中考数学复习指导:例析线段旋转扫过的图形面积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例析线段旋转扫过的图形面积
——兼谈一个基本图形的结构
本文对于旋转中心O不在线段AB上,并且旋转角α为0°<α< 2β与360°-2β<α< 360°的情况进行再探讨,给出初中生也能理解的方法,并谈谈对一个基本图形的结构启示,以供读者参考.
一、线段旋转的约定与问题解决
如图1,将线段AB绕点O旋转到A'B',设OA=a,OB=b(a≥b) ,OD=h,∠BOD =β,旋转角度为α.
情况1 当旋转角α的范围为0°<α<2β时.
分析如图1,线段AB在旋转的过程中,应该分别考虑线段BD和线段AD所扫过的不同图形的面积.这里需要注意的是,不能将二者简单相加.
DD'所围考察图1,可知上述两条线段都扫过了同一个区域,即由线段DP、D'P以及
成的部分,此区域形状虽为不规则图形,但我们很容易将其转化为一个四边形与一个扇形面积的差.为方便起见,我们把这部分区域的面积表示为S PDD',则有
1
于是得到此时线段AB扫过部分的面积为:
情况2 当旋转角α的范围为360°-2β<α<360°时.
分析将线段AB绕点O顺时针旋转α°到A'B'位置,如图2.依照上述方法,我们将线段AB分成AC、CD、DB三段来考察.由图2可知,AC扫过了一个宽度为b-a,圆心角为a的圆环的一部分;其中CD、DB两线段始终在一个宽度为a-h的圆环内扫,但此圆环中有部分区域未被扫到,即S PDD'.如上所述,我们考虑求出S PDD',不过现在的∠DOD'=360°-α,不妨记以a-h为宽度的圆环面积为S中环,故得此时线段AB扫过
部分的面积为:
2
3
二、基本图形解构
至此,我们利用初中数学知识得到了上述两类线段扫过面积的求法.同时,值得注意的是,在以上两种情况下,我们都需要用到一个对角互补的筝形,如图3.其基本结构所包含的数学形态颇多,笔者曾经刊文指出这一基本模型的变化方式,现在看来,此图又可解构为一个扇形与一个由两条线段和一条弧所围成的封闭图形;或者整体地看,DP 、DP'是以O 为圆心,OD 为半径的圆的两条切线段,计算S PDD'这个封闭图形的面积只要结合全等、三角函数、扇形面积公式即可解决.
由此联想,此图在数学教学中大有用武之地.鉴于此,笔者尝试将该图从不同角度的解构做一梳理、总结.
解构1 角平分线定理与逆定理教学用图(如图4).
解构2 分成两个等底等腰三角形(如图4).
解构3 延长一组对边后形成一对相似三角形(如图5).
4
解构4 分割后旋转形成等腰三角形(如图6).
解构5 分别以O ,P 为圆心,以DP ,OD 为半径在图形内部画弧可分别得到两个扇形(如图7).
三、一点感想
基本图形的教学是初中几何教学中的重点,也是个难点,笔者以为,在初三首轮复习阶段,尤其是几何模块的复习教学过程中,对这样的基本图形进行解构式的教学非常重要,再辅以实例,可以使学生获得解一题、通一类、会一片的效果.正如波利亚所说:“拿一个有意义但又不复杂的题目去帮助学生发掘问题的各个方面,使得通过这道题就好像通过一道门户,把学生引入一个完整的领域.”。