′D=BC=. ∠B=∠EB′F∵在Rt△ABC中,∠C=90°,BC=2,AC=2∴AB===4∴∠B=∠EB′F =30°.∵在Rt△BDF中,∠B=30°∴DF=BD=∴B′F=B′D-DF=-=∵在Rt△B′EF中,∠EB′F =30°∴EF=B′E,∵B′F===EF,即=EF,∴EF=,则BE=1,∴AE=AB-BE=4-1=3.②当D B′⊥A B′时,△AB′F为直角三角形,如下图:连接AD,过A作AN⊥EB′,交EB′的延长线于N.根据题意,BE=B′E,BD=CD=B′D=BC=. ∠B=∠EB′F ∵在Rt△ABC中,∠C=90°,BC=2,AC=2∴AB===4∴∠B=∠EB′F =30°.∵∠AB′F=90°∴∠AB′E=∠AB′F+∠EB′F=120°∴Rt△AB′N中,∠AB′N=60°,∠B′AN=30°在Rt△AB′D和Rt△ACD中∴Rt△AB′D≌Rt△ACD(H L)∴AB′=AC=2∴B′N=1,AN=设AE=x,则BE= B′E=4-x∵在Rt△AEN中,∴()2+(4-x+1)2=x2∴x=综上,AE的长为3或.【点拨】本题是一道综合题,涉及到直角三角形全等的判定,30°角的直角三角形的性质,勾股定理等知识.9.如图,在矩形中,,,将点绕点逆时针旋转,点的对应点为.的平分线交于,且.若点落在矩形的边上,则的值为______.【答案】或【解析】分两种情况:①点B′落在AD边上,根据矩形与折叠的性质易得AB=BE,即可求出a的值;②点B′落在CD 边上,证明△ADB′∽△B′CE,根据相似三角形对应边成比例即可求出a的值.【详解】解:分两种情况:①当点B′落在AD边上时,如图1.∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠,点B的对应点B′落在AD边上,∴∠BAE=∠B′AE=∠BAD=45°,∴AB=BE,∴a=;②当点B′落在CD边上时,如图2.∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a.∵将△ABE沿AE折叠,点B的对应点B′落在CD边上,∴∠B=∠AB′E=90°,AB=AB′=1,EB=EB′=a,∴DB′==,EC=BC−BE=a−a=a.∵∠B′AD=∠EB′C=90°−∠AB′D,∠D=∠C=90°,∴△ADB′∽△B′CE,∴,即,解得a1=,a2=−(舍去).综上,所求a的值为或.故答案为或.【点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键。
备战中考--第39讲几何图形折叠问题--(附解析答案)
备战2019 中考初中数学导练学案50 讲第39 讲几何图形折叠问题【疑难点拨】1. 折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2. 折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3. 矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角” 的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4. 凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1. 常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆. 2. 折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1. . (2018?四川凉州?3 分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD 于点E,则下到结论不一定成立的是()A.AD=BC′ B.∠EBD=∠EDB C.△ABE∽△CBD D.sin ∠ABE=2. (2017 山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图 2 所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F 是上一点.若将扇形BOD沿OD翻折,点B恰好与点F 重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为().A.36π -108 B .108-32 π C.2π D.π3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ ABC沿AC折叠,使点B 落在点E处,CE交AD于点F,则DF的长等于()4. (2018·山东青岛· 3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF= ,则BC的长是()A.B.3 2 C. 3 D.3 3D.5. (2017乌鲁木齐)如图,在矩形 ABCD 中,点 F 在 AD 上,点 E 在 BC 上,把这个矩形沿 EF 折叠后,使点 D 恰好落在 BC 边上的 G 点处,若矩形面积为 4 且∠AFG=60°, GE=2BG , 则折痕 EF 的长为()A .1B .C . 2D .、填空题:6. (2018·辽宁省盘锦市)如图,已知 Rt △ABC 中,∠ B=90°,∠ A=60°, AC=2 +4,点 M 、N 分别在线段 AC.AB 上,将△ANM 沿直线 MN 折叠, 使点 A 的对应点 D 恰好落在线段 BC 上,当△ DCM 为直角三角形时,折痕 MN 的长为.7. (2018·山东威海· 8 分)如图,将矩形 ABCD (纸片)折叠,使点 B 与 AD 边上的点 K 重合,EG 为折痕;点C 与AD 边上的点 K 重合, FH 为折痕.已知∠ 1=67.5°, ∠2=75°, EF=+1,则 BC 的长.处,点 C 落在点 H 处,已知∠ DGH=3°0,连接8. (2018·湖南省常德 ·3 分)如图,将矩形ABCD 沿 EF 折叠,使点 B 落在 AD 边上的点 GBG ,则∠ AGB=三、解答与计算题:9. (2018·广东· 7 分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ ADE≌△ CED;(2)求证:△ DEF是等腰三角形.10. (2018?山东枣庄?10 分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2 ,求BE的长.能力篇】、选择题:11. ( 2018·辽宁省阜新市)如图,将等腰直角三角形 落在 BC 边的中点 A 1处, BC=8,那么线段 AE 的长度为 ( )12. ( 2018·四川省攀枝花·3 分)如图,在矩形 ABCD 中, E 是 AB 边的中点,沿 EC 对折矩 形 ABCD ,使 B 点落在点 P 处,折痕为 EC ,连结 AP 并延长 AP 交 CD 于 F 点,连结 CP 并延长 CP 交 AD 于 Q 点.给出以下结论:① 四边形 AECF 为平行四边形;② ∠PBA=∠APQ ;③ △FPC 为等腰三角形;④ △APB ≌△EPC .其中正确结论的个数为(ABC (∠ B=90°)沿 EF 折叠,使点 AD .7A .1B . 2C .3D .413.2018·湖北省武汉 3 分)如图,在⊙ O 中,点 C 在优弧 上,将弧 沿 BC 折叠后刚好经过AB 的中点D.若⊙ O的半径为,AB=4,则BC的长是()C.、填空题:14. (2018 ·辽宁省葫芦岛市)如图,在矩形ABCD中,点E是CD的中点,将△ BCE沿BE折叠后得到△ BEF、将BF 延长交AD 于点G .若=,则且点 F 在矩形ABCD的内部,15. (2018·四川宜宾· 3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△ CBE沿CE折叠,使点B 落在矩形内点F处,下列结论正确的是①②③ (写出所有正确结论的序号)①当E 为线段AB中点时,AF∥CE;②当E 为线段AB中点时,AF=9;5③当A、F、C三点共线时,AE=④当A、F、C三点共线时,△ CEF≌△.三、解答与计算题:16.(2018·湖北省宜昌·11 分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC 沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD 上,BE交PC于点F.(1)如图1,若点E是AD 的中点,求证:△AEB≌△DEC;(2)如图2,① 求证:BP=BF;② 当AD=25,且AE< DE 时,求cos∠ PCB的值;③ 当BP=9 时,求BE?EF的值.17. (2018·广东·7 分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ ADE≌△ CED;(2)求证:△ DEF是等腰三角形.18. (2018?江苏盐城? 10 分)如图,在以线段为直径的上取一点,连接、. 将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使. 求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.探究篇】19. (2018 年江苏省泰州市?12 分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE 折叠,使点B 落在CD边上(如图①),再沿CH折叠,这时发现点E 恰好与点D重合(如图②)1)根据以上操作和发现,求的值;2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H 重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠ HPC=9°0 ;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P 在折痕上,请简要说明折叠方法.(不需说明理由)20. (2018 年江苏省宿迁)如图,在边长为 1 的正方形ABCD中,动点E、F 分别在边AB、CD上,将正方形ABCD沿直线EF折叠,使点B 的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,1)当AM= 时,求x 的值;2)随着点M 在边AD上位置的变化,△ PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;3)设四边形BEFC的面积为S,求S与x 之间的函数表达式,并求出S的最小值.第39 讲几何图形折叠问题疑难点拨】1. 折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2. 折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3. 矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角” 的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4. 凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1. 常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆. 2. 折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1. . (2018?四川凉州?3 分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A.AD=BC′ B.∠ EBD=∠EDB C.△ABE∽△CBD D.sin ∠ABE=【分析】主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.【解答】解:A、BC=BC′,AD=BC,∴ AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠ EBD=∠EDB 正确.∴∠EBD=∠EDB∴BE=DE ∴sin ∠ABE= .故选: C .点评】本题主要用排除法,证明 A ,B ,D 都正确,所以不正确的就是 C ,排除法也是数学 中一种常用的解题方法.2. (2017 山东烟台) 如图 1,将一圆形纸片向右、向上两次对折后得到如图 2 所示的扇形 AOB .已知 OA=6,取 OA 的中点 C ,过点 C 作 CD ⊥OA 交 于点 D ,点 F 是 上一点.若将 扇形 BOD 沿 OD 翻折,点 B 恰好与点 F 重合,用剪刀沿着线段 BD ,DF ,FA 依次剪下,则剪下 的纸片(形状同阴影图形)面积之和为( ).A .36π -108B . 108-32 πC .2πD .π【考点】 MO :扇形面积的计算; P9:剪纸问题.【分析】先求出∠ ODC ∠= BOD=3°0 ,作 DE ⊥OB 可得 DE= OD=3,先根据 S 弓形 BD =S 扇形BOD ﹣ S △ BOD 求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.解答】解:如图,∵ CD ⊥ OA ,∴∠ DCO=∠AOB=9°0 ,D 、∵ sin ∠ABE= ,∴∠ ODC=∠BOD=3°0 ,作 DE ⊥ OB 于点 E ,则 DE= OD=3,则剪下的纸片面积之和为 12×( 3π﹣ 9)=36π﹣ 108,故答案为: 36π﹣ 108.故选 A3. (2017浙江衢州) 如图,矩形纸片 ABCD 中, AB=4,BC=6,将△ ABC 沿 AC 折叠,使点 B 落在点 E 处, CE 交 AD 于点 F ,则 DF 的长等于( )A .B .C .D .考点】 PB :翻折变换(折叠问题) ; LB :矩形的性质.【分析】根据折叠的性质得到 AE=AB ,∠E=∠B=90°,易证 Rt △AEF ≌Rt △ CDF ,即可得到结 论 EF=DF ;易得 FC=FA ,设 FA=x ,则 FC=x ,FD=6﹣ x ,在 Rt △CDF中利用勾股定理得到关于∴S 弓形 BD =S 扇形 BOD ﹣ S △ BOD =×6×3=3π 9,∵OA=OD=OB=,6OC= OA= OD ,x 的方程x2=42+(6﹣x)2,解方程求出x.【解答】解:∵矩形ABCD沿对角线AC对折,使△ ABC落在△ ACE的位置,∴AE=AB,∠ E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠ AFE=∠DFC,∵在△ AEF与△ CDF中,,∴△ AEF≌△ CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=,4∵Rt △AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)则FD=6﹣x=实用文档20故选:B .4. (2018·山东青岛· 3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF= ,则BC的长是()分析】由折叠的性质可知∠ B=∠EAF=45°,所以可求出∠ AFB=90°,再直角三角形的性质解答】解:∵沿过点E的直线折叠,使点B与点A 重合,∴∠ B=∠EAF=45°,∴∠AFB=90°,∵点E 为AB中点,∴EF= 1 AB,EF= 3,22∵∠BAC=90°,AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.D. 3 3可知EF∴AB=AC=3,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.5. (2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4 且∠AFG=60°,GE=2BG,则折痕EF 的长为()A.1 B.C.2 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠ DFE=∠ GFE,结合∠ AFG=60°即可得出∠ GFE=60°,进而可得出△ GEF为等边三角形,在Rt △GHE中,通过解含30 度角的直角三角形及勾股定理即可得出GE=2EC、DC= EC,再由GE=2BG结合矩形面积为4 ,即可求出EC的长度,根据EF=GE=2EC即可求出结论.解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠ DFE=∠GFE.∵∠ GFE+∠DFE=180°﹣∠ AFG=12°0 ,∴∠GFE=60°.∵AF∥ GE,∠ AFG=60°,∴∠ FGE=∠AFG=60°,∴△ GEF为等边三角形,∴EF=GE.∵∠ FGE=60°,∠ FGE+∠HGE=9°0 ,∴∠ HGE=3°0 .在Rt△GHE中,∠HGE=3°0 ,∴GE=2HE=C,E∴GH= = HE= CE.∵GE=2BG,∴BC=BG+GE+EC=4.EC∵矩形ABCD的面积为4 ,∴4EC? EC=4 ,∴EC=1,EF=GE=2.故选C.二、填空题:6. (2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠ B=90°,∠ A=60°,AC=2 +4,点M、N分别在线段AC.AB上,将△ANM沿直线MN折叠,使点A 的对应点D恰好落在线段BC 上,当△ DCM为直角三角形时,折痕MN的长为.解答】解:分两种情况:①如图,当∠ CDM=9°0 时, △CDM 是直角三角形,∵在 Rt△ABC 中,∠ B=90°,∠ A=60°,AC=2 +4 ,∴∠ C=30°,AB= AC= 叠可得:∠ MDN= ∠ A=60°,∴∠ BDN=3°0 ,∴ BN= DN= AN ,∴ BN= AB=,∴∠ ANM= ∠ DNM=6°0 ,∴∠ AMN=6°0 ,∴ AN=MN=DN= AN , BD\1AB= ,∴ AN=2 ,BN= ,过 N 作 NH ⊥AM 于 H ,则∠ ANH=30° ,∴AH=AN=1 , HN= ,由折叠可得:∠ AMN= ∠DMN=45° ,∴△ MNH 是等腰直角三角形,∴HM=HN= ,∴ MN= .,由折 ∵∠ DNB=6°0 AN=2BN= ②如图,当∠ CMD=9°0 时, △CDM 是直角三角形,由题可得: ∠CDM=6°0 ,∠ A= ∠ MDN=6°0 ,∴∠ BDN=6°0 ,∠BND=3°0 ,∴BD= BN故答案为:或.7. (2018·山东威海· 8 分)如图,将矩形ABCD(纸片)折叠,使点B 与AD边上的点K 重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠ 1=67.5°,∠2=75°,EF= +1,求BC的长.【分析】由题意知∠ 3=180°﹣2∠1=45°、∠ 4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF= x,根据EF的长求得x=1,再进一步求解可得.解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K 作KM⊥BC于点M,设KM=x,则EM=x、MF= x,∴ x+ x= +1,解得:x=1,∴EK= 、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3+ + ,∴BC的长为3+ + .点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8. (2018·湖南省常德·3 分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G 处,点C落在点H处,已知∠ DGH=3°0 ,连接BG,则∠ AGB= 75° .【分析】由折叠的性质可知:GE=BE,∠ EGH=∠ABC=90°,从而可证明∠ EBG=∠EGB.,然后再根据∠ EGH﹣∠ EGB=∠ EBC﹣∠ EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠ AGB=∠ BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠ EGH=∠ABC=90°,∴∠ EBG=∠EGB.∴∠ EGH﹣∠ EGB=∠EBC﹣∠ EBG,即:∠ GBC=∠BGH.又∵ AD∥ BC,∴∠ AGB=∠GBC.∴∠ AGB=∠BGH.∵∠DGH=3°0 ,∴∠ AGH=15°0 ,∴∠ AGB= ∠AGH=7°5 ,故答案为:75【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答与计算题:9. (2018·广东· 7 分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ ADE≌△ CED;(2)求证:△ DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ ADE≌△ CED(SSS);(2)根据全等三角形的性质可得出∠ DEF=∠ EDF,利用等边对等角可得出EF=DF,由此即可证出△ DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ ADE和△ CED中,,∴△ ADE≌△ CED(SSS).∴∠ DEA=∠EDC ,即∠ DEF=∠EDF ,∴EF=DF ,∴△ DEF 是等腰三角形.点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是: 1)根据矩形的性质结合折叠的性质找出 AD=CE 、 AE=CD ;( 2)利用全等三角形的性质找出 ∠DEF=∠EDF .10. (2018?山东枣庄 ?10 分)如图,将矩形 ABCD 沿 AF 折叠,使点 D 落在 BC 边的点 E 处, 过点 E 作 EG ∥CD 交 AF 于点 G ,连接 DG .(1)求证:四边形 EFDG 是菱形;(2)探究线段 EG 、GF 、 AF 之间的数量关系,并说明理由;(3)若 AG=6, EG=2 ,求 BE 的长.【分析】( 1)先依据翻折的性质和平行线的性质证明∠ DGF=∠DFG ,从而得到 GD=DF ,接下 来依据翻折的性质可证明 DG=GE=DF=E ;F(2)由( 1)得△ ADE ≌△(2)连接DE,交AF 于点O.由菱形的性质可知GF⊥DE,OG=OF= GF,接下来,证明△ DOF ∽△ ADF,由相似三角形的性质可证明DF2=FO?AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ ADF中依据勾股定理可求得AD的长,然后再证明△ FGH∽△ FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵ GE∥DF,∴∠ EGF=∠DFG.∵由翻折的性质可知:GD=G,E DF=EF,∠ DGF=∠EGF,∴∠ DGF=∠DFG.∴GD=DF.∴DG=GE=DF=E.F∴四边形EFDG为菱形.(2)EG2= GF?AF.理由:如图1 所示:连接DE,交AF 于点O.∵四边形EFDG为菱形,∴GF⊥ DE,OG=OF= GF.∵∠ DOF=∠ADF=90°,∠ OFD=∠ DFA,∴△ DOF∽△ ADF.,即DF2=FO?AF.∵FO= GF,DF=EG,∴EG2= GF?AF.3)如图2 所示:过点G作GH⊥ DC,垂足为H.∵EG2= GF?AF,AG=6,EG=2 ,∴20= FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去)∵DF=GE=2 ,AF=10,∴AD= =4 .∵GH⊥ DC,AD⊥ DC,∴GH∥ AD.∴△ FGH∽△ FAD.∴GH=∴BE=AD ﹣ GH=4 ﹣ =【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、 菱形的判定和性质、 相似三角形的性质和判定、 勾股定理的应用, 利用相似三角形的性质得 到DF 2=FO?AF 是解题答问题 ( 2)的关键,依据相似三角形的性质求得 GH 的长是解答问题 (3)的关键.能力篇】、选择题:11. ( 2018·辽宁省阜新市)如图,将等腰直角三角形 ABC (∠ B=90°)沿 EF 折叠,使点 A落在 BC 边的中点 A 1处, BC=8,那么线段 AE 的长度为 ( ) .解答】解: 由折叠的性质可得 AE=A 1E .∵△ ABC 为等腰直角三角形, BC=8,∴ AB=8.2∵A 1为 BC 的中点, ∴A 1B=4,设 AE=A 1E=x ,则 BE=8﹣ x .在 Rt △A 1BE 中, 由勾股定理可得 42+(8﹣ x ) 2=x 2,解得 x=5.故答案为: 5.故选 BA .4B . 5C . 6D .7∴ ,即 = .12. (2018·四川省攀枝花·3 分)如图,在矩形ABCD中,E 是AB 边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F 点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1 B.2 C.3 D.4解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴ EC 垂直平分BP,∴ EP=EB,∴∠ EBP=∠EPB.∵点E为AB中点,∴ AE=EB,∴ AE=EP,∴∠ PAB=∠PBA.∵∠PAB+∠PBA+∠APB=180°,即∠ PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴ AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;∵四边形 ABCD 是正方形,∴∠ ABC=∠ABP+∠PBC=90°,∴∠ ABP=∠APQ ,故②正确;③∵AF ∥EC ,∴∠ FPC=∠PCE=∠BCE .∵∠PFC 是钝角,当△BPC 是等边三角形, 即∠BCE=30°时, 才有∠ FPC=∠FCP ,如右图,△PCF 不一定是等腰三角形,故③不正确;④∵AF=EC , AD=BC=P ,C ∠ADF=∠EPC=90°,∴ Rt △EPC ≌△FDA ( HL ).∵∠ADF=∠APB=90°,∠ FAD=∠AB P ,当 BP=AD 或△BPC 是等边三角形时,△ APB ≌△ FDA , ∴△APB ≌△EPC ,故④不正确; 其中正确结论有①②, 2 个.故选 B .13. (2018·湖北省武汉 ·3 分)如图,在⊙ O 中,点 C 在优弧 上,将弧沿 BC 折叠后刚好经过 AB 的中点 D .若⊙ O 的半径为 , AB=4,则 BC 的长是()②∵∠ APB=90°,∴∠ APQ+∠BPC=90°,由折叠得: BC=PC ,∴∠ BPC=∠PBC .【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥ CE于F,如图,利用垂径定理得到OD⊥ AB,则AD=BD= AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD 所在的圆为等圆,则根据圆周角定理得到= ,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3 2 .【解答】解:连接OD、AC、DC、OB、OC,作CE⊥ AB于E,OF⊥CE于F,如图,∵D 为AB的中点,∴OD⊥ AB,∴AD=BD= AB=2,在Rt△OBD中,OD= ( 5)2 22=1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,∴CE=CF+EF=2+1=,3而 BE=BD+DE=2+1=,3∴BC=3 .故选: B .【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线, 必连 过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.二、填空题:∵点 E 是 CD 的中点,∴ EC=DE∵将△BCE 沿BE 折叠后得到 △BEF 、且点 F 在矩形 ABCD 的内部, ∴EF=DE ,∠ BFE=90° .在14. (2018 ·辽宁省葫芦岛市 ) 如图,在矩形 折叠后得到△BEF 、 且点 F 在矩形 ABCD 的内将 BF 延长交 AD 于点 G .若 = ,则在Rt △OCF 中,CF= ( 5)2 12 =2,ABCD 中,点 E 是 CD 的中点,将△ BCE 沿BE解答】 解:连接GE .,∴Rt △EDG ≌Rt △EFG (HL ),∴FG=DG .∵ = ,∴设 DG=FG=a ,则 AG=7a ,故 AD=BC=8a ,则 BG=BF+FG=9a ,∴ AB=15. (2018·四川宜宾· 3分)如图,在矩形 ABCD 中, AB=3,CB=2,点 E 为线段 AB 上的动点,将△ CBE 沿 CE 折叠,使点 B 落在矩形内点 F 处,下列结论正确的是 ①②③ (写出 所有正确结论的序号) ①当 E 为线段 AB 中点时, AF ∥CE ;②当E 为线段 AB 中点时, AF=9;5③当 A 、 F 、C 三点共线时, AE=④当 A 、 F 、 C 三点共线时,△ CEF ≌△ AEF .=4 a ,故故答案为:考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.分析】分两种情形分别求解即可解决问题;解答】解:如图1 中,当AE=EB时,∵AE=EB=EF,∴∠ EAF=∠EFA,∵∠ CEF=∠CEB,∠ BEF=∠ EAF+∠EFA,∴∠ BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥ AF,则AM=FM,在Rt△ECB中,EC= = ,∵∠ AME=∠B=90°,∠ EAM=∠ CEB,∴△ CEB∽△ EAM,=,∴AM= ,9∴AF=2AM= ,故②正确,5如图2 中,当A、F、C 共线时,设AE=x.则EB=EF=3﹣x,AF= 13 ﹣2,在Rt △ AEF中,∵ AE2=AF2+EF2,∴x =(﹣2)+(3﹣x)∴x=∴AE= ,故③正确,如果,△ CEF≌△ AEF,则∠ EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.16.(2018·湖北省宜昌 ·11 分)在矩形 ABCD 中,AB=12,P 是边 AB 上一点,把△PBC沿直线 PC 折叠,顶点 B 的对应点是点 G ,过点 B 作 BE ⊥CG ,垂足为 E 且在 AD 上,BE 交 PC 于点 F .(1)如图 1,若点 E 是 AD 的中点,求证: △AEB ≌△DEC ; (2)如图 2,① 求证: BP=BF ;② 当 AD=25,且 AE < DE 时,求 cos ∠ PCB 的值;【分析】(1)先判断出 ∠ A=∠D=90°,AB=DC 再判断出 AE=DE ,即可得出结论;(2) ① 利用折叠的性质,得出 ∠PGC=∠PBC=9°0,∠BPC=∠GPC ,进而判断出 ∠GPF=∠PFB 即可得出结论;② 判断出 △ABE ∽ △DEC ,得出比例式建立方程求解即可得出 AE=9, DE=16,再 判断出 △ECF ∽△GCP ,进而求出 PC ,即可得出结论; ③ 判断出 △GEF ∽ △EAB ,即可得出结论.【解答】解:(1)在矩形 ABCD 中, ∠A=∠D=90°,AB=DC , ∵E 是 AD 中点,∴AE=DE , 在△ABE 和△DCE 中,三、解答与计算题:③ 当 BP=9 时,求 BE?EF 的值.∴△ABE≌△DCE(SAS);(2)① 在矩形ABCD,∠ABC=9°0,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90,°∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;② 当AD=25 时,∵∠BEC=90,°∴∠AEB+∠CED=90,°∵∠AEB+∠ABE=90,°∴∠CED=∠ABE,∵∠A=∠D=90 ,° ∴△ABE∽△DEC,∴,∴,设AE=x,∴ DE=25﹣x,∴,∴,∴x=9 或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,设BP=BF=PG=,y∴,∴y=在Rt△PBC中,PC= ,cos∠PCB= = ;③ 如图,连接FG,∵∠GEF=∠BAE=90,∵BF∥PG,BF=PG,∴?BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴ BE?EF=AB?GF=12 × 9.=108【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.17. (2018·广东·7 分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ ADE≌△ CED;(2)求证:△ DEF是等腰三角形.分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ ADE≌△ CED(SSS);2)根据全等三角形的性质可得出∠DEF=∠ EDF,利用等边对等角可得出EF=DF,由此即可证出△ DEF是等腰三角形.解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ ADE和△ CED中,,∴△ ADE≌△ CED(SSS).2)由(1)得△ ADE≌△ CED,∴EF=DF ,∴△ DEF 是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是: (1)根据矩形的性质结合折叠的性质找出 AD=CE 、 AE=CD ;( 2)利用全等三角形的性质找出 ∠DEF=∠EDF .18. (2018?江苏盐城? 10 分)如图,在以线段为直径的 上取一点,连接 、. 将 沿 翻折后得到 .(1)试说明点 在 上;(2)在线段 的延长线上取一点 ,使 . 求证: 为 的切线; (3)在( 2)的条件下,分别延长线段、 相交于点 ,若 , ,求线段 的长 . 【答案】( 1)解:连接 OC ,OD,∴∠ DEA=∠EDC ,即∠ DEF=∠EDF ,由翻折可得OD=OC,∵OC是⊙ O的半径,∴点D在⊙ O上。
吉林省长春地区中考数学复习课件——折叠问题专题
(2020年长春中考 22题)
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上一动点(不与点B、 C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的 点F处,当△AEF为直角三角形时,BD的长为______.
折叠问题解题策略
(2023年长春中考 13题)
如图,将正五边形纸片ABCDE折叠,使点B与点E重合,
折痕为AM,展开后,再将纸片折叠,使边AB落在线段
AM上,在B的对应点为点B‘,折痕为AF,则∠AFB’的大
B
小为____________度。
F C
A E
B' MD
将三角形纸片(△ABC)按如图所示的方式折叠,使 点B落在边AC上,记为点B,折痕为EF.已知 AB=AC=3,BC=4,若以点B’,F,C为顶点的三角形与 △ABC相似,那么BF的长度是________
折叠次数方面分:可分为“一次折叠问题和多次折 叠问题”
对称轴状态方面分:
可分为“定轴折叠问题”和“动轴折叠问题” (1)定轴折叠问题:可分“一折定轴问题和多折定轴
问题”。是解决折叠问题的基础 (2)动轴折叠问题:可分为“单动点动轴折叠问题”和
“双动点动轴折叠问题”
折叠次数方面分:
可分为“一次折叠问题和多次折叠问题”
对应点、对应线段、对应角等概念,是折叠问题中最基本的概念。
正确找出对应关系是解决折叠问题的关键。
2.含动点的折叠问题,采用“化动为静,分类定形”的方法进行解决。 (1)明过程 折 重结果 叠 (2)方法:先标等量,再构方程 3.折叠问题中的构造方法: (1)把条件集中到某一直角三角形中,利用勾股定理或锐角三角函数得方程,可利用三垂直
【决胜】(预测题)中考数学 专题20 几何三大变换问题之轴对称(折叠)问题(含解析)
专题20 几何三大变换问题之轴对称(折叠)问题轴对称、平移、旋转是平面几何的三大变换。
由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。
轴对称具有这样的重要性质: (1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
中考压轴题中轴对称 (折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。
一. 有关三角形的轴对称性问题1. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,连接EF ,交AD 于点G ,求证:AD ⊥EF .2. 如图,在Rt △ABC 中,∠C=900,∠B=300,BC=,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为等腰三角形时,BD 的长为 。
F DCEAB【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理,等腰三角形的判定,分类思想的应用。
二. 有关四边形的轴对称性问题3.如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】A.4种 B.5种 C.6种 D.7种【答案】B。
【考点】利用旋转的轴对称设计图案。
【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案:得到的不同图案有:共5个。
故选B 。
4. 如图,△ABC 中,已知∠BAC=45°,AD ⊥BC 于D ,BD=2,DC=3,求AD 的长。
小萍同学灵活运用了轴对称知识,将图形进行翻折变换,巧妙地解答了此题。
中考数学二轮专题复习图形变换——折叠问题【含答案】
二轮复习:图形变换(一)—折叠图形变换历来是中考必考点之一。
考试大纲要求:会运用图形变换的相关知识进行简单的作图与计算,并能解决相关动态需求数学问题,并能进行图案设计。
图形变换一般包括,折叠、平移、旋转、对称、位似和图形的探究。
在图形变换的考题中,最多题型是折叠、旋转。
在解决折叠问题时,应注意折叠前后相对应的边相等、角相等。
下面着重从三个方面进行讲述:三角形折折叠、特殊平行四边形折叠和在平面直角坐标系内的图形折叠三大类进行。
(一)三角形的折叠:题型1、一般三角形的折叠:1、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β2、(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.3、如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为___.题型2、等腰或等边三角形的折叠:4、如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为_____.5、如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CF CE=_______.(利用相似三角形周长的比等于相似比△AED 相似△DBF)题型3、直角三角形的折叠:6、如图,在Rt △ABC 中,∠ACB=90°,BC=6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于.7、如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(二)特殊平行四边形的折叠:题型1、矩形折叠:1、(求角).如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为A. B. C. D.2、(求三角函数值)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么tan∠EFC值是.3、(求边长)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为4、(求折痕长)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为5、(求边的比)如下图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。
(完整版)中考数学中的折叠问题
DE中考数学中的折叠问题为了考查学生的数、形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题。
几何图形的折叠问题,实际是轴对称问题。
处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。
所以一定要注意折叠前后的两个图形是全等的。
即对应角相等,对应线段相等。
有时可能还会出现平分线段、平分角等条件。
这一类问题,把握住了关键点,并不难解决。
例1 (成都市中考题)把一张长方形的纸片按如图所示的方式折叠, EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°分析与解答:本题考查了有关折叠的知识。
由题意可知:∠BME=∠'EMC ,∠CMF=∠'FMC ,''180BMC CMC ∠+∠=°,又'C M 与'B M 重合,则∠EMF=∠'EMC +∠'FMC =''11()18022BMC CMC ∠+∠=⨯°= 90°,故选B 。
例2 (武汉市实验区中考题)将五边形ABCDE 纸片按如图的方式折叠,折痕为AF, 点E 、D 分别落在'E 、'D 。
已知∠AFC=76°,则'CFD ∠等于( )A 、31°B 、28°C 、24°D 、22°分析与解答:本题同样是考查了折叠的知识。
根据题意得:'AFD AFD ∠=∠=180°-76°=104°,则'CFD ∠=104°-76°=28°,故选B 。
例3(河南省实验区中考题)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点'A 的位置,若1tan 2BOC ∠=,则点'A 的坐标为 。
浙教版初中数学中考复习-折叠问题 (共46张PPT)
解析:
• 【例】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不 重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点 E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( C )
• 【点拨】利用折叠的性质,说明△BEP与△CPD相似,得出y与x的关系式.
(2)外角
(3)三角函数
26
考向五:求面积
• 【例】如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延 长EF交AB于点G,连结DG,求△BEF的面积.
27
解析:
28
考向六:折叠综合问题
29
解析:
30
考向六:折叠综合问题
• 【例】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处 ,折痕为EC,连结AP并延长AP交CD于点F,
• 【分析】(2)由折叠的性质及邻补角定义得到一对角相等,根据同角的余角相等得到一对角 相
•
等,再由AP=EB,利用AAS即可得证;
34
考向六:折叠综合问题
• 【例】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处 ,折痕为EC,连结AP并延长AP交CD于点F,
• (3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.
44
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
解析:
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
45
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
3.6中考专题——折叠
.
分析:先根据折叠得出 BE=B′E,且∠AB′E=∠B=90°,可知△EB′C
是直角三角形,由已知的 BC=3BE 得 EC=2B′E,得出∠ACB=30°,从而得出
AC 与 AB 的关系,求出 AB 的长.
2. (2017 广东中考)如图,矩形纸片 ABCD 中,AB=5,BC=3,先按图(2)操作:将矩形纸片 ABCD 沿
(1)求证:△A1DE∽△B1EH; (2)如图 2,直线 MN 是矩形 ABCD 的对称轴,若点 A1 恰好落在直线 MN 上,试判断△DEF 的形状,并 说明理由; (3)如图 3,在(2)的条件下,点 G 为△DEF 内一点,且∠DGF=150°,试探究 DG,EG,FG 的数 量关系.
4
使得点 A 落在 EF 上(如图(2)),折痕交 AE 于点 G,那么∠ADG 等于多少度?你能证明你的结论吗?
B
C
B
C
E
F
A
E
F
G
A
D
A’
D
(1)
(2)
分析:①由折叠可知,AD=BC=CD,∠ADG= 1 ∠ADA’。②由 F 为 CD 中点可知,FD= 1 CD。→③FD= 1 AD,
2
2
2
得到∠FAD= 300。④根据 EF//A’ D,得到∠ADA’ =∠FAD = 300,从而得到∠ADG = 1 ∠ADA’ = 150。 2
.
第4题
第5题
5. (2019 深圳中考)如图在正方形 ABCD 中,BE=1,将 BC 沿 CE 翻折,使点 B 对应点刚好落在对角线
AC 上,将 AD 沿 AF 翻折,使点 D 对应点落在对角线 AC 上,求 EF=
.
2023中考九年级数学分类讲解 第十三讲 图形的变换、立体图形的展开与折叠(含答案)(全国通用版)
第十三讲图形的变换、立体图形的展开与折叠专项一轴对称与中心对称知识清单1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形,那么就说这两个图形关于这条直线,这条直线叫做,折叠后重合的点是对应点,叫做对称点.2.轴对称图形:如果一个平面图形沿一条直线,直线两旁的部分能够互相,这个图形就叫做轴对称图形,这条直线就是它的.3.轴对称的性质:(1)关于某条直线对称的两个图形;(2)在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴,对应线段,对应角.4.中心对称:把一个图形绕着某一点旋转,如果它能够与另一个图形,那么就说这两个图形关于这个点对称或中心对称,这个点叫做.5.中心对称图形:把一个图形绕某一个点旋转,如果旋转后的图形能够与原来的图形,那么这个图形叫做中心对称图形,这个点就是它的.6.中心对称的性质:(1)成中心对称的两个图形;(2)成中心对称的两个图形,对应线段,对应角,对应点的连线都经过,且被对称中心.考点例析例1以下是我国部分博物馆的标志图案,其中既是轴对称图形又是中心对称图形的是()A B C D分析:根据轴对称图形及中心对称图形的定义逐项判断即可.例2如图1,在Rt△ABC中,∠A=30°,∠C=90°,AB=6,P是线段AC上一动点,点M在线段AB上.当AM=13AB时,PB+PM的最小值为()A.B.C.2D.3图1 图2分析:如图2,作点B关于AC的对称点B',连接B'M交AC于点P,此时PB+PM的值最小,为B'M 的长.在Rt△ABC中,由∠A=30°,AB=6,可求得BC,进而求得B'B,过点B'作B'H⊥AB于点H,解Rt△B'HB,得B'H,BH的长,结合AM=13AB,可求得MH,最后在Rt△B'HM中,利用勾股定理求出B'M,即可得解.归纳:在一条直线同侧有两点,则直线上存在到两点的距离之和最短的点,可以通过轴对称来确定,即作出其中一点关于直线的对称点,对称点与另一点的连线与直线的交点即为所求点.跟踪训练1.下列图形中,是轴对称图形但不是中心对称图形的是()A B C D2.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是.3.如图,在△ABC中,AC=BC,∠B=38°,D是AB边上一点,点B关于直线CD的对称点为B′.若B′D∥AC,则∠BCD的度数为.第3题图第4题图4.如图,在菱形ABCD中,BC=2,∠C=120°,Q为AB的中点,P为对角线BD上任意一点,则AP+PQ 的最小值为.专项二图形的平移知识清单1.平移:在平面内,把一个图形由一个位置整体沿某一直线方向移动到另一个位置,这样的图形运动叫做平移.2.平移两要素:平移的和平移的.3.平移的性质:(1)平移不改变图形的形状和大小,即平移前后的两个图形;(2)平移前后,对应线段(或在同一条直线上)且,对应角;(3)平移前后,连接对应点的线段(或在同一条直线上)且.考点例析例如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为.分析:由平移的性质可知BE=CF,结合题中给出的数据计算即可.跟踪训练1.四盏灯笼的位置如图所示,已知点A,B,C,D的坐标分别是(﹣1,b),(1,b),(2,b),(3.5,b).若平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位长度B.将C向左平移4个单位长度C.将D向左平移5.5个单位长度D.将C向左平移3.5个单位长度第2题图2.在平面直角坐标系中,点A(3,2)关于x轴的对称点为A1,将点A1向左平移3个单位长度得到点A2,则点A2的坐标为.3.在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A,B的坐标分别是(﹣1,1)和(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是.专项三图形的旋转知识清单1.旋转:在平面内,把一个图形绕着平面内某一点O转动一个角度,这样的图形运动叫做旋转,点O 叫做,转动的角叫做.2.旋转三要素:、和.3.旋转的性质:(1)旋转不改变图形的形状和大小,即旋转前后的两个图形;(2)对应点到的距离相等;(3)对应点与旋转中心所连线段的夹角等于.考点例析例如图,将△ABC绕点A逆时针旋转55°得到△ADE.若∠E=70°,AD⊥BC于点F,则∠BAC的度数为( )A .65°B .70°C .75°D .80°分析:由旋转的性质,得∠BAD =55°,∠C =∠E =70°,再由直角三角形的性质,得∠DAC 的度数,进而得解.归纳:图形的旋转为全等变换,解题时可充分利用其性质,得出线段的长或角的度数.另外,注意旋转角为60°时考虑运用等边三角形的性质,旋转角为90°时考虑运用等腰直角三角形的性质.跟踪训练1.如图,在△AOB 中,AO =1,BO =AB =32.将△AOB 绕点O 逆时针方向旋转90°,得到△A ′OB ′,连接AA ′,则线段AA ′的长为( )A .1BC .32 D第1题图 第2题图2.如图,在△ABC 中,∠ACB =90°,∠BAC =α,将△ABC 绕点C 顺时针旋转90°得到△A 'B 'C ,点B 的对应点B '在AC 边上(不与点A ,C 重合),则∠AA 'B '的度数为( )A .αB .α﹣45°C .45°﹣αD .90°﹣α3.如图,在平面直角坐标系中,线段OA 与x 轴正方向的夹角为45°,且OA =2.若将线段OA 绕点O 沿逆时针方向旋转105°得到线段OA ′,则点A ′的坐标为( )A .)1-B .(-C .()D .(1,第3题图 第4题图 4.如图,在平面直角坐标系中,点C 的坐标为(﹣1,0),点A 的坐标为(﹣3,3),将点A 绕点C 顺时针旋转90°得到点B ,则点B 的坐标为 .专项四立体图形的展开与折叠知识清单正方体的表面展开图考点例析例1 下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个分析:根据正方体的表面展开图的特征解答即可.归纳:判断正方体表面展开图的方法:(12)若展开图有三行,3布在该图形上下两侧.借助这些方法可采用排除法快速判断正方体的表面展开图.例2 如图是一个正方体的表面展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是()A.雷B.锋C.精D.神分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点解答即可.归纳:判断正方体表面展开图的相对面的方法:(1)在一条直线上的三个正方形,首尾两个正方形一定是正方体的相对面;(2)由几个小正方形组成的“Z”字型两端的小正方形是相对面.正方体的每个面都有且只有一个相对面,所以在展开图中分析每个小正方形相对面的个数也可用来判断其是否能围成正方体.跟踪训练1.下列四个图形中,不能作为正方体的展开图的是()A B C D2.把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱第2题图第3题图3.一个骰子相对两面的点数之和为7,它的展开图如图所示,则下列判断正确的是()A.A代表B.B代表C.C代表D.B代表专项五投影知识清单1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.投影分为投影(由平行光线形成的投影,如太阳光线)和投影(由点光源发出的光线形成的投影).3.在平行投影中,当投影线与投影面时,物体在投影面上的投影叫做正投影.平面图形的正投影的规律:平行形不变,倾斜形改变,垂直成线段.考点例析例在同一时刻,物体的高度与它在阳光下的影长成正比.在某一时刻,有人测得一高为1.8 m的竹竿的影长为3 m,某一高楼的影长为60 m,那么这幢高楼的高度是()A.18 m B.20 m C.30 m D.36 m分析:设此高楼的高度为x m,根据同一时刻物高与影长成正比例列出关于x的比例式,求解即可.归纳:投影中蕴含着相似三角形,借助相似三角形的性质进行相关计算可使问题迎刃而解.跟踪训练1.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A B C D2.学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7 m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8 m到达点D处,测得影子DE长为2 m,则路灯灯泡A 离地面的高度AB为m.第2题图专项六三视图知识清单1.对一个物体在三个投影面内进行正投影,在正面内得到的由前向后观察物体的视图,叫做;在水平面内得到的由上向下观察物体的视图,叫做;在侧面内得到的由左向右观察物体的视图,叫做.2.画三视图时,三个视图都要放在正确的位置,并且注意视图与视图的长对正,视图与视图的高平齐,视图与视图的宽相等.考点例析例1一个几何体如图1所示,它的左视图是()A B C D 图1分析:左视图是由左向右观察物体的视图.归纳:画三视图时一定要将物体的边缘、棱、顶点都体现出来,并规定:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线,不能漏掉.例2 由若干个完全相同的小立方块搭成的几何体的左视图和俯视图如图2所示,则搭成该几何体所用的小立方块的个数可能是()A.4个B.5个C.7个D.8个图2分析:由左视图第一行有1个正方形,结合俯视图可知几何体上面一层有1或2个小立方块,由左视图第二行有2个正方形,结合俯视图可知几何体下面一层有4个小立方块,所以该几何体有5或6个小立方块.例3 如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π图3分析:观察三视图可知该几何体是空心圆柱,根据圆柱体积公式结合图中数据计算即可.归纳:根据三视图计算几何体的表面积或体积时,首先要确定几何体的形状,若是常见几何体,根据几何体的表面积公式或体积公式直接计算即可;若是较复杂的组合体,可拆分成常见几何体再进行计算.注意要准确判断三视图中的已知数据在实物图中对应的含义.跟踪训练1.如图是一个几何体的三视图,则这个几何体是()A.圆锥B.长方体C.球D.圆柱第1题图第2题图2.如图所示的几何体是由5个大小相同的小正方体搭成的,其左视图是()A B C D3.如图,该几何体的左视图是()A B C D第3题图第4题图4.如图是由若干个相同的小立方体搭成的几何体的主视图和左视图,则搭成这个几何体的小立方体的个数不可能是( )A .3B .4C .5D .65.我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是( )A .7.2πB .11.52πC .12πD .13.44π第5题图 第6题图 6.已知某几何体的三视图如图所示,则该几何体的侧面展开图中圆心角的度数为( )A .214°B .215°C .216°D .217°专项七 图形变换中的分类讨论思想知识清单在解决图形变换的有关问题时,由于经过变换的图形位置或形状不确定常导致问题的结果有多种可能,这时就需要把待求解的问题根据图形变换的可能性结合题目要求进行分类讨论,分类讨论时要选择恰当的分类标准,做到不重复、不遗漏.考点例析例 如图1,已知AD ∥BC ,AB ⊥BC ,AB =3,E 为射线BC 上一动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于M ,N 两点.当B ′为线段MN 的三等分点时,BE 的长为( )A .32BC .32D图1分析:当MB '=13MN 时,如图2所示;当NB '=13MN 时,如图3所示.可设BE =x ,由折叠的性质表示出相关线段,再在Rt△B'EN中,利用勾股定理列方程即可求得BE的长.图2 图3跟踪训练1.如图,在△AOB中,OA=4,OB=6,AB=△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是()A.(4,2)或(﹣4,2)B.()4-或()-C.()-或()2-D.(2,-或(-第1题图第3题图2.)在矩形ABCD中,AB=2 cm,将矩形ABCD沿某直线折叠,使点B与点D重合,折痕与直线AD 交于点E,且DE=3 cm,则矩形ABCD的面积为cm2.3.如图,腰长为2的等腰三角形ABC中,顶角∠A=45°,D为腰AB上的一个动点,将△ACD沿CD折叠,点A落在点E处.当CE与△ABC的某一条腰垂直时,BD的长为.参考答案专项一轴对称与中心对称例1 A 例2 B1.D 2.(2,﹣4)3.33°4专项二图形的平移例 31.C 2.(0,﹣2) 3.(4,﹣1)专项三图形的旋转例 C1.B 2.C 3.C 4.(2,2)专项四立体图形的展开与折叠例1 C 例2 D1.D 2.A 3.A专项五投影例 D1.D 2.8.5专项六三视图例1 B 例2 B 例3 B1.D 2.A 3.D 4.D 5.C 6.C专项七图形变换中的分类讨论思想例 D1.C 2.(或(6-3或- 11 -。
中考复习折叠问题(全国通用)(解析版)
专题08 折叠问题平面直角坐标系中的折叠问题,蕴含了丰富的数形结合思想和转化思想.解决这类问题的关键,是利用对称性将问题转化到直角三角形中,然后用勾股定理或相似三角形的知识求解.平面直角坐标系中的折叠问题是正在悄然兴起的一个中考热点,因为在平面直角坐标系中,几何图形的位置和大小都可以用"数"来表示,折叠问题又涉及全等变换和轴对称问题.而对于折叠问题,学生并不陌生,但在直角坐标系中,必然涉及直线的解析式和点的坐标,难度加大了,综合性增强了,数形结合思想更加显现,因而更加受到中考出题者的青睐。
本专题主要从折叠入手,经过学生的强化训练受到更多的启发。
一、单选题1.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B’处,则B’点的坐标为().A.(2,)B.(,)C.(2,)D.(,)【答案】C【解析】试题分析:过点B′作B′D⊥OC,由折叠可得CB′=OC=OA=4,⊥⊥CPB=60°,⊥⊥B′CD=30°,B′D=2根据勾股定理得DC=2⊥OD=4-2,即B′点的坐标为(2,4-2)故选C.考点:1.正方形的性质;2.图形折叠的性质;3.点的坐标.2.如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点处,则点的坐标为()A.(2,2)B.(,3)C.(2,)D.(,)【答案】C【解析】过B′作BD⊥y轴于D,由折叠的性质可得∠B′CP=∠BCP=30°,CB′=BC=4,根据正方形的性质可求出∠OCB′=30°,根据含30°角的直角三角形的性质可得BD′的长,利用勾股定理可求出CD的长,即可求出OD的长,即可得点B′的坐标.【详解】过B′作B′D⊥y轴于D,∵四边形OABC是正方形,∠CPB=60°,∴∠BCP=30°,∵沿CP折叠正方形,折叠后,点B落在平面内点处,∴∠B′CP=∠BCP=30°,B′C=BC =4,∴∠OCB′=30°,∵B′D⊥y轴,∴B′D=B′C=2,∴CD==,∴OD=OC-CD=4-,∴点B′的坐标为(2,4-).故选C.【点拨】本题考查了折叠的性质、正方形的性质及含30°角的直角三角形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;30°角所对的直角边,等于斜边的一半;熟练掌握折叠的性质是解题关键.3.在平面直角坐标系中,将点P(-2,0)沿直线折叠得到点Q,则点Q的坐标为( ) A.(2,0)B.(0,2)C.(-2,-2)D.(0,-2)【答案】D【解析】设点P(3,2)关于直线y=x的对称点Q(m,n),由P Q的中点在直线y=x上且直线P Q与直线y=x垂直得到关于m、n的方程组,解之可得答案.详解:设点P(-2,0)关于直线y=x的对称点Q(m,n),∴PQ的中点坐标为(, ),则中点(,)在直线y=x上,∴=①,由直线PQ与直线y=x垂直,得②,联立①②,得:,则点P(-2,0)关于直线y=x的对称点P′坐标为(0,-2),故选:D.点拨:本题考查了坐标与图形变化-平移.4.如图,把长方形纸片放入平面直角坐标系中,使,分别落在轴、轴上,连接,将纸片沿折叠,使点落在点的位置,与轴交于点,若,则的长为()A.B.C.D.【答案】B【解析】由四边形OABC是矩形与折叠的性质,易证得△AEC是等腰三角形,然后在Rt△AEO中,利用勾股定理求得AE,OE的长.【详解】∵四边形OABC是矩形,∴OC∥AB,∴∠ECA=∠CAB,根据题意得:∠CAB=∠CAD,∠CDA=∠B=90°,∴∠ECA=∠EAC,∴EC=EA,∵B(1,2),∴AD=AB=2,设OE=x,则AE=EC=OC-OE=2-x,在Rt△AOE中,AE2=OE2+OA2,即(2-x)2=x2+1,解得:x= ,∴OE= ,故选:B.【点拨】此题考查了折叠的性质,矩形的性质,解题的关键是方程思想与数形结合思想的应用.二、填空题5.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.【答案】(10,3)【解析】根据折叠的性质得到AF=AD,所以在直角⊥AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.【详解】∵四边形AOCD为矩形,D的坐标为(10,8), ∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt⊥AOF中,OF==6,∴FC=10−6=4,设EC=x,则DE=EF=8−x,在Rt⊥CEF中,EF2=EC2+FC2,即(8−x)2=x2+42,解得x=3,即EC的长为3. ∴点E的坐标为(10,3).6.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处,已知AD=3,当点F为线段OC的三等分点时,点E的坐标为_____.【答案】(3,)或(3,).【解析】本题首先设点E的坐标为(3,m),然后根据△AOF和△EFC相似求出m的值,本题中还需要分OF=OC,OF=OC两种情况来进行讨论,分别求出m的值.7.如图,在平面直角坐标系中,长方形各顶点的坐标分别为,,.将长方形沿折叠,使点落在轴上处,则点的坐标为__________.【答案】【解析】在中,根据勾股定理得出OB',进而得出B'A,再利用翻折的性质和勾股定理解答即可.【详解】∵长方形各顶点的坐标分别为,,,∴,,∴将长方形沿折叠,使点落在轴上处,∴,在中,,∴,设为,则,在中,,即,解得:,所以点的坐标为.故答案为:.【点拨】本题主要考查了图形翻折的性质,结合勾股定理解答问题.8.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E 的坐标是_____.【答案】(-10,3)【解析】试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE,设CE=x,则BE=8-x,然后根据折叠的性质,可得EF=8-x,根据勾股定理可得,解得x=3,则OF=6,所以OC=10,由此可得点E的坐标为(-10,3).故答案为:(-10,3)9.如图,在平面直角坐标系中,矩形的边、分别在轴、轴上,点在边上,将该矩形沿折叠,点恰好落在边上的处.若,,则点的坐标是__________.【答案】【解析】由勾股定理可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E 的坐标.【详解】设CE=a,则BE=8-a,由题意可得,EF=BE=8-a,∵∠ECF=90°,CF=4,∴a2+42=(8-a)2,解得,a=3,设OF=b,则OC=b+4,由题意可得,AF=AB=OC= b+4,∵∠AOF=90°,OA=8,∴b2+82=(b+4)2,解得,b=6,∴CO=CF+OF=10,∴点E的坐标为(-10,3),故答案为(-10,3).【点拨】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x、y轴上,连接AC,将纸片OABC沿AC折叠,使点B落在点D的位置.若点B的坐标为(2,4),则点D的横坐标是___________.【答案】【解析】首先过点D作DF⊥OA于F,过D作DG⊥y轴于G.由四边形OABC是矩形与折叠的性质,易证得△AEC是等腰三角形,然后在Rt⊥AEO中,利用勾股定理求得AE,OE 的长,从而得到DE、EC的长.在Rt⊥EDC中,利用三角形面积公式求得DG的长,即可得点D的横坐标.【详解】过点D作DF⊥OA于F,过D作DG⊥y轴于G.∵四边形OABC是矩形,⊥OC⊥AB,⊥⊥ECA=⊥CAB,根据题意得:⊥CAB=⊥CAD,⊥CDA =⊥B=90°,⊥⊥ECA=⊥EAC,⊥EC=EA.⊥B(2,4),⊥AD=AB=4,DC=CB=2.设OE=x,则AE=EC=OC﹣OE=4﹣x.在Rt⊥AOE 中,AE2=OE2+OA2,即(4﹣x)2=x2+4,解得:x,⊥OE,EC=AE,⊥DE=DA-AE=4-=.在Rt⊥EDC中,∵DE•DC=DG•EC,⊥DG===,∴点D的横坐标为:.【点拨】本题考查了折叠的性质,矩形的性质,等腰三角形的判定与性质等知识.此题综合性较强,解题的关键是方程思想与数形结合思想的应用.11.如图平面直角坐标系中,O(0,0),A(4,4),B(8,0).将⊥OAB沿直线CD 折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE:DE的值是.【答案】.【解析】如图,过A作AF⊥OB于F,∵A(4,4),B(8,0),∴AF=4,OF=4,OB=8,∴BF=8﹣4=4,∴OF=BF,∴AO=AB,∵tan∠AOB==,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∴∠OCE=∠DEB,∴△CEO∽△DBE,∴,设CE=a,则CA=a,CO=8﹣a,ED=b,则AD=b,DB=8﹣b,∴,∴32b=88a﹣11ab ①,,∴56a=88b﹣11ab ②,②﹣①得:56a﹣32b=88b﹣88a,∴,即CE:DE=.故答案为:.12.把一张两边长分别为、的矩形纸片放入平面直角坐标系中,使、分别落在轴、轴正半轴上,将纸片沿对角线折叠,使点落在的位置上,则点的坐标为_______.【答案】或【解析】分两种情况讨论:当时,如图1,设交OC于点M,作于,由折叠的性质、平行线的性质和等腰三角形的判定可得MB=MO,设,则在中,根据勾股定理即可构建方程求出x,然后根据三角形的面积和勾股定理即可求出和OP的长,从而可得点的坐标;第二种情况:当时,如图2,同情况1的方法解答即可.【详解】分两种情况讨论:当时,如图1,设交OC于点M,作于,由题意得,,,,∵OC⊥AB,⊥,∴,∴MB=MO,设,则,则在中,根据勾股定理得,即,解得,∴,,根据三角形的面积可得,即,∴,所以的坐标为;第二种情况:当时,如图2,设交BC于点M,作于,由题意得,,,,∵BC⊥AO,⊥,∴,∴MB=MO,设,则,则在中,根据勾股定理得,即,解得,∴,,根据三角形的面积可得,即,∴,∴,所以的坐标为;故答案为:或.【点拨】本题考查了矩形的性质、折叠的性质、平行线的性质、等腰三角形的判定、勾股定理以及三角形的面积等知识,属于常考题型,熟练掌握上述知识、灵活应用方程思想是解题的关键.13.如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点处,若,,则点C的坐标为______.【答案】【解析】依据折叠的性质以及勾股定理,即可得出的长,进而得到,再根据勾股定理可得,中,列方程求解即可得到,进而得出点C的坐标.【详解】矩形纸片ABCD中,,,,中,设,则中,,解得,,又点C在x轴上,点C的坐标为,故答案为.【点拨】本题主要考查了矩形的性质,折叠的性质以及勾股定理的运用;解决问题的关键是运用勾股定理计算有关线段的长解题时注意方程思想的运用.14.如图,有一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC =10,如图,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点处,则点E的坐标为_______。
初三复习 数学几何中折叠问题 4大类 分类 含答案
初中数学中的折叠问题折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积= 24对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.由勾股定理可得BD = 5,由对称的性质得△ADG ≌ △A ’DG ,由A ’D = AD = 3,AG ’ = AG ,则A ’B = 5 – 3 = 2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )根据对称的性质得到∠ABE=∠CBE ,∠EBF=∠CBF ,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积. ∵点C 与点E 关于直线BD 对称,∴∠1 = ∠2 ∵AD ∥BC ,∴∠1 = ∠3∴∠2 = ∠3 ∴FB = FD设FD = x ,则FB = x ,FA = 8 – x在Rt △BAF 中,BA 2 + AF 2 = BF 2∴62 + (8 - x)2 = x 2 解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.∵四边形CDFE 与四边形C ’D ’FE 关于直线EF 对称∴∠2 = ∠3 = 64°∴∠4 = 180° - 2 × 64° = 52° ∵AD ∥BC321F E D C B A54132G D‘FC‘DAGA'CA B D∴∠1 = ∠4 = 52°∠2 = ∠5又∵∠2 = ∠3∴∠3 = ∠5∴GE = GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.(1)由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF= 12,利用特殊角的三角函数值的知识即可求得∠BCB’= 60°;(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE = x,则BE = GE = 4 - x,在Rt△AEG中,根据勾股定理有:AE2 + AG2 = GE2即:x2 + 4 = (4 - x)2解得x = 1.5,BE = EG = 4 – 1.5 = 2.5∵∠1 + ∠2 = 90°,∠2 + ∠3 = 90°∴∠1 = ∠3又∵∠A = ∠D = 90°∴△AEG ∽△DGP∴AEDG=EGGP,则1.52=2.5GP,解得GP =103PH = GH – GP = 4 - 103=23∵∠3 = ∠4,tan∠3 = tan∠1 = 3 4∴tan∠4 = 34,FHPH=34,FH =34×PH =34×23=12∴CF = FH = 1 2∴S梯形BCFE = 12(12+52)×4 = 6注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D 重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.(1)BB’ = MN过点N作NH∥BC交AB于点H),证△ABB’≌△HNM(2)MB’ = MB = y,AM = 1 – y,AB’ = x在Rt△ABB’中BB’ = AB2 + AB'2= 1 + x2因为点B与点B’关于MN对称,所以BQ = B’Q,则BQ = 12 1 + x2由△BMQ∽△BB’A得BM×BA = BQ×BB’PC'NB CA DMB'QPHC'NB CA DMB'∴y = 12 1 + x2× 1 + x2=12(1 + x2)(3) 梯形MNC′B′的面积与梯形MNCB的面积相等由(1)可知,HM = AB’ = x,BH = BM – HM = y – x,则CN = y - x∴梯形MNCB的面积为:12(y – x + y) ×1 = 12(2y - x)= 12(2×12(1 + x2) – x)= 12(x -12)2 +38当x = 12时,即B点落在AD的中点时,梯形MNC’B’的面积有最小值,且最小值是38二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α= ∠1,∠2 = ∠1∴∠α= ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC = 2 2 ,AB = 2 2S△ABC=12AB×CD = 2 2a2130°BEFACD在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是如图,作QH ⊥PA ,垂足为H ,则QH=2cm , 由平行线的性质,得∠DPA=∠PAQ=60° 由折叠的性质,得∠DPA =∠PAQ , ∴∠APQ=60°,又∵∠PAQ=∠APQ=60°, ∴△APQ 为等边三角形, 在Rt △PQH 中,sin ∠HPQ = HQPQ∴32 = 2PQ ,则PQ = 433注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEC GDFEFBCAEBB∵AD ∥BC ,∴∠DEF=∠EFB=20°,在图b 中,GE = GF ,∠GFC=180°-2∠EFG=140°, 在图c 中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )设AB=xcm .右图中,AF = CE = 35,EF = x根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5GEFD AE FD B C A B C 60cm三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”). (1)∵CD = 12 AB∴∠ACB = 90°∵AB = 2a ,BC = a ,∴AC = 3a ∴S △ABC = 12 ×AC ×BC = 32a 2∴重叠部分的面积为:14×32a 2 = 38a 2(2)若AC = a ,如右图∵AD = a ,∴∠2 = 180°- 30°2 = 75°∠BDC = 180°- 75°= 105° ∴∠B'DC = 105°∴∠3 = 105°- 75°= 30° ∴∠1 = ∠3 ∴AC ∥B'D∴四边形AB'DC 是平行四边形∴重叠部分△CDE 的面积等于△ABC的面积的14若折叠前△ABC 的面积等于32a 2 过点C 作CH ⊥AB 于点H ,则 12 ×AB ×CH = 32a 2 B'CDAB231EB'CDBACH =32a 又tan ∠1 =CH AH∴AH = 32a∴BH = 12a则tan ∠B =CHBH,得∠B = 60° ∴△CBD 是等边三角形 ∴∠2 = ∠4∴∠3 = ∠4,AD ∥CB 2又CB 2 = BC = BD = a ,∴CB 2 = AD ∴四边形ADCB 2是平行四边形则重叠部分△CDE 的面积是△ABC 面积的14(3)如右图,由对称的性质得,∠3 = ∠4,DA = DB 3 ∴∠1 = ∠2又∵∠3 + ∠4 = ∠1 +∠2 ∴∠4 = ∠1 ∴AB 3∥CD注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;3241EHB 2DABC3412B 3DA BC在第一次折叠中可得到∠EAD = ∠FAD在第二次折叠中可得到EF是AD的垂直平分线,则AD⊥EF∴∠AEF = ∠AFE∴△AEF是等腰三角形(1)由折叠可知∠AEB = ∠FEB,∠DEG = ∠BEG而∠BEG = 45°+ ∠α因为∠AEB + ∠BEG + ∠DEG = 180°所以 45°+ 2(45°+∠α)= 180°∠α = 22.5°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
自学初中数学资料 折叠问题 图形的翻折、轴对称(资料附答案)
自学资料一、图形的翻折、轴对称【知识探索】1.如果把一个图形沿某一条直线翻折,能与另一个图形重合,那么叫做这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做关于这条直线的对称点.【说明】(1)两个图形关于一条直线成轴对称,这两个图形对应线段的长度和对应角的大小相等,它们的形状相同,大小不变;(2)在成轴对称的两个图形中,分别联结两对对应点,取中点,联结两个中点所得的直线就是对称轴.2.把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线就是它的对称轴.【错题精练】第1页共26页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训例1.如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B′CP ,连接B′A ,则下列判断:①当AP=BP 时,AB′∥CP ;②当AP=BP 时,∠B′PC=2∠B′AC③当CP ⊥AB 时,AP=175;④B′A 长度的最小值是1.其中正确的判断是______ (填入正确结论的序号)【解答】解:①∵在△ABC 中,∠ACB=90°,AP=BP ,∴AP=BP=CP ,∠BPC=12(180°-∠APB′),由折叠的性质可得:CP=B′P ,∠CPB′=∠BPC=12(180°-∠APB′),∴AP=B′P ,∴∠AB′P=∠B′AP=12(180°-∠APB′),∴∠AB′P=∠CPB′,∴AB′∥CP ;故①正确;②∵AP=BP ,∴PA=PB′=PC=PB ,∴点A ,B′,C ,B 在以P 为圆心,PA 长为半径的圆上,∵由折叠的性质可得:BC=B′C , ∴BC ̂=B′C ̂,∴∠B′PC=2∠B′AC ;故②正确;③当CP ⊥AB 时,∠APC=∠ACB ,∵∠PAC=∠CAB ,∴△ACP ∽△ABC ,∴APAC =ACAB ,∵在Rt △ABC 中,由勾股定理可知:AC=√AB 2−BC 2=√52−32=4,∴AP=AC 2AB =165;故③错误;④由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∵AB'≥AC-CB'∴AB′的长度有最小值.AB′有最小值=AC-B′C=4-3=1.故④正确.故答案为:①②④.【答案】①②④例2.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化;(3)∠PBH=45°;(4)BP=BH.其中正确的命题是______.【解答】(1)证明:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.故(1)正确;(2))△PHD的周长不变为定值8.第3页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第4页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,在△ABP 和△QBP 中,{∠APB =∠BPH∠A =∠BQP BP =BP∴△ABP ≌△QBP (AAS ).∴AP=QP ,AB=BQ .又∵AB=BC ,∴BC=BQ .又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.故(2)正确;(3)解:∵△ABP ≌△QBP (AAS )、△BCH ≌△BQH .∴∠QBH=∠HBC ,∠ABP=∠PBQ ,∴∠PBH=∠PBQ+∠QBH=12∠ABC=45°.故(3)正确;(4)解:∵∠PBH=45°固定不变,∴当点P 在AD 上移动时,∠BPH 的度数不断发生变化,∴∠BPH 的度数与∠BHP 不一定相等,故BP 与BH 不一定相等.故答案为:(1)(2)(3).【答案】(1)(2)(3)例3.如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A′点,D 点的对称点为D′点,若∠FPG =90°,△A′EP 的面积为4,△D′PH 的面积为1,则矩形ABCD 的面积等于【答案】例4.如图,在菱形紙片ABCD中,AB=2.将纸片折叠,使点B落在AD边上的点B′处(不与A,D重合),点C落在C′处,线段B′C′与直线CD交于点G,折痕为EF,则下列说法①若∠A=90,B′为AD中点时,AE=34②若∠A=60°,B′为AD中点时,点E恰好是AB的中点③若∠A=60°,C′F⊥CD时,CFFD =√3−12其中正确的是()第5页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第6页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训A. ①②B. ①③C. ②③D. ①②③【解答】解:①∵∠A=90°,四边形ABCD 是菱形,∴四边形ABCD 是正方形,∴AB=AD ,∵B′为AD 中点时,∴AB'=1,设AE=x ,则B'E=BE=2-x ,在Rt △AB'E 中,由勾股定理得:12+x 2=(2-x )2,解得:x=34,①正确; ②连接BD 、BE',如图:∵∠A=60°,AB=AD ,∴△ABD 是等边三角形,∴∠ABD=60°,∵B′为AD 中点,∴∠AB'B=90°,∠ABB'=30°∵BE=B'E ,∴∠BB'E=∠ABB'=30°,∴∠AB'E=60°,∴△AB'E 是等边三角形,∴AE=B'E=BE ,∴点E 是AB 的中点,②正确;③设CF=x ,由折叠的性质得:C'F=CF=x ,∠C'=∠C=∠A=60°,∵C′F ⊥CD ,∴∠C'GF=30°,∴C'G=2C'F=2x ,GF=√3C'F=√3x ,∴DG=CD-GF-CF=2-√3x-x ,∵∠D=180°-∠A=120°,∠DGB'=∠C'GF=30°,∴∠DB'G=30°,∴DB'=DG ,设BD 交B'C'于H ,则B'H=GH=12B'G=12(2-2x )=1-x ,∴DG=2(1−x )√3,∴2(1−x )√3=2-√3x-x , 解得:x=4-2√3,∴CF=4-2√3,FD=2-(4-2√3)=2√3-2,∴CF FD =√3−12,③正确; 故选:D .【答案】D例5.如图,以半圆的一条弦BC为对称轴将弧BC折叠后与直径AB交于点D,若AD=4,BD=8,则CB的长为__________【解答】第7页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】例6.如图,矩形ABCD中,BC=3,且BC>AB,E为AB边上任意一点(不与A,B重合),设BE=t,将△BCE沿CE对折,得到△FCE,延长EF交CD的延长线于点G,则tan∠CGE= (用含t的代数式表示).【解答】解:如图连接BF交EC于O,作EM⊥CD于M,∵∠EMC=∠EBC=∠BCM=90°,∴四边形EBCM是矩形,∴CM=EB=t,EM=BC=3,在RT△EBC中,∵EB=t,BC=3,∴EC=√t2+32=√t2+9,∵EB=EF,CB=CF,∴EC垂直平分BF,∵12•EC•BO=12•EB•BC,∴BO=3t√t2+9,BF=2BO=6t√t2+9∵∠AEF+∠BEF=180°,∠BEF+∠BCF=180°,∴∠AEF=∠BCF,∵AB∥CD,∴∠BEC=∠ECG=∠CEF,∠AEF=∠G=∠BCF ∴GE=GC,∴∠GCE=∠GEC=∠CFB=∠CBF,∴△CBF∽△GCE,∴GCBC =ECBF,第8页共26页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴GC=t 2+92t,GM=GC-CM=9−t22t,∴tan∠CGE=EMGM =6t9−t2.故答案为6t9−t2.【答案】6t9−t2例7.阅读下面材料:在学习小组活动中,小明探究了下面问题:菱形纸片ABCD的边长为2,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD上移动时,六边形AEFCHG的周长的变化情况是怎样的?小明发现:若∠ABC=60°,①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为______;②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长______(填“改变”或“不变”).请帮助小明解决下面问题:如果菱形纸片ABCD边长仍为2,改变∠ABC的大小,折痕EF的长为m.(1)如图3,若∠ABC=120°,则六边形AEFCHG的周长为______;(2)如图4,若∠ABC的大小为2α,则六边形AEFCHG的周长可表示为______.【解答】解:①如图1,当重合点在菱形的对称中心O处时,由题意可知△BEF和△DGH是等边三角形,∴EF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6.∴六边形AEFCHG的周长为6;②如图2,当重合点在对角线BD上移动时,由题意可知△BEF和△DGH是等边三角形,∴EF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6.∴六边形AEFCHG的周长为6.故六边形AEFCHG的周长不变.(1)如图3,若∠ABC=120°,由题意可知EF+GH=AC,则六边形AEFCHG的周长为2×2+2×sin60°×2=4+2√3;(2)如图4,若∠ABC的大小为2α,由题意可知EF+GH=AC,则六边形AEFCHG的周长可表示为2×2+2×sinα×2=4+4sinα.故答案为:①6;②不变.(1)4+2√3;(2)4+4sinα.第9页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】6不变4+2√34+4sinα例8.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“BECE=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).【解答】(1)解:∵AB∥DF,∴ABCF =BECE,∵BE=2CE,AB=3,∴3CF =2CECE,∴CF=32;(2)解:①若点E在线段BC上,如图1,设直线AB1与DC相交于点M.由题意翻折得:∠1=∠2.∵AB∥DF,∴∠1=∠F,∴∠2=∠F,∴AM=MF.设DM=x,则CM=3−x.又∵CF=1.5,∴AM=MF=92−x,在Rt△ADM中,AD2+DM2=AM2,∴32+x2=(92−x)2,∴x=54,∴DM=54,AM=134,第10页共26页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴sin∠DAB1=DMAM =513;②若点E在边BC的延长线上,如图2,设直线AB1与CD延长线相交于点N.同理可得:AN=NF.∵BE=2CE,∴BC=CE=AD.∵AD∥BE,∴ADCE =DFFC,∴DF=FC=32,设DN=x,则AN=NF=x+32.在Rt△ADN中,AD2+DN2=AN2,∴32+x2=(x+32)2,∴x=94.∴DN=94,AN=154sin∠DAB1=DNAN=35;(3)解:若点E在线段BC上,y=9x2x+2,定义域为x>0;若点E在边BC的延长线上,y=9x−92x,定义域为x>1.【答案】(1)32;(2)①513,②35;(3)略.【举一反三】1.如图,已知△ABC中,AB=8,BC=7,AC=6,E是AB的中点,F是AC边上一个,综上所述,EF的长为72或143.72或1432.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD边的中点E处,折痕为FG,点F、G分别在边AB、AD上,则GE=______,EF=______.【解答】解:如图过点E作EH⊥AD于H,EN⊥AB于N,过点A作AM⊥CD于M∵ABCD是菱形,∴AB∥CD,AD=AB=CD=AB=4∴∠ADM=∠BAD=∠HDE=60°∵E是CD中点∴DE=2在Rt△DHE,中,DE=2,HE⊥DH,∠HDE=60°∴DH=1,HE=√3∵折叠∴AG=GE,AF=EF在Rt△HGE中,GE2=GH2+HE 2∴GE2=(4-GE+1)2+3∴GE=2.8在Rt△AMD中,AD=4,AM⊥DM,∠ADM=60°∴MD=2,AM=2√3∵AB∥CD,AM∥EN∴AMEN是平行四边形且AM⊥CD∴AMEN是矩形∴AN=ME=2+2=4,(即N与B重合)AM=EN=2√3在Rt△FBE中,EF2=EN2+FB 2EF2=(4-EF)2+12EF=3.5【答案】2.83.53.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√34.小明尝试着将矩形纸片 ABCD (如图①, AD>CD )沿过 A 点的直线折叠,使得 B 点落在 AD 边上的点 F 处,折痕为 AE (如图②);再沿过 D 点的直线折叠,使得 C 点落在 DA 边上的点 N 处, E 点落在 AE 边上的点 M 处,折痕为 DG (如图③).如果第二次折叠后, M 点正好在 ∠ NDG 的平分线上,那么矩形 ABCD 长与宽的比值为.【答案】√2:1 .5.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连接OG,DG,若OG⊥DG,且⊙O 的半径长为1,则下列结论不成立的是()A. CG=1B. 矩形ABCD的面积为6+4√3C. ∠ACB=30°D. AF=2√3【解答】解:如图,设⊙O 与BC 的切点为M ,连接MO 并延长MO 交AD 于点N ,∵将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG ,∴OG=DG ,∵OG ⊥DG ,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC ,在△OMG 和△GCD 中,{∠OMG =∠DCG =90°∠MOG =∠DGC OG =DG,∴△OMG ≌△GCD ,∴OM=GC=1,CD=GM=BC-BM-GC=BC-2.故A 正确,∵AB=CD ,∴BC-AB=2.设AB=a ,BC=b ,AC=c ,⊙O 的半径为r ,⊙O 是Rt △ABC 的内切圆可得r=12(a+b-c ),∴c=a+b-2.在Rt △ABC 中,由勾股定理可得a 2+b 2=(a+b-2)2,整理得2ab-4a-4b+4=0,又∵BC-AB=2即b=2+a ,代入可得2a (2+a )-4a-4(2+a )+4=0,解得a 1=1+√3,a 2=1-√3(舍去),∴a=1+√3,b=3+√3,∴S 矩形ABCD =AB•BC=6+4√3,故B 正确,∴tan ∠ACB=AB BC =√33,∴∠ACB=30°,故C 正确,再设DF=x ,在Rt △ONF 中,FN=3+√3-1-x ,OF=x ,ON=1+√3-1=√3,由勾股定理可得(2+√3-x )2+(√3)2=x 2,解得x=4-√3,∴AF=AD-DF=2√3-1,故D 错误,故选:D .【答案】D6.如图,在⊙O 中,将AB̂沿弦AB 翻折交半径AO 的延长线于点D ,延长BD 交⊙O 于点C ,AC 切ADB ̂所在的圆于点A ,则tan ∠C 的值是( )A. √3B. 43C. 2+√3D. 1+√2【解答】解:作点D关于AB的对称点H,连接AH,BH,CH.根据对称性可知,ADB̂所在圆的圆心在直线AH上,∵AC切ADB̂所在的圆于点A,∴AC⊥AH,∴∠CAH=90°,∴CH是⊙O的直径,∴∠CBH=90°,∴∠ABD=∠ABH=45°,∴∠AHC=∠ABC=45°,∴∠ACH=∠AHC=45°,∴AC=AH,∵OC=OH,∴AD垂直平分线段CH,∴DC=DH,∴∠DCH=∠DHC,∵BD=BH,∴∠BDH=∠BHD=45°,∵∠BDH=∠DCH+∠DHC,∴∠DCH=22.5°,∴∠ACD=∠CHB=67.5°,设BD=BH=a,则CD=DH=√2a,∴tan∠ACB=tan∠CHB=BCBH =a+√2aa=1+√2,故选:D.【答案】D7.半径为2的圆弧形纸片按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是______.【解答】解:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=1,在Rt△AOC中,∵OA=2,OC=1,∴cos∠AOC=OCOA =12,AC=√OA2−OC2=√3∴∠AOC=60°,AB=2AC=2√3,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB-S△AOB=120π×22360-12×2√3×1=4π3-√3,S阴影=S半圆-2S弓形ABM=1 2π×22-2(4π3-√3)=2√3−23π.故答案为:2√3−23π.【答案】2√3−23π8.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的C1处,点D落在点D1处,C1D1交线段AE于点G.(1)求证:△BC1F∽△AGC1;(2)若C1是AB的中点,AB=6,BC=9,求AG的长.1.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则BC= .【解答】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x×x=2,解得:x=1(负数舍去),故BC=2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故BC=1,综上所述:BC=2或1.故答案为:2或1.【答案】2或1̂沿BD翻折,点C的对称点C′恰好落在AB 2.如图,已知半圆的内接四边形ABCD,AB是直径,DCB上.若AC′=4,C′B=5,则BD的长是()A. 4√3B. 3√7C. 7D. 8【解答】解:作DE⊥AB于E,连接DC′,由折叠的性质可知,CD=C′D,∠CBD=∠C′BD,∴DA=DC,∴AD=C′D,又DE⊥AB,∴AE=EC′=2,∴EB=7,由射影定理得,DE2=AE•EB=14,在Rt△DEB中,BD2=DE2+BE2=63,∴BD=3√7,故选:B.【答案】B3.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC中点;②FG=FC;③与∠AGB相等的角有5个;④S△FGC=910.其中正确的是()A. ①③B. ②③C. ①④D. ②④【解答】解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=13×3=1,CE=3-1=2,∵△ADE沿AE对折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD,在Rt△ABG和Rt△AFG中,{AG=AGAB=AF,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设BG=FG=x,则EG=EF+FG=1+x,CG=3-x,在Rt△CEG中,EG2=CG2+CE2,即(1+x)2=(3-x)2+22,解得,x=32,∴CG=3-32=3 2,∴BG=CG=32,即点G是BC中点,故①正确;∵tan∠AGB=ABBG =332=2,∴∠AGB≠60°,∴∠CGF≠180°-60°×2≠60°,又∵BG=CG=FG,∴△CGF不是等边三角形,∴FG≠FC,故②错误;由(1)知Rt △ABG ≌Rt △AFG ,∴∠AGB=∠AGF=12∠BGF ,根据三角形的外角性质,∠GCF+∠GFC=∠AGB+∠AGF ,∴∠GCF=∠GFC=∠AGB ,∵AD ∥BC ,∴∠AGB=∠GAD ,∴与∠AGB 相等的角有4个,故③错误;△CGE 的面积=12CG•CE=12×32×2=32, ∵EF :FG=1:32=2:3,∴S △FGC =32+3×32=910,故④正确; 综上所述,正确的结论有①④.故选:C .【答案】C4.如图,在矩形ABCD 中,AB=2,AD=5,点P 在线段BC 上运动,现将纸片折叠,使点A 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),设BP=x ,当点E 落在线段AB 上,点F 落在线段AD 上时,x 的取值范围是______.【解答】解:如图;①当F 、D 重合时,BP 的值最小;根据折叠的性质知:AF=PF=5;在Rt △PFC 中,PF=5,FC=2,则PC=√21;∴BP 的最小值为5-√21;②当E 、B 重合时,BP 的值最大;由折叠的性质可得AB=BP=2,即BP的最大值为2.所以x的取值范围是5-√21≤x≤2.故答案为:5-√21≤x≤2.【答案】5-√21≤x≤25.如图,现有边长为5的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为EF连结BP,BH.当AP=2时,PH=______.【解答】解:设AE=x,则BE=5-x.由翻折的性质可知:BE=PE=x,∠APG=∠ABC=90°.∴∠APE+∠DPH=90°.∵∠AEP+∠APE=90°,∴∠AEP=∠DPH.又∵∠A=∠D=90°,∴△APE∽△DHP.在Rt△APE中,PE2=AE2+AP2,即(5-x)2=x2+22,解得x=2.1.则PE=5-2.1=2.9.∵△APE∽△DHP,∴EPPH =AEPD,即2.9PH=2.13,解得:PH=297.故答案为:297.【答案】2976.如图,矩形纸片ABCD中,AD=15cm,AB=10cm,点P、Q分别为AB、CD的中点,E、G分别为BC、PQ上的点,将这张纸片沿AE折叠,使点B与点G重合,则△AGE的外接圆的面积为______.【解答】解:由翻折的性质得,AG=AB,∠GAE=∠BAE,∵点P、Q分别为AB、CD的中点,∴AP=12AB,∴AP=12AG,∴∠AGP=30°,∴∠PAG=90°-∠AGP=90°-30°=60°,∴∠BAE=12∠PAG=12×60°=30°,在Rt△ABE中,AE=AB÷cos30°=10÷√32=20√33cm,∴△AGE的外接圆的面积=π(AE2)2=π(12×20√33)2=1003πcm2.故答案为:1003πcm2.【答案】1003πcm27.如图,矩形ABCD中,AD=10,AB=8,点E为边DC上一动点,连接AE,把△ADE沿AE折叠,使点D落在点D′处,当△DD′C是直角三角形时,DE的长为______.【解答】解:∵△ADE沿AE折叠,使点D落在点D′处,∴DE=D′E,AD=AD′=10,当∠DD′C=90°时,如图1,∵DE=D′E,∴∠1=∠2,∵∠1+∠4=90°,∠2+∠3=90°,∴∠3=∠4,∴ED′=EC,CD=4;∴DE=EC=12当∠DCD′=90°时,则点D′落在BC上,如图2,设DE=x,则ED′=x,CE=8-x,∵AD′=AD=10,∴在Rt△ABD′中,BD′=√102−82=6,∴CD′=4,在Rt△CED′中,(8-x)2+42=x2,解得x=5,即DE的长为5,综上所述,当△DD′C是直角三角形时,DE的长为4或5.故答案为4或5.【答案】4或5。
2024年中考数学常见几何模型全归纳(全国通用)专题37 图形变换模型之翻折(折叠)模型(解析版)
专题37图形变换模型之翻折(折叠)模型几何变换中的翻折(折叠、对称)问题是历年中考的热点问题,试题立意新颖,变幻巧妙,主要考查学生的识图能力及灵活运用数学知识解决问题的能力。
涉及翻折问题,以矩形对称最常见,变化形式多样。
无论如何变化,解题工具无非全等、相似、勾股以及三角函数,从条件出发,找到每种对称下隐藏的结论,往往是解题关键。
本专题以各类几个图形(三角形、平行四边形、菱形、矩形、正方形、圆等)为背景进行梳理及对应试题分析,方便掌握。
【知识储备】翻折和折叠问题其实质就是对称问题,翻折图形的性质就是翻折前后图形是全等的,对应的边和角都是相等的。
以这个性质为基础,结合三角形、四边形、圆的性质,三角形相似,勾股定理设方程思想来考查。
解决翻折题型的策略:1)利用翻折的性质:①翻折前后两个图形全等;②对应点连线被对称轴垂直平分;2)结合相关图形的性质(三角形,四边形等);3)运用勾股定理或者三角形相似建立方程。
模型1.矩形中的翻折模型【模型解读】10,3【答案】【分析】根据折叠的性质得出中,勾股定理建立方程,求得Rt DBE【详解】解:∵四边形AOBCA.6B.325【答案】B【分析】连接BF交AE于点H,根据勾股定理求出答案.BFC90∵将ABE 沿直线AE 翻折,点落 点B 、F 关于AE 对称,BH 又3AB ∵,2AE AB BE \=+FE BE EC ∵,90BFC 【答案】(1)证明见解析(2)【分析】(1)由折叠和正方形的性质得到BMP MBC ,再由平行线的性质证明(2)如图,延长,MN BC【点睛】本题主要考查了正方形与折叠问题,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理等等,正确作出辅助线构造相似三角形是解题的关键.例4.(2023春·江苏宿迁·八年级统考期末)如图,在矩形的对称中心,点E 为边AB 上的动点,连接EO 并延长交边形A EFD ,边A E 交边BC 于点G ,连接OG OC 、A .18-3B .92【答案】D 【分析】在EA 上截取EM 也就最短,而当OM AB 时,就可以根据勾股定理计算GH由折叠得:MEO GEO,又∵最短时,OGOM OG,OM此时,∵点O为矩形ABCD的对称中心, 中,∵点O为矩形ABCD在OGC长度是矩形对角线长度的一半,即是OCB.83A.823【答案】B【分析】据矩形的性质得到CD由折叠得:EF BD ,OB OD ,90BOF DOE ,∵四边形ABCD 是矩形,AD BC ∥OBF ODE ,(ASA)BFO DEO △≌△,OE OF ,四边形BEDF 是菱形.故答案为:菱形.(2)证明:∵四边形ABCD 是矩形,4,8AD ,3BF ,8BC AD ,CD 835CF BC BF ,2228445BD BC CD ,如图,设EF 与BD 交于点M ,过点∵四边形ABCD 是矩形,OA OB ,90OBA OBC ,OAB OBA ,设OAB OBA ,则90OBC ,由折叠得:90A B F ABC ,B F 90BB F A B B ,BB F OBC ,AB B OBA ,A B AC ∥∵,AB B AOB ,180OAB OBA AOB ∵,180 ,即3180 ,60 ,60BAC , tan tan 60BC BAC AB (),理由如下:如图,过点E 作EG BC 于G ,设EF 交BD模型2.正方形中的翻折模型【模型解读】【答案】38【分析】连接BB ,过点F 别表示出,,AE EH HD ,证明222B F B C CF ,勾股定理建立方程,解方程即可求解.【详解】解:如图所示,连接(3)方法迁移:用正方形纸片ABCD折叠出一个阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(点E为正方形ABCD AB上(不与端点重合)任意一点,连接CE,继续(2)中操作的第二步、第三步,四边形AGHE的周长与矩形GDCK的周长比值总是定值.请写出这个定值,并说明理由.【答案】(1)522)见解析;(3)12,理由见解析设正方形的边长为2,根据折叠的性质,可得1AE EB 设DG x ,则2AG x 根据折叠,可得GH GD x ,2CH CD ,在Rt BEC △中,222212EC EB BC ,∴52EH ,在Rt ,Rt AEG GHE 中,222222,AG AE GE GH EH GE ∴ 2222152x x 解得:51x ∴GD【模型解读】【答案】2.8【分析】作EH BD于H,根据折叠的性质得到22A.①②④B.①②③【答案】B【分析】连接AC,得到ACD的度数即可判断求出,C CHF【点睛】此题考查了菱形的性质,勾股定理,直角三角形判定和性质,熟练掌握各知识点并综合应用是解题的关键.例5.(2023·浙江·九年级期末)对角线长分别为点O折叠菱形,使B,B 两点重合,【答案】4【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了菱形的性质.例6.(2023秋·重庆·九年级专题练习)如图,在菱形点F 是AB 上一点,以EF 为对称轴将得点H 落到EG 上,连接AG A .90CEFB .CE 【答案】D 【分析】A.由折叠的性质可以知道∵120CBA , CBM 设BF a , 4FG AF ∵点E 是AD 的中点,折叠后点易知点C G F ,,共线, CF 模型4.三角形中的翻折模型【模型解读】例1.(2023·内江九年级期中)如图,在Rt ABC 的纸片中,∠C =90°,AC =7,AB =25.点D 在边BC 上,以AD 为折痕将 ADB 折叠得到ADB ,AB 与边BC 交于点E .若DEB △为直角三角形,则BD 的长是_____.【答案】17或754【分析】由勾股定理可以求出BC 的长,由折叠可知对应边相等,对应角相等,当DEB 为直角三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出BD 的长.【详解】解:在Rt ABC 中,24BC ,(1)当90EDB 时,如图1,过点B ′作B F AC ,交AC 的延长线于点F ,由折叠得:25AB AB ,BD B D CF ,设BD x ,则B D CF x ,24B F CD x ,在Rt AFB 中,由勾股定理得:222(7)(24)25x x ,即:2170x x ,解得:10x (舍去),217x ,因此,17BD .(2)当90DEB 时,如图2,此时点E 与点C 重合,由折叠得:25AB AB ,则25718B C ,设BD x ,则B D x ,24CD x ,在Rt △B CD ¢中,由勾股定理得:222(24)18x x ,解得:754x ,因此754BD .故答案为:17或754.【点睛】本题考查了翻折变换,直角三角形的性质,勾股定理等知识,解题的关键是:分类讨论思想的应用注意分类的原则是不遗漏、不重复.【答案】377【分析】过点G 作GM DE 73DM MEAG GE ,设3,GE 222GM DG DM ,在Rt △∵CD 平分ACB 交AB 于点【答案】210【分析】取BC中点AD CD DE x15BG ,从而推导出2设EF a ,由折叠可知又由折叠得ACB∴cos cosABC的中位线,∵DG是AHC【答案】22m n九年级校考期末)如图,O 是ABC 的外接圆,A .40B .【答案】B 【分析】连接BC ,根据直径所对的圆周角是直角求出据优弧 AC 所对的圆周角为ACD 的度数.AB ∵是直径,90ACB 20BAC ∵,90B 根据翻折的性质, AC 所对的圆周角为180ADC B , 70ACD CDB A【点睛】本题考查圆周角的性质综合,折叠性质,等腰三角形三线合一性质,不规则图形的面积,掌握圆周角的性质综合,折叠性质,等腰三角形三线合一性质,不规则图形的面积是解题关键.例5.(2023·河南商丘·统考二模)如图,在扇形且CD OB∥,将扇形沿CD是.【答案】233【详解】过点O 作OE 等边三角形,即EOC ∴OC OE EC OA ∵120AOB ,CD OB ∥∵OE CD ,∴DOE 3【答案】A【分析】根据折叠的性质可得AD =CD ;根据线段中点的定义可得AD =BD ;根据垂径定理可作判断③;延长OD 交⊙O 于E ,连接CE ,根据垂径定理可作判断④.【详解】过D 作DD'⊥BC ,交⊙O 于D',连接CD'、BD',由折叠得:CD =CD',∠ABC =∠CBD',∴AC =CD'=CD ,故①正确;∵点D 是AB 的中点,∴AD =BD ,∵AC =CD',故②正确;∴»¼=AC CD ,由折叠得: BD BD ,∴»»»+=AC BDBC ;故③正确;延长OD 交⊙O 于E ,连接CE ,∵OD ⊥AB ,∴∠ACE =∠BCE ,∴CD 不平分∠ACB ,故④错误;故选:A .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.例7.(2021·湖北武汉·统考中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将 BC沿BC 翻折交AB 于点D .再将 BD沿AB 翻折交BC 于点E .若 BE DE ,设ABC ,则 所在的范围是()A .21.922.3B .22.322.7C .22.723.1D .23.123.5【答案】B 【分析】将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明 ===AC DCDE EB ,从而可得到弧AC 的度数,由弧AC 的度数可求得∠B 的度数.【答案】33【分析】过点P作PT AB角三角形求出AB,求出PT由题意得AB 垂直平分线段∵OA OK ,∴OA OK ∴sin 602AH OA A .5【答案】CA.3B2【答案】C【分析】根据折叠的性质,得出中,由特殊锐角的三角函数可求在Rt BEKA. 1,2B.(-【答案】D【分析】首先证明AOB D125OC OC,可得1C F 建方程求出EF即可解决问题.【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,折叠的性质以及勾股定理的应用等知识,通过证明三角形相似,利用相似三角形的性质求出4.(2023·福建莆田·九年级校考期末)如图,在的半径为AB的中点D.若O由垂径定理可知OD又5OB∵OD OB【答案】37【分析】如解析中的图,连结EF、AC’,可得AC’=AD=ACEF的长,最后根据勾股定理可得答案.【详解】解:连结AD、AC则AC’=AD=AC,EO EF当E、O、F三点共线时,【答案】33 或33【分析】分两种情况:当点ABEM 为矩形6AB ME 可得GFE BEF ,于是则90AME ,∵点E 为边∵四边形ABCD 为矩形,BC 90AME A B ,同理可得:3B E ,FP EP 在Rt B HE 中,2EH B E ∵B EH FPK △∽△,B E B FP 332FP EP ,32PK ,tan30【点睛】本题主要考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是熟练掌握菱形和折叠的性质,正确画出辅助线,构造直角三角形求解.8.(2023·山东淄博·统考一模)如图所示,有一块直角三角形纸片,斜边AB翻折,使点B落在直角边AC【答案】5cm 3【分析】先利用勾股定理求出1cmCE ,设DB【详解】解:在Rt【答案】307【分析】过点D 作DH 由勾股定理可求AB 【详解】解:如图,过点∵将ADC 沿直线CD 翻折,DH AC ∵,DF BC DF DH ,DCF 22236AB AC BC ∵12ABC S AC BC ∵【答案】16【分析】可证ADE AED ,从而可得AD 2A EBC C A C A E ,即可求解.【答案】373 /337【分析】过点C 作CH AD 交AD 的延长线于点120,60ADC ABC HDC ,进而求得∵在ABCD Y 中,6AB ,8BC , ∴120,60ADC ABC HDC ,在Rt ECH △中,22HC CD DH 【答案】5【分析】由矩形的性质可知 设cm BE x ,则EG EC BC 得3cm AG BE ,5cm EG EC 【详解】解:由矩形的性质可知:【答案】101【分析】根据翻折的性质,证明【详解】由翻折的性质可知,在∵3AB , BE AB∵长方形ABCD,AD【点睛】本题考查了全等三角形的判定及性质、勾股定理和矩形的性质,掌握全等三角形的判定及性质是解题的关键.14.(2023春·湖北武汉·点D,E分别为AB BC,将纸片沿B E 翻折,点三角形时,CE的长为______【答案】1或422【分析】分两种情况:当B C DE 时,此时可得E 是BC 的中点,得1CE ;当B C B E 重合,AE 是BAC 的平分线,由勾股定理易得结果.【详解】解:∵90B Ð=°,2AB BC ,∴45A C ;①如图,当B C DE 时,由折叠性质得:45EC B C ,CB E C B E ,∴904545CEF B FE EC B ;②如图,当B C B E 时,B C B C 、∴90CB E C B E ,∴EB ∴AE 是BAC 的平分线,∴BE B 由勾股定理222AC AB ,∴B 在Rt EB C △中,B C B E ,由勾股定理得:【点睛】本题考查了等腰三角形的判定与性质,折叠的性质,勾股定理,角平分线的性质定理等知识,熟练掌握这些知识是关键,注意分类讨论.15.(2022·浙江嘉兴·统考中考真题)如图,在扇形与OA,OB相切于点E,F.已知AOB【答案】2π3cm 3【分析】根据折叠的性质得出AOC AOC S S 扇形即可求解.∵将 AB 沿弦AB 翻折,使点又OA OC ∴OA OC(1)求证:AMB BMP【答案】(1)证明见解析(2)【分析】(1)由折叠和正方形的性质得到BMP MBC,再由平行线的性质证明MN BC,【点睛】本题主要考查了正方形与折叠问题,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理等等,正确作出辅助线构造相似三角形是解题的关键.18.(2023·宁夏·统考中考真题)综合与实践问题背景:数学小组发现国旗上五角星的五个角都是顶角为并展开探究.【答案】(1)72,1x (2)证明见解析,拓展应用:512【分析】(1)利用等边对等角求出,ABC ACB 的长,翻折得到ABD CBD,BDC BDE BC BE ,利用三角形内角和定理求出,BDC ,AE AB BE。
中考数学专题复习 专题33 中考几何折叠翻折类问题(教师版含解析)
中考专题33 中考专题几何折叠翻折类问题1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。
3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。
(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。
这对解决问题有很大帮助。
(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。
(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。
一般试题考查点圆最值问题。
(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。
【经典例题1】(2020年•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为( )A.10°B.20°C.30°D.40°【标准答案】A【答案剖析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。
2020中考数学 压轴专题 三大几何变换之折叠问题(含答案)
2020中考数学压轴专题三大几何变换之折叠问题(含答案)1. 如图,E,F分别是▱ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折.得到四边形EFC′D′,ED′交BC于点G,则△GEF的周长为()A. 6B. 12C. 18D. 24第1题图C2. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A. 53 B.52 C. 4 D. 5第2题图C3. 如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=23,则∠A=()A. 120°B. 100°C. 60°D. 30°第3题图A【解析】如解图,连接AC,则两条对角线交于点O,∵点A沿EF折叠与点O重合,∴EF垂直平分AO,∵AO⊥BD,AO⊥EF,∴EF∥BD,∴EF是△ABD的中位线,∴EF=12BD,∴BD=43,∴BO=DO=12BD=23,∵AB=4,∴cos∠ABO=BOAB=234=32,∴∠ABO=30°,∴∠BAO=60°,∵四边形ABCD是菱形,∴AC平分∠BAD,∴∠A=120°,故选A.第3题解图4. 如图的实线部分是由Rt △ABC 经过两次折叠得到的,首先将Rt △ABC 沿BD 折叠,使点C 落在斜边上的点C ′处,再沿ED 折叠,使点A 落在DC ′的延长线上的点A ′处,若图中∠C =90°,∠A =30°,BC =5 cm ,则折痕DE 的长为________.第4题图103【解析】∵∠A =30°,∠C =90°,∴∠ABC =180°-∠C -∠A =60°,根据折叠的性质可得,∠DBC ′=∠DBC =12∠ABC =12×60°=30°,在Rt △BCD 中,cos ∠DBC =BCBD ,∴BD =BC cos ∠DBC =5cos30°=1033,∵∠CDB =180°-∠C -∠DBC =180°-90°-30°=60°,∴∠BDA ′=∠CDB =60°,∴∠ADA ′=180°-∠CDB -∠BDA ′=180°-60°-60°=60°,∵DE 是折痕,根据折叠的性质可得,∠EDA ′=12∠ADA ′=12×60°=30°,∴∠BDE =∠BDA ′+∠EDA ′=60°+30°=90°,在Rt △BED 中,DE =BD ·tan30°=1033×33=103.5. 将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =6,则BC 的长为________.第5题图23 【解析】∵四边形AECF 是菱形,AB =6,假设BE =x ,则AE =6-x ,∴CE =6-x ,∵四边形AECF 是菱形,∴∠FCO =∠ECO ,∵∠ECO =∠ECB ,∴∠ECO =∠ECB =∠FCO =30°,2BE =CE ,∴CE =2x ,∴2x =6-x ,解得:x =2,∴CE =4,利用勾股定理得出:BC 2+BE 2=EC 2,BC =EC 2-BE 2=42-22=2 3.6. 用剪刀将形状如图①所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中点M 为AD 的中点.用这两部分纸片可以拼成图②所示的Rt △BCE .若Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB =a ,BC =b ,且a 、b 满足关系式a +b =m -1,ab =m +1,则点D 到CM 的距离为________.第6题图2 【解析】∵Rt △BCE 是等腰直角三角形,M 为AD 的中点,∴b =2a .∵a +b =m -1,∴a +2a =m -1,∴a =m -13,b =2(m -1)3,∵ab =m +1,∴m -13·2(m -1)3=m +1,整理得2m 2-13m -7=0,解得m =-12(舍去)或m =7,∴a =2,b =4,AM =MD =2,在Rt △MCD 中 ,CM =22+22=22,∴点D 到CM 的距离为2×222= 2.7. 将一个矩形纸片ABCD 放置到平面直角坐标系中,点A 、B 恰好落在x 轴的正、负半轴上,若将该纸片沿AF 折叠,点B 恰好落在y 轴上的点E 处,设OA =1.(1)如图①,若OB =1,则点F 的坐标为________; (2)如图②,若OB =2,求点F 的坐标; (3)若OB =n ,请直接写出点F 的坐标.第7题图解:(1)(1,233)【解法提示】由折叠的性质可知AE =AB =2, ∠EAF =∠BAF ,∵OA =1,AE =2,∠AOE =90°,∴∠AEO =30°,∴∠EAO =60°,∴∠F AB =30°,∴BF =AB ·tan ∠F AB =233,则点F的坐标为(1,233).(2)如解图,作FM ⊥y 轴于点M ,∴∠AEF =∠ABF =90°,FM ⊥y 轴,∴∠AEO +∠FEM =90°,∠FEM +∠EFM =90°, ∴∠AEO =∠EFM ,∵sin ∠AEO =AO AE =13,第7题解图∴sin ∠EFM =13.设EM =x ,则EF =3x ,由勾股定理得MF =22x ,OE =22, ∵OB =2, ∴22x =2, 解得x =22, ∴OM =OE -EM =322,∴点F 的坐标为(2,322);(3)(n ,n 2+nn 2+2n). 【解法提示】如解图,作FM ⊥y 轴于点M , 同理∠AEO =∠EFM ,∵sin ∠AEO =AO AE =1n +1,∴sin ∠EFM =1n +1,设EM =x ,则EF =(n +1)x ,由勾股定理得MF =n 2+2n x ,OE =n 2+2n , ∵OB =n , ∴n 2+2n x =n .解得x =nn 2+2n ,∴OM =OE -EM =n 2+2n -nn 2+2n =n 2+n n 2+2n, ∴点F 的坐标为(n ,n 2+nn 2+2n).8. 如图,将一个正方形纸片AOCD 放置在平面直角坐标系中,点A (0,4),点O (0,0),点D 在第一象限,点P 为正方形AD 边上的一点(不与点A 、点D 重合),将正方形纸片折叠,使点O 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接OP ,OH .设P点的横坐标为m.(1)若∠APO=60°,求∠OPG的大小;(2)当点P在边AD上移动时,△PDH的周长l是否发生变化?若变化,用含m的式子表示l;若不变化,求出周长l;(3)设四边形EFGP的面积为S,当S取得最小值时,求点P的坐标(直接写出结果即可).第8题图解:(1)∵折叠正方形纸片,使点O落在点P处,点C落在点G处,∴∠POC=∠OPG,∵四边形AOCD是正方形,∴AD∥OC,∴∠APO=∠POC,∴∠APO=∠OPG,∵∠APO=60°,∴∠OPG=60°;(2)△PDH的周长不发生变化,理由:如解图①,过点O作OQ⊥PG,垂足为点Q,则∠DAO=∠PQO=90°.第8题解图①由(3)知∠APO=∠OPG,又∵OP=OP,∴△AOP≌△QOP,∴AP=QP,AO=QO,∵AO=OC,∴OC=OQ,∵∠OCD=∠OQH=90°,OH=OH,∴Rt△OCH≌Rt△OQH,∴CH=QH,∴△PDH 的周长l =PD +DH +PH =PD +DH +PQ +QH =PD +PQ +DH +QH =PD +AP +DH +CH =AD +CD =8,∴△PDH 的周长l 不发生变化,周长l 为定值8; (3)当S 取得最小值时,点P 的坐标为(2,4).【解法提示】如解图②,过点F 作FM ⊥OA 于点M ,设EF 与OP 交于点N ,第8题解图②由折叠的性质知△EON 与△EPN 关于直线EF 对称, ∴△EON ≌△EPN ,∴ON =PN ,EP =EO ,EN ⊥PO ,∵∠OAP =∠ENO ,∠AOP =∠NOE , ∴△POA ∽△EON , ∴PO EO =P A EN =OAON①, 设P A =x , ∵点A (0,4), ∴OA =4,∴OP =OA 2+P A 2=16+x 2,∴ON =12OP =1216+x 2,将OP ,ON 代入①式得,OE =PE = 18(16+x 2), ∵∠EFM +∠OEN =90°, ∠AOP +∠OEN =90°, ∴∠EFM =∠AOP , 在△EFM 和△POA 中, ⎩⎪⎨⎪⎧∠EFM =∠AOP FM =OA ∠OAP =∠EMF, ∴△EFM ≌△POA (ASA), ∴EM =P A =x ,∴FG =CF =OM =OE -EM = 18(16+x 2)-x =18x 2-x +2,∴S=S梯形EFGP=S梯形OCFE=12(FC+OE)·OC=12[18x2-x+2+18(16+x2)]×4=12(x-2)2+6,∴当x=2时,S最小,即AP=2,∴点P的坐标是(2,4).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题20 几何三大变换问题之轴对称(折叠)问题轴对称、平移、旋转是平面几何的三大变换。
由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。
轴对称具有这样的重要性质: (1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
中考压轴题中轴对称 (折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。
一. 有关三角形的轴对称性问题1. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,连接EF ,交AD 于点G ,求证:AD ⊥EF .2. 如图,在Rt △ABC 中,∠C=900,∠B=300,BC=,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为等腰三角形时,BD 的长为 。
F DCEAB【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理,等腰三角形的判定,分类思想的应用。
二. 有关四边形的轴对称性问题3.如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】A.4种 B.5种 C.6种 D.7种【答案】B。
【考点】利用旋转的轴对称设计图案。
【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案:得到的不同图案有:共5个。
故选B 。
4. 如图,△ABC 中,已知∠BAC=45°,AD ⊥BC 于D ,BD=2,DC=3,求AD 的长。
小萍同学灵活运用了轴对称知识,将图形进行翻折变换,巧妙地解答了此题。
(1)分别以AB 、AC 为对称轴,画出△ABD 、△ACD 的轴对称图形,D 、C 点的对称点分别为E 、F ,延长EB 、FC 相交于G 点,求证:四边形AEGF 是正方形;(2)设AD=x ,利用勾股定理,建立关于x 的方程模型,求出x 的值。
【答案】(1)由翻折变换可得∠E =∠A DB =90°,EB =BD =2,CF =CD =3,∠F =∠ADC =90°,AE =AD ,AF =AD ,再结合可得四边形AEGF 为矩形,再有AE =AF =AD ,即可证得结论;(2)6 【解析】据勾股定理即可列方程求得结果. 在Rt △BGC 中,2225)3()2(=-+-x x 解得1621-==x x ,(不合题意,舍去) ∴AD =x=6.考点:翻折变换,正方形的判定,勾股定理点评:解答本题的关键是熟练掌握翻折变换的性质:翻折前后图形的对应边或对应角相等;有四个角是直角的四边形是矩形,有一组邻边相等的矩形是正方形.5.菱形ABCD中,∠ABC=450,点P是对角线BD上的任一点,点P关于直线AB、AD、CD、BC的对称点分别是点E、F、G、H, BE与DF相交于点M,DG与BH相交于点N,证明:四边形BMDN是正方形。
【答案】∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ADB=∠BDC。
∵∠ABC=450,点P关于直线AB、AD、CD、BC的对称点分别是点E、F、G、H,∴∠MBN=∠MDN=900,∠MBC=∠MDB=450。
∴△BDM是等腰直角三角形。
∴∠BMD=900,BM=DM。
∴四边形BMDN是正方形。
【考点】菱形的性质,轴对称的性质,正方形的判定,等腰直角三角形的判定和性质。
三. 有关圆的轴对称性问题6.如图,已知⊙O的直径CD为4,弧AC的度数为120°,弧BC的度数为30°,在直径CD上作出点P,使BP+AP的值最小,若BP+AP的值最小,则BP+AP的最小值为。
【考点】圆的综合题,轴对称(最短路线问题),弧、圆心角和圆周角的关系,等边三角形的性质,锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质,配方法的应用。
【分析】如图,过B点作弦BE⊥CD,连接AE交CD于P点,连接PB,则点P 即为使BP+AP的值最小的点。
7.已知A,B,C为⊙O上相邻的三个六等分点,点E在劣弧AC上(不与A,B,C重合),EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′。
设EB′=b,EC=c,EA′=p。
试探究b,c,p三者的数量关系。
【答案】如图1,若点E在弧AB上,连接AB、AC、BC,由题意,点A 、B 、C 为圆上的六等分点,∴AB=BC ,001360ACB 3026∠=⨯=。
在等腰△ABC 中,过顶点B 作BN ⊥AC 于点N , 则AC=2CN=2BC•co s ∠ACB=2cos300•BC,∴ACBC连接AE 、BE ,在CE 上取一点D ,使ED=EA ,连接AD ,∴。
∵∠ABC=∠CED,∴△ABC与△CED为顶角相等的两个等腰三角形。
∴△ABC∽△CED。
∴AC CDBC EC=,∠ACB=∠DCE。
∵∠ACB=∠ACD+∠BCD,∠DCE=∠BCE+∠BCD,∴∠ACD=∠BCE。
在△ACD与△BCE中,∵AC CDBC EC=,∠ACD=∠BCE,∴△ACD∽△BCE。
∴DA ACEB BC=。
∴ACDA EBBC=⋅。
∴。
由折叠性质可知,p=EA′=EA,b=EB′=EB,c=EC。
∴。
【考点】圆的综合题,折叠问题,圆周角定理,等腰三角形的性质,相似三角形的判定和性质,锐角三角函数定义,分类思想的应用。
【分析】分点E在弧AB上和点E在弧BC上两种情况讨论,分别根据折叠的性质,综合应用圆周角定理,等腰三角形的性质,相似三角形的判定和性质,锐角三角函数定义求解即可。
四.有关利用轴对称性求最值问题8.如图,已知直线a∥b∥c,且a与b之间的距离为3,且b与c之间的距离为1,点A到直线a的距离为2,点B到直线c的距离为3,AB=a上找一点M,在直线c上找一点N,满足MN⊥a 且AM+MN+NB的长度和最短,则此时AM+NB=【】A.12 B.10 C.8 D.6【答案】C。
【考点】轴对称的应用(最短线路问题),平行线之间的距离,平行四边形的判定和性质,勾股定理。
【分析】MN表示直线a与直线c之间的距离,是定值,只要满足AM+NB的值最小即可,如图,作点A 关于直线a的对称点A′,连接A′B交直线c与点N,过点N作NM⊥直线a,连接AM,9. 已知抛物线:的顶点在坐标轴上.(1)求的值;(2)时,抛物线向下平移个单位后与抛物线:关于轴对称,且过点,求的函数关系式;(3)时,抛物线的顶点为,且过点.问在直线上是否存在一点使得△的周长最小,如果存在,求出点的坐标, 如果不存在,请说明理由.【答案】.解:当抛物线的顶点在轴上时解得或………………………………1分当抛物线的顶点在轴上时∴………………………………2分 综上或.∴,,…………………………………3分∴抛物线:∵过点∴,即……………………………………4分解得(由题意,舍去)∴1=n 0>n 2,121-==n n 022=-+n n 3122=-++n n n ()3,n 1C nx x y -++=1221C nc -=12=b 1=a 3-=m 1±=m 1-=m ()01=+-m yC3-=m 1=m ()[]0412=-+-=∆m xCQQPMQ1-=x ()0,1y P MC3<<-m 1C ()3,n 1C ycbx ax y ++=21C ()0>n n C>m m ()112++-=x m x y C∴抛物线: . ………………………………………………5分【解析】略五. 有关平面解析几何中图形的轴对称性问题10. 将矩形OABC 置于平面直角坐标系中,点A 的坐标为(0,4),点C 的坐标为(m ,0)(m >0),点D (m ,1)在BC 上,将矩形OABC 沿AD 折叠压平,使点B 落在坐标平面内,设点B 的对应点为点E ,当△ADE 是等腰直角三角形时,m= ,点E 的坐标为 ;【答案】3;(0,1)。
【考点】折叠问题,矩形的性质,折叠的对称性质,正方形的判定和性质。
x x y 22+=1C11.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,23),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边)。
(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由。
(2)存在。
如图,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小。
∵B(6,0),C(0,2),∴OB=6,OC=2。
∴B∴。
∴AP+C P的最小值为【考点】二次函数综合题,待定系数法的应用,曲线上点的坐标与方程的关系,二次函数的性质,轴对称的应用(最矩线路问题),勾股定理。