大学计算物理学---绪论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算物理学研究如何使用数值方法解决已经存在定量理论的物
理问题。在物理学中,大量的问题是无法严格求解的。有的问题是因为计算过于复杂,有的问题则根本就没有解析解。比如,经典力学中,三体以上问题,一般都无法求解。量子力学中,哪怕是单粒子问题,也只有在少数几种简单势场中的运动可以严格求解。因此,在现代物理中,数值计算方法已变得越来越重要。计算物理与理论物理和实验物理相互依存相互补充,是物理学不可缺少的三大板块之一。计算物理常用软件有Matlab,Mathematica和Maple。
常见研究问题
积分的计算,常微分方程的解算,蒙特卡罗法,有限元分析,本征值问题。凝聚态物理学中常见的数值计算方法:密度矩阵重整化群、量子蒙特卡罗法、精确对角化法
理论物理是分析的科学,它从一系列的基本原理和基本假设出发,列出相应的数学方程,运用传统的或现在的数学方法求出问题的显式解析解,用这些解析解的结论去解释物理现象,预见新的现象,指导实验。实验物理是从实验观测出发,发现新的物理现象,为理论物理提供总结新的物理规律的素材,检验理论物理的假设或理论物理预言的正确程度和适用范围等。
计算物理是伴随着电子计算机的出现和发展而逐步形成的一门新兴的边缘学科。是以电子计算机为工具、采用数学方法解决物理问题的应用科学。是物理、数学和计算机三者相结合的产物。
现在流行的数学工具软件,如Maple,Matlab,Mathematica,已将绝大多数数值计算方法设计成简单的函数,经简单的调用就可得出结果。但由于实际问题具体特性的复杂性以及算法自身的适用范围决定了应用中必须选择和设计适合于自己所要解决的特定问题的算法,因而掌握数值计算方法的思想和内容是必须的。
计算物理的起源、形成与发展
传统的物理学:理论物理,实验物理,都离不开数值计算,如海王星的发现及其轨道计算就是一个典型例子。但早期的计算仅使用人力或简单的计算工具,其功能和效率都极其有限。这种计算不能成为一个学科分支。
牛顿力学方程只有二体问题是可解得,三体以上的问题折磨了全世界许多优秀的数学家和理论物理学家,仍然没有解析解。量子力学的薛定谔方程,除了氢原子和简谐振子外没有一个真实的物理问题可以找到解析解。
20世纪40年代初,在由于战争的需要开始了核武器研制。涉及的问题:流体动力学过程、核反应过程、中子输运过程、光辐射输运过程、物态变化过程等;都是十分复杂的非线性方程组,不可能用传统的解析方法求解。由于需要在短时间内进行大量复杂的数值计算,从而促使了计算机的延生和新物理学科的形成。
1944年,世界上第一台“自动序列受控计算机Mark I制成,主要部件是继电器,速度仅每秒3次加法。在美国原子弹研制中起了重要作用。1946年初,世界上第一台电子管计算机ENLAC投入运行,速度为每秒5000次加法。电子计算机的出现,为计算物理奠定了物质基础。
费米(Fermi 1901-1954):美籍意大利物理学家,对统计物理、原子物理、原子核物理、粒子物理、中子物理都有重要贡献。由于中子核反应的发现,1938年获得诺贝尔物理学奖。
费米是20世纪上半叶国际上最有才华的科学家之一,在第二次世界大战期间,他领导建设了第一个实现原子核链锁裂变的反应堆。战后费米对计算机发生兴趣,经常去访问Los Alamos ,这个地方一
直拥有世界上最强大的计算能力。他和乌勒姆(S. Ulerm),巴斯塔(J. Pasta)等人讨论计算机的未来应用。他首先想到的是研究非线性系统长时间行为和大尺度性质(这是用解析方法无法处理的问题),并于1952年夏天设计了一个计算机实验,一年后,在当时用来进行氢弹设计的MANIAC计算机上实现。
1954年11月,费米逝世,他的合作者继续工作,于1955年5月写出Los Alamos 研究报告LA-1940。这篇秘密报告历经多年、解密后被正式收入《费米全集》。这篇具有重大意义的报告,被许多人认为是计算物理的正式起点,因为它提出了许多问题,带来了当时谁也未曾想到的重大发展。从此,物理问题的计算与计算机相互促进,开始蓬勃发展。1950年,全世界还只有15台计算机,到1962年9月,仅美国就有了16817台。
科学家们从原子弹设计中使用计算机求解复杂物理问题取得成功而得到启示,迅速将这种方法推广应用到物理学的其他领域:天体物理、大气物理、等离子体物理、核物理、原子分子物理、固体物理、统计物理和基本粒子物理等,而且还应用到气象预报、水利、海洋、地震、石油、化工甚至人体科学等各个科学技术领域。
1965年,Harlow和Fromm在《Scientific American》杂志发表“流体力学的计算机实验”一文。几乎同时,Macagno在法国《La Haulille Blanche》杂志上发表“水力学模拟的某些新方面”的论文。第一次提出了计算机实验和数值模拟的概念。
与此同时,为计算物理服务的许多程序库和数据库也相继建立。这些工作迅速地推进了计算物理的普及和发展。这些新概念的提出、新物理现象的发现,说明计算物理的目的不仅是计算出结果,还在于理解、预言和发现新的物理现象,寻求物理规律。在这一点上,它与传统的实验物理和理论物理没有什么不同,差别只在于工具和方法。计算物理这一新的学科起源于20世纪40年代,形成于60年代。
计算物理的进一步发展
1983年,在美国国防部、能源部、国家科学基金会和国家航天局主持下,以美国著名数学家拉克斯为首的不同学科的专家委员会向美国政府提出报告,强调“科学计算是关系到国家安全、经济发展和科技进步的关键性环节,是事关国家命脉的大事”。
计算物理的特征
计算物理的研究内容(计算机实验)
凡是局部瞬时的物理规律已知或被假设,要想求得大范围长时间的物理现象的发展过程,便属于计算物理学的范围。从局部关系到大范围依赖于计算机的大容量。由瞬时规律发展为长时间的过程依赖于计算机的高速度。
计算物理相对于理论物理的优越性