八年级数学北师大版下册课件:4.1 因式分解
合集下载
4.1因式分解(共15张PPT)北师大版初中数学八年级下册
课堂小结
布置作业
教科书第94页
习题4.1第1、2、3、4
结同
再
束学
见
们
4.1 因式分解
八年级下册
1.经历从因数分解到因式分解的类比过程,感受类比的方法.
学
习
目
标
2.经历用几何图形解释因式分解的意义的过程,发展几何直观.
3.了解因式分解的意义,初步体会因式分解与整式乘法的联系.
4.感受因式分解在解决相关问题中的作用.
创设情境
问题导入
探究新知
应用新知
巩固新知
课堂小结
布置作业
创设情境
归纳
因式分解
探究新知
多项式
应用新知
整式乘法与因式分解是互为逆变形.
巩固新知
课堂小结
布置作业
整式乘法
整式乘积
创设情境
课堂练习
判断
判断下列各式从左到右的变形中,是否为因式分解:
探究新知
应用新知
巩固新知
课堂小结
布置作业
否
. ( − ) = −
. 2 − 1 + 2 = ( − 1)( + 1) + 2
. 2 − 1 = ( − 1)( + 1) 是
. + + = ( + ) + 否
1
E. 2
x
−1
1
=(
x
−
11)(x+ 1)否否
创设情境
能力提升
思考
若多项式 2 + + 分解因式的结果为 ( − 2)( + 3) ,
探究新知
应用新知
布置作业
教科书第94页
习题4.1第1、2、3、4
结同
再
束学
见
们
4.1 因式分解
八年级下册
1.经历从因数分解到因式分解的类比过程,感受类比的方法.
学
习
目
标
2.经历用几何图形解释因式分解的意义的过程,发展几何直观.
3.了解因式分解的意义,初步体会因式分解与整式乘法的联系.
4.感受因式分解在解决相关问题中的作用.
创设情境
问题导入
探究新知
应用新知
巩固新知
课堂小结
布置作业
创设情境
归纳
因式分解
探究新知
多项式
应用新知
整式乘法与因式分解是互为逆变形.
巩固新知
课堂小结
布置作业
整式乘法
整式乘积
创设情境
课堂练习
判断
判断下列各式从左到右的变形中,是否为因式分解:
探究新知
应用新知
巩固新知
课堂小结
布置作业
否
. ( − ) = −
. 2 − 1 + 2 = ( − 1)( + 1) + 2
. 2 − 1 = ( − 1)( + 1) 是
. + + = ( + ) + 否
1
E. 2
x
−1
1
=(
x
−
11)(x+ 1)否否
创设情境
能力提升
思考
若多项式 2 + + 分解因式的结果为 ( − 2)( + 3) ,
探究新知
应用新知
秋八年级数学北师大版下册课件:4.1 因式分解(共27张PPT)
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/112021/9/11Saturday, September 11, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/112021/9/112021/9/119/11/2021 7:55:45 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/112021/9/112021/9/11Sep-2111-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/112021/9/112021/9/11Saturday, September 11, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/112021/9/112021/9/112021/9/119/11/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月11日星期六2021/9/112021/9/112021/9/11 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/112021/9/112021/9/119/11/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/112021/9/11September 11, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/112021/9/112021/9/112021/9/11
•
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/112021/9/11Saturday, September 11, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/112021/9/112021/9/119/11/2021 7:55:45 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/112021/9/112021/9/11Sep-2111-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/112021/9/112021/9/11Saturday, September 11, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/112021/9/112021/9/112021/9/119/11/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月11日星期六2021/9/112021/9/112021/9/11 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/112021/9/112021/9/119/11/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/112021/9/11September 11, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/112021/9/112021/9/112021/9/11
北师大版八年级数学下册:4.1因式分解课件(共22张PPT)
因式分解
对象?
结果?
作用?
2、因式分解与整式乘法的关系?
当堂检测
1.下列由左到右的变形,哪些是分解因式?为什么?
1).(x+3)(x-3)= x2-9 2). x2+x-5=(x-2)(x+3)+ 否 ) 否 ) 是 ) 是 ) 否 )
4).
5).
做一做
计算下列各式:
2-3x (1)3x(x-1)= 3x _____
根据左面算式填空:
3x(x-1) (1) 3x2-3x=_______
(2)ma+mb-m=________ (2)m(a+b-1) =__________ ma+mb-m m(a+b-1)
m2-16 (3)(m+4)(m-4)= ____ y2-6y+9 (4)(y-3)2= _______ (m+4)(m-4) (3)m2-16=__________ (y-3)2 (4)y2-6y+9=______
a2b+ab2
= ab(a+b)
=(a+b)2
1 x
a2+2ab+b2
(
(
6). x2 +1=x(x+
)
2.当a=3.14,b=2.386,c=1.386时,
求ab-ac的值 解: 当a=3.14, b=2.386, c=1.386时, ab-ac=a(b-c) =3.14×(2.386-1.386)
积
整式乘法
和
和
因式分解
积
整式乘法与因式分解:互为逆变形.
快速辨别
下列各式哪些是整式乘法?哪些是因式分解? (1) x2-4y2=(x+2y)(x-2y) 因式分解 (2) 2x(x-3y)=2x2-6xy 整式乘法 整式乘法 (3) (5a-1)2=25a2-10a+1 (4) 2πR+ 2πr= 2π(R+r) 因式分解
对象?
结果?
作用?
2、因式分解与整式乘法的关系?
当堂检测
1.下列由左到右的变形,哪些是分解因式?为什么?
1).(x+3)(x-3)= x2-9 2). x2+x-5=(x-2)(x+3)+ 否 ) 否 ) 是 ) 是 ) 否 )
4).
5).
做一做
计算下列各式:
2-3x (1)3x(x-1)= 3x _____
根据左面算式填空:
3x(x-1) (1) 3x2-3x=_______
(2)ma+mb-m=________ (2)m(a+b-1) =__________ ma+mb-m m(a+b-1)
m2-16 (3)(m+4)(m-4)= ____ y2-6y+9 (4)(y-3)2= _______ (m+4)(m-4) (3)m2-16=__________ (y-3)2 (4)y2-6y+9=______
a2b+ab2
= ab(a+b)
=(a+b)2
1 x
a2+2ab+b2
(
(
6). x2 +1=x(x+
)
2.当a=3.14,b=2.386,c=1.386时,
求ab-ac的值 解: 当a=3.14, b=2.386, c=1.386时, ab-ac=a(b-c) =3.14×(2.386-1.386)
积
整式乘法
和
和
因式分解
积
整式乘法与因式分解:互为逆变形.
快速辨别
下列各式哪些是整式乘法?哪些是因式分解? (1) x2-4y2=(x+2y)(x-2y) 因式分解 (2) 2x(x-3y)=2x2-6xy 整式乘法 整式乘法 (3) (5a-1)2=25a2-10a+1 (4) 2πR+ 2πr= 2π(R+r) 因式分解
北师大版八年级下册4.1因式分解课件(共14张PPT)
作 业 P94
分解因 的式对与象整必式须乘是法多是项互式。为逆变形过程。
• 必做题:知识技能和数 用分a解表的示对任象意必一须个是大多于项1式的。整数,则:
∴(20)0m82(a++2b0-019)能=被__2_0_0_9_整__除_ 将(92)9换m成(a其+b他-1任) 意=_一__个__大__于_1_的整数,上述结论仍然成立吗?
(3)(5a-1)2=25a2-10a+1
67×(-132+25+7)
(3)(m+4)(m-4) (2)m(a+b-1) =_________
67×(-132+25+7)
= _m__-_16 2 (3)(5a-1)2=25a2-10a+1
你知道每一步的根据吗? =2008 ×2009
(-267
993-99能被100整除吗?
小明是这样想的: 993-99=99×992-99 ×1
=99 ×(992-1) =99 (99+1)(99-1) = 99×100×98 所以, 993-99能被100整除.
你知道每一步的根据吗? 想一想: 993-99还能被哪些整数整除?
将99换成其他任意一个大于1 的整数,上述结论仍然成立吗?
•多项式的分解因式与整式乘法是方向
相反的恒等式。
分解因式与整式乘法是互 为逆变形过程。
计算下列个式:
=736×((95+15))3x(x-1)= _3_x2_-_3x
解 :736×95+736×5
(2)m(a+b-1) =99 ×(992-1)
(2)2x(x-3y)=2x2-6xy
=___m_a_+_m__b_-m 分解的对象必须是多项式。
北师大版八年级数学下册4.1因式分解
(7)
否 是 是
(4) x 2 2 x 1 x( x 2) 1 否
否 否 否
x y 1 x y
能力提升
20042+2004能被2005整除吗? 解: ∵20042+2004 =2004× (2004+1) =2004×2005 ∴ 20042+2004能被2005整除
多项式 = 整式×整式
注意:
1. 分解因式的结果要以积的形式表示; 2. 分解后的每个因式必须是整式;
3.分解后每个整式的次数都低于原来的多项式的次数。
想一想
因式分解与整式乘法有什么联系?
单项式乘以单项式
整式乘法 单项式乘以多项式
多项式乘以多项式
多项式
整式乘法: 整式×整式 = 多项式 因式分解:多项式 = 整式×整式
4.1 因式分解
学习目标
1.理解因式分解的概念。 2.理解因式分解与整式乘法的关系。 3.会判断某个变形是因式分解还是整式的乘法。
做一做
数学中的游戏
1. 3.不通过计算,你能判断出这个式子能被比 它大1的数整除吗?
想一想
993-99能被100整除吗? 你是怎样想的?
某学生是这样想的: 993 99 99 992 99 1
你知道每一步的根据 吗?993-99还能被哪些整 数整除?
99(99 1) 99 9800 98 99 100
2
所以, 993 99能被100整除.
因式分解的定义
把一个多项式化成几个整式的积的形式, 这种变形叫做因式分解。因式分解也可称为 分解因式。
2.下列式子从左到右的变形是否为因式分解? 不是的请说明理由。
否 是 是
(4) x 2 2 x 1 x( x 2) 1 否
否 否 否
x y 1 x y
能力提升
20042+2004能被2005整除吗? 解: ∵20042+2004 =2004× (2004+1) =2004×2005 ∴ 20042+2004能被2005整除
多项式 = 整式×整式
注意:
1. 分解因式的结果要以积的形式表示; 2. 分解后的每个因式必须是整式;
3.分解后每个整式的次数都低于原来的多项式的次数。
想一想
因式分解与整式乘法有什么联系?
单项式乘以单项式
整式乘法 单项式乘以多项式
多项式乘以多项式
多项式
整式乘法: 整式×整式 = 多项式 因式分解:多项式 = 整式×整式
4.1 因式分解
学习目标
1.理解因式分解的概念。 2.理解因式分解与整式乘法的关系。 3.会判断某个变形是因式分解还是整式的乘法。
做一做
数学中的游戏
1. 3.不通过计算,你能判断出这个式子能被比 它大1的数整除吗?
想一想
993-99能被100整除吗? 你是怎样想的?
某学生是这样想的: 993 99 99 992 99 1
你知道每一步的根据 吗?993-99还能被哪些整 数整除?
99(99 1) 99 9800 98 99 100
2
所以, 993 99能被100整除.
因式分解的定义
把一个多项式化成几个整式的积的形式, 这种变形叫做因式分解。因式分解也可称为 分解因式。
2.下列式子从左到右的变形是否为因式分解? 不是的请说明理由。
北师大版八年级下册数学《因式分解》PPT教学课件
合作探究
探究点三 问题1:因式分解:把一个多项式化成几个 整式 的 积 的形式,这种变形叫 做因式分解.因式分解也可称为 分解因式 . 问题2:你能说明因式分解与整式的乘法有什么关系吗? 多项式的因式分解与整式的乘法互为逆变形过程. 因此可以用整式的乘法来检验分解因式是否正确.
合作探究
探究点四 例1:已知多项式x2-4x+m因式分解的结果为(x+a)(x-6),求2a-m的值 解:(x+a)(x-6)
课程讲授
1 因式分解的定义
问题1:
完成下列题目: x(x-2)=__x_2_-_2_x_ (x+y)(x-y)=__x_2-_y_2__ (x+1)2=_x_2_+_2_x_+_1_
根据左空,解决下列问题: x2-2x=( x )( x-2 ) x2-y2=( x+y )( x-y ) x2+2x+1=( x+1 )2
4.1 因式分解
八年级下册
学习目标
1 经历从分解因数到分解因式的类比过程. 2 了解因式分解的意义,以及它与整式乘法的相互关系. 3 感受因式分解在解决相关问题中的作用.
前置学习
1.下列等式从左到右的变形,属于因式分解的是( D )
A.a(x-y)=ax-ay
B.x²+2x+1=x(x+2)+1
整式乘法
(x+1)(x-1)
课程讲授
1 因式分解的定义
归纳:因式分解与整式乘法是互逆运算,二者是一个 式子的两种不同表现形式.因式分解的等号右边是两个 或几个因式积的形式,整式乘法的等号右边是多项式的 形式.
随堂练习
1. 下列各式中从左到右的变形属于分解因式的是( C ) A. a(a+b-1)=a2+ab-a B. a2-a-2=a(a-1)-2 C. -4a2+9b2=(-2a+3b)(2a+3b) D.2x +1=x(2+ 1 )
北师大版八年级数学下册教学PPT课件4.1 因式分解
A.a=2,b=3
B.a=-2,b=-3 C.a=-2,b=3 D.a=2,b=-3
1
知识小结
1.因式分解的定义: 把一个多项式化成几个整式的积的形式,这种变形
计算下列各式:
(1)3x(x-1)=
(3)(m+4)(m-4)=
(2)m(a+b-1)=
(4)(y-3)2=
根据上面的算式进行因式分解:
(1)3x2-3x=(
(3)m2-16=(
)(
)(
); (2)ma+mb-m=(
); (4)y2-6y+9=( )(
)(
)
)
知2-讲
整式乘法与因式分解的关系:
整式乘法与因式分解一个是积化和差,另一
因此不是因式分解,C错误;
x2y+xy2=xy(x+y),符合因式分解的概念, 因此是因式分解,D正确.
知1-练
1 下列由左边到右边的变形,哪些是因式分解?为 什么? (1) (a+3)(a-3)=a2-9 ;
(2) m2-4=(m+2)(m-2);
(3) a2-b2+1=(a+b)(a-b)+1; (4) 2mR+2mr=2m(R+r).
整数整除?
知1-导
议一议 你能尝试把a3-a化成几个整式的乘积的形式 吗?与同伴交流.
知1-导
做一做 观察下面拼图过程,写出相应的关系式.
知1-导
归
纳
把一个多项式化成几个整式的积的形式,这种 变形叫做因式分解. 例如,a3-a= a (a+1)(a-1), am+bm+cm=m(a+b+c),x2+2x+l=(x+1)2都
知1-练
3 【2017· 常德】下列各式由左到右的变形中,属 于分解因式的是( C ) A.a(m+n)=am+an B.a2-b2-c2=(a-b)(a+b)-c2
4-1 因式分解(课件)八年级数学下册(北师大版)
B.a2-b2-c2=(a-b)(a+b)-c2
C.10x2-5x=5x(2x-1)
D.x2-16+6x=(x+4)(x-4)+6x
随堂练习
3.把x2-3xy2分解因式,结果正确的是( D )
A.(x+3xy)(x-3xy)
பைடு நூலகம்
B.x(x-3xy)
C.x2(1-3xy2)
D.x(x-3y2)
4. 20162-2016不能被下列哪个数整除?( B )
A.a2+1=a(a+
1
)
a
B.(x+1)(x-1)=x2-1
C.a2+a-5=(a-2)(a+3)+1
D.x2y+xy2=xy(x+y)
探究新知
分解因式的要求:
1.分解的结果最后是积的形式;
2.每个因式必须是整式,且每个因式的次数都必须低
于多项式的次数;
3.必须分解到每个因式不能再分解为止
随堂练习
A.6
B.2017
C.2016
D.2015
随堂练习
5.若x2+3x+m=(x+1)(x+2),则m的值为( B )
A.1
B.2
C.3
D.4
6. 一个多项式分解因式的结果是(b3+2)(2-b3),那么
这个多项式是( B )
A.b6-4
B.4-b6
C.b6+4
D.-b6-4
随堂练习
7. (3a-y)(3a+y)是下列哪一个多项式因式分解的结果( C )
(2)2a3b2c+4ab3c-abc
=abc·2a2b+abc·4b2-abc·1
=abc (2a2b+4b2-1)
随堂练习
9.将下列各式分解因式
C.10x2-5x=5x(2x-1)
D.x2-16+6x=(x+4)(x-4)+6x
随堂练习
3.把x2-3xy2分解因式,结果正确的是( D )
A.(x+3xy)(x-3xy)
பைடு நூலகம்
B.x(x-3xy)
C.x2(1-3xy2)
D.x(x-3y2)
4. 20162-2016不能被下列哪个数整除?( B )
A.a2+1=a(a+
1
)
a
B.(x+1)(x-1)=x2-1
C.a2+a-5=(a-2)(a+3)+1
D.x2y+xy2=xy(x+y)
探究新知
分解因式的要求:
1.分解的结果最后是积的形式;
2.每个因式必须是整式,且每个因式的次数都必须低
于多项式的次数;
3.必须分解到每个因式不能再分解为止
随堂练习
A.6
B.2017
C.2016
D.2015
随堂练习
5.若x2+3x+m=(x+1)(x+2),则m的值为( B )
A.1
B.2
C.3
D.4
6. 一个多项式分解因式的结果是(b3+2)(2-b3),那么
这个多项式是( B )
A.b6-4
B.4-b6
C.b6+4
D.-b6-4
随堂练习
7. (3a-y)(3a+y)是下列哪一个多项式因式分解的结果( C )
(2)2a3b2c+4ab3c-abc
=abc·2a2b+abc·4b2-abc·1
=abc (2a2b+4b2-1)
随堂练习
9.将下列各式分解因式
因式分解北师大数学八年级下册PPT课件
B. − + = − +
C. − = −
D. + = + +
)
课堂检测
基础巩固题
2.
如果多项式
+
么另一个因式是( B
)
A. c−b+5ac
B.c+b−5ac
1
C. ac
5
1
D. ac
5
− 的一个因式是 ,那
= ( + ) − ( − ) −
= ++ +− −+ −−
∵ , , 是△ABC的三边,
∴ + + > , + − > , − + > , − − < ,
∴原式< ,即( + − ) − < .
北师大版 八年级 数学 下册
4.1 因式分解
导入新知
630可以被哪些整数整除?
解决这个问题,需要对630进行分解质因数
= × × ×
思考:既然有些数能分解因数,那么类似地,有些多项
式可以分解成几个整式的积吗?
素养目标
2. 理解因式分解与整式乘法之间的联系与区
别.
1. 理解掌握因式分解的意义,会判断一个变
.
探究新知
3.观察下面拼图过程,写出相应的关系式.
(2)
x
x
x
x+1
1
x
1
1
1
x+1
+ +
=
C. − = −
D. + = + +
)
课堂检测
基础巩固题
2.
如果多项式
+
么另一个因式是( B
)
A. c−b+5ac
B.c+b−5ac
1
C. ac
5
1
D. ac
5
− 的一个因式是 ,那
= ( + ) − ( − ) −
= ++ +− −+ −−
∵ , , 是△ABC的三边,
∴ + + > , + − > , − + > , − − < ,
∴原式< ,即( + − ) − < .
北师大版 八年级 数学 下册
4.1 因式分解
导入新知
630可以被哪些整数整除?
解决这个问题,需要对630进行分解质因数
= × × ×
思考:既然有些数能分解因数,那么类似地,有些多项
式可以分解成几个整式的积吗?
素养目标
2. 理解因式分解与整式乘法之间的联系与区
别.
1. 理解掌握因式分解的意义,会判断一个变
.
探究新知
3.观察下面拼图过程,写出相应的关系式.
(2)
x
x
x
x+1
1
x
1
1
1
x+1
+ +
=
北师大版 八年级下册 4.1因式分解课件 (共20张PPT)
分解因式要注意以下几点: 1.分解的对象必须是多项式. 2.分解的结果一定是积的形式. 3.结果中的每一个因式都必须是整式.
跟踪训练
判断下列各式从左到右的变形中,是否为因式分解:
A. x(a﹣b)=ax﹣bx
×
B. x2﹣1+y2=(x﹣1)(x+1)+y2 C. y2﹣1=(y+1)(y﹣1) D. ax+by+c=x(a+b)+c
(1)对于(a-b)(x-y)=ax-ay-bx+by从左到右 的变形是 整式乘法 ,从右到左的变是 因式分解;
nm m
(2)根据下图写出一个因式分解的算式为 _m_n_+_m_2_=m__(__m_+_n_)__.
当堂检测
3.若x2+mx-n分解因式后是(x-2)(x-5), 求m、n的值.
4.求代数式IR1+IR2+IR3的值,其中 R1=19.2,R2=32.4,R3=38.4,I=2.5
可以.
合作探究
问题1:993-99能被100整除这个吗?
993 - 99 99 992 - 99 1 99(992 - 1) 99 9800 98 99 100
想一想: 993-99 还能被哪些整数
整除?
所以,993-99能被100整除.
问题2:如图,一块菜地被分成三部分,你能用不 同的方式表示这块草坪的面积吗?
根据左面算式填空: (1) 3x2-3x=___3_x_(x_-_1_)_ (2)ma+mb+mc=__m__(a_+__b_+_c_) _ (3) m2-16=_(m__+_4_)_(m__-_4_) (4) x2-6x+9=__(_x_-_3_)2__ (5) a3-a=__a_(_a_+_1_)_(_a_-1_)
跟踪训练
判断下列各式从左到右的变形中,是否为因式分解:
A. x(a﹣b)=ax﹣bx
×
B. x2﹣1+y2=(x﹣1)(x+1)+y2 C. y2﹣1=(y+1)(y﹣1) D. ax+by+c=x(a+b)+c
(1)对于(a-b)(x-y)=ax-ay-bx+by从左到右 的变形是 整式乘法 ,从右到左的变是 因式分解;
nm m
(2)根据下图写出一个因式分解的算式为 _m_n_+_m_2_=m__(__m_+_n_)__.
当堂检测
3.若x2+mx-n分解因式后是(x-2)(x-5), 求m、n的值.
4.求代数式IR1+IR2+IR3的值,其中 R1=19.2,R2=32.4,R3=38.4,I=2.5
可以.
合作探究
问题1:993-99能被100整除这个吗?
993 - 99 99 992 - 99 1 99(992 - 1) 99 9800 98 99 100
想一想: 993-99 还能被哪些整数
整除?
所以,993-99能被100整除.
问题2:如图,一块菜地被分成三部分,你能用不 同的方式表示这块草坪的面积吗?
根据左面算式填空: (1) 3x2-3x=___3_x_(x_-_1_)_ (2)ma+mb+mc=__m__(a_+__b_+_c_) _ (3) m2-16=_(m__+_4_)_(m__-_4_) (4) x2-6x+9=__(_x_-_3_)2__ (5) a3-a=__a_(_a_+_1_)_(_a_-1_)
北师大版八年级下册4.1因式分解课件(共18张PPT)
x2+2x+p=0,即32+2x3+P=0 解:设另一个因式为x+a,则有
∴P=-15
x2+2x+p=(x-3)(x+a)
∴ x2+2x+p=x2+(a-3)x-3a
∴a-3=2, p=-3a
∴a=5, p=-15
意义
因式分解是把一个多项式化为几个整 式乘积的形式,特征是和差化积
与整式乘法关系
因式分解与整式乘法是方向相反的 两种恒等变形,即互逆关系 整式的乘法运算是积化和差; 多项式因式分解是和差化积
解:∵ab-ac=a(b-c) ∴当a=3.14,b=2.386,c=1.386时 原式=3.14X(2.386-1.386)
=3.14X1
=3.14
2、已知多项式x2+2x+p因式分解后 有一个因式为x-3,求p的值
解:∵多项式x2+2x+p因式分 解后有一个因式为x-3
∴当x-3=0,即x=3时
把左右两边对应的式子连起来,并说明哪些变
==939. (99+1)(9形9-1) 是因式分解,哪些是整式乘法.
将99换成其他任意一个大于1的整数,上述结论仍然成立吗?
1、若 —x—m=(x+2)(x-3)
解:∵ab-ac=a(b-c) 67× 132+25×2.
x2-y2 解:∵x2-x-m=(x+2)(x-3)
2、(3a-y)(3a+y)是下列哪一个多项式分解因式
的结果( C ).
A.9a2+y2
B.-9a2+y2
C.9a2-y2
D.-9a2-y2
1、若 x —x—m=(x+2)(x-3) 则a=___,b=___
北师大版八年级数学下册《因式分解》ppt
思考:因式分解与整式乘法有什么关系?
左边式子的变形为整式乘法,右边式子的变形为因式 分解,两种变形互为逆运算变形过程.
巩固练习
判断下列各式哪些是整式乘法?哪些是因式分解?
(1).x2-4y2=(x+2y)(x-2y)
因式分解
(2).2x(x-3y)=2x2-6xy
整式乘法
(3).(5a-1)2=25a2-10a+1
=99 ×(992-1) =99×9800 = 99×100×98 所以, 993-99能被100整除.
你是怎么想的? 与同伴交流
在这里,解决问题的关键是把一个数式化成了几个数的积的形式。 你能尝试把a3-a化成几个整式的乘积的形式吗?与同伴交流。
范例讲解
观察下列拼图过程,写出相应的关系式。
am+bm+cm
m(a+b+c)
x2+x+x+1
(x+1)2
am+bm+cm=m(a+b+c) x2+x+x+1= x2+2x+1 =(x+1)2
问:观察同一行中,左右两边的等式有什么区别和联系?
联系:等式的左右两边是同一个多项式的不同表现形式. 区别:等号的左边是多项式的乘法,等号的右边是把多项 式化成了几个整式的积。二者的过程恰好相反。
整式乘法
(4).x2+4x+4=(x+2)2
因式分解
(5).(a-3)(a+3)=a2-9
因式分解
(6).m2-4=(m+2)(m-2)
整式乘法
4.利用因式分解简便计算57×99+44×99-99正确的是 ( B )
八年级数学下册 4 因式分解 1 因式分解课件 (新版)北师大版
八年级数学·下 新课标[北师]
第四章 因式分解
1 因式分解
学习新知
检测反馈
问题思考
【问题】 (1)993-99能被99整除吗? 因为993-99=99×992-99×1=99(992-1),
所以993-99能被99整除.
(2)993-99能被100整除吗?
小明是这样做的: 993-99=99×992-99×1 =99(992-1) =99×9800 =99×98×100,
C.a(a-b)=a2-ab D.a2-2ab+2a=a(a-2b+2)
解析:主要考查因式分解的概念.故选D.
3.把一个多项式化成 几个整式的积 的形式,这种变形叫做 因式分解.
4.因式分解与整式乘法的关系是 互为逆过程 .
5.计算 7137672 的结果是 7 .
9 99
解析:利用因式分解可以简化计算.原式= 6+2)= 7 ×9=7.故填7.
所以993-99能被100整除.
学习新知
因式分解的概念
观察下面的拼图过程,写出相应的关系式.
解答:(1)ma+mb+mc=m(a+b+c). (2)x2+2x+1=(x+1)2.
像这样,把一个多项式化成 几个整式的积的形式,这种变
形叫做因式分解.因式分解也 可称为分解因式.
(教材做一做)计算下列各式:
检测反馈
1.下面式子从左边到右边的变形是因式分解的是
(C )
A.x2-x-2=x(x-1)-2
B.(a+b)(a-b)=a2-b2
C.x2-4=(x+2)(x-2)
D.
x2
1 y2
第四章 因式分解
1 因式分解
学习新知
检测反馈
问题思考
【问题】 (1)993-99能被99整除吗? 因为993-99=99×992-99×1=99(992-1),
所以993-99能被99整除.
(2)993-99能被100整除吗?
小明是这样做的: 993-99=99×992-99×1 =99(992-1) =99×9800 =99×98×100,
C.a(a-b)=a2-ab D.a2-2ab+2a=a(a-2b+2)
解析:主要考查因式分解的概念.故选D.
3.把一个多项式化成 几个整式的积 的形式,这种变形叫做 因式分解.
4.因式分解与整式乘法的关系是 互为逆过程 .
5.计算 7137672 的结果是 7 .
9 99
解析:利用因式分解可以简化计算.原式= 6+2)= 7 ×9=7.故填7.
所以993-99能被100整除.
学习新知
因式分解的概念
观察下面的拼图过程,写出相应的关系式.
解答:(1)ma+mb+mc=m(a+b+c). (2)x2+2x+1=(x+1)2.
像这样,把一个多项式化成 几个整式的积的形式,这种变
形叫做因式分解.因式分解也 可称为分解因式.
(教材做一做)计算下列各式:
检测反馈
1.下面式子从左边到右边的变形是因式分解的是
(C )
A.x2-x-2=x(x-1)-2
B.(a+b)(a-b)=a2-b2
C.x2-4=(x+2)(x-2)
D.
x2
1 y2
北师大版八年级数学下册第四章《4.1 因式分解(1)》公开课课件
练习三 拓展应用
1. 计算: 7652×17-2352 ×17 解: 7652×17-2352 ×17 =17(7652 -2352)=17(765+235)(765 -235) =17 ×1000 ×530=9010000
2. 20042 +2004 能被2005 整除吗?
解: ∵20042+2004=2004(2004+1)
• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/292021/7/292021/7/297/29/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/292021/7/29July 29, 2021
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/292021/7/292021/7/292021/7/29
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
相关主题