压水堆反应堆堆芯

合集下载

核电人必须掌握的知识二

核电人必须掌握的知识二

第2章反应堆结构反应堆是产生、维持和控制链式核裂变反应的装置,它以一定功率释放出能量,并由冷却剂导出,再通过蒸汽发生器将堆芯产生的热量传给蒸汽发生器二次侧给水,产生蒸汽,驱动汽轮发电机发电。

大亚湾核电站反应堆的堆型是压水堆,用加压轻水作为慢化剂和冷却剂,位于安全壳的中央。

图2.1是压水堆的结构简图,它可分为以下四部分:●反应堆堆芯●堆内构件●反应堆压力容器和顶盖●控制棒驱动机构反应堆结构部件除了在机械强度、刚度、加工精度和耐腐蚀等方面应满足比一般机械设备更高的要求外,还要满足核性能和抗辐照方面的要求。

结构材料在反应堆内受到核裂变放出的高能量γ射线和各种能量的中子的轰击后,材料性能发生变化,同时还带有很强的放射性。

因此,对反应堆主要部件在设计、制造、安装和在役检查的各阶段都要进行严格的质量控制,以保证反应堆安全可靠地运行。

图2.1 反应堆纵剖面图2.1 反应堆堆芯堆芯是反应堆的核心部件,核燃料在堆芯内实现核裂变反应,释放出核能,同时将核能转变成热能,因而它是一个高温热源和强辐射源。

2.1.1 堆芯的组成和布置如图2.2,堆芯由157个尺寸相同、截面为正方形的燃料组件排列而成,其当量直径为304cm。

堆芯首次装料时,有三种不同富集度(即235U在铀中所占的份额,又称浓缩度)的燃料组件,分别是1.8%、2.4%和3.1% 。

因为堆芯沿径向中子通量的分布是中间高外侧低,为了提高堆芯平均功率密度和充分利用核燃料,采取按富集度不同分区装料和局部倒料的燃料循环方式,即堆芯的四周由52个富集度为3.1%的燃料组件组成第3区,内区则混合交错布置52个富集度为2.4%和53个富集度为1.8%的燃料组件,组成第2区和第1区。

换料时卸出第1区的乏燃料组件,外围的组件向内部区域倒换,新加入的燃料组件放在第3区(最外围)。

采用这样的燃料分布方式可以展平堆芯功率,获得较高的燃耗深度,提高核燃料的利用率。

目前每年更换约1/3燃料组件(更换组件的具体数目要根据本年度发电计划及上一循环燃耗情况确定),称为一个燃料循环。

(完整版)反应堆本体结构

(完整版)反应堆本体结构
12
13
由外向内倒料方式的优缺点
优点:
可以展平堆芯功率,获得较高的燃耗深度,提高核燃料的 利用率。从第二循环开始,新装入的燃料组件的富集度为 3.25%,高于首次装料。 因为经过一段时间的运行,堆芯内积累了会吸收中子的裂 变产物,需要增加后备正反应性。
缺点:
中子注量率的泄漏率较高,导致压力容器中子注量率大, 中子利用率较低低,导致换料周期较短,燃料循环成本较 高。
偿因燃耗、氙、钐毒素、冷却剂温度改变等引起的比 较缓慢的反应性变化。 (即调节慢反应)
注:在新的堆芯中,还用可燃毒物棒补偿堆芯寿命初期的 剩余反应性。
18
堆芯组件
1、核燃料组件
现代压水堆普遍采用了无盒、带棒束型核燃料组件。 组件内的燃料元件棒按正方形排列。常用的有14 14, 15 15,16 16和17 17排列等几种栅格型式。
第三讲 反应堆本体结构
1
2
3
4
5
6
(一)反应堆堆芯
7
➢ 反应堆在核电站的作用就象是火电站的锅炉,它
是整个核电站的心脏。它以核燃料在其中发生特 殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。
➢ 反应堆通常是个圆柱体的压力容器,其中裂变
材料所在部分称为反应堆堆芯。
➢ 堆芯结构由核燃料组件、控制棒组件、可燃毒物
➢ 燃料元件是产生核裂变
并释放热量的部件。
➢ 它是由燃料芯块、燃料包
壳管、压紧弹簧和上、下端 塞组成。燃料芯块在包壳内 叠装到所需要的高度,然后 将一个压紧弹簧和三氧化铝 隔热块放在芯块上部,用端 塞压紧,再把端塞焊到包壳 端部。
23
(a)燃料芯块
➢芯块是由富集度为2-3%的UO2 粉末(陶瓷型芯

核反应堆结构-4

核反应堆结构-4

控制棒导向管 : 在标准的17×17燃料组件中,导向管占据24个栅元, 它们为控制棒插入和抽出提供导向的通道,导向管 由一整根锆-4合金管子制成.其下段在第一和第二 格架之间直径缩小,在紧急停堆时,当控制棒在导 向管内接近行程底部时,它将起缓冲作用,缓冲段 的过渡区呈锥形,以避免管径过快变化,在过渡区 上方开有流水孔,在正常运行时有一定的冷却水流 入管内进行冷却,而在紧急停堆时水能部分地从管 内流出,以保证控制棒的冲击速度被限制在棒束控 制组件最大的容许速度之内,又使缓冲段内因减速 而产生的最大压力引起导向管的应力不超过最大许 用应力.缓冲段以下在第一层格架的高度处,导向 管扩径至正常管径,使这层格架与上面各层格架以 相同的方式与导向管相连.
导向管与下管座的连接借助其螺纹塞头来实现,螺 纹塞头的端部带有一个卡紧的薄圆环,用胀管工具 使圆环机械地变形并镶入管座内带凹槽的扇形孔中; 螺纹塞头旋紧在合金端塞的螺孔中将导向管锁紧在 下管座中. 组件重量和施加在组件上的轴向载荷,经导向管传 递,通过下管座分部到堆芯下栅格板上.燃料组件 在堆芯中的正确定位由对角线上两个支撑脚上的孔 来保征,这两个孔和堆芯下栅格板上的两个定位销 相配合,作用在燃料组件上的水平载荷通过定位销 传送到堆芯支承结构上.
核燃料组件的"骨架"结构
前面已经讲到17×17型压水堆核燃料组件是由 包括定位格架,控制棒导向管,中子通量测量管, 上管座和下管座所组成的"骨架"结构和核燃料元 件组成. 定位格架 作用:燃料组件中,燃料棒沿长度方向由八层格架 夹住定位,这种定位使棒的间距在组件的设计寿期 内得以保持.格架的加紧力设计成既使可能发生的 振动减到最小,又允许有不同的热膨胀滑移,也不 致引起包壳的超应力. 结构外形:格架由锆-4合金条带制成,呈17×17正 方栅格排列,条带的交叉处用电子束焊双边点焊连 接,外条带比内条带厚,内条带的端部焊在条带上, 外条带端部由三道焊缝连接;使格架能在运输及装 卸操作过程中很好地保护燃料棒.

压水堆反应堆堆芯解读

压水堆反应堆堆芯解读

大亚湾 900 MW 级压水堆第一个堆芯的布置如 上页图。该堆芯共有157个横截面呈正方形的无盒燃 料组件,其中53个核燃料组件中插有控制棒组件, 66个核燃料组件中装有可燃毒物组件,4个燃料组件
中插有中子源组件,其余34个则都装有阻力塞组件。
准圆柱状核反应区高约4m,等效直径3.04m。
为了提高堆芯功率密度和充分利用核
下管座同时还控制着通过各燃料组件的冷却剂的 上管座中部有一空间,刚离开燃料组件的冷却剂
在那里进行混合,然后再向上通过堆芯上板的流水 孔。
(c) 控制棒导向管
控制棒导向管:它和格架固定在一起构成燃料组件
的支撑骨架,并提供了插入控制棒组件、可燃毒物组件、 中子源组件和阻力塞组件的通道。
每个导向管都是由上下直径不同的Zr-4合金管组成,上 面大直径起导向作用并和控制棒间保持1mm左右的间隙,
(b) 分类
从运行要求上可把控制棒组件分成三类:控
制组、停堆组和短棒组。
o 控制组:在反应堆运行时可以插入或抽出,用以
补偿各种反应性变化,并可提供停堆能力,以实现 事故保护停堆。
o 停堆组:只用于停堆,当反应堆处于临界时总是全
部从堆芯抽出,仅仅在事故保护停堆时才插入。
o 短棒组:调节轴向功率分布、抑制氙振荡现象。
144
-
Ba Kr 3n
89
-
Ba 144 La 144 Ce 144 Pr 144 Nd
-
89
Kr 89 Rb 89 Sr 89 Y
-

n 235 U 236 U* 140 Xe 94 Sr 2n
140
Xe 140 Cs 140 Ba 140 La 140 Ce

我国压水堆核电站主要设备及原理

我国压水堆核电站主要设备及原理

压水堆核电站主要设备及原理压水堆核电站主要设备典型压水反应堆的核心是一个圆柱形高压反应容器。

容器内设有实现核裂变反应堆的堆芯和堆芯支承结构,顶部装有控制裂变反应的控制棒驱动机构,随时调节和控制堆芯中控制棒的插入深度。

堆芯是原子核反应堆的心脏,链式裂变反应就在这里进行。

它由核燃料组件、控制棒组件和既作中子慢化剂又作为冷却剂的水组成。

堆内铀-235核裂变时释放出来的核能迅速转化为热量,热量通过热传导传递到燃料棒表面,然后,通过对流放热,将热量传递给快速流动的冷却水(冷却剂),使水温升高,从而由冷却水将热量带出反应堆,再通过一套动力回路将热能转变为电能。

压水堆核电站原理:由反应堆释放的核能通过一套动力装置将核能转变为蒸汽的动能,进而转变为电能。

该动力装置由一回路系统,二回路系统及其他辅助系统和设备组成。

原子核反应堆内产生的核能,使堆芯发热,高温高压的冷却水在主冷却泵驱动下,流进反应堆堆芯,冷却水温度升高,将堆芯的热量带至蒸汽发生器。

蒸汽发生器一次侧再把热量传递给管子外面的二回路循环系统的给水,使给水加热变成高压蒸汽,放热后的一次侧冷却水又重新流回堆芯。

这样不断地循环往复,构成一个密闭的循环回路。

一回路系统主要设备除反应堆外,还有蒸汽发生器、冷却剂主泵机组、稳压器及主管道等。

一回路示意图稳压器结构图冷却剂主泵结构图二回路中蒸汽发生器的给水吸收了一回路传来的热量变成高压蒸汽,然后推动汽轮机,带动发电机发电。

做功后的乏汽在冷凝器内冷却而凝结成水,再由给水泵送至加热器,加热后重新返回蒸汽发生器,再变成高压蒸汽推动汽轮发电机作功发电。

这样构成第二个密闭循环回路。

二回路系统由蒸汽发生器二次侧、汽轮机、发电机、冷凝器、凝结水泵、给水泵、给水加热器和中间汽水分离再热器等设备组成。

汽轮发电机机组是二回路系统的主要设备。

它由饱和汽轮机、发电机、冷凝器和中间汽水分离加热器组成。

汽轮机是单轴、四缸六排汽、冷凝式饱和蒸汽轮机。

压水堆本体结构

压水堆本体结构

控制棒驱动机构:control rod drive mechanism ;
横截面:cross-section; 剖面:cutaway sec堆的核心部分,核燃料在这里实现链式裂
变反应,并将核能转化为热能,此外,堆芯又是强放 射源。 物组件、阻力塞组件以及中子源组件等组成。
(spring spacer grid),将元件棒按一定间距定位并 夹紧,但允许元件棒能沿轴向自由膨胀,以防止由于 热膨胀引起元件棒的弯曲。
组件中的燃料棒沿长度方向设有8层弹簧定位格架
控制棒导向管、中子注量率(neutron fluence rate)测量管
和弹簧定位格架一起构成一个刚性的组件骨架 (framework)。元件棒按空位插于骨架内。骨架的上、 下端是上、下管座。 下管座均设有定位销孔,燃料组件装入堆芯后依靠这些 定位销孔与堆内上、下栅板上的定位销钉相配,从而使 燃料组件在堆芯中按一定间距定位。 是使燃料组件承受一个轴向压紧力,以防止冷却剂自下 而上高速流动时引起燃料组件窜动。同时,可以补偿各 种结构材料的热膨胀,减小突然外来载荷(例如地震)对 燃料组件的冲击。
(II) 组件骨架
组件骨架由弹簧定位格架、控制棒导向管和上、下管
座等部件组成。
它的功用是确保燃料组件的刚度和强度。
承受整个组件的重量; 流体力产生的振动和压力波动(流致振荡); 承受控制棒下插时的冲击力; 准确为控制棒导向; 保证燃料装卸和运输的安全。
(1) 弹性定位格架

弹簧定位格架是压水堆燃料 组件的关键部件之一。定位 格架设计得好,可以提高反 应堆出力或增加反应堆热工 安全裕量。
第二章 压水堆本体结构
典型压水反应堆 本体结构
堆芯(活性区)
反 应 堆 本 体

压水堆本体结构

压水堆本体结构

(4) 下管座
下管座由下孔板和下框架组成。它是燃料组件
的底部构件。
下管座与控制棒导向管采用螺纹连接并点焊,
水冷却剂通过下孔板流入燃料棒间的冷却剂通 道。下框架和下孔板焊成一体,并在底部角上 开有定位销孔,用它与堆芯下栅板定位。燃料 元件棒直立在下孔板上方,作用在组件上的轴 向载荷和组件的重量通过下管座传给下栅板。
紧急事故时,要求在短时间(约为2s)内迅速插入堆芯而 停堆。
此外,控制棒组件应能抑制反应堆可能出现的氙振荡。
三、可燃毒物组件 水中硼浓度的大小对慢化剂温度系数有显著

影响。随着硼浓度的增加,慢化剂负温度系数的 绝对值越来越小。因为:当水的温度升高时,水 压水堆中采用硼溶液化学控制可减少控制棒的数量, 的密度减小,单位体积水中含硼的核数也相应减 降低反应堆的功率峰值因子,加深卸料燃耗。 小,故反应性增加。当水中硼浓度超过某一值时, 有可能使慢化剂温度系数出现正值。 慢化剂温度系数与慢化剂的温度 胀而被排出堆芯,如果硼浓度超过一定的数值,将使 有关。在慢化剂的温度较低时, 反应堆出现正的慢化剂温度系数,影响反应堆自稳调 当硼浓度超过500g/g时就出现了 节性能。 正温度系数;但在反应堆工作温 度(约553-573K)下,硼浓度大 于1300 g/g时才出现正温度系数。
固体可燃毒物的合理布置,将进一步改善堆芯的功率
分布。并且适当缩短可燃毒物棒的轴向尺寸,非对称 地布置偏于下半堆芯,从而展平轴向功率分布(因为, 当控制棒未插入时,堆内轴向中子通量密度呈正弦分 布;随着控制棒组件插入,中子通量密度峰值逐渐向 底部偏移,且峰值也变大。故寿期初,控制棒插入较 深,中子通量密度峰值偏下分布)。
二、控制棒组件
控制棒组件是核反应堆控制部件。

第三讲 压水堆堆芯

第三讲 压水堆堆芯

的重量通过堆芯下栅格板及吊兰传给压力壳支持。
堆芯的尺寸根据压水堆的功率水平和燃料组件装 载数而定。
大亚湾 900 MW 级压水堆第一个堆芯的布置如上
页图。该堆芯共有157个横截面呈正方形的无盒燃料 组件,其中53个核燃料组件中插有控制棒组件,66个 核燃料组件中装有可燃毒物组件,4个燃料组件中插 有中子源组件,其余34个则都装有阻力塞组件。
准圆柱状核反应区高3.65m,等效直径3.04m。
为了提高堆芯功率密度和充分利用核
燃料,现在大型压水堆堆芯一般都采 用按铀-235富集度不同分区装料及局 部倒料的燃料循环方式。
该堆芯首次装料时,由三种不同富集度的燃料
组件,堆芯四周有52个铀-235富集度为3.1%的 燃料组件组成,内区则混合交错布臵52个富集 度为2.4%和53个富集度为1.8%的燃料组件。
每个导向管都是由上下直径不同的Zr-4合金管组成,上 面大直径起导向作用并和控制棒间保持1mm左右的间隙,
冷却剂可以通过该间隙冷却控制棒。占导向管全长约1/7
的下部小直径段,在紧急停堆控制棒快速下插时,起水力 缓冲作用。
(d)测量导管
测量导管:是一根上下直径相同的Zr-4合
金管,它用和控制棒导管一样的方法固定到 定位格架上。
燃料元件是产生核裂变并释放热量的部件。
它是由燃料芯块、燃料包壳管、压紧弹簧和
上、下端塞组成。燃料芯块在包壳内叠装到
所需要的高度,然后将一个压紧弹簧和三氧
化铝隔热块放在芯块上部,用端塞压紧,再
把端塞焊到包壳端部。
(a) 燃料芯块
芯块是由富集度为2-3%的UO2 粉末(陶瓷型
芯块)冷压成形再烧结成所需密度的圆柱体, 直径为8-9毫米,直径与高度之比为1:1.5。

压水堆本体结构

压水堆本体结构

一、燃料组件
压水反应堆内的燃料恶劣 条件下长期工作,因此核燃料组件的性能直接关系到 反应堆的安全可靠性。
大多数较新型的压水反应堆的燃料组件内,按17×17排
列成正方形栅格。在每一组件的289个可利用的空位中, 燃料棒占据264个,其余空位装有控制棒导向管 (control rod guide tube)(内装控制棒和可燃毒物 棒),最中心的管供中子注量率测量用。
芯块与包壳之间的间隙及元件上端安置压紧弹簧处的
空腔还可以容纳裂变过程中从燃料内释放出来的裂变 气体。
(II) 组件骨架
组件骨架由弹簧定位格架、控制棒导向管和上、下管
座等部件组成。
它的功用是确保燃料组件的刚度和强度。
承受整个组件的重量; 流体力产生的振动和压力波动(流致振荡); 承受控制棒下插时的冲击力; 准确为控制棒导向; 保证燃料装卸和运输的安全。
因此,燃料芯块一般都做成下图(c)那样的蝶形端面加
倒角,从而减小芯块与包壳的相互作用。jfsgy
压水堆燃料芯块
(2) 包壳管
燃料元件的包壳(cladding)是反应堆内防止强放射性
物质外泄的第一道屏障,也是最重要的一道屏障,它 的作用是包容裂变产物并把核燃料和冷却剂分隔开。
目前压水堆中采用的包壳材料都是Zr-4合金(经冷加
体可燃毒物棒或阻力塞。
控制棒与导向管之间留有一定的间隙,使少量冷却剂
流通以冷却控制棒。
导向管下段的内径比上段略小,以便当反应堆紧急停
组件中的燃料棒沿长度方向设有8层弹簧定位格架
(spring spacer grid),将元件棒按一定间距定位并 夹紧,但允许元件棒能沿轴向自由膨胀,以防止由于 热膨胀引起元件棒的弯曲。

压水堆核电站组成

压水堆核电站组成

压水堆核电站组成上一条新闻核安全名词解释下一条新闻核电站的控制调节与安全保护enterlsb转载|栏目:电力规范| 2007-08-06 23:12:09.42 | 阅读433 次压水堆核电站由压水堆、一回路系统和二回路系统三个主要部分组成。

2-1 压水堆主要部件2-1-1 堆芯堆芯结构是反应堆的核心构件,在这里实现核裂变反应,核能转化为热能;同时它又是强放射源。

因此堆芯结构的设计是反应堆本体结构设计的重要环节之一。

压水堆堆芯由若干个正方形燃料组件组成,这些组件按正方形稠密栅格大致排列成一个圆柱体。

用富集度为2%—4.4%的低富集铀为燃料。

所有燃料组件在机械结构和几何形状上完全一致,以简化装卸料操作和降低燃料组件制造成本。

燃料组件采用17×17根棒束,其中除少数插花布置的控制棒导向管外都是燃料棒。

棒束外面无组件盒,以减少中子俘获损失和便于相邻组件水流的横向交混。

图2—1(a)表示压水堆堆芯横剖面图,图2—1(b)表示压水堆燃料组件。

图2-1(a) 压水堆堆芯横剖面图图2-1(b) 压水堆燃料组件燃料棒的芯体由烧结的二氧化铀陶瓷芯块叠置而成。

烧结二氧化铀的耐腐蚀性、热稳定性和辐照稳定性都好,能保证为经济性所要求的>50000MW.d/tu的单棒最大燃耗深度。

燃料棒包壳采用吸收中子少的锆合金以降低燃料富集度。

燃料棒全长2.5—3.8M,用6—11个镍基合金或锆合金制的定位格架固定其位置。

定位格架燃料组件全长按等距离布置以保持燃料棒间距并防止由水力振动引起的横向位移。

堆芯一般分为三区,在初始堆芯中装入三种不同富集度的燃料,将最高富集度的燃料置于最外区,较低富集度的两种燃料按一定布置方式装入中区和内区,以尽量展平中子通量。

第一个运行周期由于全部都是新燃料而比后备反应性在运行周期间将随着可燃物的消耗逐渐释放出来。

第一个运行周期的长度一般为1.3—1.9年。

以后每年换一次料,将1/3或1/4堆芯用新燃料替换,同时将未燃尽的燃料组件作适应的位置倒换以求达到最佳的径向中子通量分布,倒换方案由燃料管理设计程序制定。

第四讲 压水堆本体(除堆芯)

第四讲 压水堆本体(除堆芯)
第四讲 一回路主系统

压水堆堆内构件
压水堆的本体由反应堆堆芯、下部堆内构件、
上部堆内构件、压力容器(包括压力容器筒体及 顶盖)、控制棒组件及其驱动机构等组成。
功能:用来为堆芯组件提供支撑、定位和导向,
组织冷却剂流通,以及为堆内仪表提供导向和支 撑。
(五)堆内构件
1、下部堆内构件
( 1 )基本功能
Zr-2和Zr-4合金是普遍应用的包壳材料。
(2)压力容器
压力容器及其内部构件材料所要求的特性应有:
有较高的机械强度;
足够的韧性,使用时不易脆化;
高抗腐蚀性能; 导热性能好; 吸收中子少; 价格低。
压力容器一般选择含锰钼镍的低合金钢,堆内构 件选择奥氏体不锈钢。
3、压力容器的运行限制
器的支承,支承结构
采用强迫通风冷却。
此外,为保证压力容器的制造质量,对其材 料在液态及固态时要进行化学成份分析;在锻压 成形和热处理后要进行机械性能试验和超声波探 伤等等。
60万千瓦压水堆的压力容器,在制造过程比 较顺利及工艺技术比较成熟的条件下,制造周期 约为18—24个月。
顶盖的几何尺寸图
顶盖的重量 55500kg
(2)辐照对脆性转变温度的影响
快中子辐照改变了钢材的晶格结构,使钢材的机械性 能发生变化。辐照使钢材的脆性转变温度升高。因此,在 运行图上,随着反应堆运行年份的增加,即压力容器的 “老化”,压力上部限制曲线会朝高温区平移,如图2-19。 从图上看出,在反应堆正常运行5年后,把压力提高 到15.0MPa,运行温度需要在140℃;20年后,须提高到 195 ℃。
把堆芯重量传递给压力容器; 固定燃料棒、控制棒和堆内测
量仪表装置;
疏散和分配冷却剂流量; 减少 和中子对压力容器的辐

压水堆核电站的发电原理

压水堆核电站的发电原理

压水堆核电站的发电原理把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带动发电机发电。

一回路反应堆堆芯因核燃料裂变产生巨大的热能,由主泵泵入堆芯的水被加热成327度、155个大气压的高温高压水,高温高压水流经蒸汽发生器内的传热U型管,通过管壁将热能传递给U型管外的二回路冷却水,释放热量后又被主泵送回堆芯重新加热再进入蒸汽发生器。

水这样不断地在密闭的回路内循环,被称为一回路。

二回路蒸汽发生器U型管外的二回路水受热从而变成蒸汽,推动汽轮发电机做功,把热能转化为电力:做完功后的蒸汽进入冷凝器冷却,凝结成水返回蒸汽发生器,重新加热成蒸汽。

这样的汽水循环过程,被称为二回路。

三回路三回路使用海水或淡水,它的作用是在冷凝器中冷却二回路的蒸汽使之变回冷凝水。

什么是核燃料?核燃料是可在核反应堆中通过核裂变产生核能的材料,是铀矿石经过开采、初加工、铀转化、铀浓缩,进而加工成核燃料元件。

压水堆核电站用的是浓度为3%左右的核燃料(铀一235)。

大亚湾核电站的核反应堆内有157个核燃料组件,每个组件由1717根燃料棒组成。

燃料棒由烧结二氧化铀芯块装入锆合金管中封焊构成。

一个燃料组件中有一束控制棒,控制核裂变反应。

利用核能生产电能的电厂称为核电厂。

由于核反应堆的类型不同,核电厂的系统和设备也不同。

压水堆核电厂主要由压水反应堆、反应堆冷却剂系统(简称一回路)、蒸汽和动力转换系统(又称二回路)、循环水系统、发电机和输配电系统及其辅助系统组成,其流程原理如图 2.1所示。

通常将一回路及核岛辅助系统、专设安全设施和厂房称为核岛。

二回路及其辅助系统和厂房与常规火电厂系统和设备相似,称为常规岛。

电厂的其他部分,统称配套设施。

实质上,从生产的角度讲,核岛利用核能生产蒸汽,常规岛用蒸汽生产电能。

反应堆冷却剂系统将堆芯核裂变放出的热能带出反应堆并传递给二回路系统以产生蒸汽。

通常把反应堆、反应堆冷却剂系统及其辅助系统合称为核供汽系统。

现代商用压水堆核电厂反应堆冷却剂系统一般有二至四条并联在反应堆压力容器上的封闭环路(见图2.2)。

哈工大反应堆结构与材料-核反应堆结构-4

哈工大反应堆结构与材料-核反应堆结构-4
➢ 结构外形:定位格架由锆-4合金条带制成,呈 17×17正方栅格排列,条带的交叉处用电子束焊双 边点焊连接,外条带比内条带厚,内条带的端部焊 在条带上,外条带端部由三道焊缝连接;使格架能 在运输及装卸操作过程中很好地保护燃料棒。
➢ 具体结构:在格架栅元中,包括有弹簧、刚性凸起 来定位,两者共同作用使棒保持中心位置.
❖ 燃料元件棒
典型结构:它是由燃料 芯块、燃料包壳管、压 紧弹簧、上端塞、下端 塞等几部分组成。二氧 化铀芯块叠置在锆-4合 金包壳管中,装上端塞, 把芯块燃料封焊在里面, 从而构成燃料棒。包壳 既保证了燃料棒的机械 强度,又将核燃料及其 裂变产物包容住,构成 了强放射性的裂变产物 与外界环境之间的第一 道屏障。
集气空腔和充填气体
➢ 芯块和包壳间留有轴向空腔和径向间隙,它们的作用是: 第一,补偿芯块轴向的热膨胀和肿胀;第二,容纳从芯 块中放出的裂变气体,把由于裂变气体造成的内压上升 限制在适当的值,以避免包壳或密封焊接处应力过大, 同时,为了限制芯块在燃料元件的运输和吊装过程中的 轴向撞动,在轴向空腔处装入压紧弹簧,弹簧一般是用 不锈钢制造的。
测量导管位于组件中央位置,如果燃料组件处于堆 芯需要测量中子通量的位置,测量导管就为插入堆 芯内测量中子通量的探测器导向并提供了一个通道。 根据燃料组件在堆内所处的具体位置,控制棒导向 管为插入控制棒组件或中子源组件或可燃毒物组件 或阻塞组件提供了通道。
燃料棒在组件中,其两端分别与上管座、下管座之 间留有间隙,允许燃料棒膨胀,而不会引起棒弯曲。 燃料棒在组件中无结构上的功能,全部结构强度都 由定位格架,上管座、下管座和控制棒导向管提供, 也就是说,从结构上看,核燃料组件是由燃料元件 棒和组的“骨架”结构两个部件所组成。
❖ 燃料棒内有足够的预留空间和间隙,可以容纳燃料 释放出的裂变气体,允许包壳及燃料的不同热膨胀 和燃料肿胀,使包壳和端塞焊缝都没有超应力的风 险。间隙内充填一定压力的氦气,以改善间隙内的 热传导性能。

第四章 压水反应堆结构与材料

第四章     压水反应堆结构与材料


• ⑵因为铀-锆合金或金属陶瓷都可轧制成 很薄的板材,所以单位堆芯体积中能布
置较大的放热面积,这就有效地提高了 反应堆的平均容积比功率。
• ⑶即使采用导热性能较差的二氧化铀为 燃料的板状元件,其中心温度一般也不
超过900℃。

虽然板状元件有上述一些重要优点,
然而浓缩铀的消耗相当可观。因此,目
前这种类型的板状元件多半还只能用在
要求堆芯体积小、寿命长的舰艇动力堆
上。
• 二 燃料元件棒
• 核燃料元件棒是压水堆产生核裂变并释放 热量的部件。它的长度约3-4米,外径为9-11 毫米。锆合金包壳管壁厚为0.50-0.70毫米, 管内装有二氧化铀陶瓷型燃料芯块,并按设计 要求将燃料芯块装到一定高度。上下两端设有 三氧化二铝的陶瓷隔热块,顶部设有螺旋形压 紧弹簧以防止在运输过程中棒内芯块发生窜动。 锆合金管的两端用锆合金端塞堵封,并与包壳 管焊接密封在一起。
毒效应等所引起的过剩反应性下降,一般堆内
普遍应用固体可燃毒物。

可燃毒物通常采用吸收中子能力比较强,
又能随着反应堆运行与核燃料一起烧掉的同位
素(如硼、铪、钆、及其化合物)作吸收材料,
常用的有硼不锈钢、碳化硼、硼玻璃及硼化锆
等,将这些吸收材料制成棒状或管状,然后外
面加包壳。

可燃毒物组件由可燃毒物棒、连接板和弹
• 4-2-2控制棒组件
• 控制棒组件是核反应堆控制部件,用它控 制反应堆的核裂变反应速率,启动和停堆,调 整反应堆的功率,在事故工况下依靠它快速下 插使反应堆在极短时间内紧急停堆,以保证反 应堆安全。
• 目前,压水反应堆普遍采用束棒型控制棒 组件,即用银-铟-镉(80%Ag-15%In-5%Cd) 合金制成细棒状的控制棒吸收体,外加不锈钢 包壳,每根棒正好插在燃料组件的导向管内。

压水反应堆

压水反应堆

堆芯支承结构由上部支承结构和下部支承结构(及吊篮) 组成。吊篮以悬挂方式支撑在压力容器上部支承凸缘上。 吊篮与压力容器之间形成环形腔称为下降段。
13:06
核科学与技术学院
10
冷却剂流向以及堆芯冷 却剂流量分配:
主要部分用于冷却 燃料元件,另一部分旁 流冷却控制棒和吊篮以 及冷却上腔室和上封头, 这非常重要,它用于冷 却控制棒导管区和上封 头,使该处水温接近冷 却剂入口温度,防止上 封头汽化。
13:06
核科学与技术学院
7
Harbin Engineering University
堆芯是反应堆的核心部分,是放置核燃料,实现持续的 受控链式反应,从而成为不断释放出大量能量,并将核 能转化为热能的场所。它相当于常规电厂中释放出大量 热量的锅炉。此外,堆芯又是强放射源,因此,堆芯结 构设计是反应堆本体结构设计中最重要的环节之一。
控制的复杂性,在一炉燃料的运行周期之初,核燃料所具
有的产生裂变反应的潜力(称为后备反应性)很大,而新堆
初始装料的后备反应性就更大,必须妥善地加以控制。
13:06
核科学与技术学院
14
反应性控制:控制棒+硼酸+可燃毒Ha物rbin Engineering University
通过在作为慢化剂和冷却剂为水中加硼酸的方式可以 控制部分后备反应性,在运行中还可以通过调节硼浓 度来补偿反应性的慢效应变化
压水堆压力容器布置非常紧凑,运行在很高的压力下,
容器内布置着堆芯和若干其他内部构件。压力容器带有
偶数个(4~8)出入口管嘴,整个容器重量由出口管嘴下
部钢衬与混凝土基座(兼作屏蔽层)支承,可移动的上封
头用螺栓与筒体固定,由两道“O”形密封圈密封,上封

我国压水堆核电站主要设备及原理完整文档

我国压水堆核电站主要设备及原理完整文档

我国压水堆核电站主要设备及原理完整文档(可以直接使用,可编辑完整文档,欢迎下载)压水堆核电站主要设备及原理压水堆核电站主要设备典型压水反应堆的核心是一个圆柱形高压反应容器。

容器内设有实现核裂变反应堆的堆芯和堆芯支承结构,顶部装有控制裂变反应的控制棒驱动机构,随时调节和控制堆芯中控制棒的插入深度。

堆芯是原子核反应堆的心脏,链式裂变反应就在这里进行。

它由核燃料组件、控制棒组件和既作中子慢化剂又作为冷却剂的水组成。

堆内铀-235核裂变时释放出来的核能迅速转化为热量,热量通过热传导传递到燃料棒表面,然后,通过对流放热,将热量传递给快速流动的冷却水(冷却剂),使水温升高,从而由冷却水将热量带出反应堆,再通过一套动力回路将热能转变为电能。

压水堆核电站原理:由反应堆释放的核能通过一套动力装置将核能转变为蒸汽的动能,进而转变为电能。

该动力装置由一回路系统,二回路系统及其他辅助系统和设备组成。

原子核反应堆内产生的核能,使堆芯发热,高温高压的冷却水在主冷却泵驱动下,流进反应堆堆芯,冷却水温度升高,将堆芯的热量带至蒸汽发生器。

蒸汽发生器一次侧再把热量传递给管子外面的二回路循环系统的给水,使给水加热变成高压蒸汽,放热后的一次侧冷却水又重新流回堆芯。

这样不断地循环往复,构成一个密闭的循环回路。

一回路系统主要设备除反应堆外,还有蒸汽发生器、冷却剂主泵机组、稳压器及主管道等。

一回路示意图稳压器结构图冷却剂主泵结构图二回路中蒸汽发生器的给水吸收了一回路传来的热量变成高压蒸汽,然后推动汽轮机,带动发电机发电。

做功后的乏汽在冷凝器内冷却而凝结成水,再由给水泵送至加热器,加热后重新返回蒸汽发生器,再变成高压蒸汽推动汽轮发电机作功发电。

这样构成第二个密闭循环回路。

二回路系统由蒸汽发生器二次侧、汽轮机、发电机、冷凝器、凝结水泵、给水泵、给水加热器和中间汽水分离再热器等设备组成。

汽轮发电机机组是二回路系统的主要设备。

它由饱和汽轮机、发电机、冷凝器和中间汽水分离加热器组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2000℃左右,中心与表面温差达1000℃以上。因此, 燃料芯块的热应力很大,特别是在堆内燃烧到后期,
核燃料过分膨胀会挤压包壳管。
(b) 包壳
作用:防止裂变产物沾污回路水并防止核燃料与冷却
剂相接触。
目前压水堆燃料元件包壳几乎都是Zr-4合金冷拉而成
(长3-4米,直径为9-10毫米,壁厚0.5-0.7毫米)。
大亚湾 900 MW 级压水堆第一个堆芯的布置如 上页图。该堆芯共有157个横截面呈正方形的无盒燃 料组件,其中53个核燃料组件中插有控制棒组件, 66个核燃料组件中装有可燃毒物组件,4个燃料组件
中插有中子源组件,其余34个则都装有阻力塞组件。
准圆柱状核反应区高约4m,等效直径3.04m。
为了提高堆芯功率密度和充分利用核

-
Ba

144
89
-
Kr 3n
Nd
144
Ba

-
144
La

-
144
Ce

-
Pr
144
89
Kr
89
Rb
236
89
Sr
89
Y

n
235
U

-
U
*

-
140

-
Xe

140
-
94
Sr 2n
Ce
140
Xe

-
140
Cs

-
140
Ba
La
第三讲 一回路主系统

压水堆堆芯
反应堆本体结构
(一)压水堆本体概述
压水堆的本体由压力容器(包括压力容 器筒体及顶盖)、下部堆内构件、反应堆堆 芯、上部堆内构件、控制棒组件及其驱动机 构等组成。
反应堆本体结构的功用是:
o 使反应堆的核燃料在堆芯中能按照反应堆的设计要求来
实现自持链式裂变反应; 效地导出;
已基本定型,其主要部件均已标准化和系列化。 州的阿科(Arco)试验基地建成的钠冷快中子增
殖试验反应堆。12月20日,首次核能发电试验,发
电功率100 W,点亮了4只电灯泡。
反应堆在核电站的作用就象是火电站的锅炉,它
是整个核电站的心脏。它以核燃料在其中发生特 殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。
(e) 上端塞上的进气孔
用于制造时往包壳内充氮加压至3.1MPa,用
来改善间隙的传热性能和降低包壳管内外压差, 以免包壳被外压压塌。(预充压技术) (f) 压紧弹簧
限制燃料元件的运输和操作过程中,芯块的
轴向串动。
(2)核燃料组件的“骨架”结构
在一个燃料组件的全长上,有6-8
个弹性定位格架。组装时,由24
的反应堆停堆后再启动。常用锑-铍(Sb-Be)源。
123 51
S b n 51 S b
124 9 4
4 Be 22 He n
大亚湾核电厂首次装料中有2个次级中子源组件,
它们各有4根次级中子源棒和20个阻力塞,加上2个初级
中子源棒组件中的2根次级中子源棒,共有10根次级中 子源棒。次级中子源棒在换料时保留在堆芯中。
2、硼浓度调节:调整溶解于冷却剂中硼的浓度来补
偿因燃耗、氙、钐毒素、冷却剂温度改变等引起的比 较缓慢的反应性变化。 (即调节慢反应)
注:在新的堆芯中,还用可燃毒物棒补偿堆芯寿命初期的 剩余反应性。
(四)堆芯组件
1、 核燃料组件
现代压水堆普遍采用了无盒、带棒束型核燃料组件。
组件内的燃料元件棒按正方形排列。常用的有14 14, 15 15,16 16和17 17排列等几种栅格型式。
工作原理、工作条件及性能要求等。
反应堆的结构形式通常是与堆型、燃料种类、慢化剂
和冷却剂的性质等许多因素有关。
压水反应堆是五十年代美国发展核潜艇时,开始研究
和建造起来的。1957年世界第一座压水堆试验电站在 美国希平港建成。
经过多年的发展,本体结构上经历了多次的改进,现 人类首次实现核发电:1951年8月,美国爱达荷
优点:减少了堆芯内的结构材料; 冷却剂可充分交混,改善了燃料棒表面的冷却。
下面看一下17 17型燃料组件的总体图。
燃料芯块
标准的17×17型组件:燃料棒径为9.5mm,棒间距
12.6mm,横截面尺寸214×214mm2,总高为4058mm。
每个这样的组件共有264根燃料元件棒,24根控制棒
5、阻力塞组件
为了限制通过
未装控制棒、中 子源或可燃毒物 棒的燃料组件中 的控制棒导向管 的堆芯旁流量。
阻力塞形式为实心的不锈钢杆。为了减少结构
材料对中子的有害吸收,阻力塞棒一般做得粗短, 插入堆芯的高度较少。
可燃毒物组件和中子源组件都包含有阻力塞,
而阻力塞组件中全部24根棒位都是阻力塞。
燃料元件是产生核裂变并释放热量的部件。
它是由燃料芯块、燃料包壳管、压紧弹簧和
上、下端塞组成。燃料芯块在包壳内叠装到
所需要的高度,然后将一个压紧弹簧和三氧
化铝隔热块放在芯块上部,用端塞压紧,再 把端塞焊到包壳端部。
(a) 燃料芯块
芯块是由富集度为2-3%的UO2 粉末(陶瓷型
芯块)冷压成形再烧结成所需密度的圆柱体, 直径为8-9毫米,直径与高度之比为1:1.5。
(b) 分类
从运行要求上可把控制棒组件分成三类:控
制组、停堆组和短棒组。
o 控制组:在反应堆运行时可以插入或抽出,用以
补偿各种反应性变化,并可提供停堆能力,以实现 事故保护停堆。
o 停堆组:只用于停堆,当反应堆处于临界时总是全
部从堆芯抽出,仅仅在事故保护停堆时才插入。
o 短棒组:调节轴向功率分布、抑制氙振荡现象。
一般用于功率较大的动力堆,目前压水堆已不用。
3、可燃毒物组件(仅在初次装料时使用)
(a) 作用 用来补偿初始堆芯因全部装入新的核燃
料而比后继循环有更大的剩余反应性。
(b) 结构
可燃毒物组件的毒物棒悬挂在一块方形
的连接板上,按核设计要求插入选定的核 燃料组件的控制棒导向管内。
毒物棒用不锈钢为包壳,硼硅酸盐玻璃
导向管和1根堆内测量导管,共计289个栅元格。
测量导管位于组件中央位臵,为插入堆芯内测量中子
通量的探测器导向并提供了一个通道。
控制棒导向管为插入控制棒组件或中子源组件或可燃
毒物组件或阻力塞组件提供了通道。
从结构上看,
核燃料组件是由 燃料元件棒和组 件的“骨架结构” 两部分组成。
(1) 燃料元件棒
端用丝扣与控制棒驱动机构的驱动轴上的可拆结构相连接。 圆筒内的螺旋形弹簧,当控制棒快速下插时起缓冲作用, 以减少控制棒组件对燃料组件上管座的撞击。
控制棒:将80%Ag-15%In-5%Cd合金制成的芯块装入
不锈钢包壳管中,芯体和包壳之间有径向和轴向间隙,并 在轴向加上压紧弹簧,然后两端再焊上端塞密封。
Zr-4合金的中子吸收截面小,在高温下有较高的机械强
度和抗腐蚀性能。
包壳内装有UO2芯块。上下两端设有氧化铝隔热块,
顶部有弹簧压紧,两端用锆合金端塞封堵,并与包壳管 焊接密封在一起。
注意: Zr-4包壳与水相容温度不超过350℃ ,与二氧化铀相容温度在 500℃以下,包壳熔点为1250℃,包壳温度达到830℃后锆与水反应产
冷却剂可以通过该间隙冷却控制棒。占导向管全长约1/7 的下部小直径段,在紧急停堆控制棒快速下插时,起水力
缓冲作用。
(d)测量导管
测量导管:是一根上下直径相同的Zr-4合
金管,它用和控制棒导管一样的方法固定到 定位格架上。
为堆芯中子通量密度测量元件提供通道。
2、控制棒组件
控制棒组件提供了一种正常
140
94
Sr
94
Y
94
Zr
现代压水堆的堆芯是由上百个横截面呈正方
形的无盒燃料组件构成,燃料组件按一定间距垂 直坐放在堆芯下栅格板上(板上有能定位和定向
的对中销),使组成的堆芯近似于圆柱状,堆芯
的重量通过堆芯下栅格板及吊兰传给压力壳支持。 堆芯的尺寸根据压水堆的功率水平和燃料组件装 载数而定。
每一片芯块的两面呈浅碟形,以减小燃料芯
块因热膨胀和辐照肿胀引起的变形。
一根燃料棒内装有275个燃料芯块。
UO2陶瓷型芯块:
o主要优点:熔点高(--2800℃),具有良好的中子
辐照稳定性和高温下的化学稳定性,与包壳不发生 化学反应,即使包壳破裂与冷却剂(水)也不太会 发生化学反应。
o主要缺点:热导率低,以致燃料的中心温度高达
反应堆通常是个圆柱体的压力容器,其中裂变
材料所在部分称为反应堆堆芯。
堆芯结构由核燃料组件、控制棒组件、可燃毒物
组件、中子源组件和阻力塞组件等组成。
(二)堆芯布置
堆芯又称活性区,是压水堆的心脏,可控的链式
裂变反应在这里进行,同时它也是个强放射源。
n
235
U

-
236
U
*

-
144
燃料,现在大型压水堆堆芯一般都采 用按铀-235富集度不同分区装料及局 部倒料的燃料循环方式。
该堆芯首次装料时,由三种不同富集度的燃料
组件,堆芯四周有52个铀-235富集度为3.1%的 燃料组件组成,内区则混合交错布臵52个富集 度为2.4%和53个富集度为1.8%的燃料组件。
换料时将外区的燃料组件向内区倒换,富集度为
管(成分为B2O3+SiO2)为芯体。
4、中子源组件
(a) 作用 在反应堆初始运行之前和长期停堆之后,堆芯
相关文档
最新文档