混凝土的ANSYS分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【原创】钢筋混凝土分离式建模方法(含ANSYS命令流)
钢筋混凝土, 分离式, 建模, ANSYS, 命令钢筋混凝土, 分离式, 建模, ANSYS,
命令
一、简介
钢筋混凝土有限元建模的方法与结果评价(前后处理),是对钢筋混凝土结构进行数值模拟的重要步骤,能否把握模型的可行性、合理性,如何从计算结果中寻找规律,是有限元理论应用于实际工程的关键一环。Blackeage以自己做过的一组钢筋混凝土暗支撑剪力墙的数值模拟为例,从若干方面提出一些经验与建议。希望大家一起讨论、批评指正(wang.jian@)。
程序:ANSYS 单元:SOLID65、BEAM188 建模方式:分离
暗支撑剪力墙结构由北京工业大学曹万林所提出,简言之就是一种在普通钢筋配筋情况下,加配斜向钢筋的剪力墙结构。
二、单元选择
以前经常采用的钢筋混凝土建模方法是通过SOLID65模拟混凝土,通过SOLID65的实常数指定钢筋配筋率,后来发现这种整体式的模型并不理想,而且将钢筋周围的SOLID65单元选择出来,再换算一个等效的配筋率,工作量也并不小。最关键的是采用整体式模型之后,得不出什么有意义的结论,弄一个荷载-位移曲线出来又和实验值差距比较大。只有计算的开裂荷载与实验还算是比较接近,但这个
手算也算得出来的东西费劲去装模作样的建个模型又有什么意义?
所以,这次我尝试采用分离式的模型,钢筋与混凝土单元分别建模,采用节点共享的方式。建模时发现,只要充分、灵活地运用APDL
的技巧,处理好钢筋与混凝土单元节点的位置,效率还是很高的。
[center]
暗支撑剪力墙数值模型[/center]
看过很多的资料,分离式模型是用LINK8与SOLID65的组合方式,这样做到是非常直观,因为LINK8是spar类型的单元,每个节点有3个自由度,这与SOLID65单元单节点自由度数量是一致的。但是问题也就由此产生,当周围的混凝土开裂或是压碎时,SOLID65将不能对LINK8的节点提供足够地约束(如下图箭头方向),从而导致总刚矩阵小主元地出现影响计算精度,或者干脆形成瞬变体系导致计
算提前发散。
[center]
LINK8+SOLID65的问题[/center]
如果采用梁单元模拟暗钢筋,就算包裹钢筋的混凝土破坏了,钢筋单元本身仍可对连接点提供一定的侧向刚度(其实钢筋本身就是有一定抗弯刚度的),保证计算进行下去。ANSYS中的梁单元比较多,建议选取beam188单元。beam188支持弹塑性分析、自定义截面。可以用内力计算结果按截面插值得出应力结果,这样,SOLID65+beam188不仅解决了SOLID65+beam188的小主元问题,而且可以方便地控
制钢筋单元的划分密度,也扩充了钢筋单元输出信息。
三、单元组合方式
将剪力墙中所有钢筋单元(包括暗柱、梁的纵、箍筋、暗支撑钢筋、暗支撑箍筋、暗分布筋)单独建模,为了能够与混凝土单元节点共享,将混凝土单元细化,单元高度设为暗柱箍筋间距与墙片分布筋间距的最大公约数。
钢筋与混凝土单元节点共享。不考虑粘接-滑移影响。其实由于混凝土单元已经细化过了,钢筋周围的混凝土由于钢筋作用而开裂之
后,钢筋节点受到混凝土的约束降低,这也相当于引入了一部分粘接-滑移的力学作用,只不过没有考虑进大变形、大滑移时的几何非线
性及边界非线性因素。
四、混凝土开裂与压碎判定
采用最大拉应力准则判定混凝土开裂,采用WW准则判定混凝土压碎。在许多文章中都建议关闭混凝土压碎判定以改善收敛,个人认为得不偿失,关闭了压碎特性将过高地估计构件的承载力及后期刚度,一个错误的、与实际出入很大的计算结果的收敛性再好,即使弹出了激动人心的solution is done又有什么意义呢?至于收敛性,可以通过其它的方式来改善。
五、本构关系
经试算发现,混凝土单元选用随动强化模型时将难以收敛,选用等向强化模型则好得多,而且混凝土的随动特性并不明显。所以注意选用等向强化模型。由于已经打开了压碎判定,所以,材料特性中只给出一个初始弹性模量即可,当然也可采用多线性等向模型,但
对结果影响不大。
六、改善收敛的方法
ANSYS中的SOLID65单元收敛性并不是太好,有时甚至很难得到收敛的计算结果,所以保证数值模型的收敛成为用ANSYS对钢筋混凝土结构进行数值模拟中至关重要环节。经反复计算,并汇总大家总结的规律,罗列如下:
1.打开自动时间步长。
2.钢筋采用beam188梁单元。
3.水平加载时采用残余位移收敛准则。
4.虽然混凝土与钢筋单元单独建模,但可以在混凝土单元中加入一个很小配筋率的弥散钢筋,这些钢筋并不是实际的,而是数值的,
它可以在混凝土单元破坏时对节点提供一点约束,减少总刚突变。
5.采用等向强化的弹塑性模型。
清华大学江见鲸在其有限元讲义当中提到SOLID65单元尺寸不能太小,否则会引起单元的提前破坏,但我觉得,这到是一个适当地引入粘结-滑移影响的方式,而且强行的限制单元的尺寸,也使得分离式建模难以实现。当然,一定要保证SOLID65的单元是长方体,且
网格疏密过渡平缓。
七、关于裂缝分布、裂缝宽度分布
在ANSYS中,裂缝的模拟采用弥散的形式,弥散裂缝模型在宏观上结构等效,但它基于最大拉应力准则,一但某一单元开裂,将会引起“连锁反应”,导致大面积开裂,这与实际的情况是不相符的,所以,弥散裂缝的分布与试验中试件的实际裂缝没有可比性。但是通过观察暗支撑暗力墙与传统剪力墙的数值裂缝分布,仍然能发现某些规律。
[center]
左:无暗支撑,右:带有暗支撑[/center]
由上图可见,在相同的荷载水平下(190kN)传统剪力墙的数值模型已经大面积开裂,而配有暗支撑的剪力墙开裂面积较小,在墙体中央部位产生局部裂缝,这说明暗支撑钢筋对于抑制大面积裂缝开展,以及改善裂缝分布有着积极的作用。
然而这种裂缝分布图的信息量还是太少,有时无法从中比较出结果,比如我做的另外两个高耸的暗支撑墙。