高中数学_必须掌握的六种常用的数学思想方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学_必须掌握的六种常用的数学思想方法

数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。

而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

常用数学思想方法有:

1、数形结合的思想方法

2、分类讨论的思想方法

3、函数与方程的思想方法

4、转化(化归)的思想方法

5、分类讨论的思想方法

6、整体的思想方法。

更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。

一、数形结合的数学思想方法

数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

1、导读:

2、相关内容:

3、再现性题组:

1.如果θ是第二象限的角,且满足cos θ

2

-sin

θ

2

=1-sinθ,那么

θ

2

是_____。

A.第一象限角

B.第三象限角

C.可能第一象限角,也可能第三象限角

D.第二象限角

2.如果实数x、y满足等式(x-2)2+y2=3,那么y

x

的最大值是_____。

A. 1

2

B.

3

3

C.

3

2

D. 3

4、巩固性题组:

1.已知5x+12y=60,则x y

22

+的最小值是_____。

A. 60

13 B. 13

5

C. 13

12

D. 1

2.方程2x=x2+2x+1的实数解的个数是_____。

A. 1

B. 2

C. 3

D.以上都不对

3.方程x=10sinx的实根的个数是_______。

二、分类讨论的数学思想方法

①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。

③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。

Ⅰ、再现性题组:

1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A B,那么a

的范围是_____。

A. 0≤a≤1

B. a≤1

C. a<1

D. 0

7.过点P(2,3),且在坐标轴上的截距相等的直线方程是_____。

A. 3x-2y=0

B. x+y-5=0

C. 3x-2y=0或x+y-5=0

D.

不能确定

三、函数与方程的数学思想方法

笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。

Ⅰ、再现性题组:

1.方程lgx+x=3的解所在的区间为_____。

A. (0,1)

B. (1,2)

C. (2,3)

D. (3,+∞)

5.已知等差数列的前n项和为S

n ,且S p=S

q

(p≠q,p、q∈N),则S

p q

_________。

6.关于x的方程sin2x+cosx+a=0有实根,则实数a的取值范围是__________。

四、等价转化的数学思想方法

著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。

Ⅰ、再现性题组:

3. 若m、n、p、q∈R且m2+n2=a,p2+q2=b,ab≠0,则mp+nq的最大值是______。

A. a b

+

2

B. ab

C.

a b

22

2

+

D.

ab

a b

+

Ⅱ、示范性题组:

例1. 若x、y、z∈R+且x+y+z=1,求(1

x

-1)(

1

y

-1)(

1

z

-1)的最小值。

五、分类讨论的数学思想方法

六.整体的数学思想方法

相关文档
最新文档