有机波谱分析综合谱图解析PPT课件
合集下载
有机化学有机化合物的波谱分析PPT课件
红外光谱是以波长λ或波数σ第为5横页/坐共8标0页,表示吸收峰的峰位;以透射比 T(以百分数表示,又称为透光率或透过率)为纵坐标,表示吸收强度。
5
7.2.1分子化学键的振动和红外光谱
1.振动方程式
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的 简谐振动。根据Hooke定律可得其振动频率为:
分子化学键的振动是量子化的,其能级为:
式中: υ为振动量子数(0,1,2,…);h为Planck常量;ν振为化学 键的振动频率。
第8页/共80页
8
分子由基态υ =0跃迁到激发态υ =1时吸收光的能量为:
第9页/共80页
9
分子振动频率习惯以σ表示,由(7–2)式、(7–3)式和(7–5)式得:
红外吸收峰的峰位(σ)取决于键的力常数,以及键两端所连原子的 质量m1和m2,即取决于化合物分子的结构。这是红外光谱用来测 定化合物结构的理论依据。
n≥4在 725~720 处有吸 收。
32
1300 cm-1以下区域的光谱:715 cm-1处的面外弯曲振动吸收,表明 烯烃为顺式构型。
综合以上分析,有双键吸收,无三键及甲基吸收,另一不饱 和≥4在 725~720 处有吸 收。
33
7.3核磁共振谱(NMR)
这样对测定有机化合物结构毫无意义。但实验证明,在相同频 率照射下,化学环境不同的质子在不同的磁场强度处出现吸收峰。
第20页/共80页
20
3.鉴定已知化合物
用被测物的标准试样与被测物在相同条件下测定红外光谱,若 吸收峰位置、强度和形状完全相同,可认为是同一种物质(对映异 构体除外)。若无标准试样而有标准谱图,可查阅标准谱图。
查阅时应注意被测物与标准谱图所用试样的状态、制样方法、 所用仪器的分辨率等是否相同。
5
7.2.1分子化学键的振动和红外光谱
1.振动方程式
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的 简谐振动。根据Hooke定律可得其振动频率为:
分子化学键的振动是量子化的,其能级为:
式中: υ为振动量子数(0,1,2,…);h为Planck常量;ν振为化学 键的振动频率。
第8页/共80页
8
分子由基态υ =0跃迁到激发态υ =1时吸收光的能量为:
第9页/共80页
9
分子振动频率习惯以σ表示,由(7–2)式、(7–3)式和(7–5)式得:
红外吸收峰的峰位(σ)取决于键的力常数,以及键两端所连原子的 质量m1和m2,即取决于化合物分子的结构。这是红外光谱用来测 定化合物结构的理论依据。
n≥4在 725~720 处有吸 收。
32
1300 cm-1以下区域的光谱:715 cm-1处的面外弯曲振动吸收,表明 烯烃为顺式构型。
综合以上分析,有双键吸收,无三键及甲基吸收,另一不饱 和≥4在 725~720 处有吸 收。
33
7.3核磁共振谱(NMR)
这样对测定有机化合物结构毫无意义。但实验证明,在相同频 率照射下,化学环境不同的质子在不同的磁场强度处出现吸收峰。
第20页/共80页
20
3.鉴定已知化合物
用被测物的标准试样与被测物在相同条件下测定红外光谱,若 吸收峰位置、强度和形状完全相同,可认为是同一种物质(对映异 构体除外)。若无标准试样而有标准谱图,可查阅标准谱图。
查阅时应注意被测物与标准谱图所用试样的状态、制样方法、 所用仪器的分辨率等是否相同。
《有机波谱分析》PPT课件
不对称伸缩振动(vas) 精选课件ppt (2926 cm-1)
5
(2)弯曲振动:
+
+
+ +
C
C
C
C
剪式振动(δs)
面内摇摆振动(ρ) 面外摇摆振动(ω)
扭式振动(τ)
面内
面外 弯曲振动只改变键角,不改变键长
值得注意的是:不是所有的振动都能引起红外吸收,
只有偶极矩(μ)发生变化的,才能有红外吸收。
X-H 伸缩振动吸收范围。X代表O、N、C、S, 对应醇、酚、羧酸、胺、亚胺、炔烃、烯烃、芳烃 及饱和烃类的 O-H、N-H、C-H 伸缩振动。
1. O-H 醇与酚:游离态--3640~3610cm-1,峰形尖锐。
缔合--精3选30课0件cpmpt -1附近,峰形宽而钝 11
羧酸:3300~2500cm-1,中心约3000cm-1,谱带宽
2 . N-H
胺类: 游离——3500~3300cm-1
缔合——吸收位置降低约100cm-1 伯胺:3500,3400cm-1,(吸收强度比羟基弱) 仲胺:3400cm-1(吸收峰比羟基要尖锐) 叔胺:无吸收
酰胺:伯酰胺:3350,3150cm-1 附近出现双峰
仲酰胺:3200cm-1 附近出现一条谱带
第三章 红外光谱
3.1 基本原理
3.1.1波长和波数
电磁波的波长( )、频率( v)、能量(E)之间的关系:
精选课件ppt
1
3.1.2 近红外、中红外和远红外
波段名称 近红外 中红外 远红外
波长 μ 0.75—2.5 2.5-25
25-1000
波数(cm-1) 13300-4000 4000-400
波谱分析有机化合物紫外光谱解析PPT课件
n→ * /nm n→π* /nm
CH3CHO 190 289 12.5
CH3COCH3 180 280 22
O
291 15
第11页/共42页
羧酸、酯、酰胺羰基的 n→π* 吸收紫移。
R-COOR’
R-CONR2’ R-COSH
λmax -205 nm
-205 nm
-219 nm
ε
E
101~2
102
39 0
30 33308
α
γ
β
δ
B
215 18 18
0 5
286
第19页/共42页
(1)苯
苯的吸收带
Ⅰ
Ⅱ
Ⅲ
E带
K带
B带
λmax/nm 187
204
256
εmax
68000
8800
250
E 超出检测范围,被K带遮蔽
E
K B
(2)烷基取代苯:
烷基对苯环结构产生影响较小,由于σ→π超共轭效应, E2带和B带红移,精细结构消失。
102 ~ 103 10~100
若取代基含n电子的生色团,还会出现低强度的R带,较B 带红移。(苯乙酮: B带278nm , R带319nm)
第23页/共42页
(5)稠环芳烃 稠环芳烃较苯形成更大的共轭体系,紫外吸收比苯更移
向长波方向,吸收强度增大,精细结构更明显。 线型稠环化合物(蒽,并四苯)
对称性较强,苯的三个典型谱带强烈红移且产生明显的 精细结构,随环的增加逐渐可达可见区。
+30 +5 +5
0
+6 nm +30
+5 +60 nm
41
第6页/共42页
有机波普分析课件
总结词
有机波普分析将在生命科学、环境科学、材料科学等 交叉学科领域发挥越来越重要的作用。
详细描述
随着跨学科研究的深入,有机波普分析将在生物分子 相互作用、药物设计与筛选、环境污染物检测与控制、 新型材料结构与性能表征等方面发挥关键作用。与其 他分析方法的联用也将进一步提高波普分析的应用范 围和实用性。
02
代谢物组学与代谢过程研究
通过波普分析,可以对生物体内的代谢物进行定性和定量分析,研究代
谢过程和代谢调控机制。
03
生物成像与定位研究
利用波普分析技术,可以实现生物分子的成像和定位,有助于揭示生物
分子的分布和动态变化。
在材料化学研究中的应用
1 2 3
材料结构与性质研究 波普分析可以用于研究材料的晶体结构、分子排 列和化学键状态等,有助于深入了解材料的性质 和性能。
质谱 法
总结词
一种基于离子质量和电荷比值的检测方 法
VS
详细描述
质谱法是利用电场和磁场将运动的离子按 质量和电荷比值进行分离并检测的方法, 通过分析离子的质量和电荷比值,可以确 定物质的结构和组成。
拉曼光谱法
总结词
一种基于分子振动模式的检测方法
详细描述
拉曼光谱法是利用拉曼散射效应进行分析的方法,当光照射到物质上时会产生散射,不 同物质具有不同的散射光谱特征,通过与标准光谱进行比对,可以确定物质的结构和组
波普分析可以用于研究药物在体内的代谢过程和药代动力学特征, 有助于评估药物的疗效和安全性。
药物杂质分析
利用波普分析技术,可以对药物中的杂质进行定性和定量分析,确 保药物的质量和安全性。
在生物化学研究中的应用
01
生物分子相互作用研究
波谱综合解析ppt课件
IR能给出大部分官能团和某些结构单元存在的信息,从谱 图特征区可以清楚地观察到存在的官能团,从指纹区的某些
相关峰也可以得到某些官能团存在的信息。
(2) 有机质谱
MS除了能够给出分子式和相对分子量的信息,还可以 根据谱图中出现的系列峰﹑特征峰﹑重排峰和高质量区碎
片离子峰确定结构单元。
7
波谱综合解析步骤
的手段去解决剩余结构问题。
2
IR: 3030cm-1, 1600 cm-1, 1500 cm-1.
R 1H: 7.2ppm
13C: 120-140ppm UV: E, B吸收带。 MS:m/z=77,51,……
=91,65,39 ……
CH CH3 CH3
IR: 1380 cm-1裂分等高双峰。 1H: 双峰,多重峰。
谱图综合解析实例3
质谱MS验证结构: O
- O C CH3
CH2 O
CH2 O C CH3
-
O
- CH2 O C CH3
- CH3
CH2 O
O C CH3
m/z=43
m/z=77
- HC CH
O CH2 O C
- CO
m/z=91
HC CH
m/z=65
CH2 O
m/z=51
m/z=135
m/z=107
13C: 双峰,四重峰。
3
二、 波谱综合解析步骤
1) 解析前应了解尽可能多的信息
首先了解样品的来源和纯度; 纯物质要了解其熔点、沸点、溶解性能等物理化学性 质以及用其它分析手段所测得的数据(如分子量、元素
分析数据)等; 混合物需要精制后才能进行波谱分析,或采用一些联
用技术分析。
4
相关峰也可以得到某些官能团存在的信息。
(2) 有机质谱
MS除了能够给出分子式和相对分子量的信息,还可以 根据谱图中出现的系列峰﹑特征峰﹑重排峰和高质量区碎
片离子峰确定结构单元。
7
波谱综合解析步骤
的手段去解决剩余结构问题。
2
IR: 3030cm-1, 1600 cm-1, 1500 cm-1.
R 1H: 7.2ppm
13C: 120-140ppm UV: E, B吸收带。 MS:m/z=77,51,……
=91,65,39 ……
CH CH3 CH3
IR: 1380 cm-1裂分等高双峰。 1H: 双峰,多重峰。
谱图综合解析实例3
质谱MS验证结构: O
- O C CH3
CH2 O
CH2 O C CH3
-
O
- CH2 O C CH3
- CH3
CH2 O
O C CH3
m/z=43
m/z=77
- HC CH
O CH2 O C
- CO
m/z=91
HC CH
m/z=65
CH2 O
m/z=51
m/z=135
m/z=107
13C: 双峰,四重峰。
3
二、 波谱综合解析步骤
1) 解析前应了解尽可能多的信息
首先了解样品的来源和纯度; 纯物质要了解其熔点、沸点、溶解性能等物理化学性 质以及用其它分析手段所测得的数据(如分子量、元素
分析数据)等; 混合物需要精制后才能进行波谱分析,或采用一些联
用技术分析。
4
有机化学课件-波谱分析
995~985,915~905(单 取代烯) 980~960(反式二取代烯) 690(顺式二取代烯) 910~890(同碳二取代烯) 840~790(三取代烯)
C H 面外 弯曲振动
660~630(末端炔烃)
烷烃:C—H伸缩振动 2940 cm-1和 2860 cm-1,C—H 面内
弯曲1460(不对称)和1380 cm-1 (对称), -(CH2)n- (n>=4)一般在 720 cm-1处有特征峰(弱)
第八章 有机化合物的波谱分析
1.分子吸收光谱和分子结构 2.红外吸收光谱 3.核磁共振谱
第八章
1.紫外光谱(UV) 2.红外光谱(IR)
有机化合物的波谱分析
3.核磁共振谱(NMR ) 4.质谱(MS)
有机化学中应用最广泛的四大波谱:
一、分子的吸收光谱和分子结构 E= hν= hc/λ ν= c/λ 1/λ=σ E 代表光子的能量,单位为J; h planck 常数 6.63x10-34J•S
TMS:四甲基硅烷
低场
屏蔽效应大,共振信号在高场,
CH3
吸收峰为单峰,化学惰性。
TMS 化学位移定为0 ppm 高场
10
9
8பைடு நூலகம்
7
6
5
4
3
2
1
零 点
-1
-2
-3
TMS
三、核磁共振谱
3. 影响化学位移的因素
(1). 电负性的影响 电负性较大的吸电子基团,使与之相连的碳上的质子周围 电子云密度降低,屏蔽作用弱,共振信号→低场(位移增大)
1
0
一张NMR谱图,通常可以给出四种重要的结构信息:化学位 移、自旋裂分、偶合常数和峰面积(积分线) 峰面积大小与质子数成正比,可由阶梯式积分曲线高度求出。
有机波谱分析 综合图谱解析
1.某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构
1 :
2 : 9
2.某一未知化合物,其分子式为C 13H 16O 4。
已测定它的红外光谱、核磁共振谱以及紫外吸收光谱.如图,试确该未知化合物的结构。
730
750122017401030
5
λmax 260nm(ε215)
6
4
1
3、某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在210nm以上没有吸收,确定此未知物。
3
6 22
4、某未知物 C11H16 的 UV、IR、1H NMR及MS谱图数据如下,推导未知物结构。
t
:
1
H NMR
MS:主要的离子峰可由以下反应得到:
各谱数据与结构均相符,可以确定未知物是正戊基苯。
相关主题