博弈论经典模型全解析
博弈论的应用-浅析博弈论经典模型
![博弈论的应用-浅析博弈论经典模型](https://img.taocdn.com/s3/m/fdb37ce00508763231121237.png)
浅析博弈论经典模型--囚徒困境模型及其启示一、博弈论概述博弈论又名“对策论”、“赛局理论”,属应用数学的一个分支,表示在多决策主体之间行为具有相互作用时,各主体根据所掌握信息及对自身能力的认知,做出有利于自己的决策的一种行为理论。
简单说来就是一些个人或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。
由于冲突、合作、竞争等行为是现实世界中常见的现象,因此很多领域都能应用博弈论,例如军事领域、经济领域、政治外交,解决诸如战术攻防、国际纠纷、定价定产、兼并收购、投标拍卖甚至动物进化等问题。
二、博弈论的基本原理从上述定义中可以看出,一个完整的博弈一般由以下几个要素组成:博弈的参加者,各博弈方各自选择的全部策略或行为的集合、博弈方的得益、结果、均衡等。
1、参与者指的是博弈中选择行动以最大化自己效用的决策主体(可以是个人,也可以是团体)。
2、行动是指参与人在博弈进程中轮到自己选择时所作的某个具体决策。
3、策略是指参与人选择行动的规则,即在博弈进程中,什么情况下选择什么行动的预先安排。
4、信息指的是参与人在博弈中所知道的关于自己以及其他参与人的行动、策略及其得益函数等知识。
5、得益是参与人在博弈结束后从博弈中获得的效用,一般是所有参与人的策略或行动的函数,这是每个参与人最关心的事情。
6、均衡是所有参与人的最优策略或行动的组合;均衡结果是指博弈结束后博弈分析者感兴趣的一些要素的集合,如在各参与人的均衡策略作用下,各参与人最终的行动或效用集合。
上述要素中,参与人、行动和结果统称为博弈规则,博弈分析的目的是使用博弈规则来决定均衡。
三、博弈的分类博弈的分类根据不同的标准也有不同的分类。
根据参与人的多少,博弈可以分为二人博弈和多人博弈。
根据参与人是否合作,博弈可以分为合作博弈和非合作博弈。
合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。
(完整)博弈论经典模型全解析(入门级)
![(完整)博弈论经典模型全解析(入门级)](https://img.taocdn.com/s3/m/14872abef7ec4afe05a1df33.png)
博弈论经典模型全解析(入门级)1。
囚徒困境这是博弈论中最最经典的案例了-—囚徒困境,非常耐人寻味。
“囚徒困境"说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作).这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪.但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金.而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了.但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
企业在信息化过程中需要与咨询企业、软件供应商打交道的。
在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作.在对对方有了足够的信任之后,诚意也是必不可少的,如果没有诚意或者太过贪婪,就可能闹到双方都没有好处的糟糕情况,造成企业之间的双输。
博弈论的囚徒困境模型
![博弈论的囚徒困境模型](https://img.taocdn.com/s3/m/f17b52133069a45177232f60ddccda38376be10c.png)
博弈论的囚徒困境模型引言博弈论是研究决策制定者在多方面利益冲突下进行选择的一门学科。
而囚徒困境模型是博弈论中最经典的模型之一,用于描述两个合作者之间存在利益冲突时可能出现的情况。
本文将详细介绍囚徒困境模型的基本概念、策略和解决方法,并探讨其在现实生活中的应用。
1. 囚徒困境模型的基本概念囚徒困境模型最早由美国数学家Melvin Dresher和Merrill Flood于1950年提出。
它是一个非零和博弈模型,意味着合作者之间的利益不完全一致,他们可以选择合作或背叛对方,从而获得不同的收益。
在囚徒困境模型中,通常有两名犯人被关押在不同的牢房里,无法相互沟通。
检察官给每个犯人提供了一个选择:如果两个人都保持沉默(即合作),那么他们将分别被判处较轻的刑期;如果其中一个人背叛(即不合作),而另一个人保持沉默,那么背叛者将被释放,而保持沉默者将被判处重刑;如果两个人都背叛,那么他们将各自被判处较重的刑期。
2. 囚徒困境模型的策略在囚徒困境模型中,每个犯人都有两种基本策略:合作和背叛。
根据对方的选择和自己的选择,可以得出四种不同的结果:互相合作、互相背叛、自己合作对方背叛、自己背叛对方合作。
这些结果对应着不同的收益。
为了量化这些收益,通常使用一个称为支付矩阵的工具。
支付矩阵是一个2x2的矩阵,其中每个元素表示在不同情况下每个合作者获得的收益。
在标准囚徒困境模型中,支付矩阵可以表示为:合作背叛合作R,R S,T背叛T,S P,P其中R表示互相合作时的收益,T表示自己背叛对方合作时的收益,S表示自己合作对方背叛时的收益,P表示互相背叛时的收益。
通常,R > T > P > S。
3. 囚徒困境模型的解决方法在囚徒困境模型中,每个犯人都希望获得最大的个人利益。
然而,如果两个犯人都追求个人利益,那么最终的结果将是两败俱伤。
如何选择合适的策略成为了一个关键问题。
在博弈论中,有许多不同的解决方法可以用于囚徒困境模型。
博弈论经典模型
![博弈论经典模型](https://img.taocdn.com/s3/m/4dd520afb0717fd5360cdc3c.png)
博弈论经典模型经典的博弈模型来源于生活中的现象,很多都是来源于我们的日常生活,只要我们善于总结和发现我们也可以对发生在我们日常的现象进行归纳和总结。
下面是我对网上一些博弈论现象做一个总结:智猪博弈——搭好顺风车,借力成事;枪手博弈——对比关系及策略决定强弱;囚徒困境——个人理性与集体的非理性;斗鸡博弈——狭路相逢勇者未必胜;分蛋糕博弈——讨价还价的策略;以牙还牙——有一种智慧叫宽恕;鹰鸽博弈——路径依赖法则新解;蜈蚣博弈——从后往前的推理;猎鹿博弈——合作是硬道理;酒吧博弈——求同存异的智慧;鲇鱼效应——有竞争才有发展;重复博弈——冲突与合作方能共享;协和谬误——欲罢不能的错上加错;信息甄别——酒好不怕巷子深;人质困境——雪上加霜的囚徒困境;脏脸博弈——都是共同知识惹的祸;成本博弈——摆脱沉没成本羁绊的策略;手表定律——标准不同结论就不同;策略均衡——谁也不得罪。
1.智猪博弈在博弈论(Game Theory)经济学中,“智猪博弈”是一个著名的纳什均衡的例子。
假设猪圈里有一头大猪、一头小猪。
猪圈很长,一头有一踏板,另一头是饲料的出口和食槽。
猪每踩一下踏板,另一边就会有相当于10份的猪食进槽,但是踩踏板以后跑到食槽所需要付出的“劳动”,加起来要消耗相当于2份的猪食。
问题是踏板和食槽分置笼子的两端,如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
踩踏板的猪付出劳动跑到食槽的时候,坐享其成的另一头猪早已吃了不少。
“笼中猪”博弈的具体情况如下:如果两只猪同时踩踏板,同时跑向食槽,大猪吃进7份,得益5份,小猪吃进3份,实得1份;如果大猪踩踏板后跑向食槽,这时小猪抢先,吃进4份,实得4份,大猪吃进6份,付出2份,得益4份;如果大猪等待,小猪踩踏板,大猪先吃,吃进9份,得益9份,小猪吃进1份,但是付出了2份,实得-1份;如果双方都懒得动,所得都是0(做个博弈分析图表)。
利益分配格局决定两头猪的理性选择:小猪踩踏板只能吃到一份,不踩踏板反而能吃上4份。
聊聊四种经典的博弈论模型
![聊聊四种经典的博弈论模型](https://img.taocdn.com/s3/m/2afa9c2966ec102de2bd960590c69ec3d5bbdb92.png)
聊聊四种经典的博弈论模型展开全文1、囚徒困境:为什么两个犯人都选择坐牢官差破获了一宗盗窃案,抓住了两名犯罪嫌疑人。
但在审讯过程中,被关在一处的二人始终矢口否认盗窃罪名,说东西不是我们偷的。
为了避免两人达成默契,结成攻守同盟,官差决定对他们进行单独审讯。
官差表示,如果两人中有一人坦白认罪,则可立即释放,另一个不认罪的人判5年徒刑;如果两人都坦白罪刑,则他们将各判2年徒刑。
但还有一种情况,那就是两个人都拒绝坦白,由于缺乏证据,他们只会以扰乱公共场合为名判处3个月拘役。
这就是两名罪犯面临的困境中,他们会做出怎样的选择呢?首先,他们互相之间都不清楚对方是否会坦白,其次,二人都希望将自己的刑期缩至最短。
如此考虑,最终,两名犯人都会选择坦白交代。
上面的案例就是博弈论所说的“囚徒困境”。
犯人们如果彼此合作,可为集体带来最佳利益(刑期最短);但当二人面对同样的情况且不知道对方如何选择时,在理性思考后,双方都会得出相同的结论(坦白交代),以便达到个人利益的最大化。
囚徒困境是博弈论的“非零和博弈”中具代表性的例子,反映的是个人的最佳选择并非是团体的最佳选择。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
2、智猪博弈:赢的总是小猪猪圈里有大小两头猪,它们在同一个食槽里进食。
为了保持饲料的新鲜,在远离猪食槽的另一边有一个踏板,大猪或小猪跑过去,每按动一次踏板,投食口就会掉落10个单位的食物。
于是,在大猪和小猪每次进食前,就会形成这样一种局面:如果小猪跑去按踏板,大猪守在食槽边,则大猪小猪吃到的食物比是9:1;反之,如果大猪去按而小猪守在食槽边,则吃食比例是6:4。
如果二猪同时到食槽边,则吃食比是7:3。
这样一来,从纯收益的角度考虑,小猪就更愿意选择在食槽边等待食物落出,因为“等待优于行动”,而大猪只能被迫奔忙在踏板和食槽之间。
上述“智猪博弈”的案例是经济学家的假设论证模型,这个博弈的结果,用经济学视角看待,可以解释为:谁占有更多资源,谁就必须承担更多义务。
博弈论模型解析决策者理性选择与策略
![博弈论模型解析决策者理性选择与策略](https://img.taocdn.com/s3/m/cc203e59f08583d049649b6648d7c1c708a10b31.png)
博弈论模型解析决策者理性选择与策略博弈论是一种研究决策者在相互依赖环境下进行决策的数学模型。
决策者在博弈过程中会根据自己的利益和对其他决策者行为的预测来选择最优策略。
本文将介绍博弈论的基本概念,并解析决策者的理性选择和策略。
首先,我们来了解博弈论中的一些重要概念。
博弈论主要研究的是决策者的互动关系,其中包括决策者、策略和支付。
决策者是参与博弈的个体,可以是个人、组织或国家等。
策略是决策者进行决策的行动或方案。
支付是决策者从策略中获得的效益或成本。
决策者在博弈过程中会根据自己的利益和对其他决策者行为的预测来选择最优策略。
决策者在选择策略时通常会考虑以下几个因素:自己的利益、对手的选择、对手的动机以及对手有关信息的了解程度。
理性决策者会选择能够最大化自己效益的策略。
决策者的理性选择基于博弈论中的均衡概念。
博弈论中的均衡是指决策者在相互依赖环境下做出的稳定决策。
常见的均衡概念包括纳什均衡、次序均衡和完全均衡等。
纳什均衡是指在博弈中,每个决策者都已经做出了最优选择,并且其他决策者无法通过改变自己的策略来获得更大的效益。
次序均衡是指在博弈中,决策者的行动顺序是合理的,每个决策者的策略是对先前决策者行动的响应。
完全均衡是指在博弈中,每个决策者都已经做出了最优选择,并且其他决策者对这些最优选择的预期与实际情况相符。
博弈论的最经典模型是囚徒困境。
囚徒困境是指两个犯罪嫌疑人之间的博弈,他们可以选择合作或背叛。
如果两人都选择合作,则会得到较轻的刑期;如果两人都选择背叛,则会得到较重的刑期;如果其中一人选择合作而另一人选择背叛,则背叛者会得到零刑期,而合作者会得到较重的刑期。
在囚徒困境中,每个囚徒都会选择背叛,因为他们认为对方也会选择背叛,这样才能避免得到较重的刑期。
然而,如果两人能够相互合作,他们将会得到较轻的刑期。
除了囚徒困境,博弈论还可以应用于许多其他领域。
例如,企业之间的价格竞争、国家之间的军备竞赛以及拍卖等都可以通过博弈论模型进行分析。
博弈论究竟讲什么?一文读懂11种经典博弈论模型
![博弈论究竟讲什么?一文读懂11种经典博弈论模型](https://img.taocdn.com/s3/m/1f0b08db988fcc22bcd126fff705cc1755275f0b.png)
博弈论究竟讲什么?一文读懂11种经典博弈论模型先说一个小故事:美国第34任总统艾森豪威尔,在他年轻的时候,有一次吃过晚饭后他跟家人一起玩纸牌,一连六盘,他拿到的都是最坏的牌。
于是他变得不高兴起来,嘴里开始不停地埋怨。
他的母亲停了下来,对他说道:“如果你要继续玩下去,就不要埋怨手中的牌怎么样。
不管怎样的牌发到手中,你都得拿着。
你唯一能做的就是尽你所能,打好手里的每一张牌,求得最好的结果。
”在城主的上一篇文章中,谈到了德鲁克在《创新与企业家精神》中提到的几种竞争战略,制定战略的过程是决策的过程,推进战略落地则是执行的过程。
无论是决策还是执行,其本质都是一次次博弈的组合。
那么,究竟什么是博弈?大到国与国之间的制衡,小到一个人的一生,博弈都是无处不在,无论是商业竞争中,还是日常工作中,生活中,甚至子女教育,两性爱情。
因为每个人都在时时刻刻想着与他人竞争,每时每刻都把自己放在局中人的位置上。
这就是俗话说的“人生如戏,戏如人生”,充分运用游戏规则,做好自己人生的演员,就是博弈思维能力的体现。
专门研究相互依赖、相互影响的人群,其理性决策行为及这些决策的均衡结果的理论,就是博弈论。
博弈是有技巧的,博弈论的主体则是规定的若干博弈模型,通俗的说就是人们常说的“套路”。
但博弈论是严肃的科学,如果有人非要像剥洋葱一样地剥开博弈思维,看看各种博弈技巧的核心是什么,那么他将会看到两个字——理性。
从博弈论衍生出来的博弈思维,体现了人的理性思维,也就是说我们的任何结果均是采取某种决策和行动的结果。
这体现了博弈思维奉行的“因果论”,正所谓“种瓜得瓜,种豆得豆”。
想要得到理想的结果,除了依靠我们的理性分析,采取正确的决策,并付诸行动外,别无他法。
正因为博弈思维是一种理性思维,所以冲动是魔鬼,更是博弈思维的大敌。
这里,我们要认清“理性”的几个误区。
1.理性的人一定是自利的,但世界上又有多少纯粹的“大公无私”呢?2.理性和道德不是一回事,在追求的自利的同时,产生出来的利他才有可能持久。
博弈论3-4经典动态博弈模型
![博弈论3-4经典动态博弈模型](https://img.taocdn.com/s3/m/2540c154326c1eb91a37f111f18583d049640f18.png)
3.4 几个经典动态博弈模型453.4.1 寡占的斯塔克博格模型46动态的寡头产量竞争博弈厂商1先选择,厂商2后选择。
21q q Q +=121111112)](8[)(q q q q q c Q P q u -+-=-=221222222)](8[)(q q q q q c Q P q u -+-=-=策略空间:[0,Q max ]中所有实数。
Q max 为不至于使价格降到亏本的最大限度的产量。
Q Q P P -==8)(价格函数:边际生产成本:无固定成本得益函数:221==c c 2121116q q q q u --=2221226q q q q u --=47两阶段动态博弈。
第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。
1 、第二阶段厂商2的选择目标:得益最大化。
求使自己得益最大化下的产量值,即最大化时的一阶条件:得益函数:2221226q q q q u --=用逆推归纳法进行分析:02602122=--⇒=∂∂q q q u 112213)6(21q q q -=-=求出厂商2对厂商1产量的反应函数:48两阶段动态博弈。
第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。
2 、第一阶段厂商1的选择。
用逆推归纳法进行分析:12213q q -=厂商1可直接求出使自己得益最大化时的产量:厂商1知道2的决策思路:直接将上式代入厂商1的得益函数,得到:2112111121*211*211213)213(66),(q q q q q q q q q q q q u -=---=--=3030*1*111=⇒=-⇒=∂∂q q q u厂商1的最佳产量是生产3单位。
将之代入厂商2的反应函数,得到厂商2的最佳产量5.15.13*2=-=q 此时市场价格为3.5,双方的得益别为4.5和2.25单位。
3*1=q 12213q q -=用逆推归纳法分析得出,该动态博弈的唯一的子博弈完美纳什均衡:厂商1在第一阶段生产3单位产量,厂商2第二阶段生产1.5单位产量。
十大经典博弈论模型
![十大经典博弈论模型](https://img.taocdn.com/s3/m/b87f683abb1aa8114431b90d6c85ec3a87c28bb0.png)
十大经典博弈论模型博弈论是一门研究决策者之间互动的学科,其应用范围广泛,涉及到经济、政治、生物学等领域。
在博弈论中,经典博弈论模型是基础和核心,以下是介绍十大经典博弈论模型:1. 囚徒困境博弈模型囚徒困境博弈模型是博弈论中最为著名的模型之一,也是最为典型的非合作博弈模型。
该模型主要讲述的是两个囚犯被抓后面临的选择问题,如果两个人都招供,那么都将受到较重的惩罚;如果两个人都不招供,那么都将受到轻微的惩罚;如果一个人招供而另一个人不招供,那么招供的人将受到宽大处理,而另一个人将受到较重的惩罚。
2. 零和博弈模型零和博弈模型是博弈论中最为简单的模型之一,其特点是参与者之间的利益完全相反,即一方获得利益就意味着另一方的利益受到损失。
在这种情况下,参与者之间的互动往往是竞争和对抗的。
3. 博弈树模型博弈树模型是一种用于描述博弈过程的图形模型,它可以清晰地展示出参与者在不同阶段的选择和决策,以及每个选择所带来的收益和风险。
4. 纳什均衡模型纳什均衡模型是博弈论中最为重要的概念之一,它指的是一个博弈中所有参与者都采取了最优策略的状态。
换句话说,如果所有参与者都遵循纳什均衡,那么任何一个人单方面改变策略都将无法获得更多的利益。
5. 最小最大化模型最小最大化模型是一种解决零和博弈问题的方法,其思想是在所有可能的情况中,选择让对手收益最小的情况,从而实现自己的最大化收益。
6. 帕累托最优解模型帕累托最优解模型是一种解决多人博弈问题的方法,其核心思想是通过合作和协商,使得所有参与者都能获得最大的收益,而不是只有某个人获得了最大的收益。
7. 博弈矩阵模型博弈矩阵模型是一种常用的博弈论分析工具,它可以清晰地展示出参与者在不同策略下的收益和风险,从而帮助参与者做出最优决策。
8. 拍卖模型拍卖模型是博弈论中的一个重要应用领域,其目的是通过竞价的方式,让参与者以最低的价格获得所需的商品或服务。
9. 逆向选择模型逆向选择模型是一种解决信息不对称问题的方法,其核心思想是通过知道对方的信息,来预测对方的行为和决策,从而做出最优策略。
博弈论伯川德模型推导
![博弈论伯川德模型推导](https://img.taocdn.com/s3/m/ac015a7acdbff121dd36a32d7375a417876fc157.png)
博弈论伯川德模型推导1. 博弈论简介说到博弈论,大家可能会想:“这是什么高大上的东西?”其实,博弈论就是研究决策的科学,简单来说,就是在竞争和合作的场合下,怎么做决策才能赢得最多的利益。
想象一下,几个小伙伴在一起打麻将,每个人都想赢,得时刻考虑其他人可能的动作和反应,这就是博弈论的基本思路。
那今天咱们就聊聊伯川德模型,听起来有点复杂,但其实它就像是个有趣的游戏。
1.1 伯川德模型概述伯川德模型(BurkovDear model)是博弈论中的一个经典模型,主要用于分析参与者在重复博弈中的策略选择。
它的核心思想是,参与者会根据之前的结果来调整自己的策略。
比如说,你和朋友一起打扑克,如果你发现朋友总是先出一张高牌,那你下次就得琢磨琢磨怎么应对,是不是该出个小牌试试?通过不断观察和调整,最终找到对策,嘿,赢的机会就大大增加了。
1.2 模型的基本假设在这个模型里,有几个基本的假设。
首先,参与者都是理性的,意味着他们会根据自己的利益最大化来做出决策。
想想啊,谁会自愿跳进火坑呢?其次,信息是对称的,所有参与者都能获得相同的信息。
这就像是你和朋友们都在同一桌子上,大家都能看到牌,只是看谁出牌更聪明。
最后,参与者之间存在着策略的可重复性,换句话说,他们可以根据之前的结果调整自己的行为。
这就好比,玩游戏的时候,你总会总结经验,下次再也不犯同样的错误。
2. 模型的推导过程接下来,我们就要进入推导过程了。
乍一看,推导可能有点晦涩,但其实只要耐心点,慢慢来,就能明白其中的奥妙。
2.1 基本方程式在这个模型中,参与者的收益可以用一个简单的方程表示。
假设有两个参与者A 和B,他们的收益分别是R_A和R_B。
根据博弈的不同阶段,他们的收益可以通过计算对手的策略来得出。
比如说,如果A选择合作而B选择背叛,那么A的收益会减少,B 的收益则会增加。
就像是一个你死我活的游戏,谁都想在最后成为赢家。
2.2 策略选择当我们分析参与者的策略选择时,通常会用“纳什均衡”这个概念。
博弈模型汇总
![博弈模型汇总](https://img.taocdn.com/s3/m/61349601ce84b9d528ea81c758f5f61fb7362827.png)
博弈模型汇总博弈模型是博弈论的重要工具,用于描述博弈参与者之间的策略和利益关系。
在博弈论中,通过建立合适的博弈模型,可以帮助我们分析和理解各种不同类型的博弈情境,并预测博弈参与者的行为和可能的结果。
下面将对几种常见的博弈模型进行汇总和介绍。
1. 零和博弈模型:零和博弈模型是博弈论中最简单和最基本的模型之一。
在零和博弈中,博弈参与者的利益完全相反,一方的利益的增加必然导致另一方的利益的减少。
这种博弈模型常常用于描述双方的冲突和竞争情境。
常见的零和博弈模型有二人零和博弈和多人零和博弈。
2. 非合作博弈模型:非合作博弈模型是博弈论中较为常见的模型之一。
在非合作博弈中,博弈参与者之间的行动和决策是相互独立的,每个博弈参与者都追求自身的最大利益。
在非合作博弈模型中,博弈参与者可以选择不同的策略,根据对手的行动做出最优的响应。
常见的非合作博弈模型有纳什均衡模型和博弈树模型。
3. 合作博弈模型:合作博弈模型是博弈论中另一个重要的模型。
在合作博弈中,博弈参与者之间可以进行协作和合作,共同追求最大化整体利益。
合作博弈模型通常用于描述多个博弈参与者之间的联盟和合作情境。
常见的合作博弈模型有核心模型和合作博弈解。
4. 演化博弈模型:演化博弈模型是博弈论中较为新颖和有趣的模型之一。
在演化博弈中,博弈参与者的行动和策略可以随时间变化和演化。
演化博弈模型通常用于描述博弈参与者之间的适应性和进化过程。
常见的演化博弈模型有进化博弈动力学模型和演化博弈解。
博弈模型的应用广泛,不仅在经济学中有重要的地位,也在其他学科领域得到广泛运用。
博弈模型可以帮助我们分析和解决各种决策和策略问题,对于理解社会、经济和生物系统中的行为和演化具有重要意义。
总结起来,博弈模型是博弈论的核心工具之一,用于描述和分析博弈参与者之间的策略和利益关系。
常见的博弈模型包括零和博弈模型、非合作博弈模型、合作博弈模型和演化博弈模型。
这些模型在各个领域中都有广泛的应用,对于理解和解决各种决策和策略问题具有重要意义。
斯坦伯格博弈模型
![斯坦伯格博弈模型](https://img.taocdn.com/s3/m/36dd755730b765ce0508763231126edb6f1a76ab.png)
斯坦伯格博弈模型斯坦伯格博弈模型是一种经典的博弈论模型,它被广泛应用于经济学、政治学、社会学等领域。
该模型的核心思想是通过分析参与者的策略和利益,来预测博弈的结果。
下面将从定义、特点、应用等方面进行阐述。
一、定义斯坦伯格博弈模型是一种博弈论模型,它描述了两个参与者在一个有限的资源池中进行博弈的情形。
在这个模型中,参与者可以选择合作或者背叛对方,从而获得不同的收益。
如果两个参与者都选择合作,那么他们将会平分资源池中的收益;如果两个参与者都选择背叛,那么他们将会失去所有的收益;如果一个参与者选择合作,而另一个参与者选择背叛,那么背叛者将会获得全部的收益,而合作者将会失去所有的收益。
二、特点斯坦伯格博弈模型具有以下几个特点:1. 零和博弈:在斯坦伯格博弈模型中,参与者的收益是互相矛盾的,即一个人的收益增加必然导致另一个人的收益减少。
因此,该模型被称为零和博弈。
2. 非合作博弈:在斯坦伯格博弈模型中,参与者没有任何形式的沟通和协商,他们只能根据自己的利益来做出决策。
3. 稳定性:在斯坦伯格博弈模型中,如果两个参与者都选择合作,那么他们将会获得最大的收益。
因此,合作是最稳定的策略。
三、应用斯坦伯格博弈模型被广泛应用于经济学、政治学、社会学等领域。
以下是一些具体的应用:1. 囚徒困境:囚徒困境是斯坦伯格博弈模型的一个经典案例。
在这个案例中,两个囚犯被关在不同的房间里,他们都面临着是否供出对方的选择。
如果两个囚犯都选择合作,那么他们将会获得最小的刑期;如果两个囚犯都选择背叛,那么他们将会获得最大的刑期;如果一个囚犯选择合作,而另一个囚犯选择背叛,那么背叛者将会获得最小的刑期,而合作者将会获得最大的刑期。
2. 市场竞争:在市场竞争中,企业之间也存在着斯坦伯格博弈模型的情形。
如果所有的企业都选择合作,那么他们将会共同获得市场的收益;如果所有的企业都选择背叛,那么他们将会共同失去市场的收益;如果一个企业选择合作,而另一个企业选择背叛,那么背叛者将会获得市场的全部收益,而合作者将会失去市场的全部收益。
博弈论的经典模型
![博弈论的经典模型](https://img.taocdn.com/s3/m/05ee44cf6edb6f1afe001fbc.png)
博弈论的经典模型在自然界和人类社会中广泛存在合作与竞争,而能够反映这种既激烈竞争又需要合作的一门学科就是博弈论(Game Theory),也称对策论。
它是模拟和分析理性的个体在利益冲突环境下相互作用的形式、决策及其均衡理论,研究个体之间行为的相互影响和相互作用规律,它可以描述现实生活中参与者面对有限资源的合作与竞争行为。
令人惊奇的是,有三次诺贝尔奖获得者是博弈论研究方面的杰出科学家,他们是1985年获得诺贝尔经济学奖的公共选择学派的领导者布坎南,1994年获奖的美国普林斯顿大学的纳什、塞尔屯、哈桑尼3位博弈论专家以及1995年获奖的理性主义学派的领袖卢卡斯。
博弈论在经济学、政治学、管理学、社会学、军事学、生物学等诸多学科领域具有广泛的实际背景和应用价值。
进入20世纪末,随着复杂网络科学的一些新的发现,博弈论也成为网络时代人们的一种思维、竞争与合作的模式。
博弈论对人有一个最基本假定:人是理性的,人在具体策略选择的目的全是使自己的利益最大化。
博弈论就是研究理性的人之间如何进行策略选择的,因此博弈论也称为对策论。
博弈论就凭这么一条最简单的假定可以展开广泛的研究,并获得了丰富多彩的结果,利用博弈论可以解读人类的社会行动或集体行动,更易理解人类社会的复杂性和特殊性。
为了刻画个体间利益的冲突对整个系统的影响,人们已经提出和发展了许多博弈模型,比较著名的有三个模型:囚徒困境、"雪堆"博弈和"少数者"博弈模型,下面笔者通过对这三个模型进行简单而通俗的介绍,让大家来了解博弈论及其应用概况。
斗鸡模型斗鸡博弈(Chicken Game).在西方,鸡是胆小的象征,斗鸡博弈指在竞争关系中,谁的胆小,谁先失败。
现在假设,有两个人要过一条独木桥,这条桥一次只能过一个人,两个人同时相向而进,在河中间碰上了。
这个博弈的结果第一种就是如果两个人继续前进,双方都会掉水里,双方丢面子,这是一种组合。
博弈论最全完整-讲解
![博弈论最全完整-讲解](https://img.taocdn.com/s3/m/157ce4fb915f804d2a16c197.png)
“乘客侧前轮”看起来是一个合乎逻辑的选择。 但真正起作用的是你的朋友是否使用同样的
逻辑,或者认为这一选择同样显然。并且是 否你认为这一选择是否对他同样显然;反之, 是否她认为这一选择对你同样显然。……以 此类推。 也就是说,需要的是对这样的情况下该选什 么的预期的收敛。这一使得参与者能够成功 合作的共同预期的策略被称为焦点。心有灵 犀一点通。
例3:为什么教授如此苛刻?
问题是,一个好心肠的教授如何维持如 此铁石心肠的承诺?
他必须找到某种使拒绝变得强硬和可信 的方法。
拿行政程序或者学校政策来做挡箭牌 在课程开始时做出明确和严格的宣布 通过几次严打来获得“冷面杀手”的声
誉
导论
博弈均衡与一般均衡 博弈论与诺贝尔经济学奖获得者
博弈论的基本概念与类型 主要参考文献
即使决策或行动有先后,但只要局中人 在决策时都还不知道对手的决策或者行 动是什么,也算是静态博弈
完全信息博弈与不完全信息博弈
(games of complete information and games of incomplete information)
按照大家是否清楚对局情况下每个 局中人的得益。
“各种对局情况下每个人的得益是 多少” 是所有局中人的共同知识 (common knowledge)。
据“共同知识”的掌握分为完全信 息与不完全信息博弈。
完美信息博弈与不完美信息博弈
(games with perfect information and games with imperfect information)
了解自己行动的限制和约束,然后以精心策划的方式 选择自己的行为,按照自己的标准做到最好。 • 博弈论对理性的行为又从新的角度赋予其新的含义— —与其他同样具有理性的决策者进行相互作用。 • 博弈论是关于相互作用情况下的理性行为的科学。
博弈论最全完整-讲解
![博弈论最全完整-讲解](https://img.taocdn.com/s3/m/adb44cda680203d8ce2f24a2.png)
问题是,大家都这么做。这样一来,所有人 的成绩都不比大家遵守协议来得高。而且, 大家还付出了更多的功夫。
正因为这样的博弈对所有参与者存在着或大 或小的潜在成本,如何达成和维护互利的合 作就成为一个值得探究的重要问题。
存在双赢的博弈吗?实用文档
6
例2:焦点博弈 “We Can’t Take the Exam,
获奖理由:在非合作博弈的均衡分析理 论方面做出了开创性的贡献,对博弈论 和经济学产生了重大影响 。
实用文档
17
约翰·纳什 1928年生于美国
莱因哈 德·泽 尔腾, 1930 年生于 德国
实用文档
约翰· 海萨尼 1920年 生于美 国
18
1996年诺贝尔经济学奖获得者
英国人詹姆斯·莫里斯 (James A. Mirrlees)和美国人威廉-维克瑞 (William Vickrey)
获奖理由:前者在信息经济学理论领域做 出了重大贡献,尤其是不对称信息条件 下的经济激励理论的论述;后者在信息 经济学、激励理论、博弈论等方面都做 出了重大贡献。
实用文档
19
威廉·维克瑞, 1914-1996, 生于美国
詹姆斯·莫里斯 1936年生于英 国
实用文档
20
2001年诺贝尔经济学奖获得者
实用文档
35
第一章 完全信息静态博弈
博弈论的基本概念及战略式表述 纳什均衡
纳什均衡应用举例 混合战略纳什均衡 纳什均衡的存在性与多重性
实用文档
36
第一节 博弈论的基本概念
与战略式表述
Байду номын сангаас
实用文档
37
博弈论的基本概念与战略式表述
博弈论(game theory)是研究决策主体的行 为发生直接相互作用时候的决策以及这种 决策的均衡问题。
信息不对称的博弈论经典模型
![信息不对称的博弈论经典模型](https://img.taocdn.com/s3/m/60a8066e905f804d2b160b4e767f5acfa1c783e0.png)
信息不对称的博弈论经典模型
信息不对称的博弈论经典模型有以下几个:
- 信息均衡:信息的作用在博弈中非常重要。
信息不对称会造成“逆向选择”和“道德风险”,前者是事前发生,后者是事后发生。
信息不对称在短期内对某一方会有利,但最终会破坏整个市场。
于是有两个解决策略,一是信息传递,即传达正面信息吸引顾客;二是信息甄别,即诱导对手暴露其私下拥有的真实信息。
- 博傻理论:在资本市场和艺术品市场中,人们之所以完全不管某个东西的真实价值而愿意花高价购买,是因为他们预期会有一个更大的傻瓜,会花更高的价格从他们那儿把它买走。
投资成功的关键,就在于能否准确判断究竟有没有比自己更大的傻瓜出现。
- 以牙还牙:这是一个用于博弈论的重复囚徒困境非常有效的策略。
在这些模型中,信息的作用非常重要,不对称的信息会影响参与者的决策和结果。
理解这些模型可以帮助我们更好地理解信息不对称情况下的决策问题。
博弈论的几个经典模型课件
![博弈论的几个经典模型课件](https://img.taocdn.com/s3/m/4ed561ad5ff7ba0d4a7302768e9951e79b8969d9.png)
02
在这个模型中,如果双方都抵赖,则各自获得2年的监禁;如果双方都坦白,则 各自获得3年的监禁;如果一方坦白而另一方抵赖,则坦白的一方获得1年的监 禁,抵赖的一方获得10年的监禁。
03
囚徒困境反映了人类在有限理性和不完全信息下的决策问题。
囚徒困境的策略和最优解
01
02
03
在囚徒困境中,每个参 与者都有两种策略:坦
博弈论的发展趋势和应用前景
发展趋势
随着计算机科学的发展,博弈论在人工智能、机器学 习等领域的应用逐渐增多。同时,博弈论也在生物学 、环境科学、社会学等多个学科中得到广泛应用和发 展。未来,博弈论将继续探索更为复杂和现实的模型 ,以解释和预测更为复杂的行为和现象。
应用前景
博弈论在经济学、政治学、军事等领域有着广泛的应 用前景。例如,博弈论可以帮助理解国际贸易中的策 略行为、国际政治中的权力均衡以及军事战略中的最 优攻击策略等。此外,博弈论也在社交网络分析、市 场机制设计等领域展现出强大的应用潜力。
政治学中的应用
投票悖论
投票悖论是指在某些情况下,多数投票的结 果可能导致无法达成一致意见或产生不合理 的结果。在政治学中,投票悖论被用于探讨 民主制度的缺陷和改进方法。
权力均衡
权力均衡是一种政治博弈模型,它描述了政 治权力在多个参与者之间的分配和转移。在 政治学中,权力均衡被用于分析权力斗争、
政治制度稳定性和政策制定等问题。
纳什均衡模型被广泛应用于市场均衡、产业组织、公共经济学
等领域。
生物学
02
纳什均衡模型也被用于解释生物种群竞争、生态系统平衡等问
题。
社会学
03
纳什均衡模型可以用来分析社会现象,如犯罪、婚姻、教育等
经典博弈模型
![经典博弈模型](https://img.taocdn.com/s3/m/5ebfb187ac51f01dc281e53a580216fc710a5366.png)
按 大猪
等
小猪
按
等
5,1
4,4
9,-1
0,0
收益:(大猪,小猪)
大猪按,小猪选择等待 例:大企业进行新产品旳研究开发及市场旳
开拓,而小企业则选择模仿及跟随;大股东与 小股东对企业经营旳监督选择等
经典模型三:情侣博弈
一对年青旳情侣,男孩喜欢足球赛,女 孩喜欢欣赏音乐会。某一天,同步有一 场尤其主要旳足球赛和一场女孩期待已 久旳音乐会。假如一起去看足球赛,则 男孩收益2,女孩1;一起去欣赏音乐会, 则女孩收益2,男孩收益1。不然,收益 均为0。请问:看足球赛还是欣赏音乐 会?
足球 男
音乐
女孩
足球
音乐
2,1
0,0
0,0
1,2
收益:(男,女)
为了能做自己喜欢旳事,男孩和女孩怎 样做?
例:供给链上旳合作关系
经典模型四:斗鸡博弈
在美国,某些飞车党党徒为了表达勇敢, 一般由两个人分别驾驶两辆车急速对撞。 因怕死而让道旳一方被称为小鸡,在飞 车党内备受歧视;而不让道旳一方在飞 车党内备受推崇。
假如两人都不让道,不死即残,收益为w;假如让道,受大家讥笑,收益为-10; 假如不让道,受大家尊敬,收益为+10。 让道还是不让道?
党徒1
党徒2
让
撞
让 -10,-10 -10,+10
撞 +10,-10 -w,-w
收益:(党徒1,党徒2)
作为党徒之一,是撞还是让?
经典模型五:鸽?鹰?
苏联和美国是冷战时代旳两个超级大国, 长久处于对抗状态。两国各有妥协(鸽) 和强硬(鹰)两种路线。其收益如下:
偷 小偷
不偷
守卫
睡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博弈论经典模型全解析(入门级)1. 囚徒困境这是博弈论中最最经典的案例了——囚徒困境,非常耐人寻味。
“囚徒困境”说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。
这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。
但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。
而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了。
但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
企业在信息化过程中需要与咨询企业、软件供应商打交道的。
在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作。
在对对方有了足够的信任之后,诚意也是必不可少的,如果没有诚意或者太过贪婪,就可能闹到双方都没有好处的糟糕情况,造成企业之间的双输。
2. 智猪博弈在博弈论(Game Theory)经济学中,“智猪博弈”是一个着名的纳什均衡的例子。
假设猪圈里有一头大猪、一头小猪。
猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时到槽边,收益比是7∶3;小猪先到槽边,收益比是6∶4。
那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。
实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪也行动的话,小猪可得到1个单位的纯收益(吃到3个单位食品的同时也耗费2个单位的成本,以下纯收益计算相同),而小猪等待的话,则可以获得4个单位的纯收益,等待优于行动;在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。
在小企业经营中,学会如何“搭便车”是一个精明的职业经理人最为基本的素质。
在某些时候,如果能够注意等待,让其他大的企业首先开发市场,是一种明智的选择。
这时候有所不为才能有所为!高明的管理者善于利用各种有利的条件来为自己服务。
“搭便车”实际上是提供给职业经理人面对每一项花费的另一种选择,对它的留意和研究可以给企业节省很多不必要的费用,从而使企业的管理和发展走上一个新的台阶。
这种现象在经济生活中十分常见,却很少为小企业的经理人所熟识。
3. 枪手博弈有三个枪手,第一个枪手A的命中率是80%,B是60%,C是40%。
他们同时举枪瞄准、同时射击另两个人中的一个,要尽可能消灭对手,每个人一次机会,一颗子弹,目标是努力使自己活下来。
谁活下来的可能性最大?如果你认为枪法最准的A胜出,那么你就错了。
我们来看,如果你是A,你毫无疑问的会瞄准对你威胁最大的B,而B也会瞄准对他威胁最大的A,而C则也可能瞄准A,那么三个人存活的概率都是多少呢?A = 100% - 60% - (1-60%)* 40% = 24%B = 100% - 80% = 20% (因为命中率为80%的A在瞄准他)C = 100% (因为没有人瞄准他)原来,枪法最不准的C竟然活了下来。
那么,换一种玩法呢?如果三个人轮流开枪,谁会生存下来?如果A先开枪的话,A还是会先打B,如果B被打死了,则下一个开枪的就是C,那么此时A生存的概率为60%,而C依然是100%(他开过枪后A没有子弹了,游戏结束);如果打不死B,则下一轮在B开枪的时候一定会全力回击,A的生存率为40%,不管是否打死A,第三轮AB的命运都掌握在C的手里了。
那么,如果游戏规则规定必须由C先开枪,如果你是C怎么才能让自己活下来呢?答案是胡乱开一枪,只要不针对AB任何一人即可。
当C开枪完毕,AB还是会陷入互相攻击的困境。
插播1——警察与小偷令人沮丧的博弈结局。
警察和小偷各只有一个机会去巡查或者偷盗A地或B地。
A地的价值大于B地,那么警察应该为了保护价值大而一直保护A地吗。
博弈论认为当然不是,警察的合理策略应当是有倾向于A以一定概率的随机巡查。
这个概率就是:p=A地价值/AB地总价值。
这种情况下才能使小偷最大得手几率降至最低。
但是很不幸的是,此时的小偷谋求的是,最小得手几率的最大化。
也就是说,警察的最优策略将把小偷的最差策略改良!这个便是冯·诺伊曼提出的“最小最大定律”。
我们必须再一次感谢这个不完美的世界,因为现实之中,类似的现象,对于一方仍然可以设法找到对手致命的规律性行动(当然必须考虑到对方是不是一个更加老练的猎手,故意放出的诱饵)。
而保持自己的行动的无序性,则有可能成为欺骗策略的武器,这倒似张三丰所言道的:无招胜有招。
4. 斗鸡博弈两只斗鸡在决斗的时候,无论选择进或退都是一个难题,因为纳什均衡已经给出了一胜一败的最优策略。
在很多较量下,死拼将是得不偿失的,因为很可能给第三者机会。
因此,两个已经在战场的强势力很可能自觉的遵循纳什均衡,当一方攻击时,另一方暂退。
虽然可能某方暂时受损,但较之于两败俱伤是好得多的。
不过,要维持这一状况,必须保证下一次先期受损的一方发动攻势的时候,另一方同样的后退。
于是这样的攻击性行为开始变得“仪式化”,没有人真正流血。
这只不过是两个巨头玩弄的游戏,目的是警告后来者,想进来,那么也得陪我们一起玩,可是你玩的起么?这正是百事的广告,即使暗含挑衅也最多只到“敢为中国红”这样的地步的原因。
插播2——协和谬误欧洲ZF在大量投资协和飞机后,终于不能自拔。
即使前景黯淡,也撑着面子投下去,非要走头无路才放弃。
而这时投入的成本已经全打水漂了。
如果,发现不能继续的时候,就果敢放手,损失会小得多。
可是他们会、能这么做么?壮士断腕,是何等的壮烈,却也是何等的艰难!沉没成本很可能会延续人们无畏的坚持。
已经沉没的本该放弃,可惜大部分有赌徒式的心理,相信阿基米德的杠杆终将启动。
可惜他们在爬到足够撬动杠杆的支点之前,已经窒息了。
协和谬误,倒是给了人们半途而废的理由,会不会有人担心它的滥觞会左右一些本该坚持的目标?的确有这个可能,但是应该相信人们足够理智,完全可以比较沉没成本、机会成本与未来收益的关系。
看清了的,必定会坦然地走出协和谬误。
5. 蜈蚣博弈一场颠前倒后的博弈。
蜈蚣博弈的机理是以最终的结果倒退至开始。
这是一个睿智的策略,因果相报,把握好因缘,自有好结果。
它的另一个好处,就是使得未来的计划明晰化,是你不再徘徊。
只可惜,很多时候,碌碌无为的我们并没有看透迷局的眼睛。
我们黑色的眼睛只习惯于黑夜。
蜈蚣博弈也有一个致命的悖论,仍旧是个人利益和集体利益的冲突,因为最后一次的背叛收益始终优于合作。
可悲的是,这一次背叛将由于人性的理智,穿越时光隧道,回到原始的地点:人们将从开始就拒绝合作。
还是感谢我们这个不完美的世界吧,事实上人们很少这样做。
当然合作到最后的也很少,这意味着,倒推法只在中间阶段突然发生了作用,只不过谁也不能预测,中间一步在哪里。
在那里,我们只有冀望信任、道德、良知等等。
6. 分蛋糕博弈两个小孩怎么分蛋糕?经典的故事,经典的解答:一个分,一个选。
现实多如此,权利的合理分配将有效促进公平与效率。
经营权与所有权的分置的确使得经济更加活力。
不过分蛋糕的进阶模型却强调了讨价还价的策略,分蛋糕不是一次性的,而是多回合的,而且出现成本:蛋糕在融化。
时间称本的加入,将使得分配变得复杂化。
双方如果不能及时达成交易,不仅集体的收益将减量,而且个体的收益也将减少。
在此情况下,利用时间称本以及威胁、承诺将对其中一方极其有利。
顾客可能迫于情势,必须尽快结束谈判,这时卖方却不慌不忙,故意拖延,顾客一方将不得不在价格上作出妥协。
顾客一方当然也有策略,它的策略就是货比三家,要求承诺或威胁。
这个前提是买方市场的存在。
顾客还应当保护自己讨价还价的能力,这就是顾客有权投诉商家。
7. 鹰鸽博弈这个博弈很多人等同于斗鸡博弈。
不过,斗鸡是两个兼具侵略性的个体,鹰鸽却是两个不同群体的博弈,一个和平,一个侵略。
在只有鸽子一个苞谷场里,突然加入的鹰将大大获益,并吸引同伴加入。
但结果不是鹰将鸽逐出苞谷场,而是一定比例共存,因为鹰群增加一只鹰的边际收益趋零时(鹰群发生内斗),均衡将到来。
由此产生了ESS进化上的稳定策略,也就是说一旦均衡形成,偏离的运动会受到自然选择的打击。
也就是鹰群饱满后,再试图加入的鹰将会被鹰群排挤。
进化上的稳定均衡最大的好处莫过于保持稳定。
但问题在于形成强势的路径依赖,也就是胜出的不一定是最好的。
因为最好的会被当作出头鸟干掉,这是个体的失败,集团的胜利以及集体的止步不前。
8. 脏脸博弈恍然大悟的博弈。
三个人在屋子里,不许说话。
美女进来说:你们当中至少一个人脸是脏的。
三人环看,没有反应。
美女又说:你们知道吗?三人再看,顿悟,脸都红了。
为什么?因为美女后一句废话点破天机,三个人都知道脏脸的存在,而且推测知道对方也知道了脏脸的存在(因为另两人脸没红,说明他们看到脏脸了),而且知道对方知道自己已经想到上一步……循环开始,知识开始共同化,真相大白:三个人都是脏脸,所有人都脸红了。
这就是共同知识的作用,它的作用显得有点可怕的强大。
几乎是一招无影腿,杀人不见血。
在台面上的博弈之前,私下的算计已经置对手于死地。
不过,很可能对方也预料到这一点,早也想到这一点,同时杀来。
终于,形成双死局面。
当然,现实虽然存在类似现象,不过共同知识更大的作用在于减少交易成本。