高中数学必修2第一章课件.

合集下载

北师大版高中数学选择性必修2第一章1.1数列的概念课件PPT

北师大版高中数学选择性必修2第一章1.1数列的概念课件PPT
北师大版高中数学教材 选择性必修第二册
第一章 数列
§1:数列的概念
知识与技能:
(1)通过实例,理解数列的概念; (2)理解数列的项和项数,通项的含义,了解数列的分类, 理解数列与函数的关系。
过程与方法:
(1)让学生从日常生活中的实际问题出发,引导学生通 过视察,推导,归纳抽象出数列的概念; (2)通过实例说明项,项数,通项的含义。
(2)数列中的数是可以重复出现,而数集中的元素 具有互异性,不能有相同的元素出现。
情情境境导导入入 新课讲授 讲练巩固 课堂小结 课后作业
2、数列的项:数列中的每一个数都叫做这个数
列的项.各项依次叫做这个数列的第 1 项(或首
项),第 2项,…,第 n 项,….
项 a1 a2
a3 a4 a5 a6
(-1)n或(-1)n+1常常用来表示正负相间的变化规律. (4)对于周期出现的数列,考虑利用周期函数的知识解答.
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
➽目标检测
1、下列数列既是递增数列,又是无穷数列的是( D )
A.1,2,3,…,20 B.-1,-2,-3,…,-n,… C.1,2,3,2,5,6,…
《庄子·天下篇》
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
情境二:大自然是懂数学的.
树木的分杈、花瓣的数量、植物种子的排列...... 都遵循了某种数学规律.
斐波那契数
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
大自然是懂数学的.
树木的分杈、花瓣的数量、植物种子的排列...... 都遵循了某种数学规律. 斐波那契数 1,1,2,3,5,8,13,21,34,55,89,......

第一章角的概念推广、象限角及其表示-【新】北师大版高中数学必修第二册PPT全文课件

第一章角的概念推广、象限角及其表示-【新】北师大版高中数学必修第二册PPT全文课件
解得1294≤k<6274.
又k∈Z,所以k=1,或k=2. 当k=1时,β=435°; 当k=2时,β=795°.
第一章角的概念推广、象限角及其表 示-【新 】北师 大版高 中数学 必修第 二册PP T全文 课件【 完美课 件】
第一章角的概念推广、象限角及其表 示-【新 】北师 大版高 中数学 必修第 二册PP T全文 课件【 完美课 件】
第一章角的概念推广、象限角及其表 示-【新 】北师 大版高 中数学 必修第 二册PP T全文 课件【 完美课 件】
激趣诱思
知识点拨
微思考1 60°,-660°,-300°,420°,780°的角的终边有什么关系? 提示相同.-660°=60°-2×360°,-300°=60°-360°, 420°=60°+360°,780°=60°+2×360°. 微思考2 如何表示与60°终边相同的角的集合? 提示S={β|β=60°+k·360°,k∈Z}.
第一章角的概念推广、象限角及其表 示-【新 】北师 大版高 中数学 必修第 二册PP T全文 课件【 完美课 件】
第一章角的概念推广、象限角及其表 示-【新 】北师 大版高 中数学 必修第 二册PP T全文 课件【 完美课 件】
探究一
探究二
探究三
当堂检测
反思感悟 概念辨析问题的求解方略 对于概念辨析题,一是利用反例排除错误答案,二是利用定义直接 判断.本题需要准确理解象限角、锐角、钝角、终边相同的角等基 本概念才能作出正确的判断.
探究三
当堂检测
反思感悟 象限角的判定 1.已知一个角的大小判断其所在象限时,可先根据终边相同的角的 表示方法,找到在[0°,360°)内与之终边相同的角,再确定其象限. 2.已知角的终边所在的象限,求待求角的终边所在的位置时,通常首 先根据所给已知角的范围,得到待求角的范围,然后判断待求角终 边所在的位置.

新人教B版高中数学必修二教学课件 第一章 立体几何初步 1.2.3《(第2课时)平面与平面垂直》

新人教B版高中数学必修二教学课件 第一章 立体几何初步 1.2.3《(第2课时)平面与平面垂直》

∵PA⊥平面ABC,BC⊂平面ABC, ∴PA⊥BC, ∵AD∩PA=A,∴BC⊥平面PAC, 又AC⊂平面PAC,∴BC⊥AC.
[点评]
已知条件是线面垂直和面面垂直,要证明两条直
线垂直,应将两条直线中的一条放入一平面中,使另一条直线 与该平面垂直,即由线面垂直得到线线垂直.在空间图形中, 高一级的垂直关系蕴含着低一级的垂直关系,通过本题可以看 到:面面垂直⇒线面垂直⇒线线垂直.
求证:平面ABC⊥平面SBC.
[ 解析]
解法一:取 BC 的中点 D,连接 AD、SD.
由题意知△ASB 与△ASC 是等边三角 形,则 AB=AC. ∴AD⊥BC,SD⊥BC. 2 令 SA=a,在△SBC 中,SD= 2 a, 2 又∵AD= AC -CD = 2 a,
2 2
∴AD2+SD2=SA2. 即 AD⊥SD.又∵AD⊥BC,∴AD⊥平面 SBC. ∵AD⊂平面 ABC, ∴平面 ABC⊥平面 SBC.
[解析]
∵△ABC为正三角形,D为BC的中点,
∴AD⊥BC. 又∵CC1⊥底面ABC,AD⊂平面ABC, ∴CC1⊥AD. 又BC∩CC1=C, ∴AD⊥平面BCC1B1. 又AD⊂平面AC1D,
∴平面AC1D⊥平面BCC1B1.
三棱锥 S -ABC 中,∠ BSC = 90°,∠ ASB= 60°,∠ ASC =60°,SA=SB=SC.
当 F 为 PC 的中点时,满
足平面 DEF⊥平面 ABCD. 取 AD 的中点 G,PC 的中点 F,连 接 PG、BG、DE、EF、DF,则 PG⊥ AD,而平面 PAD⊥面 ABCD, 所以 PG⊥平面 ABCD.在△PBC 中, EF∥PB; 在菱形 ABCD 中,GB∥DE,而 EF⊂平面 DEF,DE⊂平面 DEF,EF∩DE =E,∴平面 DEF∥平面 PGB.又 PG⊥平面 ABCD,PG⊂平面 PGB, ∴平面 PGB⊥平面 ABCD,∴平面 DEF⊥平面 ABCD.

高中数学人教B版必修2 第一章《立体几何初步》蜂巢中的几何 研究课 课件(共24张PPT)

高中数学人教B版必修2 第一章《立体几何初步》蜂巢中的几何 研究课 课件(共24张PPT)
B
E' F'
A'
D' C'
B'
E' F'
A'
D'
E'
F'
C'
A' B'
D' C'
B'
(1)中空柱状
E' F'
A'
D' C'
B'
N
D
N
D
F M
F
O M
B
P O
B
E' F'
A'
D'
E'
F'
C'
A' B'
D' C'
B'
(1)中空柱状体与正六棱柱在结构上的关系
【证明】
探究一:蜂巢口为什么建成正六边形?
(3)还有比正六边形更好的正多边形吗?
(n 2) 180 k 360 n
k 2n 2(n 2) 4 2 4
n2 n2
n2
n 3, 4, 6
自主探究
探究一:蜂巢口为什么建成正六边形?
无缝拼接+面积最大
探究二:蜂巢的每个中空柱状体底面为什么 建成三个全等的菱形面?
(1)中空柱状体与正六棱柱在结构上的关系
(2)中空柱状体与正六棱柱在体积上的关系
相等
(3)中空柱状体与正六棱柱在表面积上的关系
(3)中空柱状体与正六棱柱在表面积上的关系
E F
A
E' F'
A'
D

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)
棱柱 2.其余各面都是四边形(侧面)
3.每相邻两个侧面的公共边(侧棱)都互 相平行
10
探究问题 1:
长方体按如图截去一角后所得的两部分还是棱柱 吗?
D’
C’
A’
B’
D C
A
B
11
探究问题 2:
有两个面互相平行,其余各面都是平行四边形的几 何体是棱柱吗? 定义: 1、有两个面互相平行,
2、其余各面都是四边形,
D
C 底面
的侧棱。
A
B
棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥分 别叫三棱锥,四棱锥,五棱锥---
13
思考:一个棱锥至少有几个面?一个N棱锥有分别 有多少个底面和侧面?有多少条侧棱?有多少个 顶点?
至少有4个面;1个底面,N个侧面,N条侧棱,1个顶 点.
14
练习:下列几何体是不是棱锥,为什么?
旋转体: 由一个平面图形绕它所在平面内的
一条定直线旋转所形成的封闭几何体
注:棱柱与圆柱统称为柱体
5
1.棱柱的结构特征:
①有两个面互相平行 ②其余各面都是四边形
③每相邻两个四边形的公共边互相平行
有两个面互相平行,其余各面都是四边形,每相邻两个四
边形的公共边互相平行,由这些面围成的图形叫做棱柱
6
1、棱柱 1、两个互相平行的面叫棱柱的底面。
3、每相邻两个四边形的公共边 都互相平行。
12
2.棱锥的结构特征
有一个面是多边形,其余各面都是有一个公共顶
点的三角形,由这些面所围成的多面体叫做棱锥.
底面:棱锥中的多边形面叫做棱锥的底面或底。 S 顶点
侧面:有公共顶点的各个三角形面叫做棱锥

高中数学人教B版必修二第一章1.1.5三视图课件(共30张PPT)

高中数学人教B版必修二第一章1.1.5三视图课件(共30张PPT)
1.画组合体的三视图的“四个步骤” (1)析:分析组合体的组成形式.
(2)分:把组合体分解成简单几何体. (3)画:画分解后的简单几何体的三视图. (4)拼:将各个三视图拼合成组合体的三视图.
探究一
探究二
探究三
探究四
探究五
【例 1】某几何体的主视图和左视图均如图所示,则该几何体的俯视图
不可能是( )
探究一
探究二
探究三
探究四
探究五
探究三 三视图的还原问题
1.由三视图还原几何体的三个步骤.
探究一
探究二
探究三
探究四
探究五
2.在还原过程中,下列常见几何体的三视图要熟记,以方便还原.
几何体
主视图
左视图 俯视图
正方体
长方体
圆柱
圆锥 圆台
画组合体的三视图的“四个步骤”
能将三视图还原成几何体;
探究二 简单组合体的三视图 能将三视图还原成几何体;
1.1.5 三视图
温故知新:结合图形说出平行投影的定义及性质
探究一
探究二
探究三
探究四
探究五
探究一 正投影问题
作物体的正投影,一般是按照这样的过程: 如图所示,把要作投影的物体放在投射面和观 察者中间,按观察者—物体—投射面的顺序摆 好.由观察者的眼睛假想发出一束平行的投射
线,这些投射线经过物体轮廓线上的顶点后,与
(3)画出如图所示几何体的三视图.
解:三视图如图所示.
1234
1234
(4)若某几何体的三视图如图所示,则这个几何体的直观图 可以是( )
1234
解析:由题意知,A,C 中所给几何体的主视图、俯视图不符合要求,D 中所给 几何体的左视图不符合要求. 答案:B

人教B版高中数学必修二课件第一章1.1.6棱柱、棱锥、棱台和球的表面积

人教B版高中数学必修二课件第一章1.1.6棱柱、棱锥、棱台和球的表面积

法二:延长正四棱台的侧棱交于点 P, 如图设 PB1=x, 则x+x 8=48,得 x=8. ∴PB1=B1B=8, ∴E1 为 PE 的中点 ∴PE1= 82-22=2 15, PE=2PE1=4 15.
∴S =S -S 正棱台侧
大正棱锥侧
小正棱锥侧
=4×12×8×PE-4×12×4×PE1
=4×12×8×4 15-4×12×4×2 15
[通一类] 4.(2012·枣庄高一检测)已知一个表面积为120cm2的正 方体的四个顶点在半球的球面上,四个顶点在半球的
底面上,求半球的表面积.
解:如图,为过正方体对角面的截面图.设正方体的棱长为 a, 半球的半径为 R, 由 6a2=120 得 a2=20, 在 Rt△AOB 中,AB=a,OB= 22a, 由勾股定理,得 R2=a2+( 22a)2=32a2=30. 所以半球的表面积为 S=2πR2+πR2=3πR2=3×30π=90π(cm2).
=48 15(cm2).
∴正四棱台的侧面积为 48 15 cm2.
[研一题] [例3] 正四棱台两底面边长分别为a和b(a<b).若侧棱所在 直线与上、下底面正方形中心的连线所成的角为45°,求 棱台的侧面积. [自主解答] 如图, 设O1,O分别为上、下底面的中心, 过C1作C1E⊥AC于E,过E作EF⊥BC 于F,连接C1F, 则C1F为正四棱台的斜高. 由题意知∠C1CO=45°,
∴球的表面积 S=4πR2=4π×172a2=73πa2. [答案] B
[悟一法] 与球有关的组合体共有两种,一种是内切,一种是外接.解 题时要认真分析图形,明确切点和接点的位置,灵活利用球的 对称性, ①若半径为 R 的球的内接正方体的棱长为 a,则 2R= 3a. ②若半径为 R 的球的内接长方体的长、宽、高分别为 a, b,c,则 2R= a2+b2+c2.

第1章 §2 直观图-2020秋北师大版高中数学必修二课件(共55张PPT)

第1章 §2 直观图-2020秋北师大版高中数学必修二课件(共55张PPT)

小 结
·


新 你发现直观图的面积与原图形面积有何关系?
















返 首 页
·
32
·









提示:由题意,易知在△ABC 中,AC⊥AB,且 AC=6,AB=3, 提
·



∴S△ABC=12×6×3=9.



作 探 究

S△A′B′C′=12×3×(3sin
45°)=9 4 2,∴S△A′B′C′=


OB=2O′B′=2 2,OC=O′C′=AB=
·



知 A′B′=1,

·
·

且 AB∥OC,∠BOC=90°.
BC = B′C′ = 1 +
2,在
y
轴上截取线段
BA =
课 堂


习 2B′A′=2.
·



新 知
过 A 作 AD∥BC,截取 AD=A′D′=1.
素 养
·
·

连接 CD,则四边形 ABCD 就是四边形 A′B′C′D′的平面图 课


探 形.



释 疑
四边形 ABCD 为直角梯形,上底 AD=1,下底 BC=1+







人教A版高中数学必修二课件第一章1.3.2球的体积和表面积(共41张PPT)

人教A版高中数学必修二课件第一章1.3.2球的体积和表面积(共41张PPT)
3
答案:288πcm3
5.(2013·新课标全国卷Ⅱ)已知正四棱锥O-ABCD的体积为
底3面2边,长为,则以O为3 球心,OA为半径的球的表面积为
2
_______.
【解析】设正四棱锥的高为h,则 1
3
2
h
3
2,
3
2
解得高h=则3 底2 .面正方形的对角线长为
2
2 3 6,
所以OA=所(3以2球)2的 (表6面)2积为6,
(3)此类问题的具体解题流程:
【变式训练】正方体的内切球和外接球的半径之比为()
A.∶31B.∶2C.2∶3 D.∶3
3
3
【解析】选D.设正方体的棱长为a,则内切球半径为 a ,
2
外接球半径为所以3a 半, 径之比为1∶=∶3. 3 3
2
【规范解答】有关球的计算问题 【典例】【条件分析】
【规范解答】设圆锥的底面半径为r,高为h,母线长为l,
3
3
答案:(1)√(2)√(3)×(4)√
【知识点拨】 1.对球的三点说明 (1)球的表面是曲面,不能展开在一个平面上,因此没有展开图. (2)球既是中心对称的几何体,又是轴对称的几何体,它的任何 截面均为圆面,它的三视图也都是圆. (3)球是一个封闭的几何体,既包括球的表面,又包括球面所包 围的空间.
【解题探究】1.求球的体积和表面积的关键是什么? 2.两个球的体积之比和表面积之比分别与半径有何关系? 3.两个铁球熔化为一个球后,哪一个量是不变的? 探究提示: 1.关键是确定球的半径. 2.两个球的体积之比等于两个球的半径比的立方,表面积之比 等于两个球的半径比的平方. 3.体积不变,即两个小球的体积和应与大球的体积相同.

高中数学 第一章 立体几何初步 1.1.6 棱柱、棱锥、棱

高中数学 第一章 立体几何初步 1.1.6 棱柱、棱锥、棱

探究一
探究二
探究三
探究四
【典型例题 2】 已知正六棱台的两底面边长分别为 1 cm 和 2 cm,高是 1 cm,求它的侧面积.
解:如图所示是正六棱台的一个侧面及其高组成 的一部分(其余部分省略),则侧面 ABB1A1 为等腰梯 形,OO1 为高,且 OO1=1 cm,AB=1 cm,A1B1=2 cm,取 AB 和 A1B1 的中点 C,C1,连接 OC,CC1,O1C1,则 CC1 为正六 棱台的斜高,且四边形 OO1C1C 为直角梯形.
探究一
探究二
探究三
探究四
【典型例题 1】 如图所示,正四棱锥底面正方形的边长为 4 cm,高与斜 高的夹角为 30°,求该正四棱锥的侧面积和表面积.
思路分析:根据多面体的侧面积公式,必须求出相应多面体的底面边长 和各侧面的斜高,我们可以把问题转化到三角形内加以分析求解.
探究一
探究二
探究三
探究四
解:正四棱锥的高 PO,斜高 PE,底面边心距 OE 组成一个 Rt△POE. 因为 OE=2 cm,∠OPE=30°, 所以 PE=sin���3������0��� °=4(cm).
思考 1 斜棱柱的侧面展开图是什么?它的侧面积如何求解?
提示:斜棱柱的侧面展开图是一些平行四边形连接起来的不规则图形, 它的侧面积等于各个侧面面积之和,也等于直截面(与侧棱垂直相交的截面) 的周长与侧棱长的乘积.
2.圆柱、圆锥的侧面积 几何体 侧面展开图 圆柱
圆锥
侧面积公式
S 圆柱侧=2πrl r 为底面半径 l 为侧面母线长
1.1.6 棱柱、棱锥、棱台和球的表面积
课程目标
1.掌握棱柱、棱锥和棱台的表面积公式 的推导方法,进一步加强空间问题与平 面问题相互转化的思想,并熟练运用公 式求面积. 2.了解棱柱、棱锥和棱台的侧面积的求 法——侧面展开图. 3.了解球的表面积公式,并会熟练运用公 式求球的表面积. 4.了解旋转体的构成,并会求旋转体的表 面积.

人教版高中数学必修2全套课件

人教版高中数学必修2全套课件

达标检测
1 2345
1.下列说法中正确的是( ) A.棱柱的面中,至少有两个面互相平行 B.棱柱中两个互相平行的平面一定是棱柱的底面 C.棱柱中一条侧棱就是棱柱的高 D.棱柱的侧面一定是平行四边形,但它的底面一定不是平 行四边形
1 2345
2.下列说法中,正确的是A( ) A.有一个底面为多边形,其余各面都是有一个公共顶点的三 角形,由
反思与感
跟踪训练2 试从如图正方体ABCD-A1B1C1D1的八个顶点中任 取若干,连接后构成以下空间几何体,并且用适当的符号表示 出来. (1)只有一个面是等边三角形的三棱锥; 解 如图所示,三棱锥A1-AB1D1(答案不唯一).
(2)四个面都是等边三角形的三棱锥; 解 如图所示,三棱锥B1-ACD1(答案不唯一).
人教版高中数学必修2全套课件
第一 章 § 1.1 空间几何体的结构
第1课时 多面体的结构特征
问题导学
新知探究 点点落实
知识点一 空间几何体的定义、分类及相关概念
思考 观察下面两组物体,你能说出各组物体的共同点吗?
答案 几何体的表面由若干个平面多边形围 成.
答案 几何体的表面由平面图形绕其所在平面内的一条定直线 旋转而成.
旋转所形
成的封闭几何体
图形
面:围成多面体的多各边个形
相关概
轴:形成旋转体所绕
棱:相邻两个面公的共边


顶点:棱与棱的公共点 定直线
知识点二 棱柱的结构特征
思考 观察下列多面体,有什么共同特点?
答案 (1)有两个面相互平行; (2)其余各面都是平行四边形; (3)每相邻两个四边形的公共边都互相平行.
解 错误. 如长方体中相对侧面互相平行.

人教版高中数学必修二全册教学课件ppt

人教版高中数学必修二全册教学课件ppt



答 旋转轴叫做圆台的轴,垂直于轴的边
旋转而成的圆面叫做圆台的底面,斜边旋
转而成的曲面叫做圆台的侧面,斜边在旋
转中的任何位置叫做圆台侧面的母线.
圆台用表示它的轴的字母表示,如上图的圆台表示为圆台 O′O.
研一研·问题探究、课堂更高效
填一填 研一研 练一练
问题 3 圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点
答案 图1是由圆柱中挖去圆台形成的, 图2是由球、棱柱、棱台组合而成的.
答案
返回
达标检测
1.下图是由哪个平面图形旋转得到的( D )
1 23 4
答案
2.下列说法正确的是( D ) A.圆锥的母线长等于底面圆直径 B.圆柱的母线与轴垂直 C.圆台的母线与轴平行 D.球的直径必过球心
解析 圆锥的母线长与底面直径无联系; 圆柱的母线与轴平行; 圆台的母线与轴不平行.
答案
球的结构特征

图形及表示
定义:以 半圆的直径 所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做球体, 简称球
相关概念: 球心:半圆的 圆心 半径:半圆的 半径 直径:半圆的 直径
图中的球表示为: 球O
答案
知识点五 简单组合体
思考 下图中的两个空间几何体是柱、锥、台、球体中的一种吗? 它们是如何构成的?


上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我
开 关
们就来学习旋转体与简单组合体的结构特征.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
问题 1 如图所示的空间几何体叫做圆柱,那么圆

高中数学必修2课件:第一章 6 垂直关系的性质

高中数学必修2课件:第一章 6 垂直关系的性质
6.2 垂直关系的性质
预习课本P39~41,思考并完成以下问题
(1)线面垂直的性质定理的内容是什么?有什么作用?
(2)面面垂直的性质定理的内容是什么?有什么作用?
(3)应用面面垂直性质定理时应注意什么?
1.直线与平面垂直的性质定理 (1)文字语言:如果两条直线同垂直于一个平面,那么这两条直 线 平行 . (2)图形语言:
[活学活用] 如图,已知平面α∩平面β=l,EA⊥α,垂足 为A,EB⊥β,垂足为B,直线a β,a⊥AB. 求证:a∥l.
证明:因为EA⊥α,α∩β=l,即l α,所以l⊥EA.同理l⊥EB. 又EA∩EB=E,所以l⊥平面EAB. 因为EB⊥β,a β,所以EB⊥a, 又a⊥AB,EB∩AB=B, 所以a⊥平面EAB. 由线面垂直的性质定理,得a∥l.
(1)如图,在菱形ABCD中, 连接BD, 由已知∠DAB=60°, ∴△ABD为正三角形,
∵G是AD的中点,∴BG⊥AD. ∵平面PAD⊥平面ABCD, 且平面PAD∩平面ABCD=AD, ∴BG⊥平面PAD. (2)如图,连接PG. ∵△PAD是正三角形,G是AD的中点, ∴PG⊥AD,由(1)知BG⊥AD. 又∵PG∩BG=G.∴AD⊥平面PBG. 而PB 平面PBG,∴AD⊥PB.
面面垂直性质定理的应用
[典例] 已知P是△ABC所在平面外的一点,且PA⊥平 面ABC,平面PAC⊥平面PBC,求证:BC⊥AC.
[证明]
如图,在平面PAC内作AD⊥PC于点D,
∵平面PAC⊥平面PBC,AD 平面PAC,且AD⊥PC, ∴AD⊥平面PBC, 又BC 平面PBC,∴AD⊥BC. ∵PA⊥平面ABC.BC 平面ABC, ∴PA⊥BC, ∵AD∩PA=A,∴BC⊥平面PAC, 又AC 平面PAC,∴BC⊥AC.

高中数学人教A版必修2第一章1.2.3空间几何体的直观图-斜二侧画法 课件教学课件

高中数学人教A版必修2第一章1.2.3空间几何体的直观图-斜二侧画法 课件教学课件
(2)已知图形中平行于x轴或y轴的线段,在直观图 中分别画成平行于x′轴或y′轴的线段。
(3)已知图形中平行于x轴的线段,在直观图中保持 原长度不变;平行于y轴的线段,长度为原来的一半。
例2.用斜二测画法画长,宽,高分别是4cm,3cm, 2cm的长方体的直观图。
思考:直观图
画法的步骤是 怎样的?
上 分 别 截 取 2 c m 长 的 线 段 A A , B B , C C , D D .
Z
D
C y
A D
BQ C
MO
Nx
AP B
4成 图 .顺 次 连 接 A,B,C,D,并 加 以 整 理
去 掉 辅 助 线 ,将 被 遮 挡 住 的 部 分 改 为 虚 线 ,
就 可 得 到 长 方 体 的 直 观 图 .
1、画轴; 2、画底面; 3、画侧棱;(直棱柱的侧棱和z轴平行,长度保持不变) 4、成图。注意:去掉辅助线,将被遮挡的部分改为虚线.
1 画 轴 . 画 x 轴 , y 轴 , z 轴 , 三 轴 交 于 点 O , 使 x O y = 4 5 ,
x O z 9 0 .
Z
y
O
x
2画 底 面 .以 O为 中 心 ,在 x轴 上 取 线 段 MN,使 MN=4 cm;在
脚踏实地过好每一天,最简单的恰恰是最难的。拿梦想去拼,我怎么能输。只要学不死,就往死里学。我会努力站在万人中央成为别人的光。行为决定性格, 性格决定命运。不曾扬帆,何以至远方。人生充满苦痛,我们有幸来过。如果骄傲没有被现实的大海冷冷拍下,又怎么会明白要多努力才能走到远方。所有的 豪言都收起来,所有的呐喊都咽下去。十年后所有难过都是下酒菜。人生如逆旅,我亦是行人。驾驭命运的舵是奋斗,不抱有一丝幻想,不放弃一点机会,不 停止一日努力。失败时郁郁寡欢,这是懦夫的表现。所有偷过的懒都会变成打脸的巴掌。越努力,越幸运。每一个不起舞的早晨,都是对生命的辜负。死鱼随 波逐流,活鱼逆流而上。墙高万丈,挡的只是不来的人,要来,千军万马也是挡不住的既然选择远方,就注定风雨兼程。漫漫长路,荆棘丛生,待我用双手踏 平。不要忘记最初那颗不倒的心。胸有凌云志,无高不可攀。人的才华就如海绵的水,没有外力的挤压,它是绝对流不出来的。流出来后,海绵才能吸收新的 源泉。感恩生命,感谢她给予我们一个聪明的大脑。思考疑难的问题,生命的意义;赞颂真善美,批判假恶丑。记住精彩的瞬间,激动的时刻,温馨的情景, 甜蜜的镜头。感恩生命赋予我们特有的灵性。善待自己,幸福无比,善待别人,快乐无比,善待生命,健康无比。一切伟大的行动和思想,都有一个微不足道 的开始。在你发怒的时候,要紧闭你的嘴,免得增加你的怒气。获致幸福的不二法门是珍视你所拥有的、遗忘你所没有的。骄傲是胜利下的蛋,孵出来的却是 失败。没有一个朋友比得上健康,没有一个敌人比得上病魔,与其为病痛暗自流泪,不如运动健身为生命添彩。有什么别有病,没什么别没钱,缺什么也别缺 健康,健康不是一切,但是没有健康就没有一切。什么都可以不好,心情不能不好;什么都可以缺乏,自信不能缺乏;什么都可以不要,快乐不能不要;什么 都可以忘掉,健身不能忘掉。选对事业可以成就一生,选对朋友可以智能一生,选对环境可以快乐一生,选对伴侣可以幸福一生,选对生活方式可以健康一生。 含泪播种的人一定能含笑收获一个有信念者所开发出的力量,大于个只有兴趣者。忍耐力较诸脑力,尤胜一筹。影响我们人生的绝不仅仅是环境,其实是心态 在控制个人的行动和思想。同时,心态也决定了一个人的视野、事业和成就,甚至一生。每一发奋努力的背后,必有加倍的赏赐。懒惰像生锈一样,比操劳更 消耗身体。所有的胜利,与征服自己的胜利比起来,都是微不足道。所有的失败,与失去自己的失败比起来,更是微不足道挫折其实就是迈向成功所应缴的学 费。在这个尘世上,虽然有不少寒冷,不少黑暗,但只要人与人之间多些信任,多些关爱,那么,就会增加许多阳光。一个能从别人的观念来看事情,能了解 别人心灵活动的人,永远不必为自己的前途担心。当一个人先从自己的内心开始奋斗,他就是个有价值的人。没有人富有得可以不要别人的帮助,也没有人穷 得不能在某方面给他人帮助。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。今天做别人不 愿做的事,明天就能做别人做不到的事。到了一定年龄,便要学会寡言,每一句话都要有用,有重量。喜怒不形于色,大事淡然,有自己的底线。趁着年轻, 不怕多吃一些苦。这些逆境与磨练,才会让你真正学会谦恭。不然,你那自以为是的聪明和藐视一切的优越感,迟早会毁了你。无论现在的你处于什么状态, 是时候对自己说:不为模糊不清的未来担忧,只为清清楚楚的现在努力。世界上那些最容易的事情中,拖延时间最不费力。崇高的理想就像生长在高山上的鲜 花。如果要搞下它,勤奋才能是攀登的绳索。行动是治愈恐惧的良药,而犹豫、拖延将不断滋养恐惧。海浪的品格,就是无数次被礁石击碎又无数闪地扑向礁 石。人都是矛盾的,渴望被理解,又害怕被看穿。经过大海的一番磨砺,卵石才变得更加美丽光滑。生活可以是甜的,也可以是苦的,但不能是没味的。你可
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

面的有几对?
人 教
A
(2)观察螺杆头部模型,有多少对平行的平面?能作为
版 数

棱柱底面的有几对?
第一章 空间几何体
[解析] (1)有三对平行平面,有三对平面可作为棱柱
的底面.它们分别为平面ABCD与平面A′B′C′D′、平面
ADD′A′与平面BCC′B′、平面ABB′A′与平面DCC′D′.
(2)平行平面共有四对,但能作为棱柱底面的只有一对,人教
截面A1B1C1D1与底面虽然平行,但各侧棱AA1,BB1,CC1,
DD1延长后不能相交于一点;图(2)中显然各侧棱延长后能
交于一点,即原几何体为棱锥,但截面A1B1C1D1与底面
人 教 A
ABCD不平行.
版 数

第一章 空间几何体
4.①球面也可以看作空间中到定点的距离等于定长的
点的集合.
②球面被经过球心的平面截得的圆叫做球的大圆;被
人 教 A 版 数 学
[例3] 指出所给三个几何图形的底面、侧面、顶点、
棱,并指出它们分别由几个面围成,各有多少条棱?多少
人 教
A
个顶点?
版 数

第一章 空间几何体
[解析] 图(1)中,底面A1C1、AC、侧面A1B1BA、
B1C1CB、C1D1DC、DD1A1A共有6个面;顶点A1、B1…共8
个;棱A1B1、B1C1、AA1、BB1…共12条.
第一章 空间几何体
1.不能把棱柱理解成“有两个面是互相平行且全等的 人
多边形,其余各面都是平行四边形的多面体.”如图所示, 教 A
底面△ABC 与△A1B1C1 是平行且全等的多边形,其余各面都
版 数
是平行四边形,显然这个多面体不是棱柱,所以定义中强调 学
“其余各面都是四边形,且每.相.邻.两.个.四.边.形.的.公.共.边.都.互.
不经过球心的平面截得的圆叫做球的小圆.
人 教
A
③球小圆的圆心O′,球心O,|OO′|=d,球小圆半径r,版数

球半径为R,则d2=R2-r2.
5.圆台可看作直角梯形以其垂直于两底的腰所在直线
为旋转轴,其余三边旋转所形成的曲面所围成的旋转体.
6.用运动变化的观点来认识柱、锥、台之间的关系:
第一章 空间几何体
②连接球的任意两个大圆的交点的线段是球的直径;
人 教
A
③球是与定点的距离等于定长的所有点的集合.
版 数

其中正确的是
()
A.①② B.②③ C.②
D.①③
[答案] C
第一章 空间几何体
[解析] 若两点为球的直径的端点,可做无数个大
圆.球是一个几何体,包括到球心的距离小于半径的点,
到定点的距离等于定长的所有点的集合组成球面,而不是
球,球与球面是不同的两个概念,∴①③错,②正确,故
人 教
A
选C.
版 数

第一章 空间几何体
2.以下棱柱中,最多只有一对面互相平行的是(
A.三棱柱
B.四棱柱
C.五棱柱
D.六棱柱
[答案] A
)
人 教 A 版 数 学
[解析] 三棱柱只有两个底面互相平行,四、五、六
棱柱的侧面中也可以有相互平行的.
第一章 空间几何体
7.用
平行
于圆锥底面的平面去截圆锥,底面与
人 教
A
截面间的部分叫做圆台,截面叫做圆台的上底面,圆锥的
版 数

底面叫做圆台的下底面,圆锥的母线被截后余下的部分叫
做圆台的母线.
圆柱和棱柱统称为 柱体 ; 圆 锥 和 棱 锥 统 称 为
锥体 ;棱台和圆台统称为
台体 .
第一章 空间几何体
8.以半圆的 直径 所在直线为轴,旋转一周,所 形成的旋转体叫做球体,简称 球 , 半圆的圆心 叫
(4)圆锥结构特征的有:________________;
(5)球体结构特征的有:________________;
(6)其它结构特征的有:________________.
第一章 空间几何体
[解析] (1)①④ (2)③ (3)⑤ (4)⑥ (5)② (6)⑦ ⑧
人 教 A 版 数 学
第一章 空间几何体
绕其斜边旋转时形成同底的两个圆锥.
第一章 空间几何体
矩形ABCD中,AB=4,AD=2,分别以AB、AD所在
直线为轴旋转所形成的圆柱相同吗?________.
人 教
A
[答案] 不相同
版 数

[解析] 以AB为轴旋转形成的圆柱底面半径为2,以
AD为轴旋转所形成圆柱的底面半径为4.
第一章 空间几何体
球心, 半圆的半径
叫做球的半径, 半圆的直径
叫做球的直径.球常用表示球心的字母来表示.
人 教
A



第一章 空间几何体
人 教 A 版 数 学
第一章 空间几何体
本节学习重点:柱、锥、台、球的概念与结构特征.
人 教
A
本节学习难点:棱柱及台体的结构特征.
版 数

第一章 空间几何体
人 教 A 版 数 学
柱的底面, 平行于轴的边
旋转而成的曲面叫做圆
人 教
A
柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做
版 数

圆柱侧面的母线,圆柱可用表示它轴的字母表示.
第一章 空间几何体
6.以 直角三角形 的一条 直角 边 所 在 直
线为旋转轴,其余两边旋转所形成的曲面所围成的旋转体
叫做圆锥.圆锥常用表示它轴的字母来表示.
A
即上下两个平行平面.
版 数

第一章 空间几何体
[例 5] 用一个平面截半径为 R 的球,截面到球心的
距离为R2,则截面圆面积为________.
人 教 A

[解析] 如图,O 为球心,O1 为截面圆心,AB 为截
数 学
面圆的直径,则 OA=R,OO1=R2,
∴AO1=
OA2-OO21=
23R,∴截面圆面积
图(2)中,底面ABCD、侧面SAB、SBC、SCD、SDA共5
人 教
A
个面,顶点S及底面四边形的顶点A、B、C、D共5个.
版 数

侧棱SA、SB、SC、SD及底面多边形的各边共8条棱.
图(3)中,上、下底面A1C1及AC、侧面ABB1A1、 BCC1B1、CDD1C1、DAA1D1共6个面,顶点A、B、A1、B1… 共8个,棱AA1、AB、A1B1…共12条.
在直线旋转时,形成的几何体才是圆台,由于直角梯形
ABCD未指出哪两边平行,哪条腰与底垂直,故以AB边所
在直线为轴旋转,形成的几何体形状不确定.
[正解] D
第一章 空间几何体
人 教 A 版 数 学
第一章 空间几何体
1.下列命题:
①过球面上任意两点只能作一个球的大圆;(注:球大
圆是以球心为圆心,球半径为半径的圆)
第一章 空间几何体


1.1 空间几何体的结构
A 版


第一章 空间几何体

1.1.1 柱、锥、台、球的结构
教 A


特征

第一章 空间几何体
人 教 A 版 数 学
第一章 空间几何体
阅读教材P2-6,回答下列问题: 1.(1)只考虑物体占有空间部分的 形状和大小 ,
而不考虑其它因素,则这个空间部分叫做一个空间几何
S=π(
3 2
R)2=34πR2.
第一章 空间几何体
人 教 A 版 数 学
第一章 空间几何体
人 教 A 版 数 学
第一章 空间几何体
[例6] 将直角梯形ABCD以它的一条边AB所在直线为
轴旋转一周,所形成的几何体为
()
A.圆柱
B.圆锥
C.圆台
D.以上都不对
人 教
A
[错解] C
版 数

[辨析] 只有将直角梯形ABCD绕它垂直于两底的腰所
字母来表示棱柱.
第一章 空间几何体
3.一般地:有一个面是多边形,其余各面是 有一个公共顶点的三角形 ,这些面围成的几何体叫做棱
锥;多边形面叫做棱锥的底面;其余各面叫做侧面;相邻
侧面的公共边叫做侧棱,各侧面的公共顶点叫做顶点,底
人 教
A
面是n边形的棱锥叫做n棱锥,其中三棱锥又常叫做
版 数
四面体 ,我们可以用顶点和底面各顶点来表示棱锥. 学
第一章 空间几何体
人 教 A 版 数 学
第一章 空间几何体
[例4] 如图,过BC的截面截去长方体的一角,截后剩
余几何体中,A′B′=D′C′,问剩余的几何体是不是棱柱?
一章 空间几何体
[解析] 选择平面ABB′A′与平面DCC′D′为两个平行平
面,则它符合棱柱的结构特征,故它是四棱柱ABB′A′-
相.平.行.”.
第一章 空间几何体
2.理解棱锥定义时,注意“有公共顶点”这一重要条
件,否则就不是棱锥了.
如图是由三棱锥M-PBC和四棱锥P-ABCD拼合而成
的几何体.显然它符合“有一个面是多边形,其余各面都
人 教
A
是三角形的要求”,但它不是棱锥.
版 数

第一章 空间几何体
3.下面两个图形中的几何体都不是棱台,图(1)中,
[例2] 将下列几何体按结构特征分类填空
①课本 ②篮球 ③量筒 ④三棱镜 ⑤金字塔


⑥滤纸卷成漏斗 ⑦量杯 ⑧羽毛球
A 版

(1)棱柱结构特征的有:________________;
相关文档
最新文档