相似三角形填空题
相似三角形训练题(共四套)
![相似三角形训练题(共四套)](https://img.taocdn.com/s3/m/beab8055be23482fb4da4c87.png)
相似形(1)一、填空题(每小题4分,满分40分)第1题图 第2题图 第3题图 第4题图 1.如图,DE 是ABC ∆的中位线,则ADE ∆与ABC ∆的面积之比是 .2.如图,在ABC ∆中,DE BC ∥,12AD AB =,若28ABC S cm ∆=,则ADE S ∆= 2cm . 3.如图,在ABC ∆中,90ACB ∠=,CD AB ⊥于点D ,8AD cm =,2BD cm =,则CD = cm .4.如图,在ABC ∆中,D E 、分别在AC AB 、上且::1:2AD AB AE AC ==,5BC cm =,则DE = cm .第5题图 第6题图 第10题图5.如图,AD BC 、相交于点O ,AB CD ∥,2OB cm =,4OC cm =,若OAB ∆的面积为24.5cm ,则OCD ∆的面积为 2cm .6.如图,在ABC ∆中,7AB =,4AD =,B ACD ∠=∠,则AC = .7.若两个相似三角形的对应高之比为4:5,则它们的面积之比为 .8.若两个相似三角形的面积之比为1:9,则它们的对应高之比为 .9.若两个相似三角形的周长比为2:3且面积差为210cm ,则它们的面积和为 2cm .10.如图,在ABC ∆中,DE BC ∥,:2:3AD DB =,则:A D E B C E D S S ∆=梯形 . 二、选择题(每小题4分,满分16分)1.若两个相似三角形的对应边之比为1:5,则它们的周长之比为( )A ..1:25 C .1:5 D2.若两个相似三角形的相似比为1:4,则它们的面积比为( )A .1:16B .1:8C .1:4D .1:23.如图,锐角ABC ∆的高CD BE 、相交于点O ,则与OBD ∆相似的三角形有( )A .1个B .2个C .3个D .4个4.如图,在梯形ABCD 中,AD BC ∥,AC BD 、相交于点O ,:1:9OAD OBC S S ∆∆=,则:OCD OBC S S ∆∆的值为( )A .1:9B .1:81C .3:1D .1:3三、(本题满分8分)如图,在ABC ∆中,DE BC ∥,6BC =,若2ADE DBCE S S ∆=梯形,求DE 的长。
相似三角形测试题及答案(全)
![相似三角形测试题及答案(全)](https://img.taocdn.com/s3/m/d5aaf9fb7f1922791688e8d1.png)
1、两个相似三角形对应边之比是1:5,那么它们的周长比是( )。 (A)
;(B)1:25;(C)1:5;(D)
。 2、如果两个相似三角形的相似比为1:4,那么它们的面积比为( )。 (A)1:16;(B)1:8;(C)1:4;(D)1:2。 3、如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角 形个数是( )。 (A)1;(B)2;(C)3;D)5。
3、如图,△ABC中,D是AC中点,AF∥DE, =1:3,则 =( )。 (A)1:2;(B)2:3;(C)3:4;(D)1:1。 4、如图,平行四边形ABCD中,O1、O2、O3为对角线BD上三点,且BO1= O1O2=O2O3=O3D,连结AO1并延长交BC于点E,连结EO3并延长交AD于F, 则AD:FD等于( )。 (A)19:2;(B)9:1;(C)8:1;(D)7:1。 三、(本题8分) 如图,已知矩形ABCD中,AB=10cm,BC=12cm,E为DC中点,AF⊥BE于 点F,求AF长。 四、(本题8分) 如图,D、E分别是△ABC边AB和AC上的点,∠1=∠2,求证:AD·AB= AE·AC。 五、(本题8分) 如图,ABCD是平行四边形,点E在边BA延长线上,连CE交AD于点F, ∠ECA=∠D,求证:AC·BE=CE·AD。
4、如图,∠ACD=∠B,AC=6,AD=4,则AB=________。
5、如图ABCD是平行四边形,F是DA延长线上一点,连CF交BD于G,交AB 于E,则图中相似三角形(包括全等三角形在内)共有________对。 6、如图,△ABC中,BC=15cm,DE、FG均平行于BC且将△ABC面积分成 三等分,则FG=________ cm。 7、如图,AF∥BE∥CD,AF=12,BE=19,CD=28,则FE:ED的值等于 ________。 8、如图,△ABC,DE∥GF∥BC,且AD=DG=GB,则 =________。
相似三角形试题及答案
![相似三角形试题及答案](https://img.taocdn.com/s3/m/b939e755f011f18583d049649b6648d7c1c708b2.png)
相似三角形试题及答案
一、选择题
1. 已知两个三角形相似,下列说法正确的是()
A. 对应角相等
B. 对应边成比例
C. 对应角相等且对应边成比例
D. 面积相等
答案:C
2. 若两个三角形的相似比为2:3,则下列说法正确的是()
A. 周长比为2:3
B. 周长比为3:2
C. 面积比为4:9
D. 面积比为9:16
答案:C
二、填空题
1. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则BC:EF=______。
答案:2:3
2. 若三角形ABC与三角形DEF相似,且相似比为1:2,则三角形ABC
的面积是三角形DEF面积的______。
答案:1/4
三、解答题
1. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC和EF 的长度。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例。
因此,BC:EF=AB:DE=6:9=2:3。
设BC=2x,则EF=3x。
由于AB:DE=2:3,所以2x/3x=6/9,解得x=3cm。
因此,BC=6cm,
EF=9cm。
2. 已知三角形ABC与三角形DEF相似,且三角形ABC的面积为24平方厘米,三角形DEF的面积为36平方厘米,求相似比。
答案:设相似比为k,则三角形ABC与三角形DEF的面积比为k^2。
因此,k^2=24/36=2/3,解得k=√(2/3)。
所以相似比为√(2/3)。
相似三角形基础(含答案)
![相似三角形基础(含答案)](https://img.taocdn.com/s3/m/01da94b43186bceb19e8bb84.png)
一.填空题(共7小题)1.如图,在△ABC中,D是AB中点,DE∥BC,若△ADE的周长为6,则△ABC的周长为.2.如图,矩形ABCD中,AB=2,E为CD的中点,连接AE、BD交于点P,过点P作PQ ⊥BC于点Q,则PQ=.3.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD 交AC于点E,DE=.4.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD =2,BC=4,则EF=.5.如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE=.6.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB =6,AD:AB=1:3,则MD+的最小值为.7.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为S,则四边形BOGC的面积=.二.解答题(共4小题)8.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.9.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE 于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)10.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;11.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.一.填空题(共7小题)1.如图,在△ABC中,D是AB中点,DE∥BC,若△ADE的周长为6,则△ABC的周长为12.【分析】由平行可知△ADE∽△ABC,且=,再利用三角形的周长比等于相似比求得△ABC的周长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵D是AB的中点,∴=,∴=∵△ADE的周长为6,∴△ABC的周长为12,故答案为:12.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的周长比等于相似比是解题的关键.2.如图,矩形ABCD中,AB=2,E为CD的中点,连接AE、BD交于点P,过点P作PQ ⊥BC于点Q,则PQ=.【分析】根据矩形的性质得到AB∥CD,AB=CD,AD=BC,∠BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,AD=BC,∠BAD=90°,∵E为CD的中点,∴DE=CD=AB,∴△ABP∽△EDP,∴=,∴=,∴=,∵PQ⊥BC,∴PQ∥CD,∴△BPQ∽△DBC,∴==,∵CD=2,∴PQ=,故答案为:.【点评】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.3.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD 交AC于点E,DE=.【分析】由CD∥AB,∠D=∠ABE,∠D=∠CBE,所以CD=BC=6,再证明△AEB∽△CED,根据相似比求出DE的长.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CBD,∵CD∥AB,∴∠D=∠ABD,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴,∴CE=AC=×8=3,BE=,DE=BE=×=,故答案为.【点评】本题考查了相似三角形,熟练掌握相似三角形的判定与性质以及勾股定理是解题的关键.4.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD=2,BC=4,则EF=.【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【解答】解:∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF﹣DE=2﹣,故答案为:【点评】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.5.如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE=.【分析】如图,连接EF.首先求出DM、DF的长,证明△DEF∽△DPC,可得=,求出DE即可解决问题.【解答】解:如图,连接EF.∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∴AM=BM=1,在Rt△ADM中,DM===,∵AM∥CD,∴==,∴DP=,∵PF=,∴DF=DP﹣PF=,∵∠EDF=∠PDC,∠DFE=∠DCP,∴△DEF∽△DPC,∴=,∴=,∴DE=,∴CE=CD﹣DE=2﹣=.故答案为.【点评】本题考查正方形的性质、相似三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.6.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB =6,AD:AB=1:3,则MD+的最小值为2.【分析】先求出AD=2,BD=4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AMD+∠A=∠EDF+∠BDN,然后求出∠AMD=∠BDN,从而得到△AMD和△BDN相似,根据相似三角形对应边成比例可得=,求出MA•DN=4MD,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.【解答】解:∵AB=6,AD:AB=1:3,∴AD=6×=2,BD=6﹣2=4,∵△ABC和△FDE是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,∴==,∴MA•DN=BD•MD=4MD,∴,∴MD+=MD+=()2+()2﹣2+2=(﹣)2+2,∴=,即MD=,如图,连接CD,过点C作CG⊥AB于G,∵AC=BC=5,AB=6,∴AG=3,CG=4,∴DG=AG﹣AD=3﹣2=1,在Rt△CDG中,根据勾股定理得,CD==当点M和点C重合时,DM最大,即:DM最大=当DM⊥AC时,DM最小,过点D作DH⊥AC于H,即:DM最小=DH,在Rt△ACG中,sin∠A==,在Rt△ADH中,sin∠A=,∴DH=AD sin∠A=2×=,∵≤DM≤,∴DM=时,MD+有最小值为2.故答案为:2.【点评】本题考查了相似三角形的判定与性质,等腰三角形的性质,旋转变换,难点在于将所求代数式整理出完全平方的形式从而判断出最小值.7.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为S,则四边形BOGC的面积=S.【分析】由点D、E分别是边AB、AC的中点,可得DE∥BC,DE=BC,即可得△ADE ∽△ABC与△ODE∽△OFB,又由EC的中点是G,则可得△DEG≌△FCG,然后由相似三角形的面积比等于相似比的平方与等高三角形的面积比等于对应底的比即可求得答案.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=,∵△ADE的面积为S,∴S△ABC=4S,∵DE∥BC,∴△ODE∽△OFB,∠EDG=∠F,∠DEG=∠GCF,∴,又EG=CG,∴△DEG≌△FCG(AAS),∴DE=CF,∴BF=3DE,∵DE∥BC,∴△ODE∽△OFB,∴,∵AD=BD,∴S△BDE=S△ADE=S,∵AE=CE=2EG,∴S△DEG=S△ADE=S,∵,∴S△ODE=S△BDE=S,∴S△OEG=S△DEG﹣S△ODE=S,∵S四边形DBCE=S△ABC﹣S△ADE=3S,∴S四边形OBCG=S四边形DBCE﹣S△BDE﹣S△OEG=3S﹣S﹣S=S.故答案为:S.【点评】此题考查了三角形的中位线定理,相似三角形的判定与性质以及全等三角形与相似三角形的判定与性质等知识.此题综合性较强,解题的关键是数形结合思想的应用,还要注意相似三角形的面积比等于相似比的平方与等高三角形的面积比等于对应底的比.二.解答题(共4小题)8.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EF A得出比例式,求出AE,即可得出DE的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EF A;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EF A,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.【点评】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.9.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE 于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)【分析】(1)根据同角的余角相等求出∠1=∠E,再利用“角角边”证明△ABD和△CEB 全等,根据全等三角形对应边相等可得AB=CE,然后根据AC=AB+BC整理即可得证;(2)(i)过点Q作QF⊥BC于F,根据△BFQ和△BCE相似可得=,然后求出QF=BF,再根据△ADP和△FPQ相似可得=,然后整理得到(AP﹣BF)(5﹣AP)=0,从而求出AP=BF,最后利用相似三角形对应边成比例可得=,从而得解;(ii)判断出DQ的中点的路径为△BDQ的中位线MN.求出QF、BF的长度,利用勾股定理求出BQ的长度,再根据中位线性质求出MN的长度,即所求之路径长.【解答】(1)证明:∵BD⊥BE,∴∠1+∠2=180°﹣90°=90°,∵∠C=90°,∴∠2+∠E=180°﹣90°=90°,∴∠1=∠E,∵在△ABD和△CEB中,,∴△ABD≌△CEB(AAS),∴AB=CE,∴AC=AB+BC=AD+CE;(2)(i)如图,过点Q作QF⊥BC于F,则△BFQ∽△BCE,∴=,即=,∴QF=BF,∵DP⊥PQ,∴∠APD+∠FPQ=180°﹣90°=90°,∵∠APD+∠ADP=180°﹣90°=90°,∴∠ADP=∠FPQ,又∵∠A=∠PFQ=90°,∴△ADP∽△FPQ,∴=,即=,∴5AP﹣AP2+AP•BF=3•BF,整理得,(AP﹣BF)(AP﹣5)=0,∵点P与A,B两点不重合,∴AP≠5,∴AP=BF,由△ADP∽△FPQ得,=,∴=;(ii)线段DQ的中点所经过的路径(线段)就是△BDQ的中位线MN.由(2)(i)可知,QF=AP.当点P运动至AC中点时,AP=4,∴QF=.∴BF=QF×=4.在Rt△BFQ中,根据勾股定理得:BQ===.∴MN=BQ=.∴线段DQ的中点所经过的路径(线段)长为.【点评】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,(1)求出三角形全等的条件∠1=∠E是解题的关键,(2)(i)根据两次三角形相似求出AP=BF是解题的关键,(ii)判断出路径为三角形的中位线是解题的关键.10.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;【分析】(1)依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据SAS可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到BD=CE;(2)分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB ∽△AEC,最后依据相似三角形的性质进行证明即可.【解答】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE.∴△ADB≌△AEC.∴BD=CE.(2)解:①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=.∴=.∴PB=.②当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴=.∴=.∴PB=.综上所述,PB的长为或.【点评】本题主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得△PEB∽△AEC是解题的关键.11.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.【分析】(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x 的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND与△CNB的面积,从而得到S△ABD=S△BCD=S△BCN+S△CND,最后由S四边形ABNM=S△ABD﹣S△MND求解.【解答】解:(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=,∵M为AD中点,∴MD=AD=BC,即=,∴=,即BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3,∴BD=2x=6;(2)∵△MND∽△CNB,且相似比为1:2,∴MN:CN=DN:BN=1:2,∴S△MND=S△CND=1,S△BNC=2S△CND=4.∴S△ABD=S△BCD=S△BCN+S△CND=4+2=6∴S四边形ABNM=S△ABD﹣S△MND=6﹣1=5.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.。
相似三角形的判定及习题精讲(含答案)
![相似三角形的判定及习题精讲(含答案)](https://img.taocdn.com/s3/m/de6b8bc14693daef5ef73df6.png)
-x, ∴ =
, ∴ x= . (2)如图(2),∵ DE//AC, ∴ ΔBDE∽ΔBAC, ∴ = , 设CF=x, 则BE=6-x, DE=x, ∴ = , ∴ x= . 答:ΔABC内接正。 (四)矩形DGFE内接于ΔABC, DG∶DE=3∶5, S矩形DGFE=60cm2, 高AH=10cm,求:SΔABC。 (五)如图,在ΔABC中,AD是BC边上中线,E是AD中点,求证:AF= FC,EF=
BE。
(六)已知:如图,在ΔABC中,D为AB边上一点,Q为BC延长线上一 点,DQ交AC于P,且∠BDQ=∠PCQ,求证:AB·QD=AC·QB。 (七)已知:ΔABC中,∠C=90°,AC=8cm, BC=6cm 求:在ΔABC内作正方形,使正方形的四个顶点都在三角形的边或顶点 上,求这个正方形的边长。 练习参考答案: (一)填空: 1.3∶7; (合比性质) 2. (注意顺序为b, a,c的第四比例项)
BC=9,则DE=________。 8.已知:RtΔABC中,∠ACB=90°,CD⊥AB于D,AD=4,BD=2,则 CD=________,AC=_________。 9.ΔABC中,∠ACB=90°,CD是高,AC=3,BC=4,则CD=_______, AD=_________,BD=_________。 10.ΔABC中,AB=AC=10,∠A=36°,BD是角平分线交AC于D,则 CD=_________。 11.等边三角形的边长为a,则它的内接正方形的边长为_________。 12.ΔABC中,DE//BC,DE交AB,AC于D,E,AD∶DB=5∶4,则S梯形 BCED∶SΔADE=________。 13.两个相似多边形面积比是1∶3,则周长比是_______。 14.两个相似多边形的面积比为25∶9,其中一个多边形的周长为45, 则另一个多边形的周长为_________。 15.如果两个相似多边形的最长边分别为35cm和14cm,它们的周长差 为60cm,那么这两个多边形的周长分别为__________。 (二)选择题: 1.在ΔABC中,DE//BC交AB于D,AC于E,若四边形DECB的面积为 ΔADE面积的3倍,则DE∶BC=( ) A、1∶3 B、1∶9 C、3∶1 D、1∶2 2.如图,在ΔABC中 = , = ,设AD与CE的交点为P,则CP∶PE=( )。 A、5∶1 B、4∶1 C、3∶1 D、5∶2 3.一个直角三角形两条直角边之比是1∶2,则它们在斜边上射影的比
相似三角形经典填空、解答题(含答案)
![相似三角形经典填空、解答题(含答案)](https://img.taocdn.com/s3/m/eb9df727ed630b1c59eeb584.png)
相似三角形填空题1.(2001•重庆)已知:如图,在△ABC中,AB=15m,AC=12m,AD是∠BAC的外角平分线,DE∥AB交AC的延长线于点E,那么CE=_________m.2.(2005•北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD•DC,则∠BCA的度数为_________.3.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=_________,=_________.4.如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC=_________.5.如图,在平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,那么=_________.6.如图,在△ABD中,∠ADB=90°,C是BD上一点,若E、F分别是AC、AB的中点,△DEF的面积为3.5,则△ABC的面积为_________.7.在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=DC.若AB=10,BC=12,则图中阴影部分的面积为_________.8.如图,在▱ABCD中,E为CD中点,AE与BD相交于点O,S△DOE=12cm2,则S△AOB等于_________cm2.9.如图,在△ABC中,EF∥BC,AE=2BE,则△AEF与梯形BCFE的面积比_________.10.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC 于N,则MN=.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=_________.12.如图,在△ABC中,M、N是AB、BC的中点,AN、CM交于点O,那么△MON与△AOC面积的比是_________.13.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=_________.14.如图,已知点D是AB边的中点,AF∥BC,CG:GA=3:1,BC=8,则AF=_________.解答题15.(2008•黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?并求出此时动点P的坐标.16.(2005•重庆)在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?(3)当t=2秒时,四边形OPQB的面积多少个平方单位?17.(2003•南宁)如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO 上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长;(3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.18.(2009•兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P 点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.19.(2008•孝感)锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)(1)△ABC中边BC上高AD=_________;(2)当x=_________时,PQ恰好落在边BC上(如图1);(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?20.(2008•青岛)已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.21.(2008•梅州)如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.22.(2007•温州)在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC 向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.(1)用含x的代数式表示AE、DE的长度;(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;(3)当x为何值时,△EDQ为直角三角形?23.(2006•南平)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:(1)线段AE与CG是否相等请说明理由:(2)若设AE=x,DH=y,当x取何值时,y最大?(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?24.(2001•上海)已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;②当CE=1时,写出AP的长.(不必写解答过程)25.已知一个二次函数的图象经过A(﹣1,0)、B(0,3)、C(4,﹣5)三点.(1)求这个二次函数的解析式及其图象的顶点D的坐标;(2)这个函数的图象与x轴有两个交点,除点A外的另一个交点设为E,点O为坐标原点.在△AOB、△BOE、26.如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=CD=.点M从点B开始,以每秒2个单位长的速度向点C运动;点N从点D开始,以每秒1个单位长的速度向点A运动,若点M,N同时开始运动,点M与点C不重合,运动时间为t(t>0).过点N作NP垂直于BC,交BC于点P,交AC于点Q,连接MQ.(1)用含t的代数式表示QP的长;(2)设△CMQ的面积为S,求出S与t的函数关系式;(3)求出t为何值时,△CMQ为等腰三角形?27.如图,△ABC中,AC=BC,∠A=30°,AB=.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,连接DE、DF、EF,且使DE始终与AB垂直,设AD=x,△DEF的面积为y.(1)画出符合条件的图形,写出与△ADE一定相似的三角形并说明理由;(2)EF与AB可能平行吗?若能,请求出此时AD的长;若不能,请说明理由;(3)求出y与x之间的函数关系式并求出自变量的取值范围;当x为何值时,y有最大值,最大值为多少?28.(2009•青岛)如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD 方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,PE∥AB;(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△PEQ=S△BCD?若存在,求出此时t的值;若不存在,说明理由;(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.29.(2008•湖州)如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为_________,数量关系为_________.②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.30.(2008•恩施州)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;(2)求m与n的函数关系式,直接写出自变量n的取值范围;(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2;(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由.第4章《相似三角形》常考题集(09):4.3 两个三角形相似的判定参考答案与试题解析填空题1.(2005•北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD•DC,则∠BCA的度数为65°或115°.考点:相似三角形的判定与性质。
相似三角形题库(100题)
![相似三角形题库(100题)](https://img.taocdn.com/s3/m/d197120cf18583d0496459bb.png)
相似三角形题库张启成 易 桃A 组一、选择题1、下列两个三角形一定相似的是( )(A )两个等腰三角形; (B )两个钝角三角形;(C )两个直角三角形; (D )两个等边三角形;2、如图,在△ABC 中,若∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长为( )(A )415 ; (B )5 ; (C )215 ; (D )524 ;3、若三角形三边之比为3:5:7,与它相似的三角形的最长边为21,则其余两边之和为( )(A )24 ; (B )20 ; (C )36 ; (D )16 ;4、如图,D 、E 分别是△ABC 的边AB 、AC 上的点,∠ADE=∠C ,AE=EC=4,BC=10,AB=12,则△ADE 和△ACB 的周长之比为( )(A )61 ; (B )41 ; (C )31 ; (D )21 ; 5、在△ABC 中,AD ⊥BC 于点D ,下列条件: ①∠B=∠DAC ;②∠BAD=∠CAD ;③AB AC AD CD = ;④BC BD AB ⋅=2中,能够判定△ABC 是直角三角形的共有( )(A )3个 ; (B )2个 ; (C )1个 ; (D )0个 ;6、在Rt △ABC 中,∠A=150,∠C=900,则斜边上的高与斜边的比为( )(A )1:2 ; (B )1:3 ; (C )1:4 ; (D )1:6 ;7、在某一时刻测得1米高的竹杆的影长为0.9米,同时测得一棵树的影长,落在地面上的影长为1.8米,落在墙上的影长为0.4米,则这棵树的高度为( )(A )2米 ; (B )2.4米 ; (C )2.2米 ; (D )2.8米 ;8、如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=6,AC=3,则CD 的长为( )(A )1 ; (B )23 ; (C )2 ; (D )25 ; 9、如图,在△ABC 中,AB=24,AC=18,D 是AC 上一点,AD=12,在AB 上取一点E ,使A 、D 、E 三点组成的三角形与△ABC 相似,则AE 的长为( ) )(A )16 ; (B )14 ; (C )16或14 ; (D )16或9 ;10、如图,四边形ABCD 是边长为4的正方形,AP:PB=1:3,且PQ ⊥PC ,则PQ 的长为( )(A )54 ; (B )45; (C )34 ; (D )43; 11、把一个三角形改成和它相似的三角形,如果面积扩大到原来的100倍,那么边长扩大到原来的( )A .10000倍B .10倍C .100倍D .1000倍12、两个相似三角形,其周长之比为3:2,则其面积比为( )A .2:3B .3:2C .9:4D .不能确定13、把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的( )A .49倍B .7倍C .50倍D .8倍14、两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积和为78cm 2,那么较大多边形的面积为( )A .46.8cm 2B .42 cm 2C .52 cm 2D .54 cm 215、在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高度是( )A.20米B.18米C.16米D.15米16、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中不能使△ABE 和△ACD 相似的是( )A.∠B=∠CB.∠ADC=∠AEBC.BE=CD,AB=ACD.AD:AC=AE:AB17、在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有()A.△ADE∽△AEFB.△ECF∽△AEFC.△ADE∽△ECFD.△AEF∽△ABF18、如图,直线l1∥l2,AF:FB=2:3,BC:CD=2:1,则AE:EC是()A.5:2B.4:1C.2:1D.3:219、如图,三个正六边形全等,其中成位似图形关系的有()A.4对B.1对C.2对D.3对20.若两个图形位似,则下列叙述不正确的是()A、每对对应点所在的直线相交于同一点B、两个图形上的对应线段之比等于位似比C、两个图形上的对应线段必平行D、两个图形的面积比等于位似比的平方二、填空题21、若两个相似三角形的相似比为3:4,则这两个三角形的对应角平分线的比为22、如图,点D、E分别是△ABC的边AB、AC上的点,且DE∥BC,BD=2AD,则△ADE的周长:△ABC的周长=23、如图,在△ABC中,∠ACB=900,CD⊥AB于点D,AD=4,BD=1,则CD=24、如图,在△ABC中,AB=AC,∠A=360,BD平分∠ABC,DE∥BC,那么与△ABC相似的三角形是25、如图,BC平分∠ABD,AB=8,BD=18,若△ABC~△CBD,则BC=26、如图,梯形ABCD中,AB∥DC,∠C=∠ADB,DC=4,AB=9,则BD=27、两个相似三角形的一对对应边长分别为35cm和14cm,它们的面积差为588cm2,则较大的三角形面积为28、如图,四边形ABCD是正方形,E是CD边的中点,P是BC边上的一点,要使△ABP与△ECP相似,还需要具备的一个条件是29、如图,在矩形ABCD中,点E为BC边的中点,AE⊥BD,垂足为点O,则BC:AB的值为30、如图,正方形ABCD的边长为2,AE=BE,MN=1,线段MN的两端在CB、CD上滑动,当CM= 时,△AED与以M、N、C为顶点的三角形相似。
九年级下册数学同步练习题库:相似三角形(填空题:容易)
![九年级下册数学同步练习题库:相似三角形(填空题:容易)](https://img.taocdn.com/s3/m/6856e2786294dd88d1d26b1d.png)
相似三角形(填空题:容易)1、如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB= m.2、如图,若△ADE∽△ACB,且,DE=10,则BC=______.3、如图,在Rt△ABC中,∠C为直角,CD⊥AB于点D,BC=3,AB=5,写出其中的一对相似三角形是和,它们的相似比为.4、如图,线段AC与BD相交于点O,,若OA∶OC=4∶3,的面积是2,则的面积等于________.5、如图28-1-1-1所示,某斜坡AB上有一点B′,B′C′、BC是边AC上的高,则图中相似的三角形是_______,则B′C′∶AB′=_________,B′C′∶AC′=_________.6、如图,在△ABC中,DE∥BC,AE:EC=3:5,则S△ADE:S△ABC= .7、如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC= .8、如果两个相似三角形的相似比为1:4,那么它们的面积比为.9、△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为.10、如图,DE是△ABC的中位线,M是DE的中点,那么= .11、在相同时刻物高与影长成比例.如果高为1.5m的测杆的影长为3m,那么影长为20m的旗杆的高是 m.12、如图,在△ABC中∠BAC=90°,AB=15,AC=20,AD⊥BC,垂足为D,则BD的长为.13、如图,在△ABC中,两条中线BE,CD相交于点O,则= 。
14、如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,可添加一个条件________15、如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则击球的高度h为.16、两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别是 , .17、两个相似比为的相似三角形的一组对应边上的中线比为;18、已知正方形ABCD的面积为9cm2,正方形EFGH的面积为16cm2,则两个正方形边长的相似比为.19、已知△ABC∽△A′B′C′,如果AC=6,A′C′=2.4,那么△A′B′C′与△ABC的相似比为.20、如果两个相似三角形的对应中线之比是1︰4,那么它们的周长比是 .21、如图,电线杆上的路灯距离地面8m,身高1.6m的小明(AB)站在距离电线杆的底部(点O)20m的A处,则小明的影子AM长为 m.22、如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.23、如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)24、(2015秋•东海县期末)若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′的度数为.25、如图,△ABC中,DE∥BC,DE=2,AD=4,DB=6,则BC的长是.26、已知两个相似三角形的相似比是1:2 ,那么它们的面积比是.27、如图,在△ABC中,D、E分别是AB、AC的中点,若DE=4,则BC是.28、某同学的身高为1.4m,某一时刻他在阳光下的影长为1.2m.此时,与他相邻的一棵小树的影长为3.6m,这棵树的高度为 m.29、如图,在Rt△ABC中,∠C=90°,点D是AB边上的一定点,点E是AC上的一个动点,若再增加一个条件就能使△ADE与△ABC相似,则这个条件可以是________________________..30、如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,,则的长为.31、(2014秋•射洪县校级期中)若两相似三角形的相似比为3:5,较小三角形面积为18,则较大三角形的面积为.32、某数学兴趣小组为测量学校旗杆的高度,测得1.5米的标杆影子长为1米,同一时刻旗杆的影长是6米,则旗杆的高度为米.33、如图,A、B两点被池塘隔开,在AB外取一点C,连接AC、BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于N,量得MN=38m,则AB的长为.34、若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为_____.35、已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为.36、如图,在坡度为1:3的山坡上种树,要求株距(相邻两树间的水平距离)是6米,则斜坡上相邻两树间的坡面距离是米(结果保留根号).37、已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为.38、某一时刻身高1.6m的小亮在太阳光下的影长为2m,同时测得学校旗杆的影长是15m,那么这根旗杆的高度是 m.39、在△ABC中,AB=6,AC=8,在△DEF中,DE=4,DF=3,要使△ABC与△DEF相似,需添加的一个条件是.(写出一种情况即可)40、如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.41、如图:使△AOB∽△COD,则还需添加一个条件是:.(写一个即可)42、(3分)如图,在△ABC中,已知DE∥BC,,则△ADE与△ABC的面积比为.43、(4分)(2015•天水)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.44、已知ABC∽A1B1C1,AB:A1B1=2:3,若S ABC=12,则= .45、已知△ABC∽△DEF,与的相似比为4:1,则与对应边上的高之比为.46、如图,A、B两地被一小山阻隔,为测量A、B两地间的距离,在地面上一点C,连接CA、CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是 ______米.47、一天,小青在校园内发现一棵树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的身高为1.5米,由此可推断出树高是米.48、△ABC∽△DEF,AB:DE=2:3,则△ABC和△DEF的周长比为.49、已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上的中线的比为________.50、已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上的中线的比为________.51、如图,已知DE是△ABC的中位线,=4,则=_____52、已知△ABC∽△DEF,若△ABC与△DEF的相似比为3∶4,则△ABC与△DEF的面积比为.53、如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=________.54、如图,在△ABC中,DE∥BC,AD=2,AE=3,BD=4,则AC=______.55、已知△ABC与△DEF相似且对应的角平分线的比为2:3,则△ABC与△DEF的周长比为_____________.56、在△ABC中,,,,另一个与它相似的△的最短边长为45 cm,则△的周长为________.57、把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,边长应缩小到原来的____倍.58、若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 .59、已知Rt△ABC中,∠C=90°,BC=1,AC=4,如图把边长分别为x1,x2,x3,…,x n的n个正方形依次放入△ABC中,则第2015个正方形的边长为_ _.60、如图,线段AB、CD相交于O,AD∥BC,AO=4,CO=8,OD=3,则OB= .61、如图,在边长为a的正方形中,E、F分别为边BC和CD上的动点,当点E和点F运动时, AE和EF保持垂直。
相似三角形练习题及答案整理版
![相似三角形练习题及答案整理版](https://img.taocdn.com/s3/m/59da9e449b6648d7c1c7462e.png)
相似三角形练习题一、填空题:1、若b m m a 2,3==,则_____:=b a 。
2、已知653zy x ==,且623+=z y ,则__________,==y x 。
3、在Rt △ABC 中,斜边长为c ,斜边上的中线长为m ,则______:=c m 。
4、反向延长线段AB 至C ,使AC =21AB ,那么BC :AB = 。
5、如果△ABC ∽△A ′B ′C ′,相似比为3:2,若它们的周长的差为40厘米,则 △A ′B ′C ′的周长为 厘米。
6、如图,△AED ∽△ABC ,其中∠1=∠B ,则()()()AB BC AD_________==。
第6题图 第7题图7、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,若∠A =30°,则BD :BC = 。
若BC =6,AB =10,则BD = ,CD = 。
8、如图,梯形ABCD 中,DC ∥AB ,DC =2cm ,AB =3.5cm ,且MN ∥PQ ∥AB , DM =MP =PA ,则MN = ,PQ = 。
第8题图 第9题图9、如图,四边形ADEF 为菱形,且AB =14厘米,BC =12厘米,AC =10厘米,那BE = 厘米。
10、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为 厘米。
二、选择题:EAD B C 1C BD AD CM P N Q A B11、下面四组线段中,不能成比例的是( ) A 、4,2,6,3====d c b a B 、3,6,2,1====d c b a C 、10,5,6,4====d c b a D 、32,15,5,2====d c b a12、等边三角形的中线与中位线长的比值是( )A 、1:3B 、2:3C 、23:21 D 、1:3 13、已知754zy x ==,则下列等式成立的是( ) A 、91=+-y x y x B 、167=++z z y x C 、38=-+++z y x z y x D 、x z y 3=+14、已知直角三角形三边分别为b a b a a 2,,++,()0,0>>b a ,则=b a :( ) A 、1:3 B 、1:4 C 、2:1 D 、3:115、△ABC 中,AB =12,BC =18,CA =24,另一个和它相似的三角形最长的一边是36,则最短的一边是( )A 、27B 、12C 、18D 、2016、已知c b a ,,是△ABC 的三条边,对应高分别为c b a h h h ,,,且6:5:4::=c b a ,那么c b a h h h ::等于( )A 、4:5:6B 、6:5:4C 、15:12:10D 、10:12:15 17、一个三角形三边长之比为4:5:6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为( )A 、44厘米B 、40厘米C 、36厘米D 、24厘米 18、下列判断正确的是( )A 、不全等的三角形一定不是相似三角形B 、不相似的三角形一定不是全等三角形C 、相似三角形一定不是全等三角形D 、全等三角形不一定是相似三角形19、如图,△ABC 中,AB =AC ,AD 是高,EF ∥BC ,则图中与△ADC 相似的三角形共有( )A 、1个B 、2个C 、3个D 、多于3个第19题图 第20题图A E F GB DC20、如图,在平行四边形ABCD 中,E 为BC 边上的点,若BE :EC =4:5,AE 交BD 于F ,则BF :FD 等于( )A 、4:5B 、3:5C 、4:9D 、3:8 三、解答题:21、已知()3:2:=-y y x ,求yx yx 2352-+的值。
初三数学13 相似三角形-2024年中考数学真题分项汇编(全国通用)(解析版)
![初三数学13 相似三角形-2024年中考数学真题分项汇编(全国通用)(解析版)](https://img.taocdn.com/s3/m/dbb65bc5dc88d0d233d4b14e852458fb770b38ff.png)
专题13 相似三角形一.选择题1.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .6【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD ∴ABE CDE ∽ ∴AE BE EC DE= ∵1,2,3AE EC DE ===,∴32BE =∵BD BE ED =+ ∴92BD = 故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长.2.(2022·广西贺州)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC ,∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,故选:B .【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.(2022·广西梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OA OA =,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .18【答案】D 【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形ABCD 与四边形''''A B C D 相似,由两图形相似面积比等于相似比的平方可知:''''22'1139ABCD A B C D S OA S OA ⎛⎫⎛⎫= ⎪= ⎪= ⎪ ⎪⎝⎭⎝⎭,又四边形ABCD 的面积是2,∴四边形''''A B C D 的面积为18,故选:D .【点睛】本题考察相似多边形的性质,属于基础题,熟练掌握相似图形的性质是解决本题的关键.4.(2022·四川雅安)如图,在△ABC 中,D ,E 分别是AB 和AC 上的点,DE ∥BC ,若AD BD =21,那么DE BC =( )A .49B .12C .13D .23【答案】D【分析】先求解2,3AD AB =再证明,ADE ABC ∽可得2.3DE AD BC AB ==【详解】解: AD BD =21,2,3AD AB ∴= DE ∥BC ,,ADE ABC ∴ ∽ 2,3DE AD BC AB ∴== 故选D 【点睛】本题考查的是相似三角形的判定与性质,证明ADE ABC △△∽是解本题的关键.5.(2022·内蒙古包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接,AB CD ,则ABE △与CDE △的周长比为( )A .1:4B .4:1C .1:2D .2:1【答案】D 【分析】运用网格图中隐藏的条件证明四边形DCBM 为平行四边形,接着证明ABE CDE ∽,最后利相似三角形周长的比等于相似比即可求出.【详解】如图:由题意可知,3DM =,3BC =, ∴DM BC =,而DM BC ∥,∴四边形DCBM 为平行四边形,∴AB DC ∥,∴BAE DCE ∠=∠,ABE CDE ∠=∠,∴ABE CDE ∽,∴21ABE CDE C AB C CD ===△△.故选:D .【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.6.(2022·黑龙江绥化)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =,其中25x < .则下列结论中,正确的个数为( )(1)y 与x 的关系式为4y x x =-;(2)当4AP =时,ABP DPC ∽;(3)当4AP =时,3tan 5EBP ∠=.A .0个B .1个C .2个D .3个【答案】C 【分析】(1)证明ABM APB ∽,得AB AM AP AB=,将2AB =,AP x =,PM y =代入,即可得y 与x 的关系式;(2)利用两组对应边成比例且夹角相等,判定ABP DPC ∽;(3)过点M 作MF BP ⊥垂足为F ,在Rt APB △中,由勾股定理得BP 的长,证明FPM APB ∽,求出MF ,PF ,BF 的长,在Rt BMF △中,求出tan EBP ∠的值即可.【详解】解:(1)∵在矩形ABCD 中,∴AD BC ∥,90A D ∠=∠=︒,5BC AD ==,2AB DC ==,∴APB CBP ∠=∠,∵ABE CBP =∠∠,∴ABE APB ∠=∠,∴ABM APB ∽,∴AB AM AP AB=,∵2AB =,AP x =,PM y =,∴22x y x -=,解得:4y x x=-,故(1)正确;(2)当4AP =时,541DP AD AP =-=-=,∴12DC DP AP AB ==,又∵90A D ∠=∠=︒,∴ABP DPC ∽,故(2)正确;(3)过点M 作MF BP ⊥垂足为F ,∴90A MFP MFB ∠=∠=∠=︒,∵当4AP =时,此时4x =,4413y x x =-=-=,∴3PM =,在Rt APB 中,由勾股定理得:222BP AP AB =+,∴BP ===,∵FPM APB ∠=∠,∴FPM APB ∽,∴MF PF PM AB AP PB ==,∴24MF PF ==∴MF =PF =∴BF BP PF =-=∴3tan 4MF EBP BF ∠===故(3)不正确;故选:C .【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.7.(2022·湖北鄂州)如图,定直线MN ∥PQ ,点B 、C 分别为MN 、PQ 上的动点,且BC =12,BC 在两直线间运动过程中始终有∠BCQ =60°.点A 是MN 上方一定点,点D 是PQ 下方一定点,且AE ∥BC ∥DF ,AE =4,DF =8,ADBC 在平移过程中,AB +CD 的最小值为()A .B .C .D .【答案】C 【分析】如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,可证明四边形CDFH 是平行四边形,得到CH =DF =8,CD =FH ,则BH =4,从而可证四边形ABHE 是平行四边形,得到AB =HE ,即可推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,证明四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,得到EG =BC =12,然后通过勾股定理和解直角三角形求出ET 和TF 的长即可得到答案.【详解】解:如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,∵BC DF FH CD ∥∥,,∴四边形CDFH 是平行四边形,∴CH =DF =8,CD =FH ,∴BH =4,∴BH =AE =4,又∵AE BC ∥,∴四边形ABHE 是平行四边形,∴AB =HE ,∵EH FH EF +≥,∴当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,∵MN PQ BC AE ∥∥,,∴四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,∴EG =BC =12,∴=cos =6=sin GT GE EGT ET GE EGT ⋅⋅∠,∠,同理可求得8GL AL ==,,4KF DK ==,,∴2TL =,∵AL ⊥PQ ,DK ⊥PQ ,∴AL DK ∥,∴△ALO ∽△DKO ,∴2AL AO DK DO==,∴2133AO AD DO AD ====∴24OL OK ===,,∴42TF TL OL OK KF =+++=,∴EF ==故选C .【点睛】本题主要考查了平行四边形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,正确作出辅助线推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF 是解题的关键.8.(2022·广西贵港)如图,在边长为1的菱形ABCD 中,60ABC ∠=︒,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接,AG DF ,若AF BE =,则下列结论错误的是( )A .DF CE =B .120BGC ∠=︒C .2AF EG EC =⋅D .AG【答案】D【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE CE GE BE= ,即可判断C 项答案正确,由120BGC ∠=︒,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG D 项错误.【详解】解:∵四边形ABCD 是菱形,60ABC ∠=︒,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12(180)ABC ⨯︒-∠=60ABC ︒=∠,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE CE GE BE = ,∴2BE GE CE = ,∵AF BE =,∴2AF GE CE = ,故C 项答案正确,∵120BGC ∠=︒,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF AC ⊥,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴2221122AG AG ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 解得AG D 项错误,故应选:D【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.9.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB △的周长比是( )A .B .1:2C .1:3D .1:4【答案】B 【分析】先证明△ACD ∽△ABC ,即有12AC AD CD AB AC BC ===,则可得12AC AD CD AB AC BC ++=++,问题得解.【详解】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD CD AB AC BC ==,∵12AC AB =,∴12AC AD CD AB AC BC ===,∴12AC AD CD AC AD CD AB AC BC AB AC BC ++====++,∴△ADC 与△ACB 的周长比1:2,故选:B .【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD ∽△ABC 是解答本题的关键.10.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .【点睛】本题考查位似图形的性质,熟练掌握位似图形的面积比等于位似比的平方是解题的关键.11.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .245【答案】C【分析】由∥DE BC ,23AD DB =,可得2,3AD AE DB EC ==再建立方程即可.【详解】解: ∥DE BC ,23AD DB =,2,3AD AE DB EC ∴== 6AC =,62,3CE CE -∴= 解得:18.5CE =经检验符合题意故选C 【点睛】本题考查的是平行线分线段成比例,证明“23AD AE DB EC ==”是解本题的关键.12.(2022·山东威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(43)3B .(43)7C .(43)6D .(34)6【答案】C【分析】根据题意得出A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,确定与△AOB 位似的三角形为△GOH ,利用锐角三角函数找出相应规律得出OG=6x ,再由相似三角形的性质求解即可.【详解】解:∵∠AOB =∠BOC =∠COD =…=∠LOM =30°∴∠AOG =180°,∠BOH =180°,∴A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,∴与△AOB 位似的三角形为△GOH ,设OA =x ,则OB=1cos30OA x ==︒,∴OC=24cos303OB x x ==︒,∴OD=3cos30OC x ==︒,…∴OG=6x ,∴6OG OA =,∴12643GOH AOB S S ⎛⎫== ⎪⎝⎭ ,∵1AOB S = ,∴643GOH S ⎛⎫= ⎪⎝⎭ ,故选:C .【点睛】题目主要考查利用锐角三角函数解三角形,找规律问题,相似三角形的性质等,理解题意,找出相应边的比值规律是解题关键.二.填空题13.(2022·贵州黔东南)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm.【答案】53【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明FEG FBM ∆∆ ,利用相似三角形对应边成比例可求出FG .【详解】解:连接,DF 如图,∵四边形ABCD 是正方形,∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=∵点M 为BC 的中点,∴114222BM CM BC ===⨯=由折叠得,2,4,ME CM DE DC ====∠90,DEM C ︒=∠=∴∠90DEF ︒=,90,FEG ∠=︒设,FE x =则有222DF DE EF =+∴2224DF x =+又在Rt FMB ∆中,2,2FM x BM =+=,∵222FM FB BM =+∴FB ==∴4AF AB FB =-=在Rt DAF ∆中,222,DA AF DF +=∴2224(44,x +=+解得,124,83x x ==-(舍去)∴4,3FE =∴410233FM FE ME =+=+=∴83FB ==∵∠90DEM ︒=∴∠90FEG ︒=∴∠,FEG B =∠又∠.GFE MFB =∠∴△FEG FBM∆ ∴,FG FE FM FB=即4310833FG =∴5,3FG =故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.14.(2022·上海)如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AE AC =_____.【答案】12或14【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE1E2是等边三角形,求出E1E2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE 1=DE 2=E1E2=12BC ,∴E1E2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.15.(2022·北京)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC =,∴144AE =,∴1AE =,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键.16.(2022·江苏常州)如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部被染色的区域面积是______.【答案】28【分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【详解】解:过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如下图:90C ∠=︒ ,9AC =,12BC =,15AB ∴==,在Rt DEF 中,90F ∠=︒,3DF =,4EF =.5DE ∴==,15510AE AB DE =-=-= ,//,EF AF EF AF ''= ,∴四边形AEFF '为平行四边形,10AE FF '∴==,11622DEF S DF EF DE GF =⋅=⋅= ,解得:125GF =, //DF AC ,,DFM ACM FDM CAM ∴∠=∠∠=∠,DFM ACM ∴ ∽,13DM DF AM AC ∴==,1115344DM AM AB ∴===,//BC AF ' ,同理可证:ANF DNC ' ∽,13AF AN BC DN '∴==,345344DN AN AB ∴===,451530444MN DN DM ∴=-=-=,Rt ABC 的外部被染色的区域面积为130121028245MNF F S '⎛⎫=⨯+⨯= ⎪⎝⎭梯形,故答案为:28.【点睛】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.17.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.【答案】12【分析】根据同时、同地物高和影长的比不变,构造相似三角形,然后根据相似三角形的性质解答.【详解】解:设旗杆为AB ,如图所示:根据题意得:ABC DEF ∆∆ ,∴DE EF AB BC= ∵2DE =米, 1.2EF =米,7.2BC =米,∴2 1.2=7.2AB 解得:AB =12米.故答案为:12.【点睛】本题考查了中心投影、相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.18.(2022·广东深圳)已知ABC 是直角三角形,90,3,5,B AB BC AE ∠=︒===连接CE 以CE 为底作直角三角形CDE 且,CD DE =F 是AE 边上的一点,连接BD 和,BF BD 且45,FBD ∠=︒则AF 长为______.【分析】将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,利用SAS 证明EDH CDB ∆≅∆,得5EH CB ==,90HED BCD ∠=∠=︒,从而得出////HE DC AB ,则ABF EHF ∆∆∽,即可解决问题.【详解】解:将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,BDH ∴∆是等腰直角三角形,又EDC ∆ 是等腰直角三角形,HD BD ∴=,EDH CDB ∠=∠,ED CD =,()EDH CDB SAS ∴∆≅∆,5EH CB ∴==,90HED BCD ∠=∠=︒,90EDC ∠=︒ ,90ABC ∠=︒,////HE DC AB ∴,,ABF EHF BAF HEF ∴∠=∠∠=∠,ABF EHF ∴∆∆∽,∴==-AB AF AF EH EF AE AF ,AE =∴35=AF ∴=,【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.19.(2022·广西河池)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN =_____.【答案】58##0.625【分析】先判断出四边形ABEF 是正方形,进而判断出△ABG ≌△BEH ,得出∠BAG =∠EBH ,进而求出∠AOB =90°,再判断出△AOB ~△ABG ,求出OA OB ==△OBM ~△OAN ,求出BM =1,即可求出答案.【详解】解:∵点E ,F 分别是BC ,AD 的中点,∴11,22AF AD BE BC ==,∵四边形ABCD 是矩形,∴∠A =90°,AD ∥BC ,AD =BC ,∴12AF BE AD ==,∴四边形ABEF 是矩形,由题意知,AD =2AB ,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG≌△BEH(SAS),∴∠BAG=∠EBH,∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,∴∠AOB=90°,∵BG=EH=25BE=2,∴BE=5,∴AF=5,∴AG==∵∠OAB=∠BAG,∠AOB=∠ABG,∴△AOB∽△ABG,∴OA OB ABAB BG AG==,即52OA OB==∴OA OB==∵OM⊥ON,∴∠MON=90°=∠AOB,∴∠BOM=∠AON,∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,∴∠OBM=∠OAN,∴△OBM~△OAN,∴OB BM OA AN=,∵点N是AF的中点,∴1522AN AF==,52BM=,解得:BM=1,∴AM=AB-BM=4,∴552tan48ANAMNAM∠===.故答案为:5 8【点睛】此题主要考查了矩形性质,正方形性质和判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,求出BM 是解本题的关键.20.(2022·内蒙古赤峰)如图,为了测量校园内旗杆AB 的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O 处,然后观测者沿着水平直线BO 后退到点D ,这时恰好能在镜子里看到旗杆顶点A ,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD =1.7m ,BD =11m ,则旗杆AB 的高度约为_________m . 1.7≈)【答案】17【分析】如图容易知道CD ⊥BD ,AB ⊥BD ,即∠CDO =∠ABO =90°.由光的反射原理可知∠COD =∠AOB =60°,这样可以得到△COD ∽△AOB ,然后利用对应边成比例就可以求出AB .【详解】解:由题意知∠COD =∠AOB =60°,∠CDE =∠ABE =90°,∵CD =1.7m ,∴OD =60CD tan =︒≈1(m),∴OB =11-1=10(m),∴△COD ∽△AOB .∴CD OD AB OB =,即1.7110AB =,∴AB =17(m),答:旗杆AB 的高度约为17m .故答案为:17.【点睛】本题考查了解直角三角形的应用,相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.21.(2022·湖北鄂州)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.【答案】6+【分析】如图所示,过点E 作EF ⊥AB 于F ,先解直角三角形求出AF ,EF ,从而求出BF ,利用勾股定理求出BE 的长,证明△ABD ≌△BCE 得到∠BAD =∠CBE ,AD =BE ,再证明△BDP ∽△ADB ,得到62BP PD==,即可求出BP ,PD ,从而求出AP ,由此即可得到答案.【详解】解:如图所示,过点E 作EF ⊥AB 于F ,∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠BAC =∠BCE =60°,∵CE =BD =2,AB =AC =6,∴AE =4,∴cos 2sin AF AE EAF EF AE EAF =⋅∠==⋅∠=,,∴BF =4,∴BE =又∵BD =CE ,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,AD =BE ,又∵∠BDP =∠ADB ,∴△BDP ∽△ADB ,∴BD BP DP AD AB BD==,62BP PD==,∴BP PD =∴AP AD AP =-=,∴△ABP 的周长=6AB BP AP ++=故答案为:6+【点睛】本题主要考查了等边三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,全等三角形的性质与判定,正确作出辅助线是解题的关键.22.(2022·山东潍坊)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD 的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为___________.【答案】【分析】根据正方形ABCD 的面积为4,求出2AB =,根据位似比求出4A B ''=,周长即可得出;【详解】解: 正方形ABCD 的面积为4,∴2AB =,:2:1A B AB ''=,∴4A B ''=,∴A C ''==所求周长=;故答案为:.【点睛】本题考查位似图形,涉及知识点:正方形的面积,正方形的对角线,圆的周长,解题关键求出正方形ABCD 的边长.23.(2022·内蒙古包头)如图,在Rt ABC 中,90ACB ∠=︒,3AC BC ==,D 为AB 边上一点,且BD BC =,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE的长为___________.【答案】3##3-+【分析】过点D 作DF ⊥BC 于点F ,根据题意得出DC DE =,根据等腰三角形性质得出CF EF =,根据90ACB ∠=︒,3AC BC ==,得出AB =CF x =,则3BF x =-,证明DF AC ,得出BF BDCF AD=,列出关于x 的方程,解方程得出x 的值,即可得出3BE =.【详解】解:过点D 作DF ⊥BC 于点F ,如图所示:根据作图可知,DC DE =,∵DF ⊥BC ,∴CF EF =,∵90ACB ∠=︒,3AC BC ==,∴AB ===∵3BD BC ==,∴3AD =,设CF x =,则3BF x =-,∵90ACB ∠=︒,∴AC BC ⊥,∵DF BC ⊥,∴DF AC ,∴BF BDCF AD =,即3x x -=,解得:x =,∴226CE x ===-,∴3363BE CE =-=-+=.故答案为:3.【点睛】本题主要考查了等腰三角形的性质和判定,勾股定理,平行线分线段成比例定理,平行线的判定,作出辅助线,根据题意求出CF 的长,是解题的关键.24.(2022·江苏泰州)如图上,Δ,90,8,6,ABC C AC BC ∠=== 中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为__________.【答案】2或12##12或2【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作//DE BC ,OF BC OG AB ⊥⊥,,连接OB ,则OD ⊥AC ,∵//DE BC ,∴OBF BOE ∠=∠∵O 为ABC ∆的内心,∴OBF OBE ∠=∠,∴BOE OBE ∠=∠∴BE OE =,同理,CD OD =,∴DE=CD+BE ,10AB ===∵O 为ABC ∆的内心,∴OF OD OG CD ===,∴BF BG AD AG==,∴6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=∴2CD =②如图,作DE AB ⊥,由①知,4BE =,6AE =,∵ACB AED CAB EAD ∠=∠∠=∠,∴ABC ADE ∆∆ ∴AB ADAC AE=∴1061582AB AE AD AC ⋅⨯===∴151822CD AC AD =-=-=∵92DE ===∴19422DE BE CD =+=+=∴12CD =故答案为:2或12.【点睛】本题主要考查三角形内心的性质、勾股定理、三角形的相似,根据题意正确分析出符合题意的情况并应用性质定理进行求解是解题的关键.25.(2022·黑龙江绥化)如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PPPK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.20221【分析】解直角三角形分别求得11PK ,22P K ,33P K ,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA ⊥ ,11OPK ∴△是直角三角形,在11Rt OPK 中,60AOB ∠=︒,11OP =,12111tan 60PP PK OP ∴==⋅︒=11PK OA ⊥ ,22P K OA ⊥,1122PK P K ∴∥,2211OP K OPK ∴△∽△,222111P K OP PK OP ∴=,=221P K ∴,同理可得:2331P K =+,3441P K =,……,11n n n P K -∴=,2022202320231P K ∴=,20221.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.26.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =,可得11OA B S =112233n n A B A B A B A B ⋯⋯∥∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231:2:2:2::2n ,即可求解.【详解】解:当x =1时,y =,∴点(1B ,∴11A B =∴11112OA B S =⨯= ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S :……∶n n OA B S = OA 12∶OA 22∶OA 32∶……∶OAn 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =,……,∴22OA =,2342OA ==,3482OA ==,……,12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231246221:2:2:2::21:2:2:2::2n n --= ,∴11222n n n OA B OA B S S -= ,∴220222202222S ⨯-==故答案为:2【点睛】本题主要考查了图形与坐标的规律题,相似三角形的判定和性质,明确题意,准确得到规律,是解题的关键.27.(2022·广西)如图,在正方形ABCD 中,AB =,对角线,AC BD 相交于点O .点E 是对角线AC 上一点,连接BE ,过点E 作EF BE ⊥,分别交,CD BD 于点F 、G ,连接BF ,交AC 于点H ,将EFH △沿EF 翻折,点H 的对应点H '恰好落在BD 上,得到EFH '△若点F 为CD 的中点,则EGH '△的周长是_________.【答案】5+【分析】过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,得到BP =CQ ,从而证得BPE ≌EQF △,得到BE =EF ,再利用BC =F 为中点,求得BF ==BE EF ===,再求出2EO ==,再利用AB //FC ,求出ABH CFH △∽△21AH CH ==,求得216833AH =⨯=,18833CH =⨯=,从而得到EH =AH -AE =1610233-=,再求得EOB GOE △∽△得到21242OG ===,求得EG OG =1, 过点F 作FM ⊥AC 于点M ,作FN ⊥OD 于点N ,求得FM =2,MH =23,FN =2,证得Rt FH N '△≌Rt FMH 得到23H N MH '==,从而得到ON =2,NG =1,25133GH '=+=,从而得到答案.【详解】解:过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,∵AD //PQ ,∴AP =DQ ,BPQ CQE ∠=∠,∴BP =CQ ,∵45ACD ∠=︒,∴BP =CQ =EQ ,∵EF ⊥BE ,∴90PEB FEQ ∠+∠=︒∵90PBE PEB ∠+∠=︒∴PBE FEQ ∠=∠,在BPE 与EQF △中BPQ FQE PB EQPBE FEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BPE ≌EQF △,∴BE =EF ,又∵BC AB ==F 为中点,∴CF =∴BF ==∴BE EF ===,又∵4BO ==,∴2EO ==,∴AE =AO -EO =4-2=2,∵AB //FC ,∴ABH CFH △∽△,∴AB AH CF CH=,21AH CH ==,∵8AC ==, ∴216833AH =⨯=,18833CH =⨯=,∴EH =AH -AE =1610233-=,∵90BEO FEO ∠+∠=︒,+90BEO EBO ∠∠=︒,∴FEO EBO ∠=∠,又∵90EOB EOG ∠=∠=︒,∴EOB GOE△∽△∴EG OG OE BE OE OB==,21242OG ===,∴EG OG =1,过点F 作FM ⊥AC 于点M ,∴FM=MC 2=,∴MH =CH -MC =82233-=, 作FN ⊥OD 于点N ,2,FN ==,在Rt FH N '△与Rt FMH 中FH FH FN FM'=⎧⎨=⎩∴Rt FH N '△≌Rt FHM∴23H N MH '==,∴ON =2,NG =1,∴25133GH '=+=,∴10533EGH C EH EG GH EH EG GH '''=++=++=△,故答案为:【点睛】本题考查了正方形的性质应用,重点是与三角形相似和三角形全等的结合,熟练掌握做辅助线是解题的关键.28.(2022·辽宁)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若6AB =,则AEF 的面积为___________.【答案】3【分析】由正方形的性质可知1113222AE AD AB BC ====,//AD BC ,则有AEF CBF ∽△△,然后可得12EF AE BF BC ==,进而问题可求解.【详解】解:∵四边形ABCD 是正方形,6AB =,∴6AD BC AB ===,//AD BC ,∴AEF CBF ∽△△,∴EF AE BF BC=,∵E 为AD 的中点,∴1113222AE AD AB BC ====,∴12EF AE BF BC ==,192ABE S AE AB =⋅= ,∴13EF BE =,∴133AEF ABE S S == ;故答案为3.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.29.(2022·贵州贵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,6cm AC BC ==,90ACB ADB ∠=∠=︒.若2BE AD =,则ABE △的面积是_______2cm ,AEB ∠=_______度.【答案】 36-36- 112.5【分析】通过证明ADE BCE ,利用相似三角形的性质求出23m AE =,263m CE =-,再利用勾股定理求出其长度,即可求三角形ABE 的面积,过点E 作EF ⊥AB ,垂足为F ,证明AEF 是等腰直角三角形,再求出AE CE =,继而证明()Rt BCE Rt BFE HL ≅ ,可知122.52EBF EBC ABC ∠=∠=∠=︒,利用外角的性质即可求解.【详解】90,ACB ADB AED BEC ∠=∠=︒∠=∠ ,ADE BCE ∴ ,AD AE BC BE∴=,6,2BC AC BE AD === ,设,2AD m BE m ==,62m AE m∴=,23m AE ∴=,263m CE ∴=-,在Rt BCE 中,由勾股定理得222BC CE BE +=,22226(6)(2)2m m ∴+-=,解得236m =-或236m =+ 对角线AC ,BD 相交于点E ,236m ∴=-,12AE ∴=-,6CE ∴=,∴(2111263622ABE S AE BC =⋅⋅=⨯-⨯=- ,过点E 作EF ⊥AB ,垂足为F ,90,ACB AC BC ∠=︒= ,45BAC ABC AEF ∴∠=∠=︒=∠,6AE AF AE CE ∴====,BE BE = ,()Rt BCE Rt BFE HL ∴≅ ,122.52EBF EBC ABC ∴∠=∠=∠=︒,112.5AEB ACB EBC ∴∠=∠+∠=︒,故答案为:36-,112.5.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质及三角形外角的性质,熟练掌握知识点是解题的关键.三.解答题30.(2022·河北)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线MN AB ∥.嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14°,点M 的俯角为7°.已知爸爸的身高为1.7m .(1)求∠C 的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4 4.1)【答案】(1)=76C ∠︒, 6.8(m)AB =(2)见详解,约6.0米【分析】(1)由水面截线MN AB ∥可得BC AB ⊥,从而可求得76C ∠=︒,利用锐角三角形的正切值即可求解.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,水面截线MN AB ∥,即可得DH 即为所求,由圆周角定理可得14BOM ∠=︒,进而可得ABC OGM ,利用相似三角形的性质可得4OG GM =,利用勾股定理即可求得GM 的值,从而可求解.(1)解:∵水面截线MN AB∥BC AB ∴⊥,90ABC ∴∠=︒,90=76C CAB ∴∠=︒-∠︒,在t R ABC 中,90ABC ∠=︒, 1.7BC =,tan 76 1.7AB AB BC ∴︒==,解得 6.8(m)AB ≈.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,如图所示:水面截线MN AB ∥,OH AB ⊥,DH MN ∴⊥,GM OD =,DH ∴为最大水深,7BAM ∠=︒ ,214BOM BAM ∴∠=∠=︒,90ABC OGM ∠=∠=︒ ,且14BAC ∠=︒,ABC OGM ∴ ,OG MG AB CB ∴=,即6.8 1.7OG MG =,即4OG GM =,在Rt OGM △中,90OGM ∠=︒, 3.42AB OM =≈,222OG GM OM ∴+=,即2224(3.4)GM GM +=(),解得0.8GM ≈,= 6.80.86DH OH OD ∴-=-≈,∴最大水深约为6.0米.【点睛】本题考查了解直角三角形,主要考查了锐角三角函数的正切值、圆周角定理、相似三角形的判定及性质、平行线的性质和勾股定理,熟练掌握解直角三角形的相关知识是解题的关键.31.(2022·吉林)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC h =⋅ ,12DBC S BC h =⋅△.∴ABC DBC S S = .【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:∵ABC S(2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM =△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,∴AE ∥ .∴AEM △∽ .∴AE AM DF DM =.由【探究】(1)可知ABC DBC S S =△△ ,∴ABC DBC S AM S DM =△△.(3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBC S S △△的值为 .【答案】(1)证明见解析(2)证明见解析(3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅ ,由此即可得证;(2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~ ,根据相似三角形的性质可得AE AM DF DM=,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~ ,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,由此即可得出答案.(1)证明:12ABC S BC h =⋅ ,12DBC BC h S '=⋅ ,ABC DBC S h S h ∴='.(2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴ .AE AM DF DM∴=.由【探究】(1)可知ABC DBC S AE S DF= ,ABC DBC S AM S DM ∴= .(3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴ ,AME DNE ∴~ ,AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==,又12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,73ABCDBC S AM S DN =∴= ,故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.32.(2022·山东青岛)如图,在Rt ABC △中,90,5cm,3cm ACB AB BC ∠=︒==,将ABC 绕点A 按逆时针方向旋转90︒得到ADE ,连接CD .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm/s .PQ 交AC 于点F ,连接,CP EQ .设运动时间为(s)(05)t t <<.解答下列问题:(1)当EQ AD ⊥时,求t 的值;(2)设四边形PCDQ 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ CD ∥?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)16s 5(2)213714210S t t =-+(3)存在,65s 29t =【分析】(1)利用AQE AED △∽△得AQ AE AE AD =,即445t =,进而求解;(2)分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N ,证ABC CAM △∽△得,AB BC AC CA AM CM ==,求得121655AM CM ==,再证BPN BAC △∽△得BP PN BA AC=,得出45PN t =,根据ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形即可求出表达式;(3)当PQ CD ∥时AQP ADC ∠=∠,易证APQ MCD △∽△,得出AP AQ MC MD =,则5161355t t -=,进而求出t 值.(1)解:在Rt ABC △中,由勾股定理得,4AC ===∵ABC 绕点A 按逆时针方向旋转90︒得到ADE。
2016-2017相似三角形题经典(含答案)
![2016-2017相似三角形题经典(含答案)](https://img.taocdn.com/s3/m/416c953e647d27284b7351fb.png)
相似三角形题经典一、选择填空题1、如图1,已知AD 与BC 相交于点O,AB//CD,如果∠B=40°,∠D=30°,则∠AOC 的大小为( )A.60°B.70°C.80°D.120°2、如图,在矩形ABCD 中,点E 为边BC 的中点,AE BD ⊥,垂足为点O ,则ABBC的值等于 . 3.如图,在ABC △中,P 是AC 上一点,连结BP ,要使ABP ACB △∽△,则必须有ABP ∠= 或APB ∠= 或ABAP= . 4、如图,正方形ABCD 的边长为2,AE =EB ,MN =1,线段MN 的两端分别在CB 、CD 上滑动,那么当CM =________时,△ADE 与△MN C 相似.5.已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是________.6.如图,等边△ABC 的边长为3,点P 为BC 边上一点,且BP =1,点D 为AC 上一点;若∠APD =60°,则CD 长是 A.43 B.23 C.21 D.32 7、如图,正方形ABCD 中,E 是AD 的中点, BM ⊥CE,AB=6,则BM=______.图4 图6 图78、如下图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )ABCD O图1ABOECDAPCBDPCABABC9.如图,四边形ABCD 是矩形,DH ⊥AC ,如果AH=9cm ,CH=4cm ,那么ABCD S 四边形=( ) A .752cm B .762cm C .772cm D .782cm1011A 12ADES S : .1 : 213,则DEF △14ADE=(15 △A图12图14PQCBA HDCBAAN DBCE M16、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( ) A 、4.8米 B 、6.4米 C 、9.6米 D 、10米17、如图,由点O 出发的13条射线恰好等分圆周,图中的三角形1.菱形2、如图,在ABCD 中,过点B 作BE ⊥CD,垂足为E,连结AE,F 为AE 上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;(3)在(1)(2)的条件下,若AD=3,求BF 的长.ACEFD第2题图 B3问4证:5.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;B C⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;3 时,求正方形的边长.⑶当AM+BM+CM的最小值为11、 D 10、1、2、345、110°。
初中数学《相似三角形》压轴30题含解析
![初中数学《相似三角形》压轴30题含解析](https://img.taocdn.com/s3/m/2f52f6311fb91a37f111f18583d049649b660e3f.png)
相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第6张.【分析】设第x 张为正方形,如图,△ADE ∽△ABC ,则DE BC =AM AN,从而计算出x 的值即可.【解答】解:如图,设第x 张为正方形,则DE =3(cm ),AM =(22.5-3x )(cm ),∵△ADE ∽△ABC ,∴DE BC =AM AN ,即315=22.5-3x 22.5,解得x =6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE BC=23,那么BF FD =23.【分析】由平行四边形的性质可证△BEF ∽△DAF ,再根据相似三角形的性质得BE :DA =BF :DF 即可解.【解答】解:ABCD 是平行四边形,∴BC ∥AD ,BC =AD∴△BEF ∽△DAF∴BE :DA =BF :DF∵BC =AD∴BF :DF =BE :BC =2:3.【点评】本题考查了平行四边形的性质及相似三角形的判定定理和性质.3(2017秋•虹口区校级月考)如图,直角三角形ABC 中,∠ACB =90°,AB =10,BC =6,在线段AB上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1,若△E 1FA 1∽△E 1BF ,则AD =165.【分析】利用勾股定理列式求出AC ,设AD =2x ,得到AE =DE =DE 1=A 1E 1=x ,然后求出BE 1,再利用相似三角形对应边成比例列式求出DF ,然后利用勾股定理列式求出E 1F ,然后根据相似三角形对应边成比例列式求解得到x 的值,从而可得AD 的值.【解答】解:∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8,设AD =2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1,∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD AC =DF BC ,即2x 8=DF 6,解得DF =32x ,在Rt △DE 1F 中,E 1F =DF 2+DE 12=3x 22+x 2=13x 2,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F A 1E 1=BE 1E 1F ,∴E 1F 2=A 1E 1•BE 1,即(13x 2)2=x (10-3x ),解得x =85,∴AD 的长为2×85=165.故答案为:165.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.4(2021秋•普陀区校级月考)如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为43.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD =54CD ;第2步:延长AC ,构造一对全等三角形△ABD ≌△AMD ;第3步:过点M 作MN ∥AD ,构造平行四边形DMNG .由MD =BD =KD =54CD ,得到等腰△DMK ;然后利用角之间关系证明DM ∥GN ,从而推出四边形DMNG 为平行四边形;第4步:由MN ∥AD ,列出比例式,求出AG FD的值.【解答】解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABD S △ACD =12AB ⋅h 12AC ⋅h =AB AC =54,∴BD =54CD .如图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,AB =AM ∠BAD =∠MAD AD =AD ∴△ABD ≌△AMD (SAS ),∴MD =BD =54CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14,∴CK =14CD ,∴KD =54CD .∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠1,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH=23.∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23,∴AG FD =43.故答案为:43.方法二:如图,有已知易证△DFE ≌△GFE ,故∠5=∠B +∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B ,则可证△AGH ∽△ADB设AB =5a ,则AC =4a ,AH =2a ,所以AG /AD =AH /AB =2/5,而AD =AG +GD ,故GD /AD =3/5,所以AG :GD =2:3,F 是GD 的中点,所以AG :FD =4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.5(2022秋•普陀区校级月考)如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为10.5.【分析】已知△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,且两三角形相似,因此可得出A 2B 2:A 3B 3=1:2,由于△A 2B 2A 3与△B 2A 3B 3是等高不等底的三角形,所以面积之比即为底边之比,因此这两个三角形的面积比为1:2,根据△A 3B 2B 3的面积为4,可求出△A 2B 2A 3的面积,同理可求出△A 3B 3A 4和△A 1B 1A 2的面积.即可求出阴影部分的面积.【解答】解:△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,又∵A 2B 2∥A 3B 3,A 2B 1∥A 3B 2,∴∠OB 2A 2=∠OB 3A 3,∠A 2B 1B 2=∠A 3B 2B 3,∴△B 1B 2A 2∽△B 2B 3A 3,∴B 1B 2B 2B 3=12=A 2B 2A 3B 3,∴A 2A 3A 3A 4=12.∵S △A 2B 2A 3S △B 2A 3B3=12,△A 3B 2B 3的面积是4,∴△A 2B 2A 3的面积为=12×S △A 2B 2B 3=12×4=2(等高的三角形的面积的比等于底边的比).同理可得:△A 3B 3A 4的面积=2×S △A 3B 2B 3=2×4=8;△A 1B 1A 2的面积=12S △A 2B 1B 2=12×1=0.5.∴三个阴影面积之和=0.5+2+8=10.5.故答案为:10.5.【点评】本题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.6(2017秋•徐汇区校级月考)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;⋯,依此类推,则S n 可表示为 12n +1 .(用含n 的代数式表示,其中n 为正整数)【分析】连接D 1E 1,设AD 1、BE 1交于点M ,先求出S △ABE 1=1n +1,再根据AB D 1E 1=BM ME 1=n +1n 得出S △ABM :S △ABE 1=(n +1):(2n +1),最后根据S △ABM :1n +1=(n +1):(2n +1),即可求出S n .【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE1:AC =1:(n +1),∴S △ABE 1:S △ABC =1:(n +1),∴S △ABE 1=1n +1,∵AB D 1E 1=BM ME 1=n +1n ,∴BM BE 1=n +12n +1,∴S △ABM :S △ABE 1=(n +1):(2n +1),∴S △ABM :1n +1=(n +1):(2n +1),∴S n =12n +1.故答案为:12n +1.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.7(2018秋•南岗区校级月考)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是 2或23 .【分析】由菱形的性质易证两三角形相似,但是由于点E 的位置未定,需分类讨论.【解答】解:分两种情况:(1)点E 在线段AD 上时,△AEM ∽△CBM ,∴MC AM =BC AE=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴MCAM =BCAE=23.【点评】本题考查了相似三角形的性质以及分类讨论的数学思想;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=5.【分析】根据CD平分∠ACB,可得ABDA=BCAC,根据CE平分∠ACB的外角,可得DEAE=BCAC,进而可得结果.【解答】解:∵CD平分∠ACB,∴AB DA =BC AC,∴BD+DADA =BC+ACAC,∴AB DA =BC+ACAC,①∵CE平分∠ACB的外角,∴DE AE =BC AC,∴BE-AEAE =BC-ACAC,∴AB AE =BC-ACAC,②①+②得,AB AD +ABAE=BC+ACAC+BC-ACAC=2BCAC=2×2.5=5.故答案为:5.【点评】主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的性质来分析、判断、推理或解答.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是 34 .【分析】过点P 作PE ∥AC 交DC 延长线于点E ,根据等腰三角形判定与性质,平行线的性质可证PB =PE ,再证△PCE ≌△PDB ,可得BD =CE ,再利用平行线分线段成比例的PA AB=CE BC ,结合线段的等量关系以及比例的性质即可得出结论.【解答】解:如图,过点P 作PE ∥AC 交DC 延长线于点E ,∵AB =AC ,∴∠B =∠ACB ,∵AC ∥PE ,∴∠ACB =∠E ,∴∠B =∠E ,∴PB =PE ,∵PC =PD ,∴∠PDC =∠PCD ,∴∠BPD =∠EPC ,∴在△PCE 和△PDB 中,PC =PD ∠BPD =∠EPC PB =PE,∴△PCE ≌△PDB (SAS ),∴BD =CE ,∵AC ∥PE ,∴PA AB =CE BC ,∵PA =14AB ,∴CE BC =14,∴BD BC =14,∴CD BC =34.故答案为:34.【点评】本题考查了等腰三角形的判定与性质,平行线分线段成比例,以及全等三角形的判定,解决问题的关键是正确作出辅助线,列出比例式.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 为AB 的中点,EC 与AD交于点G ,点F 在BC 上.(1)如图1,AC :AB =1:2,EF ⊥CB ,求证:EF =CD .(2)如图2,AC :AB =1:,EF ⊥CE ,求EF :EG 的值.【分析】(1)根据同角的余角相等得出∠CAD =∠B ,根据AC :AB =1:2及点E 为AB 的中点,得出AC =BE ,再利用AAS 证明△ACD ≌△BEF ,即可得出EF =CD ;(2)作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH =90°,则∠FEQ =∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG =EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ =12BE ,在△AEH 中,根据余弦函数的定义得出EH =32AE ,又BE =AE ,进而求出EF :EG 的值.【解答】(1)证明:如图1,在△ABC 中,∵∠CAB =90°,AD ⊥BC 于点D ,∴∠CAD =∠B =90°-∠ACB .∵AC :AB =1:2,∴AB =2AC ,∵点E 为AB 的中点,∴AB =2BE ,∴AC =BE .在△ACD 与△BEF 中,∠CAD =∠B ∠ADC =∠BFE =90°AC =BE,∴△ACD ≌△BEF ,∴CD =EF ,即EF =CD ;(2)解:如图2,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH =90°,∴∠FEQ =∠GEH =90°-∠QEG ,又∵∠EQF =∠EHG =90°,∴△EFQ ∽△EGH ,∴EF :EG =EQ :EH .∵AC :AB =1:3,∠CAB =90°,∴∠B =30°.在△BEQ 中,∵∠BQE =90°,∴sin B =EQ BE =12,∴EQ =12BE .在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH=EHAE =32,∴EH=32AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=12BE:32AE=1:3=3:3=33.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB =90°,然后证明△AEG∽△DEA,即可得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∵DE⊥EF,∴∠FEG=90°,∴∠DAG=∠FEG,∵∠AGD=∠FGE,∴∠EFG=∠ADG,∴∠EAG=∠ADG,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴AE DE =EG AE,∴AE2=EG•ED;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF DE =EGEF,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴AB DF =BF EF,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=12AB=12BC,∴BC DF =BF12BC,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.【分析】(1)延长AF,BC交于点G,证明△ADF≌△GCF(AAS),可得AD=CG=BC,所以BG=2BC,根据AE:ED=1:2,可得AE:AD=1:3,AE:BG=1:6,,证明△AEH∽△GBH,即可解决问题;(2)在△AEH中,设AE=x,AE边上的高为h,△BGH中,BG边上的高为h′,可得平行四边形ABCD的高为h+h′,BC=3x,根据△AEH的面积为1,可得x•h=2,所以h′=6h,进而可以求平行四边形ABCD 的面积.【解答】解:(1)如图,延长AF,BC交于点G,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠DCG ,∠DAF =∠G ,∵点F 为DC 的中点,∴DF =CF ,在△ADF 和△GCF 中,∠D =∠FCG ∠DAF =∠G DF =CF,∴△ADF ≌△GCF (AAS ),∴AD =CG ,∴AD =CG =BC ,∴BG =2BC ,∵AE :ED =1:2,∴AE :AD =1:3,∴AE :BG =1:6,∵AD ∥BC ,∴△AEH ∽△GBH ,∴EH :BH =AE :BG =1:6;(2)在△AEH 中,设AE =x ,AE 边上的高为h ,△BGH 中,BG 边上的高为h ′,∴平行四边形ABCD 的高为h +h ′,BC =3x ,∵△AEH 的面积为1,∴12x •h =1,∴x •h =2∵△AEH ∽△GBH ,∴h :h ′=1:6,∴h ′=6h ,∴h +h ′=7h ,∴平行四边形ABCD 的面积=BC •(h +h ′)=3x •7h =21xh =42.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,平行线分线段成比例等知识,添加恰当辅助线构造相似三角形是解题的关键.13(2021春•徐汇区校级月考)如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G ;(1)求证:EG •GF=CG •GD ;(2)联结DF ,如果EF ⊥CD ,那么∠FDC 与∠ADC 之间有怎样的数量关系?证明你的结论.【分析】(1)先证明△BCE ≌△DCE ,得∠EDC =∠EBC ;利用此条件再证明∠DGE ∽△FGC ,即可得到EG •GF =CG •GD.(2)利用第(1)题的结论,可证明△DGE ∽△FGC ,再利用三角形内角外角关系,即可得到∠ADC 与∠FDC 的关系.【解答】解:(1)证明:∵点E 在菱形ABCD 的对角线AC 上,∴∠ECB =∠ECD ,∵BC =CD ,CE =CE ,∴△BCE ≌△DCE ,∴∠EDC =∠EBC ,∵EB =EF ,∴∠EBC =∠EFC ;∴∠EDC =∠EFC ;∵∠DGE =∠FGC ,∴△DGE ∽△FGC ;∴EGCG =GD FG∴EG •GF =CG •GD ;(2)∠ADC =2∠FDC .证明:∵EG CG =GD FG ,∴EG DG =CG FG,又∵∠DGF =∠EGC ,∴△CGE ∽△FGD ,∵EF ⊥CD ,DA =DC ,∴∠DAC =∠DCA =∠DFG =90°-∠FDC ,∴∠ADC =180°-2∠DAC =180°-2(90°-∠FDC )=2∠FDC .【点评】本题主要考查了全等三角形的判定及性质、相似三角形的判定及性质、菱形的性质等知识点的综合应用,解题时注意:相似三角形的对应角相等,对应边成比例.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.14(2021秋•宝山区校级月考)如图,四边形DEFG 是△ABC 的内接正方形,AB =BC =6cm ,∠B =45°,则正方形DEFG 的面积为多少?【分析】过A 作AH ⊥BC 于H ,交GF 于M ,于是得到△ABH 是等腰直角三角形,求得AH =BH =2222AB =32cm ,由△AGF ∽△ABC ,得到GF BC =AM AH,求得GF =(62-6)cm ,即可得到结论.【解答】解:过A 作AH ⊥BC 于H ,交GF 于M ,∵∠B =45°,∴AH =BH =22AB =32cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AM AH,即GF 6=32-GF 32,∴GF =(62-6)cm ,∴正方形DEFG 的面积=GF 2=(62-6)2=(108-722)cm .【点评】本题考查了相似三角形的判定与性质,正方形的四条边都相等的性质,利用相似的性质:对应边的比值相等求出正方形的边长是解答本题的关键.15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.【分析】由GF ∥BC ,根据平行线分线段成比例定理,可得DF FC,又由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,继而可证得DM AB =DG BG ,则可证得结论.【解答】证明:∵GF ∥BC ,∴DF FC =DG BG,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴DM AB =DG BG ,∴DF FC =DM CD.【点评】此题考查了平行分线段成比例定理以及平行四边形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC的值.【分析】(1)根据直角三角形斜边上中线性质求出DE =EC ,推出∠EDC =∠ECD ,求出∠FDC =∠B ,根据∠F =∠F 证△FBD ∽△FDC ,即可;(2)根据已知和三角形面积公式得出S △BDC S △FDC =54,S △BDF S △FDC =94,根据相似三角形面积比等于相似比的平方得出S △BDFS △FDC =BD DC 2=94,即可求出BD DC.【解答】(1)证明:∵CD ⊥AB ,∴∠ADC =90°,∵E 是AC 的中点,∴DE =EC ,∴∠EDC =∠ECD ,∵∠ACB =90°,∠BDC =90°∴∠ECD +∠DCB =90°,∠DCB +∠B =90°,∴∠ECD =∠B ,∴∠FDC =∠B ,∵∠F =∠F ,∴△FBD ∽△FDC ,∴FD FC =BD DC(2)解:∵BC FC =54,∴S △BDCS △FDC =54,∴S △BDFS △FDC =94,∵△FBD ∽△FDC ,∴S △BDF S △FDC =BD DC2=94,∴BD DC=32.【点评】本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .【分析】(1)根据邻边相等的矩形是正方形即可证明;(2)由AD ∥BC ,推出EF DE =EC EA ,同理DC AG =EC EA,由DE =BE ,四边形ABCD 是正方形,推出BC =DC,可得EFBE =BCAG解决问题;【解答】(1)证明:连接BD.∵EB=ED,∴∠EBD=∠EDB,∵∠ABE=∠ADE,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是矩形,∴四边形ABCD是正方形.(2)证明:∵四边形ABCD是矩形∴AD∥BC,∴EF DE =EC EA,同理DCAG=ECEA,∵DE=BE,四边形ABCD是正方形,∴BC=DC,∴EF BE =BC AG,∴EF•AG=BC•BE.【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2021秋•浦东新区校级月考)如图,在△ABC中,DE∥BC,EF∥CD,求证:AD2=AF•AB.【分析】由DE∥BC,EF∥CD,可得△ADE∽△ABC,△AFE∽△ADC,然后由相似三角形的对应边成比例,证得结论.【解答】证明:∵DE∥BC,EF∥CD,∴△ADE∽△ABC,△AFE∽△ADC,∴AD:AB=AE:AC,AF:AD=AE:AC,∴AD:AB=AF:AD,∴AD2=AF•AB.【点评】此题考查了相似三角形的判定与性质.注意掌握相似三角形的对应边成比例.19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.【分析】(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.【解答】(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=92,∵△ABC∽△FCD,BC=2CD,∴S△FCDS△ABC=(CDBC)2=14.∵S△ABC=12×BC×AG=12×8×92=18,∴S△FCD=14S△ABC=92.【点评】此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.【分析】(1)根据菱形的性质得到∠FAD =∠B ,根据全等三角形的性质得到FD =EA ,于是得到结论;(2)根据菱形的性质得到∠DCF =∠BFC ,根据平行线的性质得到∠BAE =∠BFC ,根据全等三角形的性质得到∠BAE =∠FDA ,等量代换得到∠DCF =∠FDA ,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵在菱形ABCD 中,AD ∥BC ,∴∠FAD =∠B ,在△ADF 与△BAE 中,AF =BE ∠FAD =∠B AD =BA,∴△ADF ≌△BAE ,∴FD =EA ,∵CF ∥AE ,AG ∥CE ,∴EA =CG ,∴FD =CG ;(2)∵在菱形ABCD 中,CD ∥AB ,∴∠DCF =∠BFC ,∵CF ∥AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE ,∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA ,又∵∠DFG =∠CFD ,∴△FDG ∽△FCD ,∴FD FC=FG FD ,FD 2=FG •FC ,∵FD =CG ,∴CG 2=FG •FC .【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,熟练掌握相似三角形的性质是解题的关键.21(2021秋•浦东新区校级月考)如图,梯形ABCD 中,AD ∥BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F .求:(1)AF :FC 的值;(2)EF :BF 的值.【分析】(1)延长BE 交直线AD 于H ,如图,先由AD ∥BC 得到△DEH ∽△CEB ,则有DH BC =DE CE,易得DH =BC ,加上BC =2AD ,所以AH =3AD ,然后证明△AHF ∽△CFB ,再利用相似比可计算出AF :FC 的值;(2)由△DEH ∽△CEB 得到EH :BE =DE :CE =1:1,则BE =EH =12BH ,由△AHF ∽△CFB 得到FH :BF =AF :FC =3:2;于是可设BF =2a ,则FH =3a ,BH =BF +FH =5a ,EH =52a ,接着可计算出EF =FH -EH =12a ,然后计算EF :BF 的值.【解答】解:(1)延长BE 交直线AD 于H ,如图,∵AD ∥BC ,∴△DEH ∽△CEB ,∴DH BC =DE CE,∵点E 为边DC 的中点,∴DE =CE ,∴DH =BC ,而BC =2AD ,∴AH =3AD ,∵AH ∥BC ,∴△AHF ∽△CFB ,∴AF :FC =AH :BC =3:2;(2)∵△DEH ∽△CEB ,∴EH :BE =DE :CE =1:1,∴BE =EH =12BH ,∵△AHF ∽△CFB ,∴FH :BF =AF :FC =3:2;设BF =2a ,则FH =3a ,BH =BF +FH =5a ,∴EH =52a ,∴EF =FH -EH =3a -52a =12a ,∴EF :BF =12a :2a =1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22(2021秋•浦东新区校级月考)已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,AD DC =13,DE =6.(1)求AB 的长;(2)求S △ADE S △BCD.【分析】(1)由∠ABD =∠CBD ,DE ∥BC 可推得∠EDB =∠CBD ,进而推出∠ABD =∠EDB ,由此可得BE =DE =6,由DE ∥BC 可得AE EB =AD DC=13,进而证得AE =2,于是可得结论;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,由平行线分线段成比例定理和相似三角形的性质可得h 1h 2=AD DE =13,DE BC =14,进而证得结论.【解答】解:(1)BD 平∠ABC ,∴∠ABD =∠CBD ,∵DE ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =DE =6,∵DE ∥BC ,∴AE EB =AD DC =13,∴AE 6=13,∴AE =2,∴AB =AE +BE =8;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,∵DE ∥CB ,∴△AED ∽△ABC ,∴h 1h 2=AD DE =13,DE BC =14,∴S △ADE S △BCD =12DE ⋅h 112BC ⋅h 2=112.【点评】本题主要考查了等腰三角形的性质,平行线分线段成比例定理和相似三角形的性质,三角形的面积等知识,熟练应用平行线分线段成比例定理和相似三角形的性质是解决问题的关键.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:EFBF =AB DB;(2)如果BD 2=2AD •DF ,求证:平行四边形ABCD 是矩形.【分析】(1)由已知条件和平行四边形的性质易证△ADB ∽△EBF ,再由相似三角形的性质:对应边的比值相等即可证明:EF BF =AB DB;(2)由(1)可得BD 2=2AD •BF ,又因为BD 2=2AD •DF ,所以可证明BF =DF ,再由等腰三角形的性质可得∠DEF =90°,所以∠ADC =∠DEF =90°,进而可证明平行四边形ABCD 是矩形.【解答】解:(1)证明:∵平行四边形ABCD ,∴AD ∥BC ,AB ∥DC∴∠BAD +∠ADC =180°,又∵∠BEF +∠DEF =180°,∴∠BAD +∠ADC =∠BEF +∠DEF ,∵∠DEF =∠ADC ,∴∠BAD =∠BEF ,∵AD ∥BC ,∴∠EBF =∠ADB ,∴△ADB ∽△EBF ,∴EF BF =AB DB;(2)∵△ADB ∽△EBF ,∴AD BD =BE BF,在平行四边形ABCD 中,BE =ED =12BD ,∴AD •BF =BD •BE =12BD 2,∴BD 2=2AD •BF ,又∵BD 2=2AD •DF ,∴BF =DF ,∴△DBF 是等腰三角形,∵BE =DE ,∴FE ⊥BD ,即∠DEF =90°,∴∠ADC =∠DEF =90°,∴平行四边形ABCD 是矩形.【点评】本题考查了平行四边形的性质、相似三角形的判断和性质以及矩形的判断,其中(2)小题证明△DBF 是等腰三角形是解题的关键.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.【分析】延长BF交射线AP于M,根据AD∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出AP+BP=AM,再根据AC=13CF求出AE=2CF,然后根据△MAF和△BCF相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BF交射线AP于M,∵AD∥BC,∴∠M=∠CBM,∵BF是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴AP+BP=AP+PM=AM,∵CF=13AC,则AF=2CF,由AD∥BC得,△MAF∽△BCF,∴AMBC =AFCF=2,∴AM=2BC=2×6=12,即AP+BP=12.【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BF构造出相似三角形,求出AP+BP=AM并得到相似三角形是解题的关键,也是本题的难点.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.【分析】(1)根据三角形的外角的性质和角的和差得到∠B=∠ADE,由于BABC=DADE=1,根据得到结论;(2)根据相似三角形的性质得到∠BAC=∠DAE,于是得到∠BAD=∠CAE=∠CDE,证得△COD∽△EOA,根据相似三角形的性质得到OCOE =ODOA,由∠AOD=∠COE,推出△AOD∽△COE,根据相似三角形的性质即可得到结论.【解答】证明:(1)∵∠ADC =∠ABC +∠BAD =∠ADE +∠EDC ,∴∠B =∠ADE ,∵BA BC=DA DE =1,∴△ABC ∽△ADE ;(2)∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∴∠BAD =∠CAE =∠CDE ,∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴OC OE =OD OA,∵∠AOD =∠COE ,∴△AOD ∽△EOC ,∴DA :CE =OD :OC ,即DA •OC =OD •CE .【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD 中,AD ∥BC ,点E 在边AD 上,CE 与BD 相交于点F ,AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ;(2)求线段CF 的长.【分析】(1)AD ∥BC ,DE =3,BC =6,DF FB =DE BC=36=12,DF DA =DE DB .又∠EDF =∠BDA ,即可证明△DFE ∽△DAB .(2)由△DFE ∽△DAB ,利用对应边成比例,将已知数值代入即可求得答案.【解答】证明:(1)∵AD ∥BC ,DE =3,BC =6,∴DF FB =DE BC =36=12,∴DF BD =12,∵BD =6,∴DF =2.∵DA =4,∴DF DA =24=12,DE DB =36=12.∴DF DA=DE DB .又∵∠EDF =∠BDA ,∴△DFE ∽△DAB .(2)∵△DFE ∽△DAB ,∴EF AB =DE DB .∵AB =5,∴EF 5=36,∴EF =52=2.5.∵DE ∥BC ,∴CFEF =BC DE .∴CF 2.5=63,∴CF =5.(或利用△CFB ≌△BAD ).【点评】此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB ≌△BAD 求得线段CF 的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.27(2020秋•宝山区月考)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC =15,高AH =10,求正方形DEFG 的边长和面积.【分析】高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,所以AM =10-x ,再证明△ADG ∽△ABC ,则利用相似比得到x 15=10-x 10,然后根据比例的性质求出x ,再计算x 2的值即可.【解答】解:高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,∴AM =AH -MH =10-x ,∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG BC =AM AH,即x 15=10-x 10,∴x =6,∴x 2=36.答:正方形DEFG 的边长和面积分别为6,36.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.28(2021秋•闵行区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,M 是CD 上的点,DH ⊥BM 于H ,DH 的延长线交AC 的延长线于E .求证:(1)△AED ∽△CBM ;(2)AE •CM =AC •CD .【分析】(1)由于△ABC 是直角三角形,易得∠A +∠ABC =90°,而CD ⊥AB ,易得∠MCB +∠ABC =90°,利用同角的余角相等可得∠A =∠MCB ,同理可证∠1=∠2,而∠ADE =90°+∠1,∠CMB =90°+∠2,易证∠ADE =∠CMB ,从而易证△AED ∽△CBM ;(2)由(1)知△AED ∽△CBM ,那么AE :AD =CB :CM ,于是AE •CM =AD •CB ,再根据△ABC 是直角三角形,CD 是AB 上的高,易知△ACD ∽△CBD ,易得AC •CD =AD •CB ,等量代换可证AE •CM =AC •CD .【解答】证明:(1)∵△ABC 是直角三角形,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠CDB =90°,即∠MCB +∠ABC =90°,∴∠A =∠MCB ,∵CD ⊥AB ,∴∠2+∠DMB =90°,∵DH ⊥BM ,∴∠1+∠DMB =90°,∴∠1=∠2,又∵∠ADE =90°+∠1,∠CMB =90°+∠2,∴∠ADE =∠CMB ,∴△AED ∽△CBM ;(2)∵△AED ∽△CBM ,∴AE BC =AD CM,∴AE •CM =AD •CB ,∵△ABC 是直角三角形,CD 是AB 上的高,∴△ACD ∽△CBD ,∴AC :AD =CB :CD ,∴AC •CD =AD •CB ,∴AE •CM =AC •CD .【点评】本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A =∠MCB 以及∠ADE =∠CMB .29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A (6,0),B (0,8),C (-4,0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向做匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向做匀速运动,MN 交OB 于点P .(1)求证:MN :NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.【分析】(1)过点N 作NH ⊥x 轴于点H ,然后分两种情况进行讨论,综合两种情况,求得MN :NP 为定值53.(2)当△BNP 与△MNA 相似时,当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,所以△BNP ∽△MNA ∽△BOA ,所以AM AN =AB AO ,所以10-2k 5k =106,k =3031,即CM =6031;当点M 在OA 上时,只可能是∠NBP =∠NMA ,所以∠PBA =∠PMO ,根据题意可以判定不成立,所以CM =6031.(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP =BN ,PB =PN ,NB =NP 三种情况进行讨论.【解答】证明:(1)过点N 作NH ⊥x 轴于点H ,设AN =5k ,得:AH =3k ,CM =2k ,①当点M 在CO 上时,点N 在线段AB 上时:∴OH =6-3k ,OM =4-2k ,∴MH =10-5k ,∵PO ∥NH ,∴MN NP =MH OH=10-5k 6-3k =53,②当点M 在OA 上时,点N 在线段AB 的延长线上时:∴OH =3k -6,OM =2k -4,∴MH =5k -10,∵PO ∥NH ,∴MN NP =MH OH=5k -103k -6=53;解:(2)当△BNP 与△MNA 相似时:①当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,∴△BNP ∽△MNA ∽△BOA ,∴AMAN =AB AO,。
中考数学 相似三角形专题训练(含答案)
![中考数学 相似三角形专题训练(含答案)](https://img.taocdn.com/s3/m/ce60fac518e8b8f67c1cfad6195f312b3069eb44.png)
2020中考数学相似三角形专题训练(含答案)一、选择题:1. 如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是( )A.B.C.D.﹣答案:D.2.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是( )A.=B.=C.=D.=答案:C3. 如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )A.①②③④ B.①④ C.②③④D.①②③答案D.4.如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有( )A.1个B.2个C.3个D.4个答案C.二、填空题:5.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO= .答案:4.6. 在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A、D、E为顶点的三角形与△ABC相似.答案:或.7.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.故答案为113°或92°.8.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM= AB.若四边形ABCD的面积为,则四边形AMCD的面积是.答案:1.9. (2017内江)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE= .答案:.10.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为.故答案为3:4.三、解答题:11.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△CEF,∴∠DFE=∠CFE,∴FE平分∠DFC.12.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.13. 如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根据勾股定理得:BE===4,在Rt△ADE中,AE=AD•sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.∵△ADF∽△DEC,14. 在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是 MD=ME ;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.【解答】解:(1)如图1,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=90°,∴∠BED=∠ADC=90°,∠ACD=45°,∵∠ACB=90°,∴∠ECB=45°,∴∠EBC=∠BED﹣∠ECB=45°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=45°,∴MD=ME,故答案为MD=ME;(2)MD=ME,理由:如图2,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=60°,∴∠BED=∠ADC=60°,∠ACD=60°,∵∠ACB=90°,∴∠ECB=30°,∴∠EBC=∠BED﹣∠ECB=30°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=30°,在Rt△MDE中,tan∠MDE=,∴MD=ME.(3)如图3,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,延长BE交AC于点N,∴∠BNC=∠DAC,∵DA=DC,∴∠DCA=∠DAC,∴∠BNC=∠DCA,∵∠ACB=90°,∴∠ECB=∠EBC,∴CE=BE,∴AF=CE,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∵∠ADC=α,∴∠MDE=,在Rt△MDE中,=tan∠MDE=tan.15. (1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE 是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为 AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E 是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE 上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).。
相似三角形测试题及答案
![相似三角形测试题及答案](https://img.taocdn.com/s3/m/de6c9c2468eae009581b6bd97f1922791688be95.png)
相似三角形测试题及答案一、选择题1. 若三角形ABC与三角形DEF相似,且AB:DE = 2:3,则BC:EF的比值为:A. 2:3B. 3:2C. 4:6D. 3:4答案:B2. 在相似三角形中,对应角相等,对应边成比例。
以下哪项不是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 周长比等于相似比D. 面积比等于相似比的平方答案:D二、填空题3. 若三角形ABC与三角形DEF相似,相似比为2:3,则三角形ABC的周长是三角形DEF周长的____。
答案:2/34. 若三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,则BC 与EF的比值为______。
答案:2:3三、解答题5. 已知三角形ABC与三角形DEF相似,且AB = 8cm,DE = 12cm,求三角形ABC的周长,已知三角形DEF的周长为36cm。
答案:三角形ABC的周长 = (8/12) * 36cm = 24cm6. 已知三角形ABC与三角形DEF相似,且∠A = ∠D = 50°,∠B =∠E = 60°,求∠C和∠F的度数。
答案:∠C = ∠F = 70°四、证明题7. 已知三角形ABC与三角形DEF相似,且AB = 4cm,DE = 6cm,BC = 5cm,EF = 7.5cm,证明AC = 6.25cm。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例,所以AC/DF = AB/DE = 4/6 = 2/3。
已知EF = 7.5cm,所以AC = (2/3) * EF = (2/3) * 7.5cm = 5cm。
因此,AC = 6.25cm。
8. 已知三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,求证:∠C = ∠F。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等。
已知∠A = ∠D,∠B = ∠E,所以∠C = 180° - (∠A+ ∠B) = 180° - (∠D + ∠E) = ∠F。
初中数学相似三角形经典练习难题易错题(附详解)
![初中数学相似三角形经典练习难题易错题(附详解)](https://img.taocdn.com/s3/m/26c677e28762caaedd33d4b6.png)
.相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。
初中数学相似三角形填空题专题训练含答案
![初中数学相似三角形填空题专题训练含答案](https://img.taocdn.com/s3/m/5553eb2cbdd126fff705cc1755270722192e59bb.png)
初中数学相似三角形填空题专题训练含答案姓名:__________ 班级:__________考号:__________一、填空题(共20题)1、如图,△ ABC 中,AB =AC ,∠ B =72° ,∠ACB 的平分线CD 交AB 于点D ,则点D 是线段AB 的黄金分割点.若AC = 2 ,则BD = ______ .2、已知△ ABC ∽△ DEF ,且AB :DE = 1 : 2 ,则△ABC 的面积与△ DEF 的面积之比为 ______ .3、如图,在中,点分别在边上,且,与四边形的面积的比为 __________ .4、如图,在中,,过点B 作,垂足为B ,且,连接CD ,与AB 相交于点M ,过点M 作,垂足为N .若,则MN 的长为__________ .5、如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点处放一水平的平面镜,光线从点出发经平面镜反射后刚好到古城墙的顶端处,已知,,测得米,米,米,那么该古城墙的高度是 ________ 米.6、如图,在Rt ABC 中,∠ ACB =90° ,CD ⊥ AB ,垂足是D ,,ABC 的周长是 25 ,那么ACD 的周长是 ___ .7、如图,ABC 中,AB = 6 ,AC = 4 ,∠A =90° ,D 是AB 边的中点,点E 在直线AC 上,且ADE 与ABC 相似,则CE = ___ .8、如图,在ABC 中,点D 是边AC 上的任意一点,点M ,N 分别是ABD 和BCD 的重心,如果AC = 6 ,那么线段MN 的长为 ___ .9、如图:AB 、CD 相交于O ,且∠ A =∠ C ,若OA =3 ,OD =4 ,OB =2 ,则OC = ________ .10、如图,为了测量山坡的护坡石坝高,把一根长为的竹竿斜靠在石坝旁,量出竿上长为时,它离地面的高度为,则坝高为 __________ .11、《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆,从木杆的顶端D 观察水岸C ,视线与井口的直径交于点E ,如果测得米,米,米,那么井深为 ______ 米.12、如图,在中,点、分别在、上,.若,,则的值为 __ .13、如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件: _____ ,使△ADE∽△ABC .(不再添加其他的字母和线段;只填一个条件,多填不给分!)14、已知点 D ,E 分别在△ABC 的边AB ,AC 上,△ADE ,△DEC ,△BCD 的面积之比为 4 : 2 : 3 ,∠ACD=∠ADE ,CD= ,则 BC 的长为_______ .15、如图,在△ ABC 中,DE ∥ BC ,且BD = 2 AD ,若DE = 2 ,则BC 边的长为 _____ .16、如图,正方形的对角线相交于点,点在边上,点在的延长线上,,交于点,,,则______ .17、如图,在中,,垂足为,,,四边形和四边形均为正方形,且点、、、、、都在的边上,那么与四边形的面积比为 ______ .18、学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高 1.7m 的小明从路灯灯泡A 的正下方点B 处,沿着平直的道路走 8m 到达点D 处,测得影子DE 长是 2m ,则路灯灯泡A 离地面的高度AB 为 _______________m .19、如图,已知点,点为直线上的一动点,点,,于点,连接.若直线与正半轴所夹的锐角为,那么当的值最大时,的值为 ________ .20、如图,在中,D 为BC 上一点,,则的值为 ________ .============参考答案============一、填空题1、【分析】先根据AB = AC ,∠ B =72° 求出∠A 的度数,再根据CD 是∠ CAB 的角平分线得到∠ A =∠ ACD ,即AD = CD ,再根据大角对大边得到AD > BD ,最后利用黄金分割公式计算求解即可 .【详解】解:∵ AB = AC ,∠ B =72°∴∠ ACB =∠ B =72°∴∠ A =180°-∠ B -∠ ACB =36°∵ CD 是∠ CAB 的角平分线∴∠ ACD =∠ BCD =∴∠ A =∠ ACD∴ AD = CD在△ ABC 与△ CBD 中∠ A =∠ BCD =36° ,∠B =∠ B∴△ ABC ∽△ CBD∴在三角形CDB 中,∠ B =72° ,∠BCD =36°∴∠ CDB =72°∴∠ CDB =∠ B =72°∴ AD = CD = BC∴即∴ D 点为AB 的黄金分割点在三角形CDB 中,∠ B =72° ,∠BCD =36°∴ CD > BD (大角对大边)∴ AD > BD∵ D 是AB 的黄金分割点,AD > BD∴∴故答案为:.【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,黄金分割点,解题的关键在于能够熟练掌握相关知识进行求解 .2、 1 :4【分析】根据相似三角形的面积之比等于相似比的平方解答即可.【详解】解:∵△ ABC ∽△ DEF ,且AB :DE = 1 : 2 ,∴△ ABC 的面积与△ DEF 的面积之比为 1 : 4 ,故答案为: 1 : 4 .【点睛】本题考查相似三角形的性质,熟知相似三角形的面积之比等于相似比的平方是解答的关键.3、【分析】先证明,再根据相似三角形的性质,即可得到,进而即可求解.【详解】解:∵ ,∴∴∵∠B=∠B ,∴ ,∴∴ 与四边形的面积的比 = .故答案是:.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方,是解题的关键.4、【分析】根据MN ⊥ BC , AC ⊥ BC , DB ⊥ BC ,得, 可得, 因为, 列出关于MN 的方程,即可求出MN 的长.【详解】∵ MN ⊥ BC ,DB ⊥ BC ,∴ AC ∥ MN ∥ DB ,∴ ,∴即,又∵ ,∴ ,解得,故填:.【点睛】本题考查相似三角形的判定和性质,解题关键是根据题意得出两组相似三角形以及它们对应边之比的等量关系.5、【分析】首先证明,可得,再代入相应数据可得答案.【详解】解:如图,由题意可得:,,,,,,,米,米,米,,解得:米,故答案为: 10 .【点睛】本题主要考查了相似三角形的应用,解题的关键是掌握相似三角形对应边成比例.6、【分析】根据题意,证明,根据三角形的周长比等于相似比即可求得ACD 的周长.【详解】∠ ACB =90° ,CD ⊥ AB ,,又,,ABC 的周长 : ACD 的周长 = ,,ABC 的周长是 25 ,ACD 的周长是.故答案为: 15 .【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键.7、或或【分析】根据题意,分与两种情形讨论,根据相似三角形的性质列出比例式,进而代入数值求解即可.【详解】ABC 中,AB = 6 ,AC = 4 ,∠A =90° ,D 是AB 边的中点,,① 当时,如图,,,② 当时,如图,,,当在射线上时,,当在射线上时,,综上所述,的长为或或.故答案为:或或.【点睛】本题考查了相似三角形的,分类讨论是解题的关键.8、 2【分析】连接BM 并延长交AC 于E ,连接BN 并延长交AC 于F ,根据三角形的重心是中线的交点可得ED =AD ,DF =CD ,然后求出EF 的长,再根据三角形的重心到顶点的距离等于到对边中点的距离的 2 倍可得BM = 2 ME ,BN = 2 NF ,再根据相似三角形对应边成比例列出求解即可.【详解】解:连接BM 并延长交AC 于E ,连接BN 并延长交AC 于F ,∵ 点M 、N 分别是△ ABD 和△ ACD 的重心,∴ ED =AD ,DF =CD ,BM = 2 ME ,BN = 2 NF ,∵ BC = 6 ,∴ EF =DE + DF =(AD + CD )=BC =×6 = 3 ,∵ ==,∠ EBF =∠ MBN ,∴△ BEF ∽△ BMN ,∴ =,即=,∴ MN = 2 .故答案为: 2 .【点睛】本题考查了三角形重心,解题关键是明确三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的 2 倍.【详解】∵∠A=∠C ,∠AOD=∠BOC ,∴△AOD∽△COB ;∴ , 即OC= ,又∵OA=3 ,OD=4 ,OB=2 ,∴OC=1.5.10、 2.7【分析】根据,可得,进而得出即可.【详解】解:如图,过作于,则,∴ ,即,解得,故答案为: 2.7【点睛】本题考查了相似三角形应用,解决本题的关键是掌握相似三角形的性质.【分析】由题意易得,则有,然后问题可求解.【详解】解:∵ ,∴ ,∴ ,∵ 米,米,米,∴ ,解得米,故井深AC 为 7 米.【点睛】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.12、【分析】首先根据,得出,即可得出,进而得的值.【详解】解:,,,,,,则的值为.故答案为:.【点睛】此题主要考查了相似三角形的判定与性质,根据已知得出△ ADE ∽△ ABC 是解题关键.13、∠B=∠1 或【分析】此题答案不唯一,注意此题的已知条件是:∠ A =∠ A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可 .【详解】此题答案不唯一,如∠ B =∠1 或.∵∠ B =∠1 ,∠A =∠ A ,∴△ ADE ∽△ ABC ;∵ ,∠ A =∠ A ,∴△ ADE ∽△ ABC ;故答案为∠ B =∠1 或【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题 .14、 3【分析】根据△ADE ,△DEC ,△BCD 的面积之比为 4 :2 :3 ,可得出AE :EC=2 :1 ,AD :BD=2 :1 ,则可证明DE∥BC ,利用平行线的性质与相似三角形的判定可得△ACD∽△ABC 与△ACD∽△ADE ,根据相似三角形的判定可推出,计算后即可得出结论.【详解】解:如图,∵S△ADE : S△DEC=4 : 2 ,∴AE :EC=2 : 1 ,∵S△ADE : S△DEC: S△BCD=4 : 2 : 3 ,∴S△ACD : S△BCD=6 : 3 ,∴AD :BD=2 : 1 ,∵ ,∴DE∥BC ,∴∠B=∠ADE ,∵∠ACD=∠ADE ,∴∠ACD=∠B ,∵∠A=∠A ,∴△ACD∽△ABC ,∴ ,同理可证:△ACD∽△ADE ,∴ ,∴ ,∵DE∥BC ,∴△ABC∽△ADE ,,∴ ,∵AD :BD=2 : 1 ,∴ ,∴ ,∴ ,∴ ,∵CD= ,∴ .故答案为: 3 .【点睛】此题主要考查了相似三角形的判定与性质,掌握平行线的判定与相似三角形的判定与性质是解题的关键.15、 6【分析】由BD = 2 AD ,可得再证明即可得到答案.【详解】解:DE ∥ BC ,且BD = 2 AD ,故答案为:【点睛】本题考查的是相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.16、【分析】作出如图所示的辅助线,利用SAS 证明△ ADH △ ABF 以及△ EAF △ EAH ,在Rt △ ABE 中,利用勾股定理求得正方形的边长,再证明△ BAF △ OAG ,即可求解.【详解】解:如图,在CD 上取点H ,使DH = BF =2 ,连接EH 、AH ,∵ 四边形ABCD 是正方形,∴∠ ADH =∠ ABC =∠ ABF =90° ,AD = AB ,∠ BAC =∠ DAC =45° ,∴△ ADH △ ABF ( SAS ) ,∴∠ DAH =∠ BAF ,AH = AF ,∵∠ EAF =45° ,即∠BAF +∠ EAB =45° ,∴∠ DAH +∠ EAB =45° ,则∠EAH =45° ,∴∠ EAF =∠ EAH =45° ,∴△ EAF △ EAH ( SAS ) ,∴ EF = EH ,∵ ,设BE = a ,则AB =2 a ,EC = a ,CH =2 a -2 ,EF = EH = a +2 ,在Rt △ CEH 中,, 即,解得:,则AB = AD =6 ,BE = EC =3 ,在Rt △ ABE 中,,∴ AE =3 ,同理AF =2 ,AO = AB =3 ,∵ BE ∥ AD ,∴ ,∴ AG =2 ,∴ ,,∴ ,∵∠ EAF =∠ BAC =45° ,∴∠ BAF =∠ OAG ,∴△ BAF △ OAG ,∴ ,∵∠ GAF =∠ OAB =45° ,∴△ GAF 是等腰直角三角形,∴ FG = AG =2 ,故答案为: 2 .【点睛】本题主要考查了四边形综合题,熟练掌握正方形的性质,全等三角形的判定及性质,相似三角形的判定和性质,锐角三角函数是解题的关键.17、1∶3【分析】先设四边形和四边形的边长为x ,然后根据AEM ∽ ABC 可得,进而可求得AP = 2.5 ,EM = 5 ,然后分别求得S △ AEM =,S △ ABC = 25 ,即可求得S 四边形BCME =S △ ABC -S △ AEM =,由此可得答案.【详解】解:∵ 四边形和四边形均为正方形,∴ 设四边形和四边形的边长为x ,则EM = 2 x ,EF =x ,EF ⊥ BC ,EM ∥ BC ,∵ AD ⊥BC ,∴ PD =EF =x ,∵ AD = 5 ,∴ AP =AD -PD = 5 -x ,∵ EM B C ,∴ AEM ∽ ABC ,∴ ,∴ ,解得:x = 2.5 ,∴ AP = 2.5 ,EM = 5 ,∴ S △ AEM ==,又∵ S △ ABC == 25 ,∴ S 四边形BCME =S △ ABC -S △ AEM= 25 -=,∴ S △ AEM ∶ S 四边形BCME =∶ =1∶3 ,故答案为:1∶3 .【点睛】本题考查了正方形的性质、相似三角形的判定及性质,熟练掌握相似三角形的判定及性质是解决本题的关键.18、 8.5【分析】根据题意得,利用相似三角形的性质求解即可.【详解】解,根据题意得,∴∴∴故答案为: 8.5【点睛】此题主要考查了相似三角形的应用,正确得出BE 的长是解题关键.19、【分析】设直线y =﹣ 2 与y 轴交于G ,过A 作AH ⊥ 直线y =﹣ 2 于H ,AF ⊥ y 轴于F ,根据平行线的性质得到∠ ABH =α ,由三角函数的定义得到,根据相似三角形的性质得到比例式,于是得到GB (n +2 )(3 ﹣n )(n ) 2 ,根据二次函数的性质即可得到结论.【详解】解:如图,设直线y =﹣ 2 与y 轴交于G ,过A 作AH ⊥ 直线y =﹣ 2 于H ,AF ⊥ y 轴于F ,∵ BH ∥ x 轴,∴∠ ABH =α ,在Rt△ ABH 中,, ,即=∵sinα 随BA 的减小而增大,∴ 当BA 最小时sinα 有最大值;即BH 最小时,sinα 有最大值,即BG 最大时,sinα 有最大值,∵∠ BGC =∠ ACB =∠ AFC =90° ,∴∠ GBC +∠ BCG =∠ BCG +∠ ACF =90° ,∴∠ GBC =∠ ACF ,∴△ ACF ∽△ CBG ,∴ ,∵ ,即,∴ BG (n +2 )( 3 ﹣n )(n ) 2 ,∵∴ 当n 时,BG 最大值故答案为:.【点睛】本题考查了相似三角形的判定和性质,三角函数的定义,平行线的性质,正确的作出辅助线证得△ ACF ∽△CBG 是解题的关键.20、.【分析】证明△ ABD ∽△ CBA ,根据相似三角形的性质即可解答.【详解】∵ ,∴ ,,∴ ,∵∠ B =∠ B ,∴△ ABD ∽△ CBA ,∴ .故答案为:.【点睛】本题考查了相似三角形的判定及性质,证明△ ABD ∽△ CBA 是解决问题的关键.。
相似三角形试题及答案
![相似三角形试题及答案](https://img.taocdn.com/s3/m/88c1af8c185f312b3169a45177232f60dccce769.png)
相似三角形试题及答案一、选择题1. 在相似三角形中,对应角相等的条件是:A. 边长成比例B. 面积相等C. 周长相等D. 角相等答案:A2. 下列选项中,哪一项不是相似三角形的性质?A. 对应边成比例B. 对应角相等C. 面积比等于边长比的平方D. 周长比等于边长比答案:B二、填空题3. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则三角形ABC的面积与三角形DEF的面积之比是________。
答案:4:94. 若三角形ABC与三角形A'B'C'相似,且∠A=∠A'=60°,则∠B与∠B'的关系是________。
答案:相等三、简答题5. 解释为什么在相似三角形中,对应边长的比等于对应角的正弦值之比。
答案:在相似三角形中,由于对应角相等,根据正弦定理,对应边长的比等于对应角的正弦值之比。
这是因为正弦值与角的大小成正比,而相似三角形的对应角大小相同,因此它们的正弦值之比也相同。
四、计算题6. 在三角形ABC中,已知AB=5cm,AC=7cm,∠A=60°,求三角形ABC的面积。
答案:首先,利用余弦定理计算BC的长度。
根据余弦定理,BC²= AB² + AC² - 2AB*AC*cos∠A。
代入已知值,得到BC² = 5² +7² - 2*5*7*(1/2) = 25 + 49 - 35 = 39,所以BC = √39 cm。
然后,利用三角形的面积公式S = (1/2)AB*AC*sin∠A,代入已知值,得到S = (1/2)*5*7*(√3/2) = 17.5√3 cm²。
7. 若三角形ABC与三角形DEF相似,且AB:DE=3:5,求三角形ABC与三角形DEF的面积比。
答案:由于相似三角形的面积比等于边长比的平方,所以三角形ABC与三角形DEF的面积比为(3:5)² = 9:25。
相似三角形练习题(含解析)
![相似三角形练习题(含解析)](https://img.taocdn.com/s3/m/49b32fa6d0f34693daef5ef7ba0d4a7302766c38.png)
相似三角形练习题一、选择题一、下列各组图形中不是位似图形的是()A.B.C.D.二、若2:3=7:x,则x=()A.2B.3C.3.5D.10.53、两个相似三角形的一组对应边别离为5cm和3cm,若是它们的面积之和为136cm2,则较大三角形的面积是()A.36cm2B.85cm2C.96cm2D.100cm2 4、如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A.(1,-2)B.(-2,1)C.()D.(1,-1)五、如图,已知点A在反比例函数y=(x < 0)上,作Rt△ABC,点D是斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8,则k的值为( )A .8B .12C .16D .20六、如图,平面直角坐标系中,直线y=-x+a与x、y轴的正半轴别离交于点B和点A,与反比例函数y=-的图象交于点C,若BA:AC=2:1,则a的值为()A.2B.-2C.3D.-37、如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于( )A .6B .5C .9D .八、如图,已知在△ABC中,点D、E、F别离是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( )A .5∶8B .3∶8C .3∶5D .2∶5九、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③=;④=AD•AB.其中单独能够判定△ABC∽△ACD的个数为( )A .1B .2C .3D .410、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B动身,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为()A.B.C.D.1一、在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC 的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒).设△OMN的面积为S,则能反映S与t之间函数关系的大致图象是()A.B.C.D.1二、如图,已知在梯形ABCD中,AD∥BC,BC=2AD,若是对角线AC与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积别离记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S4二、填空题13、如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是 __________ cm.14、如图,在△PMN中,点A、B别离在MP和NP的延长线上,==,则= __________ .三、解答题1五、已知=,求下列算式的值.(1);(2)1六、如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,极点E、H别离在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积。
相似三角形经典练习题及答案
![相似三角形经典练习题及答案](https://img.taocdn.com/s3/m/a9fda76f854769eae009581b6bd97f192279bfc3.png)
相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。
因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。
2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。
因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。
因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。
3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。
设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。
4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。
因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。
所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。
5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考相似三角形填空题精选
1.(2009年重庆市江津区)锐角△ABC 中,BC =6,,12=∆ABC S 两动点M 、N 分别在边AB 、AC 上滑动,且MN ∥BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与△ABC 公共部分的面积为y (y >0),当x = ,公共部分面积y 最大,y 最大值 = ,
【关键词】三角形、正方形、二次函数极值 相似
【答案】3,6x y ==
2.(2009年滨州)在平面直角坐标系中,ABC △顶点A 的坐标为(23),,若以原点O 为位似中心,画ABC △的位似图形A B C '''△,使ABC △与A B C '''△的相似比等于12
,则点A '的坐标为 .
【关键词】三角形位似..
【答案】(4,6)
3.(2009威海)如图,△ABC 与△A ′B ′C ′是位似图形,点O 是位似中心,若OA=2A A ′,S △ABC =8,则S △A ′B ′C ′=________.
【关键词】位似图形
【答案】18
4.(2009年吉林省)如图,OAB △的顶点B 的坐标为(4,0),把OAB △沿x 轴向右平移得到CDE △,如果1,CB =那么OE 的长为 .
【关键词】平移,平面直角坐标系内的平移
【答案】7
5.(2009山西省太原市)如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割.已知
AB =10cm ,则AC 的长约为 cm .
(结果精确到0.1cm )
解析:本题考查黄金分割的有关知识,由题意知2AC BC AB =⨯,
∴()21010AC AC =-⨯,解得x ≈6.2,故填6.2..
【关键词】黄金分割
【答案】6.2.
6.(2009烟台市)如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论:
①AFC C ∠=∠;
②DF CF =;
③ADE FDB △∽△;
④BFD CAF ∠=∠.
其中正确的结论是 (填写所有正确结论的序号).
【关键词】全等、相似
【答案】①,③,④
7.(2009年甘肃庆阳)如图11,正方形OEFG 和正方形ABCD 是位似形,点F 的坐标为(1,
1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是 .
【关键词】相似三角形判定和性质
【答案】(2-,0)
8.(2009年广西南宁)三角尺在灯泡O 的照射下在墙上形成影子(如图6所示).现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比
是 .
【关键词】投影;相似三角形
【答案】25
9.(2009年孝感)如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 ▲ .
【关键词】相似三角形
【答案】144;
10.(2009年牡丹江市)如图,Rt ABC △中,90ACB ∠=°,
直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CF AD
= .
【关键词】相似三角形的性质
【答案】12
11. (2009年日照市)将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .
【关键词】相似三角形的性质 【答案】712或2; 12.(2009年重庆)已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 .
【关键词】相似三角形的性质
【答案】2:5.
13.(2009年莆田)如图,A B 、两处被池塘隔开,为了测量A B 、两处的距离,在AB 外选一适当的点C ,连接AC BC 、,并分别取线段AC BC 、的中点E F 、,测得EF =20m ,则AB =__________m .
【关键词】相似三角形
答案:40
14. (2009年牡丹江)如图,Rt ABC △中,90ACB ∠=°,
直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =
△四边形,则CF AD = . 【关键词】相似三角形的面积比
【答案】12
15.(2009年凉山州)已知ABC A B C '''△∽△且1:2ABC A B C S S '''=△△:,则:AB A B ''= .
【关键词】相似三角形的性质
【答案】1:2
16. (2009年宁德市)如图,△ABC 与△DEF 是位似图形,位似比为2∶3,已知AB =4,则DE 的长为 ____.
【关键词】位似
【答案】6
17.(2009年湖北荆州)如图,已知零件的外径为25mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC=OD )量零件的内孔直径AB .若OC ∶OA=1∶2,量得CD =10mm ,则零件的厚度_____x mm =.
【关键词】相似三角形
【答案】
18.(2009年新疆乌鲁木齐市)如图,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC = .
【关键词】相似三角形判定和性质
【答案】8
19. (2009年山西省)如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 .
【关键词】相似,中心投影
【答案】(9,0)
20. (2009年黄石市)在□ABCD 中,E 在DC 上,若:1:2DE EC =,则:BF BE = .
【关键词】平行四边形的性质;相似三角形判定和性质
【答案】5:3
21.(2009东营)将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC 相似,那么BF的长度是.
【关键词】相似三角形
【答案】12
7
或2;。