数学物理方法题库

合集下载

数学物理方法试题(卷)

数学物理方法试题(卷)

数理方法概论试题及参考答案一、简答题(每小题5分,共20分)1. 写出高斯定理⎰⎰⋅∇=⋅SVdV d A S A2. 在斯托克斯定理()⎰⎰⋅⨯∇=⋅SLd A d S l A中, L 是式中那个量的边界线? 3. 定解问题包含那两部分?在数学上,边界条件和初始条件合称为定解条件,数学物理方程本身(不连带定解条件)叫做泛定方程.定解条件提出具体问题,泛定方程提供解决问题的依据,作为一个整体,叫做定解问题. 4. 边界条件有那几类?1) 直接规定边界上的值.这叫做第一类边界条件.()()t ,z ,y ,x f t ,z ,y ,x u S 000=2) 直接规定梯度在边界上的值.这叫做第二类边界条件.()t ,z ,y ,x f nu S000=∂∂3) 规定了边界上的数值与(外)法向导数在边界上的数值之间的一个线性关系.()t ,z ,y ,x f n u H u S 000=⎪⎭⎫ ⎝⎛∂∂+4) 除上述的边界条件外,在求解物理问题时,一般还会遇到所谓的自然边界条件.自然边界条件一般由物理问题本身提出,由于真实的物理量应该是有限的,而在无穷远或坐标原点处的数学的解往往会包含无穷大的解在内,这时从物理上考虑应该舍去这些解,这就构成了上述的自然边界条件.除此之外还有周期性自然边界条件.二、证明题(每小题20分,共40分)1. 证明 ϕϕ2∇≡∇⋅∇ 证: 2222222x y z x y z x y z ϕϕϕϕ⎛⎫⎛⎫∂∂∂∂∂∂∇⋅∇=++⋅++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎛⎫∂∂∂=++≡∇ ⎪∂∂∂⎝⎭xy z x y z e e e e e e 2. 证明不同阶的勒让德多项式在区间()11+-,上正交.()()()l k dx x P x P lk≠=⎰+-011证明:设本征函数k P 和l P 分别满足勒让德方程()()()()01101122=++⎥⎦⎤⎢⎣⎡-=++⎥⎦⎤⎢⎣⎡-l l k k P l l dx dP x dx d P k k dx dP x dx d前一式乘以l P ,后一式乘以k P ,然后相减得()()()()[]0111122=+-++⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-l k l k k lP P l l k k dx dP x dx d P dx dP x dx d P 从1-到1+积分得()()()()11221101111k l l k k l dP dP d d P x P x dx k k l l P Pdx dx dx dx dx ++--⎧⎫⎡⎤⎡⎤=---++-+⎡⎤⎨⎬⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎰⎰ ()()()()1122111111k l l k k l dP dP d x P x P dx k k l l P Pdx dx dx dx ++--⎧⎫=---++-+⎡⎤⎨⎬⎣⎦⎩⎭⎰⎰()()()()()()()()222211111111111111k l k l l k l k x x k l k l dP dP dP dP x P x P x P x P dx dx dx dx k k l l P Pdxk k l l P Pdx==-+-+-⎡⎤⎡⎤=-------⎢⎥⎢⎥⎣⎦⎣⎦++-+⎡⎤⎣⎦=+-+⎡⎤⎣⎦⎰⎰当l k ≠时即有:()110k lP Pdx k l +-=≠⎰三、计算题(每小题20分,共40分)1. 研究矩形波(见图1)1(0,)(2,(21))()1(,0)((21),2)m m f x m m ππππππ++⎧=⎨---⎩于以及于以及的频谱.解:根据()01cos sin k k k k x k x f x a a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑及()1cosln ln n a f d l lπξξξδ-=⎰ ()1sin l n l n b f d l lπξξξ-=⎰这里l π=可以求得:x()()000111(1)10222111cos (cos )cos 0n a f d d d a f n d n d n d ππππππππξξξξπππξξξξξξξπππ----==-+===-+=⎰⎰⎰⎰⎰⎰()[][]00122sin sin cos 22cos 1(1)1n nb f n d n d n n n n n ππππξξξξξξππππππ-===-⎡⎤=-+=--+⎣⎦⎰⎰当 220k n kb == 当 21421(21)k n k b k π+=+=+因此得到该函数的展开式为:04sin(21)()21k k xf x k π∞=+=+∑ 需要注意的是:由于所给函数是奇函数,所以展开式中只有sin 项而没有cos .如果所给函数是偶函数,那么展开式中就只有cos 项而没有sin 项.2. 求0=+''y y λ (0=+''ΦλΦ)满足自然周期条件()()x y x y =+π2 [()()φΦπφΦ=+2]的解.解:方程的系数()()λ==x q ,x p 0在指定的展开中心00=x ,单值函数(),x p 00=和()λ=0x q 是有限的,它们必然是有限的,它们必然在00=x 为解析的.因此,点00=x 是方程的常点.可设() +++++=k k x a x a x a a x y 2210从而()() ++++++='+k k x a k x a x a a x y 123211321()()() +++++⋅+⋅+⋅=''+k k x a k k x a x a a x y 2243212342312把以上的级数代入微分方程.至于()()λ==x q ,x p 0都是只有常数项的泰勒级数,无需再作展开.现在把各个幂次的项分别集合如下令上表各个幂次合并后的系数分别为零,得一系列方程01202=+⋅a a λ 02313=+⋅a a λ03424=+⋅a a λ 04534=+⋅a a λ............... ...............()()0122=++++kk a a k k λ最后一个式子是一般的.所有这些式子指出从kx 项的系数k a 可以推算出2+k x 项的系数2+k a ,因而叫做系数的递推公式.按照递推公式具体进行系数的递推.()()()()()()20312242053122120021112!3!434!545!11112!2!21!kk kkkkkkk k a a a a a a a a a a a a a a a k k k λλλλλλλλ++=-=-=-=+=-=+⋅⋅-=-=-=-=+这样,我们得到方程的解()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡++-+-+-+⎥⎦⎤⎢⎣⎡-+-+-=+ 125312420!1211!51!31!211!41!211k k k kxk x x x a x k x x a x y λλλλλλλλ还需要确定这个级数的收敛半径.其实,上面两个[ ]正是cos θ和sin θ,其收敛半径为无穷大.于是()0y x a =既然1a 是任意常数,λ1a 当然还是任意常数,将λ1a 写成B ,0a 写成A ,则有()y x A B =+这个常微分方程和它的解实际早已知道,这里用级数方法只是为了了解级数解法的步骤.考虑到要满足自然周期条件()()x y x y =+π2则m =λ, 3210,,,m =.所以有解()cos sin y x A mx B mx =+。

数学物理方法综合试题及答案

数学物理方法综合试题及答案

复变函数与积分变换综合试题(一)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设,则( )A. B. C. D.2.复数的三角表示式为()A. B.C. D.3.设C为正向圆周|z|=1,则积分等于()A.0 B.2πi C.2π D.-2π4.设函数,则等于( )A. B. C. D.解答:5.是函数的()A.3阶极点B.4阶极点C.5阶极点D.6阶极点6.下列映射中,把角形域保角映射成单位圆内部|w|<1的为()A.B. C.D.7。

线性变换 ( )A。

将上半平面>0映射为上半平面Imω>0B。

将上半平面〉0映射为单位圆|ω|〈1C.将单位圆|z|〈1映射为上半平面Imω>0D.将单位圆|z|<1映射为单位圆|ω|<18。

若在Z平面上解析,,则=()A。

) B。

C. D.9。

在的罗朗展开式是()A。

B.C。

D。

10。

=()A。

sin9 B.cos9 C.cos9 D。

sin9二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.方程的解为_________________________.12.幂极数的收敛半径为________________________.13.设,则Imz=______________________。

14.设C为正向圆周|z|=1,则=___________________________。

15.设C为正向圆周,,其中,则=___________________.16.函数在点z=0处的留数为__________________。

三、计算题(本大题共8小题,共52分)17. 计算积分的值,其中C为正向圆周|z—1|=3.18。

函数 (n为正整数)在何处求导?并求其导数19。

数学物理方法

数学物理方法

《 数学物理方法 》试题(A 卷)说明:本试题共3页四大题,30小题。

1.z 为复数,则( )。

A ln z 没有意义;B ln z 为周期函数;C Ln z 为周期函数;D ln()ln z z -=-。

2.下列积分不为零的是( )。

A 0.51z dz z π=+⎰; B 20.51z dz z π=-⎰; C10.5z dzz π=+⎰; D211z dz z π=-⎰。

3.下列方程是波动方程的是( )。

A 2tt xx u a u f =+; B 2t xx u a u f =+;C 2t xx u a u =; D2tt x u a u =。

4.泛定方程2tt x u a u =要构成定解问题,则应有的初始条件个数为( )。

A 1个;B 2个;C 3个;D 4个。

5.二维拉普拉斯方程的定解问题是( )。

A 哥西问题; B 狄拉克问题; C 混合问题; D 狄里克雷问题。

6.一函数序列的序参量n趋于某值a时有()(,)()()n ax f n x dx x f x dx ϕϕ→−−−→⎰⎰则我们称( )。

A (,)f n x 收敛于()f x ;B (,)f n x 绝对收敛于()f x ;C (,)f n x 弱收敛于()f x ;D (,)f n x 条件收敛于()f x 。

7.傅里叶变换在物理学和信息学中能实现( )。

A 脉冲信号的高斯展宽;B 高斯信号压缩成脉冲信号;C 实空间信号的频谱分析;D 复频信号的单频滤波。

8.用分离变量法求解偏微分方程定解问题的一般步骤是( )。

A 分离变量 解单变量本征值问题 得单变量解得分离变量解; B 分离变量 得单变量解 解单变量本征值问题 得分离变量解; C 解单变量本征值问题 得单变量解 分离变量 得分离变量解; D 解单变量本征值问题 分离变量 得单变量解 得分离变量解。

9.下列表述中不正确的是( )。

A 3sin zz 在0z =处是二阶极点;B 某复变函数在开复平面内有有限个奇点,所有这些奇点的残数之和为零;C 残数定理表明,解析函数的围线积分为复数;D 某复变函数在某处为m 阶极点,则其倒函数在该奇点处为m 阶零点。

物理数学物理法练习全集含解析

物理数学物理法练习全集含解析

物理数学物理法练习全集含解析一、数学物理法1.如图所示,空间有场强E =1.0×102V/m 竖直向下的电场,长L =0.8m 不可伸长的轻绳固定于O 点.另一端系一质量m =0.5kg 带电q =+5×10-2C 的小球.拉起小球至绳水平后在A 点无初速度释放,当小球运动至O 点的正下方B 点时绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=53°、无限大的挡板MN 上的C 点.试求:(1)小球运动到B 点时速度大小及绳子的最大张力; (2)小球运动到C 点时速度大小及A 、C 两点的电势差;(3)当小球运动至C 点时,突然施加一恒力F 作用在小球上,同时把挡板迅速水平向右移至某处,若小球仍能垂直打在档板上,所加恒力F 的最小值。

【答案】(1)30N ; (2)125V ; (3)0~127︒︒ 【解析】 【分析】 【详解】(1)小球到B 点时速度为v ,A 到B 由动能定理21()2mg qE L mv +=2()v F mg qE m L-+=解得42/v m s =F=30N(2)高AC 高度为h AC ,C 点速度为v 1152m/s sin v v θ==211()2AC mg qE h mv +=U =Eh AC解得U =125V(3)加恒力后,小球做匀速直线运动或者匀加速直线运动,设F 与竖直方向夹角为α,当小球匀速直线运动时α=0,当小球匀加速直线运动时,F 的最小值为F 1,F 没有最大值1()sin 8N F mg qE θ=+=F 与竖直方向的最大夹角为180127αθ=︒-=︒ 0127α≤≤︒F ≥8N2.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I 和II 两个区域,I 区域的宽度为d ,右侧磁场II 区域还存在平行于xoy 平面的匀强电场,场强大小为E =22B qdm,电场方向沿y 轴正方向。

物理数学方法试题及答案

物理数学方法试题及答案

物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。

答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。

答案:复频域3. 线性微分方程的解可以表示为______的线性组合。

答案:特解4. 复数z = a + bi的共轭复数是______。

答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。

答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。

答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。

2. 什么是波动方程?请给出其一般形式。

答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。

3. 请解释什么是特征值和特征向量,并给出一个例子。

答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。

特征向量则是对应的非零向量。

例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。

数学物理方法期末考试试题

数学物理方法期末考试试题

数学物理方法期末考试试题# 数学物理方法期末考试试题## 第一部分:选择题(每题2分,共20分)1. 以下哪个不是数学物理中的常用方法?A. 傅里叶变换B. 拉普拉斯变换C. 泰勒级数展开D. 牛顿迭代法2. 求解偏微分方程时,分离变量法的基本思想是什么?A. 将偏微分方程转化为常微分方程B. 将偏微分方程分解为几个独立的方程C. 将偏微分方程转化为线性方程D. 将偏微分方程转化为积分方程3. 在数学物理中,格林函数通常用于解决什么问题?A. 线性代数问题B. 非线性偏微分方程C. 边界值问题D. 初始值问题4. 以下哪个是求解波动方程的典型方法?A. 特征线法B. 有限差分法C. 有限元法D. 蒙特卡洛方法5. 拉普拉斯方程在数学物理中通常描述了什么类型的物理现象?A. 波动现象B. 热传导现象C. 流体动力学问题D. 电磁场问题## 第二部分:简答题(每题10分,共30分)6. 简述傅里叶变换在数学物理中的应用。

7. 解释什么是边界层理论,并说明它在流体力学中的重要性。

8. 描述格林函数在求解偏微分方程中的作用。

## 第三部分:计算题(每题25分,共50分)9. 给定函数 \( f(x) = x^2 - 4x + 3 \),使用泰勒级数展开在\( x = 1 \) 处展开 \( f(x) \) 并求出展开式。

10. 考虑一个无限长直导体,在 \( x \) 轴上,导体的电势 \( V(x) \) 满足泊松方程 \( \nabla^2 V = -\rho/\varepsilon_0 \),其中\( \rho \) 是电荷密度,\( \varepsilon_0 \) 是真空电容率。

假设\( \rho \) 是常数,求解 \( V(x) \)。

## 第四部分:论述题(共30分)11. 论述数学物理方法在解决实际物理问题中的应用,并给出至少两个具体的例子。

请注意,以上内容仅为示例,实际的数学物理方法期末考试试题可能会包含不同的问题和要求。

数学物理方法试题汇总

数学物理方法试题汇总

12届真题1. 求下列各小题(2*5=10分):(1)用几何图形表示0arg(1)4z π<-<; (2)给出序列(1/)sin 6n n z i n π=+的聚点; (3)在复数域中求解方程cos 4z =的解;(4)给出二阶偏微分方程的基本类型;(5)给出解析函数所满足的柯西-黎曼方程。

2.按给定路径计算下列积分(5*2=10分):(1)320Re izdz +⎰,积分路径为线段[0,3]和[3,3+2i]组成的折线;(2)11,==⎰积分路径由z=1出发的。

3.利用留数定理计算下列积分(5*2=10分):(1)241x dx x +∞-∞+⎰; (2)3||1zz e dz z =⎰。

4.求常微分方程20w z w ''-=在0z =邻域内的两个级数解(15分)。

5.求下列线性非奇次偏微分方程的通解:2222u u xy y x y∂∂-=-∂∂(15分)。

6.利用分离变量法求解:(20分)2222000(),|0, |0,0, 0.x x l t t u u x l x t x u u u u t ====⎧∂∂-=-⎪∂∂⎪⎪==⎨⎪∂⎪==∂⎪⎩7.用拉普拉斯变换方法求解半无解问题(20分)220, 0,0,(0,)1, lim (,) 0, (,0)|0, 0.x u u x t t x u t u x t t u x x κ→∞⎧∂∂-=>>⎪∂∂⎪⎪=>⎨⎪=>⎪⎪⎩有界,2005级一、填空(请写在答题纸上,每题6分,共计48分)1. 三维泊松方程是______________________________2. 边界为Γ的区域Ω上函数u 的第二类边界条件为___________________。

3. 极坐标下的二维拉普拉斯方程为__________________________。

4. 定解问题2002||0tt xx t t t u u x u x u ===-∞<<+∞⎧⎪⎨==⎪⎩, ,的解__________________________。

【物理】物理数学物理法题20套(带答案)含解析

【物理】物理数学物理法题20套(带答案)含解析

【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1. 两块平行正对的水平金属板AB, 极板长 , 板间距离 , 在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场, 磁感应强度 , 方向垂直纸面向里。

两极板间电势差UAB 随时间变化规律如右图所示。

现有带正电的粒子流以 的速度沿水平中线 连续射入电场中, 粒子的比荷 , 重力忽略不计, 在每个粒子通过电场的极短时间内, 电场视为匀强电场(两板外无电场)。

求:(1)要使带电粒子射出水平金属板, 两金属板间电势差UAB 取值范围;(2)若粒子在距 点下方0.05m 处射入磁场, 从MN 上某点射出磁场, 此过程出射点与入射点间的距离 ;(3)所有粒子在磁场中运动的最长时间t 。

【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为 , 此时粒子在电场中做类平抛运动, 加速大小为a,时间为t1。

水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知, 要使带电粒子射出水平金属板, 两板间电势差100V 100V AB U -≤≤(2)如图所示从 点下方0.05m 处射入磁场的粒子速度大小为v, 速度水平分量大小为 , 竖直分量大小为 , 速度偏向角为θ。

粒子在磁场中圆周运动的轨道半径为R, 则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。

如图所示粒子进入磁场速度大小为v1, 速度水平分量大小为 , 竖直分量大小为vy1, 速度偏向角为α, 则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为 , 则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2. 如图, 在长方体玻璃砖内部有一半球形气泡, 球心为O, 半径为R, 其平面部分与玻璃砖表面平行, 球面部分与玻璃砖相切于O'点。

数学物理方法复习题

数学物理方法复习题

第一部分:填空题1复变函数f(z) u(x,y) i v(x,y)在点z x i y可导的必要条件是____ 2 柯西黎曼方程在极坐标系中的表达式为_______ 3 复变函数f(z) zz在z ____处可导4复变函数f(z) xy i y在z ____处可导5 ln( 1) _____6 指数函数f(z) ez的周期为______ 21dz _____ 7 1z 2(z )2zezdz _____ 8 z 3z 3 19 dz _____ 2 z 4z 2 1cos zd z _________ 5(z 1)z 111 z10 11 在z0 1的邻域上将函数f(z) e展开成洛朗级数为__________12 将e1/z在z0 0的邻域上展开成洛朗级数为_____________1在z0 1的邻域上展开成洛朗级数为________________ z 1sinz14 z0 0为函数的________________ 2z115 z0 0为函数sin的________________ z13 将sin16 z0 1为函数e17 z0 0为函数11 z的____________________ cosz的______阶极点4zsinz18 z0 0为函数4的______阶极点z1 e2z19 函数f(z) 在z0 0的留数Resf(0) ________ z320 函数f(z) e11 z在z0 1的留数Resf(1) ________,在无限远点的留数Resf( ) ________21 函数f(z) e1/z2在z0 0的留数Resf(0) ________22 函数f(z) cosz在z0 0的留数Resf(0) ________ 3zsinz23 函数f(z) 3在z0 0的留数Resf(0) ________ z24 积分 f( ) (t0 )d ______ (t (a,b) )ab25 两端固定的弦在线密度为 f(x,t) (x)sin t的横向力作用下振动,泛定方程为_______________.26 两端固定的弦在点x0受变力 f(x,t) f0sin t的横向力的作用,其泛定方程为_________________.27 弦在阻尼介质中振动,单位长度的弦所受的阻力F R ut(R为阻力系数),弦在阻尼介质中的振动方程为_______________。

物理数学物理法题20套(带答案)

物理数学物理法题20套(带答案)

物理数学物理法题20套(带答案)一、数学物理法1.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。

若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。

已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。

若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。

两小球重力均不计。

(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。

【答案】(1)2n ,21n n ;(2)123rr n n -【解析】 【详解】(1)两小球静止反向弹开过程,系统动量守恒有A 1B mv n mv =①小球A 、B 在磁场中做圆周运动,分别有2A A A mv qv B r =,21B2B Bn mv n qv B r =②解①②式得A2Br n r = 磁场运动周期分别为A 2πmT qB=,1B 22πn m T n qB =解得运动时间之比为AA2B B 122T t n T t n == (2)如图所示,小球A 经圆周运动后,在电场中做类平抛运动。

水平方向有A A L v t =③竖直方向有2A A A 12y a t =④ 由牛顿第二定律得A qE ma =⑤解③④⑤式得2A A()2qE L y m v =⑥ 小球B 在电场中做类平抛运动,同理有22B 1B()2n qE L y n m v =⑦ 由题意知B y r =⑧应用几何关系得B A 2y y r y ∆=+-⑨解①⑥⑦⑧⑨式得123r y r n n ∆=-2.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.3.如图所示,MN 是两种介质的分界面,下方是折射率2n =空,P 、B 、P '三点在同一直线上,其中6PB h =,在Q 点放置一个点光源,AB 2h =,QA h =,QA 、PP '均与分界面MN 垂直。

数学物理方法试卷

数学物理方法试卷

数学物理方法试卷数学物理方法是一门重要的学科,它将数学和物理学相结合,以求解物理问题为目标。

本文档旨在提供一份针对数学物理方法的试卷,帮助学生加深对该学科的理解和应用能力。

一、选择题(共10题,每题2分)1. 下列哪个是四位数?A. 123B. 12345C. 123456D. 12342. 如何计算三角形的面积?A. 底乘高除以2B. 长乘宽C. 半径的平方乘以πD. 无法计算3. 下列哪个是速度的单位?A. 米/秒B. 千克C. 焦耳D. 牛顿4. 什么是牛顿第三定律?A. 物体的加速度和作用力成正比B. 物体的质量和加速度成正比C. 在力的作用下,物体会产生加速度D. 任何作用力都有一个相等且方向相反的反作用力5. 单位矩阵是什么?A. 所有元素都为1的矩阵B. 所有元素都为0的矩阵C. 对角线上元素都为1,其他元素为0的矩阵D. 所有元素都相等的矩阵6. 下列哪个是圆的面积公式?A. πr^2B. 2πrC. πd^2D. 0.5πr^27. 加速度的单位是什么?A. 米/秒^2B. 米/秒C. 十米/秒^2D. 千米/小时8. 下列哪个公式用于计算动能?A. F = maB. W = FdC. E = mc^2D. KE = 1/2mv^29. 如何计算两个向量的点积?A. 向量相乘再求和B. 向量相除C. 向量相减D. 无法计算10. 下列哪个没被广义相对论所解释?A. 引力B. 黑洞C. 宇宙膨胀D. 电磁力二、解答题(共3题,每题10分)1. 请用泰勒级数展开sin(x),并计算在x=π/6时的近似值。

2. 请用微分方程求解y'' + 4y = 0,并给出其特解。

3. 请解释质心是什么,并说明为什么在某些问题中质心坐标系非常有用。

本试卷针对数学物理方法的知识进行了全面的考察。

选择题部分测试了学生的基础知识和概念理解能力,而解答题则要求学生能够运用所学的数学物理方法进行实际问题的求解和解释。

数学物理方法题目

数学物理方法题目

2 5
3 5
51、求解 ⎪ ⎨
⎧ ∇ 2u = 0
2
( r < a, 0 < θ < π )
⎪ ⎩u r = a = cos θ , u r →0 = 有限值
(0 < θ < π )

⎧ ∇ 2u = 0 ( r > a, 0 < θ < π ) ⎪ 52、求解 ⎨ 。 2 ⎪ ⎩u r = a = cos θ , u r →0 = 有限值 ( 0 < θ < π )
i
b.证明 ∫i
2+i
dz ≤ 2 积分路径是直线段。 z2
10、不用计算,证明下列积分之值均为零,其中 c 均为圆心在原点, 半径为 1的单位圆周。 a. v ∫c
e z dz dz ; b. v ∫c z 2 + 5z + 6 。 cos z 2z2 − z +1 v ∫ c z − 1 dz ez z
z ( z + 1)
2
z −1
2
; (2) cos
1 1 ; (3) 。 z +i sin z + cos z
1 − ez 在孤立奇点处的留数。 23、求 f ( z ) = 1 + ez
24、求下列函数在指定点处的留数。
3
1 − e2 z (1) 在 z = ±1, ∞ ; (2) 4 在 z = 0, ∞ 。 2 z ( z − 1)( z + 1)
u t =0 = ρ 2 − R 2 ,求此物体的温度分布随时间的变化规律。 (无限长
→ u 与 ϕ 无关)
58、圆柱体半径为 R 而高为 H ,上底面保持温度 u1 ,下底面保持温度

数学物理方法考试试题1

数学物理方法考试试题1

课程试卷库测试试题(编号:1 )一、判断题(对的打“√”,错的打“×”,共5题,每题4分)1、在复数领域,i z e 的周期是2i π。

( × )2、柯西一黎曼方程是复变函数可导的充分条件。

( × )3、设()f x 的傅里叶变换的像函数是()F ω,则'()f x 的傅里叶变换的像函数是()i F ωω。

( √ ) 4、在推导均匀弦的微小横振动方程时,如果我们假定弦是柔软的,那么弦中张力必沿弦的切线方向。

( √ )5、在波动方程的定解条件中,初始条件只有一个。

( × )二、填空题(共5题,每题4分)1、s ()in a ib +的模为22221()s ()c 2b b b b e e in a e e os a --++- 2、在00Z =的领域,函数1z e 的洛朗展开式为:23101111111111!2!3!!kz k e z z z k z ∞=⎛⎫⎛⎫⎛⎫=++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ 3、s t e in t λω-的拉普拉斯变换函数为()22ωρλω++ 4、若()f x 的傅里叶变换为()F ω,则()f x α的傅里叶变换为1F ωαα⎛⎫ ⎪⎝⎭ 5、均匀弦的微小横振动的波动方程可写为20tt xx u a u -=三、选择题(共5题,每题4分) 1、关于1()1n f z z =-函数的极点和留数问题,正确的说法是( 4 ) ⑴ n 阶极点00z =,留数为1。

(2)n 阶极点00z =,留数为1n。

(3)单极点00z =,留数为1n 。

(4)单极点01z =,留数为1n 。

2、回路积分212z z e dz =⎰ 的值为( 4 )⑴ π, ⑵ 2i π, ⑶ 2π, ⑷ 0。

3、函数n t 的拉普拉斯变换像函数为( 4 )⑴ 11n p +, ⑵ !n p , ⑶ !n n p , ⑷ 1!n n p +。

4、拉普拉斯像函数为46(1)p +,则原函数为( 1 ) ⑴ 3t t e -, ⑵ 3t , ⑶ t e - ⑷ 3t t e 。

2024自考数学物理方法试卷

2024自考数学物理方法试卷

2024自考数学物理方法试卷
一、在数学物理方法中,以下哪种方法常用于求解常微分方程?
A. 分离变量法
B. 矩阵运算法
C. 傅里叶级数展开
D. 拉普拉斯变换(答案:A)
二、关于波动方程,以下哪个描述是正确的?
A. 它是描述流体流动的方程
B. 它是描述电磁波传播的方程
C. 它是描述热传导的方程
D. 它是描述物体静力学平衡的方程(答案:B)
三、在复变函数中,若函数满足柯西-黎曼方程,则该函数是?
A. 实函数
B. 虚函数
C. 解析函数
D. 调和函数(答案:C)
四、以下哪个积分变换在信号处理中常用于将时间域信号转换为频率域信号?
A. 傅里叶变换
B. 拉普拉斯变换
C. 梅林变换
D. 希尔伯特变换(答案:A)
五、在求解偏微分方程时,以下哪种方法属于数值解法?
A. 分离变量法
B. 特征函数法
C. 有限差分法
D. 行波法(答案:C)
六、关于贝塞尔函数,以下哪个描述是正确的?
A. 它是描述圆周运动的函数
B. 它是描述波动现象的函数
C. 它是描述圆柱坐标系中波动方程的解
D. 它是描述热传导方程的解(答案:C)
七、在量子力学中,波函数满足的方程是?
A. 牛顿运动方程
B. 麦克斯韦方程组
C. 薛定谔方程
D. 爱因斯坦场方程(答案:C)
八、以下哪个概念在变分法中用于描述函数极值的问题?
A. 泛函
B. 算子
C. 特征值
D. 本征函数(答案:A)。

最新物理数学物理法题20套(带答案)

最新物理数学物理法题20套(带答案)

最新物理数学物理法题20套(带答案)一、数学物理法1.一透明柱体的横截面如图所示,圆弧AED 的半径为R 、圆心为O ,BD ⊥AB ,半径OE ⊥AB 。

两细束平行的相同色光1、2与AB 面成θ=37°角分别从F 、O 点斜射向AB 面,光线1经AB 面折射的光线恰好通过E 点。

已知OF =34R ,OB =38R ,取sin370.6︒=,cos 370.8︒=。

求:(1)透明柱体对该色光的折射率n ;(2)光线2从射入柱体到第一次射出柱体的过程中传播的路程x 。

【答案】(1)43;(2)54R 【解析】 【分析】 【详解】(1)光路图如图:根据折射定律sin(90)sin n θα︒-=根据几何关系3tan 4OF OE α== 解得37α︒= 43n =(2)该色光在柱体中发生全反射时的临界角为C ,则13sin 4C n == 由于sin sin(90)sin 530.8sin a C β︒︒=-==>光线2射到BD 面时发生全反射,根据几何关系3tan 82REH OE OH R R β=-=-=可见光线2射到BD 面时发生全反射后恰好从E 点射出柱体,有sin OBOGα= 根据对称性有2x OG =解得54x R =2.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N === BO 绳上受到的拉力为1cot 37800OB F F G N ===若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。

数学物理方法题目

数学物理方法题目

( −∞ < x < ∞ , y > 0 ) ( −∞ < x < ∞ ) ( −∞ < x < ∞ )

第七章习题 44、试用平面极坐标系把二维波动方程分离变数。 45、试用平面极坐标系把二维输运方程分离变数。 46、求证 Pl ( x ) = Pl′+1 ( x) − 2 xPl′( x ) + Pl′−1 ( x ) , l ≥ 1 。 47、利用上题和 ( l + 1) Pl +1 ( x) − ( 2l + 1) xPl ( x) + lPl −1 ( x) = 0 , l ≥ 1 , 求证 ( 2l + 1) Pl ( x ) = Pl′+1 ( x ) − Pl′−1 ( x ) , l ≥ 1 。 48、在 [ −1,1] 区间上将 x 2 用勒让德多项式展开。
i
b.证明 ∫i
2+i
dz ≤ 2 积分路径是直线段。 z2
10、不用计算,证明下列积分之值均为零,其中 c 均为圆心在原点, 半径为 1的单位圆周。 a. v ∫c
e z dz dz ; b. v ∫c z 2 + 5z + 6 。 cos z 2z2 − z +1 v ∫ c z − 1 dz ez z
z
25、求下列函数在其奇点(包括无穷远点)处的留数, ( m 是自然数) ; (2) (1) z m sin ( m 是自然数)
1 z
ez
( z − 1)
2
; (3)
ez −1 。 sin 3 z
26、求下列函数在其孤立奇点(包括无穷远点)处的留数。
α⎛
(1) e
1⎞ ⎜ z− ⎟ 2⎝ z ⎠

数学物理方法期末考试大题

数学物理方法期末考试大题

3、 两端固定弦在点 x0 受谐变力 f t f0 sin t 作用而振动,求解振动情况。[提示: 外加力的线密度可表示为 f x, t f 0 sin t x x0 ]
4、 求解细杆导热问题。杆长 l ,初始温度均匀为 u0 ,两端分别保持温度 u1 和 u2 。
3、 求解薄膜的恒定表面浓度扩散问题,薄膜厚度为 l ,杂质从两面进入薄膜。由于薄膜周 围气氛中含有充分的杂质,薄膜表面上的杂质浓度得以保持为恒定的 N 0 ,对于较大的 t 把所得答案简化。
4、 均匀的薄板占据区域 0 x a , 0 y b 。边界上的温度
u |x 0 0 , u |x a 0 , u | y 0 u0 , lim u 0
y
求解板的稳定温度分布。
三、非齐次方程的分离变数法(15 分) 1、 长为 l 的均匀细杆两端固定,杆上单位长度受有纵向外力 f 0 sin 2 x l cos t ,初始位 移为 sin x l ,初始速度为零,求解杆的纵振动。
2
2、 求解热传导问题
ut a 2u xx A sin t u x |x 0 0, u |x l 0 u | x t 0
一、拉普拉斯变换(8 分) 1、求积分 I t


0
cos tx dx x2 a2
二、齐次方程的分离变数法(15 分) 1、 求解细杆导热问题,杆长 l ,b 为常数, l 2
2、 长为 l 的杆,一端固定,另一端受力 F0 而伸长,求解杆在放手后的振动。
四、球函数(12 分) 1、一空心圆球区域,内半径为 r1 ,外半径为 r2 ,内球面上有恒定电势 u0 ,外球面上电势保 持为 u1 cos 2 , u0 、 u1 均为常数,试求内外球面之间空心圆球区域的电势分布。

数学物理方法考试试题

数学物理方法考试试题

数学物理方法考试试题一、选择题1. 在坐标系中,以下哪个曲线表示了函数 y = e^x 的图像?A. y = x^2B. y = eC. y = e^(-x)D. y = ln(x)2. 一个小球从地面上方以速度 v0 抛下,忽略空气阻力。

以下哪个公式正确地描述了小球的下降高度 h(t) 随时间变化的关系?A. h(t) = v0 * t - 0.5 * g * t^2B. h(t) = v0 * t + 0.5 * g * t^2C. h(t) = v0 * t + g * t^2D. h(t) = v0 * t - g * t^23. 空间中有一个电场 E = 2x i + 3y j + 4z k。

一个电子从点 (1, 2, 3) 处开始沿电场方向运动,电子的加速度大小是多少?A. 7B. 5C. 6D. 44. 一个质点在平面上做匀速圆周运动,其角速度大小为 2 rad/s。

质点的速度大小和圆周半径分别是多少?A. v = 2rB. v = 4rC. v = 6rD. v = 8r5. 一辆汽车以匀加速度 a 行驶,在时刻 t1 时起动,时刻 t2 时速度为 v2。

以下哪个公式可以用于计算汽车在时间区间 [t1, t2] 内行驶的距离?A. s = v2 - v1B. s = a * (t2 - t1)C. s = v1 * (t2 - t1) + 0.5 * a * (t2 - t1)^2D. s = v1 * (t2 + t1) + 0.5 * a * (t2 - t1)^2二、计算题1. 计算下列函数的导数:(1) f(x) = x^3 - 2x^2 + 3x - 4(2) g(x) = e^x * sin(x)2. 一个弹簧的劲度系数为 k,质量为 m 的物体悬挂在弹簧上。

当物体受到外力 F(t) = 2cos(t) 作用时,确定物体的运动方程并解释物体的运动特性。

3. 一个半径为 R 的圆形铁环在匀强磁场 B 的作用下,磁通量在时间区间 [0, t] 内以恒定速率增大。

数学物理方法综合试题及答案 ()

数学物理方法综合试题及答案 ()

复变函数与积分变换 综合试题(一)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设cos z i =,则( )A . Im 0z =B .Re z π=C .0z =D .argz π= 2.复数3(cos,sin )55z i ππ=--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .443(cos ,sin )55i ππD .443(cos ,sin )55i ππ--3.设C 为正向圆周|z|=1,则积分⎰c z dz||等于( )A .0B .2πiC .2πD .-2π 4.设函数()0zf z e d ζζζ=⎰,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答:5.1z =-是函数41)(z zcot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4z π<<保角映射成单位圆内部|w|<1的为( )A .4411z w z +=-B .44-11z w z =+C .44z i w z i -=+D .44z iw z i +=-7. 线性变换[]i i z z i z ae z i z i z aθω---==-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<18.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )xv x y e y y x y =+,则(,)uxy=( )A.(cos sin )ye y y x y -)B.(cos sin )xe x y x y -C.(cos sin )xe y y y y - D.(cos sin )xe x y y y -(cos sin )sin (cos sin cos )x x x ve y y x y e y x ve y y y x y y∂=++∂∂=-+∂[][]cos sin cos cos sin sin cos sin cos sin cos sin (1)x x x iy iy iyz w u v v v i i z x x y xe y y y x y iy y ix y i y e y i y x y ix y iy y y y e e xe iye e z ∂∂∂∂∂=+=+∂∂∂∂∂=-++++=++++-⎡⎤=++⎣⎦=+()()()()cos sin cos sin sin cos z x iy x x w ze x iy e e x iy y i y e x y y y i x y y y u iv+==+=++=-++=+⎡⎤⎣⎦()cos sin x u e x y y y =-9.()1(2)(1)f z z z =--在021z <-< 的罗朗展开式是()A.∑∞=-01n nnz )( B.∑∞=-021n nz )z (C.∑∞=-02n n)z ( D .10(1)(2)nn n z ∞-=--∑10.320cos z z dz ⎰=( )A.21sin9 B.21cos9 C.cos9 D.sin9二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z 4 dz ,其中积分路径 C 为: 9, 计算 C z2 1 1 1 , z 1 ; (3) , z 2。 (1) , z 1 ; (2) 2 2
10, 设 f z


C
3 7 1 d ,其中积分路径 C 为圆周 x 2 y 2 3 ,求 f '(1 i ) 。 z
xn (n 1, 2,) 及 yn (n 1, 2,) 分别以 x0 及y 0 为极限。
17,证明:三角形三内角和等于 。
3
第二章
习题 1, 证明下列函数在 z 平面上处处不可导。 (1) z 。 2, 试证 (1) f ( z ) x iy 仅在原点有导数。
3 3
解析函数
2 2 2
(2) cos z cos xchy i sin xshy 。 (4) cos z cos x sh y 。
2 2 2
15, 证明 sin z 与 cos z 是以 2 为周期的函数,而 e , shz , chz 是以 2i 为周期的函数。
x
16, 证明 w 3 z 的三个单值分支在割破的 z 平面上的任一区域上都是解析的。 17, 设 w 3 z 确定在沿负实轴割破了的 z 平面上,并且 w(i ) i ,求 w(i ) 。 18, 试解方程 (1) e 1 i 3 。
2 2
11, 证明 f ( z ) 与 f ( z ) 必同时为解析函数或不是解析函数。 12, 设 w 是 z 的解析函数,证明 13, 定义 shz
x y x y , , ( w u iv, z x iy ) 。 u v v u
e z e z e z e z 和 chz 分别为双曲正弦函数及双曲余弦函数,试证 2 2
C
1 2 cos dz 之值,证明 d 0 ,其中 C 为单位圆周 z 1 。 0 5 4 cos z2
2z 2 z 1 8, 计算 (1) dz (C : Z 2) 。 C z 1 sin
2z2 z 1 (2) dz ( C : z 2 )。 C ( z 1) 2
1 2i 2 i 。 3 4i 5i
(2) ,(
1 i 3 n ) , n 2,3,4 。 2
(4) , ( 3 i) 。
3
(3) , 1 i 。
(5) ,
1 i 3 。 2 1 i 2
, z2
3,设 z1 4,若 z
3 i ,试用三角形表示 z1 z 2 及
2 2 (8) ,若 z ( z ) ,则 z 为实数或纯虚数。 ( z1 z2 ) 2 。
10,证明 z1 z2 z1 z2 提示:利用公式 z
2
2
2
2( z1 z2 ) ,并说明其几何意义。
2
2
zz 。
11,设 z1 , z 2 , z 3 三点适合条件
z1 z 2 z 3 0
(2) x y 。
(3) Re z 。
(4) 1 / z 。
(2) f ( z ) z 仅在原点有导数。
2
x 2 y 2 i( x3 y 3 ) , 3, 设 f ( z ) x2 y 2 0
微。
z0 z0
, 证明 f ( z ) 在原点满足 C R 条件, 但不可
z 1 1。 z 1
(4) ,
0 arg( z 1)

4
且 2 Re z 3 。 (6) , y1 Im z y 2 。 (8) ,z
(5) , z 1 且 Im z 0 。 (7) ,z 2 且 z 3 1 。 (9) , Im z 1 且 z 2 。
4, 若函数 f ( z ) 在区域 D 上解析,并满足下列条件之一,证明 f ( z ) 必为常数。 (1) f '( z ) 0 (3)
( z D) 。
(2) f ( z ) 在 D 上解析。 (4) Re f ( z ) 在 D 上是一常数。
f ( z ) 在 D 上是一常数。
5, 试证下列函数在 z 平面上解析,并分别求出其导数。 (1) e ( x cos y y sin y ) ie ( y cos y x sin y ) 。
z1 。 z2
1 1 2 cos ,证明 z m m 2 cos m 。 Z z 5,求下列复数 z 的主幅角 arg z : 2 1 3i
。 (2) , z ( 3 i) 。
6
(1) ,z
6,用指数形式证明: (1) , i (1 i 3)( 3 i ) 2 2 3i 。 (3) , (1 i ) 8(1 i ) 。
u 1 v v 1 u , (r 0) , r r r r 1 u v 证明 f ( z ) 在 z 点是可微的,并且 f '( z ) i ( i )。 e r r
8, 由下列条件求解析函数 f ( z ) u iv 。 (1) u x y xy,
(2) ch z sh z 1 。
2 2
(1) sin(iz ) ishz , cos iz chz 。
(3) ch( z1 z2 ) chz1chz2 shz1shz2 。 14, 若 z x iy , 试证 (1) sin z sin xchy i cos xshy 。 (3) sin z sin x sh y 。

z1 z 2 z 3 1 ,
试证明 z1 , z 2 , z 3 是一个内接于单位圆 z 1 的正三角形的顶点。 12,下列关系表示的 z 点的轨迹的图形是什么?它是不是区域? (1) , z z1 z z2 (3) ,
( z1 z2 ) 。
(2) , z z4 。
数学物理方法习题集
第一章 复数与复变函数
习题 1,计算: (1) , ( 2 1) i (1 i 2) 。 (2) ,
1 2i 2 i 。 3 4i 5i
4
(3) ,
5 。 (1 i )(2 i )(3 i )
(4) , (1 i ) 。
(5) , a bi 。 2,求下列复数的实部 u 与虚部 v ,模 r 与幅角 : (1) ,
i 1 3 1 且 z i 。 2 2 2 2
( 10 ) , z 2且
2
0 arg z

4

13,证明复平面上的直线方程可以写成 z z c ( 0 是复常数, c 是实常数)。 14,证明复平面上圆周可以写成
Az z z z C 0 。
z
(2) ln z
i
i 。 2
19, 设 z re , z 1 e 试证
i
1 Re[ln( z 1)] ln(1 r 2 2r cos ) 。 2
20, 计算 (1 i ) , 3 , i , e
i
i
i
2i
及 Ln(1 i ) 。
21, 如果函数 f ( z ) 和 ( z ) 在 z 0 解析, f ( z0 ) ( z0 ) 0 ,
其中 A , C 为实数, 为复数,且
2
AC 。
15,试证 arg z arg z 在负实轴上(包括原点)不连续。 提示:考察 z 沿上、下半平面而趋于负实轴上的点的极限。 16 , 一 个 复 数 列 zn xn iyn (n 1, 2,) 以 z0 x0 iy0 为 极 限 的 充 要 条 件 为 实 数 列
2 2
f (i ) 1 i 。
(2) u 3 x y y ,
2 3
f (i ) 1 。
(3)
u 2( x 1) y , f (2) i 。
2
9, 证明 xy 不能成为 z 的一个解析函数的实部。
4
10, 2 xy i ( x y ) 是否为 z 的一个解析函数?
5, 不用计算,证明下列积分之值均为 0,其中 C 均为单位圆周。
dz 。 (1) C cos z
6, 计算
(2)

z
C
dz 。 2 z 2z 2
,
(3)

C
ez 。 z 2 5z 6

z 1
dz , z

dz , z 1 z

dz
z 1

z 1
dz 。 z
7, 由积分

C

4, 利用积分估值,证明 (1) (2)

i
i
i
( x 2 iy 2 )dz 2 ,积分路径是连接 i 到 i 直线段。 ( x 2 iy 2 )dz ,积分路径是从 i 到 i 的右半圆周。

i
(3)证明

2i
i
dz 2 ,积分路径是连接 i 到 2 i 直线段。 z2
x x
(2) cos xchy i sin xshy 。 6, 试证下列函数,在复平面不解析。 (1) z 。
2
(3) sin xchy i cos xshy 。
(2) e 。
z
(3) sin z 。
i
(4) cos z 。
7, 设 f ( z ) u ( r , ) iv(r , ) , z re , 若 u (r , ) 及 v(r , ) 在 (r , ) 点是可微的,并满足 条件
'( z0 ) 0 则
lim
22, 求证 lim
相关文档
最新文档