1.2任意角的三角函数知识点
2014年人教A版必修四课件 1.2 任意角的三角函数

r= x + y , a | MP | y sina = = , o M x | OP | r | OM | x cosa = = , | OP | r | MP | y tana = = . 于是得 | OM | x
【终边上一点的坐标定义三角函数】 点P(x, y)是角 a 终边上任一点(除原点), r 是点P y 到原点的距离, 即 r = |OP| = x 2 + y 2 , 1 P(x, y) y 正弦: sina = , r 余弦: cosa = x , -1 o x r y 正切: tana = , x 当点P(x, y)取角 a 终边与单位圆的交点时, r =1, 则a 的三角函数为: y 正弦: sina = = y, 余弦: cosa = x = x. r r
【终边在坐标轴上的角的三角函数】 终边在 x 轴非负半轴上时, (如图)
y 0 =0, sina = = r r cosa = x = r =1, r r y 0 =0. tana = = x x
终边与其它半轴重合时同理.
y
a的终边
o
P
x
练习: (课本15页) 3. 填表: 角a 角 a 的弧度数 sin a cos a 0º 0 90º 180º 270º 360º 3 2 2 2 -1 0 0 1 0
问题1. 在直角三角形中, 锐角的三角函数是怎 样定义的? 在直角坐标系中, 如果知道锐角 a 终边 上一点的坐标, 你能求出 a 的三角函数吗?
对边 sina = 斜边 邻边 cosa = 斜边
对边 tana = 邻边
作PM⊥x 轴于M, 设 |OP| = r, 则
2 2
y (x, y) P ·
本章内容
1.2.1任意角的三角函数

0
tan 0 0 cos0 1 (2)因为当 时,x r y 0 ,所以 , sin 0 cos 1 tan 0 3 (3)因为当 时, x 0, y r ,所以 2
3 sin 1 2
3 cos 0 2
sin 0 0
( (
k , k Z 2
R R
[ 1,1] [ 1,1] R
(
(
值域
)
y
2.三角函数值在各象限的符号
(
x )
sin
o )(
)( ) cos
o )( x )
y
) ( )
tan
o ) ( x )
y
(
例3 求证:当且仅当下列不等式组成立时,
12,5
52 13
,
的三个三角函数值.
2 2
解:由已知可得:
r x y
y 5 于是,sin r 13 y 5 tan x 12
12
2
x 12 cos r 13
探究:
1.三角函数的定义域和值域 三角函数 定义域
sin cos tan
Y
单位圆.
P(a,b)
MP sin OP
OM cos OP
b
O M X
a b MP tan OM a
2.任意角的三角函数定义(二)
设 是一个任意角,它的终边与单位圆交于点P( x, y )
那么:(1)y 叫做
α的终边
的正弦,记作 sin ,即 sin y ; (2)x 叫做 的余弦,记作 cos ,即 cos x ; y y tan (3) 叫做 的正切,记作 ,即 tan ( x 0)
1.2任意角的三角函数((不知年级))全面版

2 若lg(sintan)有意义,则是(C)
A 第一象限角
B 第四象限角
C 第一象限角或第四象限角
D 第一或第四象限角或x轴的正半轴
3 已知的终边过点(3a-9,a+2),且cos0, sin>0,则a的取值范围是 -2<a3 。
例3 若是是第二象限角, 且|cos(/2)|=- cos(/2), 问/2是第几象限角?
公式一:sin(α + k·2π )=sinα cos(α + k·2π )=cosα
tan(α + k·2π)=tanα
(k∈Z)
说明:
1 运用公式时, k∈Z不能省略! 2 α + k·2π, k∈Z表示任意
与 α终边相同的角。 3 此公式表明求任意角的三角函数
值的问题,可以转化为求0°~360° (0~2π)间角的三角函数值的问题。
练习 已知是第三象限角,且sin(/2)<0, 则( B ) A cos(/2)<0 B cos(/2)>0 C tan(/2)>0 D cot(/2)>0
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时
任意角的三角函数数学总结

第一章 三角函数(内容总结)设计人:丁大牛1.1任意角和弧度制1.1.1 任意角1.任意角的两种分类2.和角α 终边相同的角的规律等式是3.等分角)3,2(=n n α的象限规律4.用角度的形式写出终边落在每个象限的角1.1.2 弧度制1.角的两种度量方式: 和2.角的两种度量单位及其规定:角度制弧度制3.换算公式4.角度和弧度转化时候需要注意5.扇形公式1.2 任意角的三角函数1.2.1 任意角的三角函数锐角三角形中=αsin =αcos =αtan终边上一点),(y x P 的三角函数公式=αsin=αcos=αtan终边和单位圆交点),(y x P 的三角函数=αsin=αcos=αtan单位圆上的三角函数线:正弦线、余弦线、正切线各个象限角的三角函数值的符号规律α 第一象限 第二象限 第三象限 第四象限αsinαcosαtan终边相同的角的同一三角函数的值相等:=+)2sin(παk公式 =+)2c o s(παk 公式一的功能: =+)2tan(παk 1.2.2 同角三角函数的基本关系1. 平方和关系:2. 商数关系:3.变化应用:4.正弦、余弦化正切5. ααcos sin ±、ααcos sin ⋅和αtan 的关系6. 求值、化简、证明1.3三角函数的诱导公式公式二 公式二的功能:公式三 公式三的功能:公式四 公式四的功能:公式五 公式五的功能:公式六 公式六的功能:公式一至四可以概括为:公式五、六可以概括为:理解公式记忆口诀:奇变偶不变,符号看象限1.4三角函数的图像与性质正弦函数x y sin 的图像和性质定义域值域周期性性质 单调性 图像最值奇偶性对称性余弦函数x y cos =的图像和性质定义域值域周期性性质 单调性最值 图像奇偶性对称性正切函数x y tan =的性质与图像定义域值域周期性性质 单调性 图像最值奇偶性对称性1.5函数)sin(ϕω+=x A y 的图像一、由函数x y sin =的图像变化到)sin(ϕω+=x A y 的图像1.先平移后伸缩2.先伸缩后平移二、由图像来确定)sin(ϕω+=x A y 中的ϕω,,A1、由图像中的最高点和最低点求A 和b2、由横坐标确定周期进而确定ω的值3、由起始点的坐标进而确定ϕ的值/起始点、最高点、第三点、最低点、起始点。
任意角的三角函数基本知识点(要)

任意角的三角函数知识点一、终边角:与α终边相同的角表示为。
分别写出终边在下列位置时的角α的集合:1.x轴上2.y轴上3.坐标轴上4.第一象限5.第二象限6.第三象限7.第四象限 8.直线y=x上二、弧度制:1、定义:2、公式:|α|=3、换算:①度换弧度:180°=弧度; 1°=弧度②弧度换度:1弧度=度;扇形:弧长L==,面积S==三、任意角的三角函数:①定义:角α终边的终边与单位圆的交点P(x,y),则sinα= cosα= tanα=角α终边上任意一点交点P(x,y),则r= ,则sinα= cosα= tanα=②三角函数线:角的终边与单位圆交于点P,过点P作轴的垂线,垂足为M,则正弦线是余弦线是即sinα= ,cosα= .过点A(1,0)作交于点T即tonα= .③同角三角函数关系式:④三角函数的符号:(1)商数关系:(2)平方关系:⑤诱导公式:2kπ+α与απ—α与απ+α与α)(βα+C )(βα-C)(βα+S )(βα-S )(βα+T )(βα-T⑧二倍角公式: α2Sα2C α2T三角函数的图象与性质答案一、终边角:与α终边相同的角表为k ·360° + α 。
分别写出终边在下列位置时的角α的集合: 1. x 轴上 {},k k Z ααπ=∈2. y 轴上 ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭3. 坐标轴上,2k k Z ααπ⎧⎫=∈⎨⎬⎩⎭4. 第一象限22,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭5. 第二象限22,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭6. 第三象限322,2k k k Z παππαπ⎧⎫++∈⎨⎬⎩⎭7. 第四象限3222,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭8. 第一或第三象限,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭9. 第二或第四象限,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭10. 直线y =x 上,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭11. 直线y =-x 上3,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭二、 弧度制:1、定义:弧长等于半径的弧所对的圆心角叫一弧度的角.2、 公式:|α|=lr3、 换算:① 度换弧度:180°=π弧度;1°=180π弧度②弧度换度:1弧度=180π度;扇形: 弧长L =180n rπ= r α, 面积S =2360n r π=12lr三、 任意角的三角函数:①定义:角α终边上任意一点P(x ,y),则r =,六个三角函数的定义依次是sin y r α=、cos x r α=、tan y α=cot x α=sec r α=csc r α= ②三角函数线:角的终边与单位圆交于点P ,过点P 作x 轴的垂线,垂足为M ,则正弦线是MP 余弦线是OM即sin α=MP,cos α= OM.过点A(1,0)作 切线交 角的终边或反向延长线 于点T ,则正切线是AT 。
1.2.1 任意角的三角函数重难点题型(举一反三)(解析版)

1.2.1任意角的三角函数重难点题型【举一反三系列】【知识点1 三角函数的定义】1.任意角的三角函数定义2.三角函数的定义域:【知识点2 三角函数值的符号】第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.【知识点3 诱导公式一】由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:【知识点4 单位圆的三角函数线定义】如图(1)PM表示α角的正弦值,叫做正弦线.OM表示α角的余弦值,叫做余弦线.如图(2)AT表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.【考点1 三角函数的定义】【分析】根据三角函数的定义,列方程求出m的值.【答案】解:角α的终边上一点(1,)P m,所以0m>,故选:B.【点睛】本题考查了三角函数的定义与应用问题,是基础题.A .4B .4±C .3D .3±【分析】由题意利用任意角的三角函数的定义,求得m 的值.故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.)【分析】由题意利用任意角的三角函数的定义,求得tan α的值.【答案】解:角故选:C .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.【变式1-3】(2019春•牡丹江期末)角α的终边上一点(P a ,2)(0)a a ≠,则2sin cos (αα-= )【分析】由题意利用任意角的三角函数的定义,分类讨论求得结果. 【答案】解:α的终边上一点(P a ,2)(0)a a ≠, 555a a =,22555a a =,555a a=-,2555a a=-故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题. 【考点2 利用象限角判断三角函数的符号】【例2】(2019春•湖北期中)下列命题成立的是( ) A .若θ是第二象限角,则cos tan 0θθ< B .若θ是第三象限角,则cos tan 0θθ> C .若θ是第四象限角,则sin tan 0θθ< D .若θ是第三象限角,则sin cos 0θθ>【分析】根据角所在的象限判断三角函数值的符号进行判断即可.【答案】解:若θ是第二象限角,则cos 0θ<,tan 0θ<,则cos tan 0θθ>,故A 错误, 若θ是第三象限角,则cos 0θ<,tan 0θ>,则cos tan 0θθ<,故B 错误, 若θ是第四象限角,则sin 0θ<,tan 0θ<,则sin tan 0θθ>,故C 错误, 若θ是第三象限角,则sin 0θ<,cos 0θ<,则sin cos 0θθ>,故D 正确, 故选:D .【点睛】本题主要考查三角函数值符号的判断,结合角的象限与三角函数值符号的关系是解决本题的关键. 【变式2-1】(2019春•珠海期末)已知点(sin ,tan )M θθ在第三象限,则角θ在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由题意可得sin 0θ<且tan 0θ<,分别求得θ的范围,取交集得答案. 【答案】解:由题意,00sin tan θθ<⎧⎨<⎩①②,由①知,θ为第三、第四或y 轴负半轴上的角; 由②知,θ为第二或第四象限角. 则角θ在第四象限. 故选:D .【点睛】本题考查三角函数的象限符号,是基础题.【变式2-2】(2019春•玉山县校级月考)若sin cos 0θθ<,则θ在( ) A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限【分析】判断三角函数的符号,然后判断角所在象限即可.【答案】解:sin cos 0θθ<,可知sin θ与cos θ异号,说明θ在第或第四象限. 故选:D .【点睛】本题考查三角函数的符号的判断,角所在象限,是基本知识的考查. 【变式2-3】(2018秋•安庆期末)式子sin1cos2tan4的符号为( )A.正B.负C.零D.不能确定【分析】由1,2,4分别表示第一、二、三象限的角,由此可得答案.【答案】解:1,2,4分别表示第一、二、三象限的角,<,tan40>.∴>,cos20sin10故选:B.【点睛】本题考查三角函数值的符号,是基础题.【考点3 利用诱导公式一判断三角函数的符号】【例3】(2019秋•武邑县校级期中)下列三角函数值的符号判断正确的是()【分析】根据角所在的象限、诱导公式、三角函数值的符号逐项判断即可.【答案】解:A、因为156︒在第二象限,所以sin1560︒>,故A错误;︒=︒+︒=︒,且196︒在第三象限,D、因为tan556tan(360196)tan196所以tan5560︒>,故D错误;故选:C.【点睛】本题考查了三角函数的诱导公式,及三角函数在各象限的符号的应用,属于基础题.【变式3-1】(2019秋•西陵区校级期末)下列三角函数值的符号判断错误的是() A.sin1650︒<︒>D.tan3100︒>B.cos2800︒>C.tan1700【分析】直接利用诱导公式化简,判断符号即可.【答案】解:sin1650︒=︒>,正确;︒>,正确;cos280cos800tan1700︒=-︒<,正确;︒>,错误;tan310tan500故选:C.【点睛】本题考查诱导公式的应用,三角函数值的符号的判断,是基础题.【变式3-2】(2019春•武功县期中)下列值①sin(1000)-︒;④sin2是负值-︒;②cos(2200)-︒;③tan(10)的为()A.①B.②C.③D.④【分析】根据终边相同的角的三角函数值相同,利用三角函数符号判断方法,即可得出结论.【答案】解:①sin(1000)sin1000sin 2800-︒=-︒=-︒>; ②cos(2200)cos2200cos400-︒=︒=︒>; ③tan(10)tan100-︒=-︒<;综上,是负值的序号为③. 故选:C .【点睛】本题考查了终边相同的角与三角函数符号判断问题,是基础题.【变式3-3】(2019秋•夷陵区校级月考)给出下列各函数值:①sin(1- 000)︒;②cos(2- 200)︒;③tan(10)-;A .①④B .②③C .③⑤D .④⑤【分析】利用诱导公式分别对五个选项进行化简整理,进而根据三角函数的性质判断正负. 【答案】解:①,sin(1000)sin(2360280)sin 280cos100-︒=-⨯︒-︒=-︒=︒>; ②,cos(2200)cos(636040)cos400-︒=-⨯︒-︒=︒>; ③,tan(10)tan(30.58)tan(0.58)0π-=-+=-<;,πsin2cos3tan40∴<.∴其中符号为负的是:③⑤.故选:C .【点睛】本题主要考查了运用诱导公式化简求值,解题时应正确把握好函数值正负号的判定,是基础题. 【考点4 三角函数定义域】【分析】列出使函数有意义的不等式组,即由被开方数不小于零,得三角不等式组,分别利用正弦函数和余弦函数图象解三角不等式组即可【答案】解:要使函数有意义,需解得: (k ∈Z )即2k π+≤x ≤2k π+π (k ∈Z )故答案为Z )【点睛】本题考查了函数定义域的求法,三角函数的图象和性质,解简单的三角不等式的方法 可.【答案】解:函数【点睛】本题考查了函数的概念,三角函数的定义域,解三角函数的不等式,属于中档题. 【分析】由绝对值的特点得到sin α-和0的关系,由正弦曲线和角的正弦值可以得到角的范围,写出角的范围后注意加上k 的取值. 【答案】解:|sin |sin αα=-,sin 0α∴-, sin 0α∴,由正弦曲线可以得到[2k αππ∈-,2]k π,k Z ∈, 故答案为:[2k ππ-,2]k π,k Z ∈【点睛】本题主要考查三角函数不等式,解题时最关键的是要掌握三角函数的图象,通过数形结合得到要求的角的范围,这个知识点应用非常广泛,可以和其他知识结合来考查.【变式4-3】求下列函数的定义域:(2)(2sin1)=-;y lg x【分析】利用函数的定义域以及三角函数线化简求解即可.【答案】解:(1)要使y=有意义,可得cos x≥0,解得{x|﹣,k∈Z};(2)要使y=lg(2sin x﹣1)有意义,可得2sin x﹣1>0,即:sin x,解得{x|,k∈Z};(3)要使y=有意义,可得sin x≠﹣1.所以函数的定义域为:{x|x=﹣+2kπ,k∈Z}.【点睛】本题考查三角函数的定义域的求法,三角函数线的应用,考查计算能力.【考点5 利用诱导公式一化简求值】【例5】(2019春•娄星区期中)求下列各式的值:(2)sin1170cos1440tan1845︒+︒-︒【分析】(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;【答案】(本题满分10分)(2)sin1170cos1440tan1845︒+︒-︒sin(336090)cos(43600)tan(536045)=⨯︒+︒+⨯︒+︒-⨯︒+︒ sin90cos0tan45=︒+︒-︒1=.【点睛】此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式是解本题的关键.【变式5-1】求下列各式的值(2)9cos2708cos03tan011sin180︒+︒+︒+︒.【分析】由特殊角的三角函数值即可计算得解.1(1)(1)=+-+-1=-.(2)9cos2708cos03tan011sin180︒+︒+︒+︒ 08100=+⨯++ 8=.【点睛】本题主要考查了特殊角的三角函数值在三角函数化简求值中的应用,属于基础题. 【变式5-2】(2019春•船营区校级月考)计算下列各式的值: (1)sin(1395)cos1140cos(1020)sin750-︒︒+-︒︒; tan 4ππ; 【分析】(1)原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果. (2)利用诱导公式即可计算得解.【答案】解:(1)原式sin(144045)cos(108060)cos(108060)sin(72030)=-︒+︒︒+︒+-︒+︒︒+︒ sin45cos60cos60sin30=︒︒+︒︒tan 4ππ )0【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基础题. 【变式5-3】(2019春•平罗县校级期中)求下列各式的值 )cos(570)cos(1140)tan(210)sin(690)︒-︒-︒-︒-︒【分析】(1)利用诱导公式以及特殊角的三角函数化简求值即可. (2)利用诱导公式以及特殊角的三角函数化简求值即可. )cos(570)cos(1140)tan(210)sin(690)-︒-︒=-︒-︒25)sin cos tan 463πππ=+-【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力. 【考点6 利用三角函数线解不等式】【例6】(2019春•泗县校级月考)利用单位圆,求适合下列条件的角的集合:【分析】在单位圆中画出三角函数线. (1)由[0,2π)内,,结合正弦线得的解集;(2)由[0,2π)内,,结合余弦线得的解集.【答案】解:在单位圆内作三角函数线如图:(1)∵在[0,2π)内,,OA,OB分别为的终边,由正弦线可知,满足的角的终边在劣弧AB内,∴的解集为{α|};(2))∵在[0,2π)内,,OC,OD分别为的终边,由余弦线可知,满足的终边在劣弧CD内,∴的解集为{α|}.【点睛】本题考查了三角函数线,考查了三角不等式的解法,训练了数形结合的解题思想方法,是中低档题.【变式6-1】求下列不等式的解集:【分析】作出单元圆,利用三角函数线进行求解即可.【答案】解:(1)正弦线大于0的角为x轴的上方,对应的角为2kπ<x<2kπ+π,k∈Z,则不等式的解集为(2kπ,2kπ+π),k∈Z.(2)余弦线小于0的角为y轴的左侧,对应的角为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(3)sin x>对应的区域在阴影部分,对应角的范围为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(4)cos x≤﹣对应的区域在阴影部分,对应角的范围为2kπ+≤x≤2kπ+,k∈Z,则不等式的解集为[2kπ+,2kπ+],k∈Z.【点睛】本题主要考查三角不等式的求解,利用三角函数的三角函数线是解决本题的关键.【变式6-2】利用三角函数线,写出满足下列条件的角x的集合:(2)tan x≥﹣1.【分析】根据三角函数线分别进行求解即可.【答案】解:(1)作出y=﹣,交单位圆于B,C,则sin x>﹣对应的区域为阴影部分,作出x=,交单位圆于E,D,则cos x>对应的区域为阴影部分OD,OE之间,则sin x>﹣且cos x>对应的区域为OC到OE之间,其中OC对应的角为﹣,OE对应的角为,则阴影部分对应的范围是2kπ﹣<x<2kπ+,k∈Z,即sin x>﹣且cos x>对应的范围是{x|2kπ﹣<x<2kπ+,k∈Z}(2)作出正切函数线AT=﹣1,则tan x≥﹣1对应的区域为阴影部分,OT对应的角为﹣,则阴影部分对应的角的范围是kπ﹣≤x<kπ+,即不等式的解集为{x|kπ﹣≤x<kπ+,k∈Z}【点睛】本题主要考查三角函数对应不等式的求解,利用三角函数线是解决本题的关键.【变式6-3】利用三角函数线,写出满足下列条件的角x的集合.(3)tan x≥﹣1;【分析】作出单位圆,由三角函数值先求出角在[0,2π]内的取值范围,再由终边相同的角的概念加上周期,由此能求出满足条件的角x的集合.【答案】解:(1)由sin x,作出单位圆,如下图,∵sin x,∴,∴满足sin x≥的角x的集合为{x|2kπ+,k∈Z}.(2)由cos x≤,作出单位圆,如下图,∵cos x≤,∴,∴满足cos x≤的角x的集合为{x|2kπ+≤x≤2kπ+,k∈Z}.(3)由tan x≥﹣1,作出单位圆,如下图,∵tan x ≥﹣1,∴﹣≤x <, ∴满足tan x ≥﹣1的角x 的集合为{x |k π﹣,k ∈Z }. (4)由sin x >且cos x >,作出单位圆,如下图,∵sin x >且cos x >,∴,∴满足sin x >且cos x >x 的集合为{x |2k π+,k ∈Z }. 【点睛】本题考查角的取值范围的求法,是基础题,解题时要注意单位圆和三角函数线的合理运用.【考点7 利用三角函数线比较大小】【例7】比较下列各组数的大小:【分析】(1)根据余弦函数单调性的大小进行比较(2)利用三角函数的诱导公式以及作差法进行比较即可.704π<-cos(π∴-02πα<<则0sin(cos <cos(sin )α222ππ-<【点睛】本题主要考查三角函数值的大小比较,结合三角函数的诱导公式以及三角函数的单调性是解决本题的关键.【变式7-1】利用三角函数线比较下列各组三角函数值的大小:【分析】根据题意,依次作出各个角的三角函数值对应的三角函数线,进而比较大小即可得答案.【点睛】本题考查的知识点是三角函数线,三角函数值的大小比较,关键是掌握三角函数线的定义.【变式7-2】比较大小:可知:21AT AT >,可知:BD BC >,【点睛】本题考察了诱导公式的化简运用,正切线的画法,属于三角函数线的基础题目.【变式7-3】比较下列各组数的大小:【分析】根据三角函数线进行比较即可.)5 cos7π=在单位圆中作出对应的三角函数线如图,则余弦线为OM,正弦线为MP,(2)在单位圆中作出对应的三角函数线如图,则正切线为AT,正弦线为MP,则AT MP>,【点睛】本题主要考查三角函数值的大小比较,根据三角函数线是解决本题的关键.。
1.2.1任意角的三角函数的定义(第一课时)

第一章 三角函数 1.2 任意角的三角函数1.2.1 任意角的三角函数(第一课时)学习目标1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域及在各象限的符号.学习过程1.复习:初中锐角的三角函数是如何定义的?Rt △ABC 中,设A 的对边为a ,B 的对边为b ,C 的对边为c ,锐角A 的正弦、余弦、正切依次为sin A=,cos A= ,tan A= .2.探究:1.坐标法求三角函数.锐角α可放在坐标系中,在角α的终边上任取一点P (a ,b ),点P 与原点的距离r=,sin α= ;cos α= ;tan α= . 思考:对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变? 答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关..思考:怎样适当地选取P 点使比值简化?其中,以原点为圆心,以 为半径的圆为单位圆. 新知:1.任意角的三角函数.设α为一个任意角,它的终边与单位圆交于点P (x ,y ): 那么:(1)y 叫做α的正弦,记作sin α,即sin α=y ; (2)x 叫作α的余弦,记作cos α,即 ;(3)叫作α的正切,记作 ,即tan α=(x ≠0).三角函数:对于确定的角α,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为 ,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数.3.正弦、余弦、正切函数值在各象限的符号思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗? 答案 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx (x ≠0).当α为第一象限角时,y >0, x >0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理 记忆口诀:“一全正,二正弦,三正切,四余弦”.4.思考 当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢?答案 它们的终边重合.由三角函数的定义知,它们的三角函数值相等. 梳理 诱导公式一典型例题【例1】求π的正弦、余弦和正切值.解:在直角坐标系中,作∠AOB=,∠AOB 的终边与单位圆的交点坐标为(,-),所以sin=-,cos,tan=-.【例2】已知角α的终边过点P 0(-3,-4),求角α的正弦、余弦和正切值. 解:sin α==-,cos α==-,tan α=.【例3】求证:当下列不等式组成立时,角α为第三象限角,反之也对.证明:如果sin α<0成立,那么角α的终边可能位于第三或第四象限,也可能与y 轴的非负半轴重合;如果tan α>0,则角α的终边位于第一或第三象限.所以,角α的终边只能位于第三象限.【例4】确定下列三角函数值的符号.(1)cos250°; (2)sin(-4π); (3)tan(-672°); (4)tan3π. 解:(1)因为250°是第三象限角,所以 cos250°<0; (2)因为-是第四象限角,所以sin(-)<0;(3)因为tan(-672°)=tan(48°-2×360°)=tan48°,而48°是第一象限角,所以tan(-672°)>0; (4)因为tan3π=tan(π+2π)=tan π,而π的终边在x 轴上,所以tan π=0. 【例5】求下列三角函数值. (1)sin1480°10'; (2)cos; (3)tan(-).解:(1)sin1480°10'=sin(40°10'+4×360°)=sin40°10'≈0.645; (2)cos =cos(+2π)=cos ;(3)tan(-)=tan(-2π)=tan.【例6】 已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 考点 任意角的三角函数 题点 用定义求三角函数的值 解 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r =xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010,tan θ=31=3.当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3.反思与感悟 (1)已知角α终边上任意一点的坐标求三角函数值的方法在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=y r ,cos α=xr .当已知α的终边上一点求α的三角函数值时,用该方法更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P (-3a,4a )(a ≠0),求2sin α+cos α的值. 考点 任意角的三角函数 题点 用定义求三角函数的值 解 r =(-3a )2+(4a )2=5|a |.①若a >0,则r =5a ,角α在第二象限, sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,∴2sin α+cos α=-85+35=-1.综上所述,2sin α+cos α=±1.命题角度2 已知角α终边所在直线求三角函数值 【例7】 判断下列各式的符号: (1)sin145°cos(-210°);(2)sin3·cos4·tan5. 考点 三角函数值在各象限的符号 题点 三角函数值在各象限的符号 解 (1)∵145°是第二象限角,∴sin145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin145°cos(-210°)<0. (2)∵π2<3<π<4<3π2<5<2π,∴sin3>0,cos4<0,tan5<0, ∴sin3·cos4·tan5>0.反思与感悟 角的三角函数值的符号由角的终边所在位置确定,解题的关键是准确确定角的终边所在的象限,同时牢记各三角函数值在各象限的符号,记忆口诀:一全正,二正弦,三正切,四余弦.跟踪训练3 已知点P (tan α,cos α)在第三象限,则α是第________象限角. 考点 三角函数值在各象限的符号 题点 三角函数值在各象限的符号 答案 二解析 由题意知tan α<0,cos α<0, ∴α是第二象限角. 类型三 诱导公式一的应用 例4 求下列各式的值:(1)sin(-1395°)cos1110°+cos(-1020°)sin750°;(2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan4π. 考点 诱导公式一 题点 诱导公式一解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin45°cos30°+cos60°sin30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝⎛⎭⎫-2π+π6+cos ⎝⎛⎭⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12. 反思与感悟 利用诱导公式一可把负角的三角函数化为0到2π间的三角函数,也可把大于2π的角的三角函数化为0到2π间的三角函数,即实现了“负化正,大化小”. 跟踪训练4 求下列各式的值: (1)cos 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin810°+tan765°-cos360°. 考点 诱导公式一 题点 诱导公式一解 (1)原式=cos ⎝⎛⎭⎫8π+π3+tan ⎝⎛⎭⎫-4π+π4 =cos π3+tan π4=12+1=32.(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos360°=sin90°+tan45°-1=1+1-1=1.一、选择题1.(2017·长沙检测)sin(-315°)的值是( ) A .-22B .-12C.22D.12答案 C解析 sin(-315°)=sin(-360°+45°)=sin45°=22. 2.(2017·山西太原外国语学校月考)如果角α的终边过点P (2sin30°,-2cos30°),则sin α等于( )A.12B .-12C .-32D .-33 答案 C解析 由题意得P (1,-3),它与原点的距离r =12+(-3)2=2,∴sin α=-32. 3.已知sin θ<0,且tan θ<0,则θ为( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案 D4.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x 的值为( ) A.3 B .±3 C .- 2 D .- 3答案 D解析 ∵cos α=x r =x x 2+5=24x ,∴x =0或2(x 2+5)=16,∴x =0或x 2=3,∴x =0(∵α是第二象限角,∴舍去)或x =3(舍去)或x =- 3.故选D. 5.(2017·嘉兴模拟)sin2·cos3·tan4的值( ) A .小于0 B .大于0 C .等于0 D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0, ∴sin2·cos3·tan4<0.6.(2017·湖州期末)点P 从点(1,0)出发,沿单位圆顺时针方向运动5π6弧长到达Q 点,则Q 点的坐标是( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-12,-32C.⎝⎛⎭⎫-32,-12D.⎝⎛⎭⎫-32,12 答案 C解析 根据题意可得:x Q =cos ⎝⎛⎭⎫-5π6=-32, y Q =sin ⎝⎛⎭⎫-5π6=-12. 则Q 点的坐标是⎝⎛⎭⎫-32,-12. 7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 C解析 由题意知sin θ+cos θ<0,且sin θcos θ>0,∴⎩⎪⎨⎪⎧sin θ<0,cos θ<0,∴θ为第三象限角. 二、填空题8.tan405°-sin450°+cos750°=________. 答案32解析 tan405°-sin450°+cos750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan45°-sin90°+cos30°=1-1+32=32. 9.(2017·绍兴柯桥区期末)已知α的顶点在原点,始边在x 轴上,终边与单位圆相交于点M ⎝⎛⎭⎫-32,12,则cos α=________. 答案 -3210.(2017·山东烟台一中期末)已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则实数a 的取值范围是________. 答案 (-2,3]解析 ∵点(3a -9,a +2)在角α的终边上, sin α>0,cos α≤0,∴⎩⎪⎨⎪⎧a +2>0,3a -9≤0,解得-2<a ≤3. 11.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,则sin θ+cos θ=________. 答案 0或- 2解析 ∵θ的终边过点P (x ,-1)(x ≠0), ∴tan θ=-1x .又tan θ=-x , ∴x 2=1,即x =±1. 当x =1时,sin θ=-22,cos θ=22, 因此sin θ+cos θ=0; 当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2. 故sin θ+cos θ的值为0或- 2.12.已知角α的终边在直线y =3x 上,则sin α,cos α,tan α的值分别为________. 答案32,12,3或-32,-12, 3 解析 因为角α的终边在直线y =3x 上, 所以可设P (a ,3a )(a ≠0)为角α终边上任意一点, 则r =a 2+(3a )2=2|a |(a ≠0). 若a >0,则α为第一象限角,r =2a ,所以sin α=3a 2a =32,cos α=a 2a =12, tan α=3aa= 3. 若a <0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3aa= 3. 13.sin 72π+cos 52π+cos(-5π)+tan π4=________.答案 -1解析 原式=sin 32π+cos π2+cosπ+1=-1+0-1+1=-1.14.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域是________________.答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知,x 的终边不能落在坐标轴上, 当x 为第一象限角时,sin x >0,cos x >0, sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0, sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0, sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0, sin x cos x <0,y =2.故函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域为{-4,0,2}.三、解答题15.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边与单位圆相交于点M ⎝⎛⎭⎫35,m ,求m 的值及sin α的值. 解 (1)∵1|sin α|=-1sin α, ∴sin α<0.①∵lg(cos α)有意义, ∴cos α>0.②由①②得角α的终边在第四象限. (2)∵点M ⎝⎛⎭⎫35,m 在单位圆上, ∴⎝⎛⎭⎫352+m 2=1,解得m =±45. 又α是第四象限角,∴m <0,∴m =-45.由三角函数定义知,sin α=-45.达标检测1.α是第四象限角,则下列数值中一定是正值的是( ) A.sin αB.cos αC.tan αD.2.已知点P (tan α,cos α)在第三象限,则角α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知角α的终边过点P (-1,2),则cos α的值为 .4.已知角α的终边过点(a ,2a )(a ≠0),求α的正弦、余弦和正切值.5.判断sin4·tan(-)的符号.参考答案复习:探究:1.坐标法求三角函数.锐角α可放在坐标系中,在角α的终边上任取一点P (a ,b ), 点P 与原点的距离r=,sin α=,cos α=,tan α=.由三角形相似,确定的α可对应相似的直角三角形,这三个比值对应相等,不会随P 在角的终边的位置改变而改变. 2.单位圆.不难想到,当r=1时形式上比较简单,即sin α=b ,cos α=a ,tan α=,而当r=1时,可构设一个以原点为圆心以单位长为半径的圆,角α的终边与圆的交点选为P 点.此时,点P 与原点的距离r=1.其中,以原点为圆心,以1个单位长度为半径的圆为单位圆. 新知:1.cos α=x ;tan α;自变量2.≠+k反思:在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(x,y),则sinα=,cosα=,tanα=.3.终边相同的角同一三角函数值相等.典型例题【例1】解:在直角坐标系中,作∠AOB=,∠AOB的终边与单位圆的交点坐标为(,-),所以sin=-,cos,tan=-.【例2】解:sinα==-,cosα==-,tanα=.【例3】证明:如果sinα<0成立,那么角α的终边可能位于第三或第四象限,也可能与y轴的非负半轴重合;如果tanα>0,则角α的终边位于第一或第三象限.所以,角α的终边只能位于第三象限.【例4】解:(1)因为250°是第三象限角,所以cos250°<0;(2)因为-是第四象限角,所以sin(-)<0;(3)因为tan(-672°)=tan(48°-2×360°)=tan48°,而48°是第一象限角,所以tan(-672°)>0;(4)因为tan3π=tan(π+2π)=tanπ,而π的终边在x轴上,所以tanπ=0.【例5】解:(1)sin1480°10'=sin(40°10'+4×360°)=sin40°10'≈0.645;(2)cos=cos(+2π)=cos;(3)tan(-)=tan(-2π)=tan.达标检测1.B2.B3.-4.当a>0时,sinα=,cosα=,tanα=2;当a<0时,sinα=-,cosα=-,tanα=2.5.略。
1.2 任意角的三角函数

b
a
高中同步新课标²数学
创新方案系列丛书
1 2.已知角 α 的终边与单位圆交于 P(x, ),则 cos α = 2 ________. 1 3 3 2 解析:由 x +4=1,得 x=± 2 ,故 cos α=x=± 2 . 3 答案:± 2
高中同步新课标²数学
创新方案系列丛书 考点3 三角函数值的符号问题
角函数值.
高中同步新课标²数学
创新方案系列丛书
1.求下列三角函数值. 17π 47π 17π (1)sin- ; (2)cos ; (3)tan- . 6 3 4
47π π π 1 解:(1)sin- 6 =sin-8π+6=sin = ; 6 2 π 17π π 2 (2)cos =cos4π+4=cos = ; 4 4 2 17π π (3)tan- 3 =tan-6π+3 =tan
1 解析:由三角函数定义知,sin α=-2. 1 答案:-2
高中同步新课标²数学
创新方案系列丛书
5.cos 6²tan 6的符号为________(填“正”、“负”或“不确
定”).
3π 解析:∵ <6<2π,∴6 是第四象限角. 2 ∴cos 6>0,tan 6<0,则 cos 6· tan 6<0. 答案:负
解析:②③④均错,①正确.
答案:A
高中同步新课标²数学
创新方案系列丛书
2.已知tan x>0,且sin x+cos x>0,那么角x是( A.第一象限角 B.第二象限角 C.第三象限角 )
D.第四象限角
解析:由tan x>0,得α为第一、三象限角.而α为第三象限角时,
三角函数(1、2)

三角函数1.1任意角和弧度制1.任意角的概念(1)角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
(2)正角:按逆时针方向旋转形成的角。
(3)负角:按顺时针方向旋转形成的角。
(4)零角:一条射线没有作任何旋转,我们称它为零角。
(5)注意:①角度的范围不再限于0°~360°。
②角的概念是通过角的终边的运动来推广的,根据角的终边的旋转方向,得到正角、负角和零角,由此我们应当意识到角的终边位置的重要性。
③当角的始边相同,角相等则终边相同;终边相同,而角不一定相等。
④为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记为“α”。
⑤我们把角的概念推广到了任意角中,包括正角、负角和零角。
⑥要正确理解正角、负角和零角的概念,由定义可知,关键是抓住终边的旋转方向是逆时针、顺时针还是没有转动。
(6)①判定与任意角有关命题的真假的关键在于抓住角的四个“要素”:顶点、始边、终边和旋转方向。
②确定任意角的度数要抓住旋转方向及旋转圈数。
③引入正、负角的概念以后,角的加减运算类似于实数的加减运算。
2.象限角与轴线角(1)使角α的顶点与原点重合,始边与x轴正半轴重合,终边落在第几象限,则称角α为第几象限的角;终边落在坐标轴上的角α被称为轴线角。
(2)象限角的集合第一象限角的集合为{x|k²360°<x<k²360°+90°,k∈Z};第二象限角的集合为{x|k²360°+90°<x<k²360°+180°,k∈Z};第三象限角的集合为{x|k²360°+180°<x<k²360°+270°,k∈Z};第四象限角的集合为{x|k²360°+270°<x<k²360°+360°,k∈Z}。
_任意角的三角函数

(4)三条有向线段的书写:有向线段的起点字母在前,终 点字母在后面.
应用三角函数线解决问题体现了数形结合的思想方法.
形象的识记口诀2:“一全正二正弦,三正切四余 弦”.
练习2:已知角α的终边过点P0(-3,-4),求角α的正 弦、余弦和正切值, 4 3 4 ∴sin α=- ,cos α=- ,tan α= . 5 5 3
思考应用 2.你知道形象的识记口诀的意思吗? 解析: 口诀:“一全二正弦,三正切四余弦”,意为: 第一象限各个三角函数均为正;第二象限只有正弦为正,
2 >0. x2+y
x x (2) 比值叫做α的余弦,记作cos α,即cos α= ; r r
y (3) 比值叫做α的正切,记作tan α,即tan α= x
单位圆上是一种特殊情形.
y 比值叫做α的正弦,记作sin α,即sin α= r
;
y r
y .点P在 x
二、三角函数值在各个象限内的符号
1.由三角函数的定义,以及各象限内的点的坐标的符 号,可以确定三角函数在各象限的符号.
即:当α是第________象限角时,sin α>0;当α是第________ 象限角时,sin α<0; x cos α= r ,其中r>0,于是cos α的符号与x的符号相同, 即:当α是第________象限角时,cos α>0;当α是第________ 象限角时,cos α<0; 同、异号时,它们的比值为负,即:当α是第________象限 角时,tan α>0;当α是第 ________象限角时,tan α<0.
1.2 任意角的三角函数

1.2 任意角的三角函数1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么s i n ,c o s yx r rαα==,()tan ,0yx xα=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。
2. 三角函数线正弦线:MP; 余弦线:OM; 正切线: AT. 3.三角函数在各象限的符号:(一全二正弦,三切四余弦)+ + - + - + - - - + + -sin α cos α tan α4. 同角三角函数的基本关系式:(1)平方关系:22221sin cos 1,1tan cos αααα+=+=(2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。
注意“1”的代换 课堂训练: 一.选择题 1.函数y =|sin |sin x x +cos |cos |x x +|tan |tan x x的值域是 ( ) (A){-1,1} (B){-1,1,3} (C) {-1,3} (D){1,3}2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( ) (A) 25(B) -25 (C) 25或 -25(D) 不确定3.设A 是第三象限角,且|sin2A |= -sin 2A ,则2A 是 ( ) (A) 第一象限角 (B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( ) (A)大于0 (B)小于0 (C)等于0 (D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形*6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2θ的终边在 ( )(A)第二、四象限 (B)第一、三象限(C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 二.填空题7.若sin θ·cos θ>0, 则θ是第 象限的角; 8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ; 9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ;*10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角. 三.解答题11.求函数y =lg(2cos x12.求:13sin 330tan()3cos()cos6906ππ︒⋅--⋅︒的值.13.已知:P (-2,y )是角θ终边上一点,且sin θ= -55,求cos θ的值.*14.如果角α∈(0,2π),利用三角函数线,求证:sin α<α<tan α.同步提高 一.选择题1.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( ) (A) 25(B) -25 (C) 25或 -25(D) 不确定2.设A 是第三象限角,且|sin2A |= -sin 2A ,则2A 是 ( )(A) 第一象限角 (B) 第二象限角 (C) 第三象限角 (D) 第四象限角 3. sin2cos3tan4的值 ( ) (A)大于0 (B)小于0 (C)等于0 (D)不确定4.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形5.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2θ的终边在 ( ) (A)第二、四象限 (B)第一、三象限 (C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 6.1sin 、1cos 、1tan 的大小关系为 ( ) A .1tan 1cos 1sin >> B .1cos 1tan 1sin >> C .1cos 1sin 1tan >> D .1sin 1cos 1tan >> 7.若α是第一象限角,则ααααα2cos ,2tan,2cos,2sin ,2sin 中能确定为正值的有( )A .0个B .1个C .2个D .2个以上8.下列等式中成立的是( )A .sin (2×360°-40°)=sin40°B .cos (3π+4π)=cos 4πC .cos370°=cos (-350°)D .cos625π=cos (-619π) 9.若θθθ则角且,02sin ,0cos <>的终边所在象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 10.已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-1623 11.y =tan|tan ||cos |cos sin |sin |x x x x x ++的值域是 ( )A .{1,-1}B . {-1,1,3}C . {-1,3}D .{1,3}12.若角α终边上有一点P (-3,0),则下列函数值不正确的是 ( )A .sin α=0B .cos α=-1C .tan α=0D .cot α=013.若α是第三象限角,则下列四个三角函数式中一定为正数的是 ( )A .sin α+cos αB .tan α+sin αC .sin α·sec αD .cot α·sec α14.若α是第一象限角,则ααααα2cos ,2tan,2cos,2sin ,2sin 中能确定为正值的有( )A .0个B .1个C .2个D .2个以上15.式子sin 4θ+cos 2θ+sin 2θcos 2θ的结果是 ( )A .41 B .21 C .23 D .1二、填空题16.已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 17.函数y=tan (x -4π)的定义域是 . 18.已知21tan -=x ,则1cos sin 3sin 2-+x x x =___ __. 19. 若sin θ·cos θ>0, 则θ是第 象限的角; 三、解答题20.已知角θ的终边在直线y=-3x 上,求10sin θ+3sec θ的值.21.已知:P (-2,y )是角θ终边上一点,且sin θ= -55,求cos θ的值.1.2 任意角的三角函数 参考答案:课堂训练一、CCDBCD二、7.一、三; 8. 0 ; 9.4π或54π; 10.二、四 三、11.[2k π, 2k π,+2)3π( k ∈Z)12.13.∵sin θ= -55,∴角θ终边与单位圆的交点(cos θ,sin θ)=(,-55) 又∵P (-2, y )是角θ终边上一点, ∴cos θ<0,∴cos θ= -525.14.略.。
高中数学必修四 第一章三角函数 1.2.1.1 三角函数的定义

解析:角
α
的终边在
y
轴的非负半轴上,则
α=2kπ+
π 2
(������∈Z),所以
tan α 无意义.
答案:A
【做一做 1-2】 若角 α 的终边与单位圆相交于点
2 2
,-
2 2
,
则 sin ������的值为( )
A.
2 2
B.
−
2 2
C.
1 2
D.
−1
解析:x=
2 2
,
������
=
−
2 2
,
则sin
题型一 题型二 题型三 题型四
解:(1)∵-670°=-2×360°+50°,
∴-670°是第一象限角,
∴sin(-670°)>0.
又1 230°=3×360°+150°,
∴1 230°是第二象限角,
∴cos 1 230°<0,
∴sin(-670°)cos 1 230°<0.
(2)∵
5π 2
<
8
<
(2)∵
5π 4
是第三象限角,
4π 5
是第二象限角,
11π 6
是第四象限角,∴
sin
5π 4
<
0,
cos
4π 5
<
0,
tan
11π 6
<
0,
∴sin
54π·cos
45π·tan
11π 6
<
0,
式子符号为负.
(3)∵191°角为第三象限角,∴tan 191°>0,cos 191°<0,
必修四第一章 三角函数1.2.1第一课时

(2)若 cosθ<0 且 sinθ>0,则2θ是第
象限角.
A.一
数
学 必
C.一或三
修
④
·
人
教
A
版
B.三 D.任意象限角
( C)
返回导航
第一章 三角函数
[解析] (1)①π2<3<π,π<4<32π,32π<5<2π,
∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0.
②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标
(a,b),则对应角的正弦值 sinα= a2b+b2,余弦值 cosα= a2a+b2,正切值 tanα数 学Fra bibliotek必=ab.
修 ④
(2)当角 α 的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参
·
人 教
数进行分类讨论.
A
版
返回导航
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
3.已知α是第三象限角,设sinαcosα=m,则有
A.m>0
B.m=0
C.m<0
D.m的符号不确定
(A)
4.(2018·江西高安中学期末)已知角α的终边经过P(1,2),则tanα·cosα等于 25 _____5_.
数 学 必
[解析] 由三角函数的定义,tanα=yx=2,cosα=xr= 55,∴tanα·cosα=255.
人 教
函数值的函数,我们将它们统称为三角函数(trigonometric function).
A
版
高中数学:任意角的三角函数 (42)

4.比较下列各组数的大小.
(1)cos
47π和 cos
57π;(2)sin
π7和 tan
π 7.
解:(1)如图所示,在单位圆中作出
47π和57π的余弦线 OM1 和 OM2,
因为 OM1>OM2,
所以 cos
4π 7 >cos
5π 7.
(2)如图所示,分别作出π7的正弦线和正切线.sin π7=MP,
︵
则 OA 与 OB 及劣弧AB围成的区域(图①中的阴影部分)为角 α 的终 边在单位圆中的范围.
故满足条件的角 α 的集合为α2kπ+π3≤α≤2kπ+23π,
k∈Z
.
(2)作直线 x=-12,交单位圆于 C,D 两点,连接 OC,OD,
︵
则 OC 与 OD 及劣弧CD围成的区域(图②中的阴影部分)为角 α
tan π7=AT,
因为 AT>MP,所以 tan
π 7>sin
π 7.
知识点三 利用三角函数线解简单三角不等式 5.(2018·吉林延边二中高一期末)在单位圆中画出满足下列
条件的角 α 的终边范围,并由此写出角 α 的集合. (1)sin α≥ 23; (2)cos α≤-12.
解:(1)作直线 y= 23,交单位圆于 A,B 两点,连接 OA,OB,
的终边在单位圆中的范围.
故满足条件的角 α 的集合为
α2kπ+23π≤α≤2击进入
图①
图②
(2)作出34π 的正切线 AT 如图②所示.
知识点二 利用三角函数线比较三角函数值大小 3.下列关系式中正确的是( ) A.sin 10°<cos 10°<sin 160° B.sin 160°<sin 10°<cos 10° C.sin 10°<sin 160°<cos 10° D.sin 160°<cos 10°<sin 10° 解析:选 C 在同一单位圆中画出 10°和 160°的三角函数 线,易得 sin 10°<sin 160°<cos 10°.故选 C.
1.2.1.1任意角三角函数

第1课时 任意角的三角函数(一)任意角的三角函数的定义sin α,即sin α=y cos α,即cos α=x ,即tan α=yx(x ≠0) 正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数到一个比值的集合的函数.三角函数值实质是一个比值,因此分母不能为零,所以正切函数的定义域就是使分母不为零的角的集合.Z }三角函数值在各象限的符号口诀:一全正,二正弦,三正切,四余弦状元随笔 对三角函数值符号的理解三角函数值的符号是根据三角函数定义和各象限内坐标符号导出的.从原点到角的终边上任意一点的距离总是正值.根据三角函数定义知:正弦值符号取决于纵坐标y 的符号;.sin 750°=________.类型一三角函数的定义及应用1(1)若角α的终边经过点P(5,-12),则sin α=________,cos α=________,tan α=________ 2x”其他条件不变,结果又如何?的值为;(1)将本例中条件“x>0”改为“x<0”,结果如何?(2)将本例中条件“x>0”改为“x≠0”,结果又怎样?(3)将本例中“P(x,3)”改为“P(x,3x)”,且把“cos θ=10x10”去掉,结果又怎样?A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5.方法归纳判断三角函数值正负的两个步骤(1)定象限:确定角α所在的象限.(2)定符号:利用三角函数值的符号规律,即“一全正,二正弦,三正切,四余弦”来判断.注意:若sin α>0,则α的终边不一定落在第一象限或第二象限内,有可能终边落在y 轴的非负半轴上. 跟踪训练1 判断下列各式的符号:(1)sin 145°cos(-210°);(2)sin 3·cos 4·tan 5.2.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,则实数a 的取值范围是 . 3.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第 象限角.(2)sin ⎝⎛⎭⎫-11π6+cos 125π·tan 4π.7.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是________.8.已知角α的终边经过点P (3,4t ),且sin(2k π+α)=-35(k ∈Z ),则t =________.三、解答题(每小题10分,共20分)9.已知角α的终边为射线y =-34x (x ≥0),求角α的正弦、余弦和正切值.10.判断下列各式的符号:(1)sin 105°·cos 230°;(2)cos 3·tan ⎝⎛⎭⎫-2π3.11.若α是第一象限角,则-α2是( )A .第一象限角B .第四象限角C .第二或第三象限角D .第二或第四象限角 12.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________. 13.计算:(1)sin 390°+cos(-660°)+3tan 405°-cos 540°;(2)sin ⎝⎛⎭⎫-7π2+tan π-2cos 0+tan 9π4-sin 7π3.14.已知角α的终边过点(a,2a )(a ≠0),求角α的正弦、余弦和正切值.第2课时 任意角的三角函数(二)1.相关概念(1)单位圆:以原点O 为圆心,以单位长度为半径的圆. (2)有向线段:带有方向(规定了起点和终点)的线段.规定:方向与x 轴或y 轴的正方向一致的为正值,反之为负值. 2.三角函数线状元随笔 (1)三角函数线的方向.正弦线由垂足指向角α的终边与单位圆的交点,余弦线由原点指向垂足,正切线由切点指向切线与角α的终边或其反向延长线的交点.(2)三角函数线的正负:三条有向线段凡与x 轴或y 轴同向的,为正值,与x 轴或y 轴反向的,为负值. (1)角的三角函数线是直线.( )(2)角的三角函数值等于三角函数线的长度.( )(3)第二象限的角没有正切线.( )2.有下列四个说法:①α一定时,单位圆中的正弦线一定;②单位圆中,有相同正弦线的角相等; ③α和α+π有相同的正切线;④具有相同正切线的两个角终边相同. 不正确说法的个数是( ) A .0个 B .1个 C .2个 D .3个 3.如图所示,在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT 4.已知sin α>0,tan α<0,则α的( )A .余弦线方向向右,正切线方向向下B .余弦线方向向右,正切线方向向上C .余弦线方向向左,正切线方向向下D .余弦线方向向上,正切线方向向左类型一 三角函数线的作法【例1】 作出下列各角的正弦线、余弦线、正切线.(1)-π4;(2)17π6;(3)10π3.类型二 利用三角函数线比较大小【例2】 (1)已知A .若α、β是第一象限角,则sin α>sin β B .若α、β是第二象限角,则tan α>tan β C .若α、β是第三象限角,则sin α>sin β D .若α、β是第四象限角,则tan α>tan β (2)利用三角函数线比较sin2π3和sin 4π5,cos 2π3和cos 4π5,tan 2π3和tan 4π5的大小.方法归纳利用三角函数线比较大小的步骤利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.跟踪训练1.已知a =sin 2π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c2 设π4<α<π2,试比较角α的正弦线、余弦线和正切线的长度.如果π2<α<3π4,上述长度关系又如何?类型三 利用三角函数线解不等式(1)cos α>-22;(2)tan α≤33;(3)|sin α|≤12.1.将本例(1)的不等式改为“cos α<22”,求α的取值范围 2.将本例(3)的不等式改为“-12≤sin θ<32”,求α的取值范围3.利用本例的方法,求函数y =2sin x -1的定义域.方法归纳利用三角函数线解三角不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点.一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图象可得.跟踪训练3 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1) sin α≥32;(2)cos α≤-12.一、选择题(每小题5分,共25分)1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM3.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( ) A .1 B .2 C .3 D .04.使sin x ≤cos x 成立的x 的一个区间是( ) A.⎣⎡⎦⎤-3π4,π4 B.⎣⎡⎦⎤-π2,π2 C.⎣⎡⎦⎤-π4,3π4 D.[]0,π5.如果π4<θ<π2,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ二、填空题(每小题5分,共15分)6.比较大小:sin 1________sin π3(填“>”或“<”).7.不等式tan α+33>0的解集是________________________.8.用三角函数线比较sin 1与cos 1的大小,结果是________.三、解答题(每小题10分,共20分)9.做出下列各角的正弦线、余弦线、正切线.(1)5π6;(2)-2π3.10.利用三角函数线,求满足下列条件的角α的集合:(1)tan α=-1;(2)sin α≤-22.11.已知角α的正弦线和余弦线的方向相反、长度相等,则α的终边在( )A .第一象限的角平分线上B .第四象限的角平分线上C .第二、第四象限的角平分线上D .第一、第三象限的角平分线上12.若cos θ>sin 7π3,利用三角函数线得角θ的取值范围是________.13.若α∈⎝⎛⎭⎫0,π2,试利用三角函数线证明sin α+cos α>1.。
1.2 任意角的三角函数-人教A版高中数学必修四讲义(解析版)

知识点一任意角的三角函数使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PM⊥x轴于M,设P(x,y),|OP|=r.思考1角α的正弦、余弦、正切分别等于什么?答案sin α=yr,cos α=xr,tan α=yx.思考2对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?答案不会.因为三角函数值是比值,其大小与点P(x,y)在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.思考3在思考1中,当取|OP|=1时,sin α,cos α,tan α的值怎样表示?答案sin α=y,cos α=x,tan α=yx.梳理(1)单位圆在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.(2)定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:教材要点学科素养学考高考考法指津高考考向1.三角函数的定义数学抽象水平1 水平11.以锐角三角函数的定义来推广记忆任意角的三角函数的定义。
2.充分理解同角三角函数的基本关系式,掌握公式成立的条件及公式的变形。
3.理解并记忆求值、化简及证明的模型,领会解题常用的方法技巧。
【考查内容】根据三角函数的定义求值,三角函数平方关系的应用。
【考查题型】选择题、填空题【分值情况】5分2.终边相同的角的同一三角函数值的关系数学运算水平1 水平23.单位圆数学直观水平1 水平24.同角三角函数的两个基本关系式数学运算水平1 水平2第二讲任意角的三角函数知识通关①y 叫做α的正弦,记作sin_α, 即sin α=y ;②x 叫做α的余弦,记作cos_α,即cos α=x ; ③y x 叫做α的正切,记作tan_α,即tan α=yx(x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.知识点二 正弦、余弦、正切函数值在各象限的符号思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?答案 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx (x ≠0).当α为第一象限角时,y >0, x >0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理 记忆口诀:“一全正,二正弦,三正切,四余弦”.知识点三 诱导公式一思考 当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢? 答案 它们的终边重合.由三角函数的定义知,它们的三角函数值相等. 梳理 诱导公式一知识点四 三角函数的定义域思考 正切函数y =tan x 为什么规定x ∈R 且x ≠k π+π2,k ∈Z?答案 当x =k π+π2,k ∈Z 时,角x 的终边在y 轴上,此时任取终边上一点P (0,y P ),因为y P0无意义,因而x 的正切值不存在.所以对正切函数y =tan x ,必须要求x ∈R 且x ≠k π+π2,k ∈Z .梳理 正弦函数y =sin x 的定义域是R ;余弦函数y =cos x 的定义域是R ;正切函数y =tan x 的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R 且x ≠k π+π2,k ∈Z .知识点五 三角函数线思考1 在平面直角坐标系中,任意角α的终边与单位圆交于点P ,过点P 作PM ⊥x 轴,过点A (1,0)作单位圆的切线,交α的终边或其反向延长线于点T ,如图所示,结合三角函数的定义,你能得到sin α,cos α,tan α与MP ,OM ,AT 的关系吗?答案 sin α=MP ,cos α=OM ,tan α=AT . 思考2 三角函数线的方向是如何规定的?答案 方向与x 轴或y 轴的正方向一致的为正值,反之,为负值. 思考3 三角函数线的长度和方向各表示什么?答案 长度等于三角函数值的绝对值,方向表示三角函数值的正负. 梳理角α的终边与单位圆交于点P ,过点P 作PM 垂直于x 轴,有向线知识点六 同角三角函数的基本关系式 思考1 计算下列式子的值: (1)sin 230°+cos 230°; (2)sin 245°+cos 245°; (3)sin 290°+cos 290°.由此你能得出什么结论?尝试证明它. 答案 3个式子的值均为1.由此可猜想:对于任意角α,有sin 2α+cos 2α=1,下面用三角函数的定义证明:设角α的终边与单位圆的交点为P (x ,y ),则由三角函数的定义,得sin α=y ,cos α=x . ∴sin 2α+cos 2α=x 2+y 2=|OP |2=1.思考2 由三角函数的定义知,tan α与sin α和cos α间具有怎样的等量关系? 答案 ∵tan α=y x (x ≠0),∴tan α=sin αcos α(α≠π2+k π,k ∈Z ).梳理 (1)同角三角函数的基本关系式 ①平方关系:sin 2α+cos 2α=1.②商数关系:tan α=sin αcos α ⎝⎛⎭⎫α≠k π+π2,k ∈Z . (2)同角三角函数基本关系式的变形 ①sin 2α+cos 2α=1的变形公式 sin 2α=1-cos 2α;cos 2α=1-sin 2α. ②tan α=sin αcos α的变形公式=sin αtan α.此时sin θ=312+32=31010,tan θ=31=3.当x=-1时,P(-1,3),此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3.命题角度2已知角α终边所在直线求三角函数值规律方法例1-2已知角α的终边在直线y=3x上,则sin α,cos α,tan α的值分别为________.解析:因为角α的终边在直线y=3x上,所以可设P(a,3a)(a≠0)为角α终边上任意一点,则r=a2+(3a)2=2|a|(a≠0).若a>0,则α为第一象限角,r=2a,所以sin α=3a2a=32,cos α=a2a=12,tan α=3aa= 3.若a<0,则α为第三象限角,r=-2a,所以sin α=3a-2a=-32,cos α=-a2a=-12,tan α=3aa= 3.答案32,12,3或-32,-12, 3变式训练1-2在平面直角坐标系中,角α的终边在直线3x+4y=0上,求sin α-3cos α+tan α的值.解析:当角α的终边在射线y=-34x(x>0)上时,取终边上一点P(4,-3),所以点P到坐标原点的距离r=|OP|=5,所以sin α=yr=-35=-35,cos α=xr=45,tan α=yx=-34.所以sin α-3cos α+tan α=-35-125-34=-154.当角α的终边在射线y=-34x(x<0)上时,取终边上一点P′(-4,3),所以点P′到坐标原点的距离r=|OP′|=5,所以sin α=yr=35,cos α=xr=-45,tan α=yx=3-4=-34.所以sin α-3cos α+tan α=35-3×⎝⎛⎭⎫-45-34=35+125-34=94.综上,sin α-3cos α+tan α的值为-154或94.题型二 三角函数值符号的判断 规律方法例2、 判断下列各式的符号:(1)sin 145°cos(-210°);(2)sin 3·cos 4·tan 5. 解析: (1)∵145°是第二象限角,∴sin 145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin 145°cos(-210°)<0. (2)∵π2<3<π<4<3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3·cos 4·tan 5>0.变式训练2 sin1cos3tan5的值( ) A .小于0 B .大于0 C .等于0 D .不存在解析: π3π013π52π22<<<<<<,, ∴sin10cos30tan50><<,,.答案 B题型三 诱导公式一的应用 规律方法(1)sin390°+cos(-660°)+3tan405°-cos540°;变式训练3tan 405°-sin 450°+cos 750°=________. 解析: tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°) =tan 45°-sin 90°+cos 30°=1-1+32=32. 答案32题型四 三角函数线 规律方法sin ⎝⎛⎭⎫-5π8=MP ,cos ⎝⎛⎭⎫-5π8=OM , tan ⎝⎛⎭⎫-5π8=AT . 变式训练4、 在单位圆中画出满足sin α=12的角α的终边,并求角α的取值集合.解析: 已知角α的正弦值,可知P 点纵坐标为12.所以在y 轴上取点⎝⎛⎭⎫0,12,过这点作x 轴的平行线,交单位圆于P 1,P 2两点,则OP 1,OP 2是角α的终边,因而角α的取值集合为⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+π6或α=2k π+5π6,k ∈Z .题型五 利用同角三角函数的关系式求值 命题角度1 已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值则tan α的值为( )A.125 B .-125 C.512 D .-512 解析: ∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.答案 D(2) 已知-π2<α<0,sin α+cos α=15,则tan α的值为( ) A .-43 B .-34 C.34 D.43解析: ∵sin α+cos α=15,等号两边同时平方得1+2sin αcos α=125,即sin αcos α=-1225,∴sin α,cos α是方程x 2-15x -1225=0的两根,又∵-π2<α<0,∴sin α=-35,cos α=45,∴tan α=sin αcos α=-34.答案 B变式训练5-1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.解析: 由tan α=sin αcos α=43,得sin α=43cos α.①又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,∴cos α=-35,sin α=43cos α=-45.命题角度2 已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值 规律方法:例5-2已知cos α=-817,求sin α,tan α的值.解析: ∵cos α=-817<0,且cos α≠-1,∴α是第二或第三象限角. (1)当α是第二象限角时,则 sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158.(2)当α是第三象限角时,则 sin α=-1-cos 2α=-1517,tan α=158.变式训练5-2 已知cos α=1213,求sin α,tan α的值.解析: ∵cos α=1213>0且cos α≠1,∴α是第一或第四象限角. (1)当α是第一象限角时,则 sin α=1-cos 2α=1-⎝⎛⎭⎫12132=513,tan α=sin αcos α=5131213=512.(2)当α是第四象限角时,则sin α=-1-cos 2α=-513,tan α=-512.题型六 齐次式求值问题 规律方法:例6 已知tan α=2,求下列代数式的值. (1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α.解析: (1)原式=4tan α-25+3tan α=611.(2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330.变式训练6 已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值. (1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.解析: 由已知4sin θ-2cos θ3sin θ+5cos θ=611,∴4tan θ-23tan θ+5=611,解得tan θ=2.(1)原式=5tan2θ+2tan θ-3=55=1.(2)原式=sin2θ-4sin θcos θ+3cos2θ=sin2θ-4sin θcos θ+3cos2θsin2θ+cos2θ=tan2θ-4tan θ+31+tan2θ=-15.例8-1 ∴在单位圆中,利用三角函数线求出满足1sin 2α>的角α的范围.∴在单位圆中,利用三角函数线求出满足1sin 2≤α的角α的范围.解析:∴如图所示,π5π2π2π66k k k αα⎧⎫+<<+∈⎨⎬⎩⎭Z ,. ∴如图所示,5π132ππ2π66k k k αα⎧⎫++∈⎨⎬⎩⎭Z ≤≤,.(1)(2)变式训练8-1 已知-12≤cos θ<32,利用单位圆中的三角函数线,确定角θ的取值范围.解析: 图中阴影部分就是满足条件的角θ的范围, 即⎩⎨⎧⎭⎬⎫θ⎪⎪2k π-23π≤θ<2k π-π6或2k π+π6<θ≤2k π+23π,k ∈Z .命题角度2 利用三角函数线求三角函数的定义域 规律方法例8-2 求函数y =lg ⎝⎛⎭⎫sin x -22+1-2cos x 的定义域.解析: 由题意知,自变量x 应满足不等式组⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0,即⎩⎨⎧cos x ≤12,sin x >22.12(1)化简:sin 2αtan α+cos 2αtan α+2sin αcos α. 原式=sin 2α·sin αcos α+cos 2α·cos αsin α+2sin αcos α=sin 4α+cos 4α+2sin 2αcos 2αsin αcos α=(sin 2α+cos 2α)2sin αcos α=1sin αcos α.求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α =tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α =tan αsin αtan α-sin α=左边,∴原等式成立.一、选择题1.已知角α的终边过点(-2,1),则cos α的值为()A.55 B.255C.-55D.-255答案 D2.如果角α的终边过点P(2sin 30°,-2cos 30°),则sin α等于()A.12B.-12C.-32D.-33解析:由题意得P(1,-3),它与原点的距离r=12+(-3)2=2,∴sin α=-32. 答案 C3.如图在单位圆中,角α的正弦线、正切线完全正确的是()A.正弦线为PM,正切线为A′T′B.正弦线为MP,正切线为A′T′C.正弦线为MP,正切线为ATD.正弦线为PM,正切线为AT答案 C4.函数y=tan⎝⎛⎭⎫x-π3的定义域为()A.⎩⎨⎧⎭⎬⎫x⎪⎪x≠π3,x∈R B.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ+π6,k∈ZC.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ+5π6,k∈Z D.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ-5π6,k∈Z解析:∵x-π3≠kπ+π2,k∈Z,∴x≠kπ+5π6,k∈Z.答案 CA组基础演练5.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A.⎝⎛⎭⎫-π3,π3 B.⎝⎛⎭⎫0,π3 C.⎝⎛⎭⎫5π3,2πD.⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π 解析: 角α的取值范围为图中阴影部分, 即⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π.答案 D7.已知tan θ=2,则1sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 B.54 C .-34 D.45答案 B 8.1-2sin 10°cos 10°sin 10°-1-sin 210°的值为( ) A .1 B .-1 C .sin 10°D .cos 10°解析: 1-2sin 10°cos 10°sin 10°-1-sin 210°=(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.答案 B9.若α是第四象限角,5tan 12α=-,则sin α等于( ) A .15B .15-C .513D .513-解析:因为5tan 12α=-,所以sin 5cos 12αα=-,即12cos sin 5αα=-,因为22sin cos 1αα+=, 所以22144sin sin 125αα+=,即225sin 169α=,因为α是第四象限角,所以5sin 13α=-。
(教案3)1.2任意角的三角函数

1.2.1任意角的三角函数任意角的三角函数[教学目标](1) 借单位圆理解任意角三角函数(正弦,余弦,正切)的定义;(2) 从任意角三角函数的定义认识其定义域、函数值的符号;(3) 根据定义理解公式一;(4) 能初步应用定义分析和解决与三角函数值有关的一些简单问题.[重点、难点、和疑点]教学重点:任意角三角函数的定义教学难点:用单位圆上的点的坐标刻画三角函数.学生熟悉的函数)(x f y =是从实数到实数的对应,而这里给出的函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应,这就给学生的理解造成一定困难.[教学设计](一)引入新课: P 复习锐角的三角函数与同学们一起,回忆学过的锐角三角函数,先构建直角三角形,有:OP MP =αsin , OP OM =αcos , OMMP =αtan α (二)新授课: O M 1.坐标法求三角函数:锐角α可放在坐标系中,在角α的终边上任取一点P (,)a b ,点P 与原点的距离r = r b =αsin r a =αc o s ab =αtan 由三角形相似,确定的α可对应相似的直角三角形, 这三个比值对应相等,不会随P 在角的终边的位置改变 而改变.2.单位圆思考:怎样适当的选取P 点使比值简化?不难想到,当1r =时形式上比较简单,即sin b α=, cos a α= , ab =αtan ,从而引进单位圆,而当1r =时,可构设一个以原点为圆心以单位长为半径的单位圆,交角的终边过P 点.此时,点P 与原点的距离1r =. 其中,以原点为圆心,以单位长度为半径的圆为单位圆.3.任意角的三角函数:设α为一个任意角,它的终边与单位圆交于点(,)P x y ,那么:1)y 叫做α的正弦,记作sin α:即sin y α=2)x 叫做α的余弦,记作cos α:即cos x α=3)xy 叫做α的正切,记作tan α:即tan y x α= 因为一个角与一实数(弧度数)一一对应 实数α对应于点P 上纵坐标——正弦; 实数α对应于点P 上横坐标——余弦.即:自变量为实数α与函数值为比值的对应关系.注:三角函数的实质为实数到实数的对应.课本:例1,例2.1) 明确解题思路;2)加深对定义的理解与同学们阅探究 实数两种求三角函数值的方法:1) 在角所在的终边上取一点坐标,求三角函数值;2) 也可用角α终边与单位圆的交点,求三角函数值.显然,方法2)简单,更容易看清对应关系.4、三角函数值的符号让学生根据三角函数定义,总结三角函数的值在各象限的符号,将结果整理成图:sin α cos α tan α5、诱导公式一我们知道,与α角终边相同的角,其终边位置相同,且表示为2π(Z)k k α+∈,由三角函数定义可知,它们的三角函数值相同.有诱导公式一 :sin(2π)sin k αα+=,cos(2π)cos k αα+=,tan(2π)tan k αα+=,其中Z k ∈.注:根据诱导公式一,可把任意角的三角函数转化为0360间角的三角函数求值. 例3 例4,例5练习:小结:本节课我们进一步学习了任意角的三角函数的定义,进而可求任意角的三角函数值,及三角函数在各象限的符号,此外还推导了诱导公式,可将任意角的三角函数均可化为0360 间角的三角函数.作业:。
任意角的三角函数值

完成P15课本练习1
完成P15课本练习3
1、任意角的三角函数的定义
例2、已知角α终边上经过点P0(-3,-4),求sinα,cosα, tanα的值.y NhomakorabeaM0
M
0
x
P(x,y)
P0(-3,-4)
说明:设角α终边上任意一点(异于 原点)P(x,y),它到原点(顶点)的距 完成P15课本练习2 离为r>0,则
P(x,y) 0 α A(1,0) x
(2)余弦:cosα=x ;
y (3)正切:tanα= (x≠0). x
三角函数 定义域
sinα
cosα
tanα
正弦、余弦、正切都是以角(弧度)为自变量,以单位 圆上的点的坐标或坐标的比值为函数值的函数,我们将它 们统称为三角函数。
1、任意角的三角函数的定义
5 例1、求 的正弦、余弦和正切值。 3
P(a,b)
x
0
b (1)正弦:sinα= ; r a (2)余弦:cosα= ; r b (3)正切:tanα= . a
由相似三角形的知识知道,这些比值不会随点P的位 置改变而改变,所以通常取r=1的位置。
1、任意角的三角函数的定义
设锐角α的顶点与原点O重合,始边与x轴的非负半轴 重合,那么α的终边在第一象限,在α的终边上的点P(a,b) 与原点(即顶点)的距离是1,那么根据初中所学过的三角函 数的定义,有
y x y sinα= r ;cosα= r ;tanα= 。 x
练习1、已知角α的终边经过点P(-5a,12a)(a≠0), 求sinα,cosα,tanα的值.
2、三角函数值的符号
完成P13探究内容 sinα
0
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1任意角的三角函数
课前复习:
1. 特殊角的三角函数值记忆
新课讲解:
任意点到原点的距离公式:
1.三角函数定义
在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为2222(||||0)r r x y x y =+=
+>,那么 (1)比值y r
叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r
α=; (3)比值y x
叫做α的正切,记作tan α,即tan y x α=; (4)比值x y
叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α
的大小,只表明与α的终边相同的角所在的位置;
②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z π
απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等
于0,所以tan y x α=
无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值
y r 、x r 、y x 、x y
分别是一个确定的实数。
正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
当角的终边上一点(,)P x y
1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
有向线段:
坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
有向线段:带有方向的线段。
2.三角函数线的定义:
设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点
P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .
由四个图看出:
当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
(Ⅳ) (Ⅲ)
说明:
(1)三条有向线段的位置:正弦线为α的终边与单位圆的交点到x 轴的垂直线段;余弦线 在x 轴上;正切线在过单位圆与x 轴正方向的交点的切线上,三条有向线段中两条在单位圆 内,一条在单位圆外。
(2)三条有向线段的方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与α的终边的交点。
(3)三条有向线段的正负:三条有向线段凡与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值。
(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
题型一:求解三角函数值
一般角:利用三角函数的定义
特殊角:先化为0至360度之间的角
)
Z (tan )2tan()Z (cos )2cos()
Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ
例1.求下列各角的四个三角函数值:
(1)0; (2)π; (3)
32
π.
例2.已知角α的终边经过点(2,3)P -,求α的四个函数值。
变式训练1:已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。
变式训练2:角α的终边上有一点P (a ,a ),a ∈R ,a ≠0,则sin α的值是( ) A.
22B.-22C.22或-22D.1
例3.求下列三角函数的值:
(1)9cos
4π (2)11tan()6
π-,
变式训练1:.____________tan600o 的值是 D 3.D 3.C 3
3.B 33.A --
题型二:判断三角函数值在不同象限内的正负性
例4.确定下列三角函数值的符号:
(1)cos 250; (2)sin()4π
-; (3)tan(672)-; (4)11tan 3
π. 变式训练1:.________,0cos sin 在则若θθθ> B
第二、四象限 第一、四象限第一、三象限
第一、二象限.D .C .B .A
变式训练2:____0sin20cos 的终边在则若 θθ<>θ,且
第二象限 第四象限 第三象限 第一象限.D .C .B .A 变式训练3:若θ是第二象限角,则( ) A.sin 2θ>0B.cos 2θ<0C.tan 2θ>0D.cot 2
θ<0 变式训练4: 若角α、β的终边关于y 轴对称,则下列等式成立的是( )
A.sin α=sin β
B.cos α=cos β
C.tan α=tan β
D.cot α=cot β
变式训练5:sin2·cos3·tan4的值( )
A.小于0
B.大于0
C.等于0
D.不存在
例5.求函数x x x x y tan tan cos cos +=
的值域
变式训练1:若x x sin |sin |+|cos |cos x x +x
x tan |tan |=-1,则角x 一定不是( ) A.第四象限角 B.第三象限角
C.第二象限角
D.第一象限角
例6.作出下列各角的正弦线、余弦线、正切线。
(1)
3
π; (2)56π; (3)23π-; (4)136π-.
课上练习:
1.有下列命题:
①终边相同的角的三角函数值相同;
②同名三角函数的值相同的角也相同;
③终边不相同,它们的同名三角函数值一定不相同;
④不相等的角,同名三角函数值也不相同.
其中正确的个数是( )
A.0B.1C.2D.3
2.若角α的终边经过P (-3,b ),且cos α=-5
3,则b =_________,sin α=_________. 3.在(0,2π)内满足x 2cos =-cos x 的x 的取值范围是_________.
4.已知角α的终边在直线y =-3x 上,则10sin α+3cos α=_________.
5.已知点P (tan α,cos α)在第三象限,则角α的终边在第_________象限.
6.计算
=-65sin π,=413cos π,=43sin π,=-3
2sin π, 7.解答题: (1)若点(6,)P t 是角α终边上的一点,且满足0t >,3cos 5α=
,求sin α,tan α的值
(2)已知角α的终边上有一点(3,4)(0)P t t t -≠,求sin α,cos α,tan α的值;。