1.2任意角的三角函数知识点

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1任意角的三角函数

课前复习:

1. 特殊角的三角函数值记忆

新课讲解:

任意点到原点的距离公式:

1.三角函数定义

在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为2222(||||0)r r x y x y =+=

+>,那么 (1)比值y r

叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r

α=; (3)比值y x

叫做α的正切,记作tan α,即tan y x α=; (4)比值x y

叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α

的大小,只表明与α的终边相同的角所在的位置;

②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z π

απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等

于0,所以tan y x α=

无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值

y r 、x r 、y x 、x y

分别是一个确定的实数。 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

当角的终边上一点(,)P x y

1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。

有向线段:

坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。

规定:与坐标轴方向一致时为正,与坐标方向相反时为负。

有向线段:带有方向的线段。

2.三角函数线的定义:

设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点

P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .

由四个图看出:

当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。

(Ⅳ) (Ⅲ)

说明:

(1)三条有向线段的位置:正弦线为α的终边与单位圆的交点到x 轴的垂直线段;余弦线 在x 轴上;正切线在过单位圆与x 轴正方向的交点的切线上,三条有向线段中两条在单位圆 内,一条在单位圆外。

(2)三条有向线段的方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与α的终边的交点。

(3)三条有向线段的正负:三条有向线段凡与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值。

(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。

题型一:求解三角函数值

一般角:利用三角函数的定义

特殊角:先化为0至360度之间的角

)

Z (tan )2tan()Z (cos )2cos()

Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ

例1.求下列各角的四个三角函数值:

(1)0; (2)π; (3)

32

π.

例2.已知角α的终边经过点(2,3)P -,求α的四个函数值。

变式训练1:已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。

变式训练2:角α的终边上有一点P (a ,a ),a ∈R ,a ≠0,则sin α的值是( ) A.

22B.-22C.22或-22D.1

例3.求下列三角函数的值:

(1)9cos

4π (2)11tan()6

π-,

变式训练1:.____________tan600o 的值是 D 3.D 3.C 3

3.B 33.A --

题型二:判断三角函数值在不同象限内的正负性

例4.确定下列三角函数值的符号:

(1)cos 250; (2)sin()4π

-; (3)tan(672)-; (4)11tan 3

π. 变式训练1:.________,0cos sin 在则若θθθ> B

第二、四象限 第一、四象限第一、三象限

第一、二象限.D .C .B .A

变式训练2:____0sin20cos 的终边在则若 θθ<>θ,且

第二象限 第四象限 第三象限 第一象限.D .C .B .A 变式训练3:若θ是第二象限角,则( ) A.sin 2θ>0B.cos 2θ<0C.tan 2θ>0D.cot 2

θ<0 变式训练4: 若角α、β的终边关于y 轴对称,则下列等式成立的是( )

A.sin α=sin β

B.cos α=cos β

C.tan α=tan β

D.cot α=cot β

变式训练5:sin2·cos3·tan4的值( )

A.小于0

B.大于0

C.等于0

D.不存在

例5.求函数x x x x y tan tan cos cos +=

的值域

变式训练1:若x x sin |sin |+|cos |cos x x +x

x tan |tan |=-1,则角x 一定不是( ) A.第四象限角 B.第三象限角

C.第二象限角

D.第一象限角

例6.作出下列各角的正弦线、余弦线、正切线。

(1)

3

π; (2)56π; (3)23π-; (4)136π-.

相关文档
最新文档