弹性力学简明教程(第四版)-第三章-课后作业题答案

合集下载

弹性力学简明教程_课后习题解答

弹性力学简明教程_课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么就是均匀的各向异性体,什么就是非均匀的各向同性体?【分析】均匀的各项异形体就就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件与钢筋混凝土构件能否作为理想弹性体?一般的岩质地基与土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件与土质地基可以作为理想弹性体;一般的钢筋混凝土构件与岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体就是连续的,也就就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变与位移等物理量就可以瞧成就是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示她们的变化规律。

完全弹性假定:假定物体就是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间就是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体就是均匀的,即整个物体就是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都就是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体就是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移与变形就是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变与转角都远小于1。

徐芝纶编《弹性力学简明教程》第四版, 全部章节课后答案详解

徐芝纶编《弹性力学简明教程》第四版, 全部章节课后答案详解

For personal use only in study and research; not for commercial use弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

弹性力学简明教程课后习题解答(精校版)

弹性力学简明教程课后习题解答(精校版)

弹性力学简明教程(第四版)课后习题解答第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学简明教程(第四版)_课后习题解答汇总

弹性力学简明教程(第四版)_课后习题解答汇总

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答(2021年整理精品文档)

[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答(2021年整理精品文档)

(完整)[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答的全部内容。

【3-1】为什么在主要边界(大边界)上必须满足精确的应力边界条件式(2—15),而在小边界上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替式(2-15),将会发生什么问题?【解答】弹性力学问题属于数学物理方程中的边值问题,而要使边界条件完全得到满足,往往比较困难。

这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。

将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。

如果在占边界绝大部分的主要边界上用三个积分的应力边界条件来代替精确的应力边界条件(公式2—15),就会影响大部分区域的应力分布,会使问题的解答精度不足。

【3-2】如果在某一应力边界问题中,除了一个小边界条件,平衡微分方程和其它的应力边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,固而可以不必校核。

【解答】区域内的每一微小单元均满足平衡条件,应力边界条件实质上是边界上微分体的平衡条件,即外力(面力)与内力(应力)的平衡条件。

研究对象整体的外力是满足平衡条件的,其它应力边界条件也都满足,那么在最后的这个次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。

弹性力学简明教程习题答案

弹性力学简明教程习题答案

《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1是2-2是2-3按习题2-1分析。

2-4按习题2-2分析。

2-5在的条件中,将出现2、3阶微量。

当略去3阶微量后,得出的切应力互等定理完全相同。

2-6同上题。

在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。

其区别只是在3阶微量(即更高阶微量)上,可以略去不计。

2-7应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。

2-8在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。

2-9在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。

2-10参见本章小结。

2-11参见本章小结。

2-12参见本章小结。

2-13注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设)。

2-14见教科书。

2-15见教科书。

2-16见教科书。

2-17取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。

2-18见教科书。

2-19提示:求出任一点的位移分量和,及转动量,再令,便可得出。

第三章习题的提示与答案3-1本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。

3-2用逆解法求解。

由于本题中l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。

3-3见3-1例题。

3-4本题也属于逆解法的问题。

首先校核是否满足相容方程。

再由求出应力后,并求对应的面力。

本题的应力解答如习题3-10所示。

应力对应的面力是:主要边界:所以在边界上无剪切面力作用。

下边界无法向面力;上边界有向下的法向面力q。

弹性力学简明教程第四版_课后习题解答

弹性力学简明教程第四版_课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么就是均匀的各向异性体,什么就是非均匀的各向同性体?【分析】均匀的各项异形体就就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件与钢筋混凝土构件能否作为理想弹性体?一般的岩质地基与土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件与土质地基可以作为理想弹性体;一般的钢筋混凝土构件与岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体就是连续的,也就就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变与位移等物理量就可以瞧成就是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示她们的变化规律。

完全弹性假定:假定物体就是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间就是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体就是均匀的,即整个物体就是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都就是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体就是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移与变形就是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变与转角都远小于1。

弹性力学简明教程 课后习题答案

弹性力学简明教程 课后习题答案

《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。

2-4 按习题2-2分析。

2-5 在的条件中,将出现2、3阶微量。

当略去3阶微量后,得出的切应力互等定理完全相同。

2-6 同上题。

在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。

其区别只是在3阶微量〔即更高阶微量〕上,可以略去不计。

2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。

2-8 在大边界上,应分别列出两个精确的边界条件;在小边界〔即次要边界〕上,按照圣维南原理可列出3个积分的近似边界条件来代替。

2-9 在小边界OA边上,对于图2-15〔a〕、〔b〕问题的三个积分边界条件相同,因此,这两个问题为静力等效。

2-10 参见本章小结。

2-11 参见本章小结。

2-12 参见本章小结。

2-13 注意按应力求解时,在单连体中应力分量必须满足〔1〕平衡微分方程,〔2〕相容方程,〔3〕应力边界条件〔假设>。

2-14 见教科书。

2-15 见教科书。

2-16 见教科书。

2-17 取它们均满足平衡微分方程,相容方程与x=0和的应力边界条件,因此,它们是该问题的正确解答。

2-18 见教科书。

2-19 提示:求出任一点的位移分量和,与转动量,再令,便可得出。

第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:〔1〕校核相容条件是否满足,〔2〕求应力,〔3〕推求出每一边上的面力从而得出这个应力函数所能解决的问题。

3-2 用逆解法求解。

由于本题中l>>h,x=0,l属于次要边界〔小边界〕,可将小边界上的面力化为主矢量和主矩表示。

3-3 见3-1例题。

3-4 本题也属于逆解法的问题。

首先校核是否满足相容方程。

再由求出应力后,并求对应的面力。

本题的应力解答如习题3-10所示。

应力对应的面力是:主要边界:所以在边界上无剪切面力作用。

弹性力学简明教程 课后习题答案

弹性力学简明教程 课后习题答案

《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。

2-4 按习题2-2分析。

2-5 在的条件中,将出现2、3阶微量。

当略去3阶微量后,得出的切应力互等定理完全相同。

2-6 同上题。

在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。

其区别只是在3阶微量〔即更高阶微量〕上,可以略去不计。

2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。

2-8 在大边界上,应分别列出两个精确的边界条件;在小边界〔即次要边界〕上,按照圣维南原理可列出3个积分的近似边界条件来代替。

2-9 在小边界OA边上,对于图2-15〔a〕、〔b〕问题的三个积分边界条件相同,因此,这两个问题为静力等效。

2-10 参见本章小结。

2-11 参见本章小结。

2-12 参见本章小结。

2-13 注意按应力求解时,在单连体中应力分量必须满足〔1〕平衡微分方程,〔2〕相容方程,〔3〕应力边界条件〔假设>。

2-14 见教科书。

2-15 见教科书。

2-16 见教科书。

2-17 取它们均满足平衡微分方程,相容方程与x=0和的应力边界条件,因此,它们是该问题的正确解答。

2-18 见教科书。

2-19 提示:求出任一点的位移分量和,与转动量,再令,便可得出。

第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:〔1〕校核相容条件是否满足,〔2〕求应力,〔3〕推求出每一边上的面力从而得出这个应力函数所能解决的问题。

3-2 用逆解法求解。

由于本题中l>>h,x=0,l属于次要边界〔小边界〕,可将小边界上的面力化为主矢量和主矩表示。

3-3 见3-1例题。

3-4 本题也属于逆解法的问题。

首先校核是否满足相容方程。

再由求出应力后,并求对应的面力。

本题的应力解答如习题3-10所示。

应力对应的面力是:主要边界:所以在边界上无剪切面力作用。

弹性力学简明教程(第四版)_第三章_课后作业题答案

弹性力学简明教程(第四版)_第三章_课后作业题答案

第三章 平面问题的直角坐标解答【3-4】试考察应力函数ay 3在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)?【解答】⑴相容条件:不论系数a 取何值,应力函数 a y 3总能满足应 力函数表示的相容方程,式(2-25).⑵求应力分量当体力不计时,将应力函数代入公式(2-24),得⑶考察边界条件上下边界上应力分量均为零,故上下边界上无面力 左右边界上;主矢的中心在矩下边界位置。

即本题情况下,可解决各种偏心拉伸问题 偏心距e :e :P因为在A 点的应力为零。

设板宽为b ,集中荷载p 的偏心距e :同理可知,当a <0时,可以解决偏心压缩问题x6ay, y 0, xyyx应力分布如图所示,当 主矢,主矩l? h 时应用圣维南原理可以将分布的面力,等效为右端:f xx xl6ay (0 y h)h _l当a>0时,考察x 分布情况,注意到 0,故 y 向无面力左端:f x ( x )x 0 6ayxyx 0(x )A P pebh bh 2/6e h/6 图3-■xxyh(xy )x l 0Oyf②在x=0 , x=l的次要边界上,面力分别为:12FIy -3 , f yh因此,各边界上的面力分布如图所示:③在x=0,x=l的次要边界上,面力可写成主矢、主矩形式:x=0上x=l上【3-6】试考察应力函数一xy(3h24y2),能满足相容方程,并求出应2h力分量(不计体力),画出图3-9所示矩形体边界上的面力分布(在小边界上画出面力的主矢量和主矩),指出该应力函数能解决的问题。

h/2h/2| l【解答】(1)将应力函数代入相容方程(2-25)4 4 4石2 2 2 40,显然满足x x y y(2)将代入式(2-24),得应力分量表达式12Fxy 0x 厂3 , y 0, xy yxh3h(i 帶(3)由边界形状及应力分量反推边界上的面力:号,应精确满足应力边界条件式①在主要边界上(上下边界)上,y (2-15),应力y y h/2 0,yxyh/2 0因此,在主要边界yh h2上,无任何面力,即f x y 20, f y y x 0: f x0f y 3Fy2h3Fi2h4y2h2xO(I?h)图3-(a ) (b ) 因此,该应力函数可解决悬臂梁在自由端受集中力F 作用的问题【3-8】设有矩形截面的长竖柱,密度为 p,在一边侧面上受 【解答】采用半逆法求解。

弹性力学简明教程(第四版)第三章课后习题答案

弹性力学简明教程(第四版)第三章课后习题答案

③在 x=0,x=l 的次要边界上,面力可写成主矢、主矩形式: x=0 上 x=l 上
x向主矢:FN1 = y向主矢:FS1 = 主矩:M 1 =
h/2 -h/2
h/2
h / 2 h/2
f x dy 0, f y dy F ,
FN2 FS2
h/2
h / 2 h/2

h / 2
④在次要边界 x l 上,分布面力为
f x x l x x l f y x l xy
主矩: 弹性体边界上的面力分布及在次要上面力的主矢和主矩如图所示
M'
x x l ydy h / 2 2blydy 0 h / 2
(3) cxy
3
将应力函数代入公式(2-24) ,得应力分量表达式
x 6cxy, y 0, xy yx 3cy 2
考察应力边界条件,主要边界,由公式(2-15)得
y

h h h f x y bh, f y y 0 2 2 2 主要边界,上边界上,面力为

y
h h h f x y bh, f y y 0 2 2 2 ,下边界上,面力为
面力的主矢、主矩为 x 向主矢
Fx
x x l dy h / 2 6clydy 0 h / 2
h/2 h / 2
h/2
h/2
y 向主矢:
Fy
h/2

y x l
dy
h/2
h/2
h / 2
ch 3cy dy 1 4
2
3
主矩:

弹性力学简明教程(第四版)课后习题解答

弹性力学简明教程(第四版)课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学简明教程第四版徐芝纶

弹性力学简明教程第四版徐芝纶

例2 二次式 Φ ax2 b,xy分c别y2表示常量
的应力和边界面力。如图示。
2a
o
2a y
b
xo
b
x
o
x
b
y b 2c y 2c
第三章 平面问题的直角坐标解答
逆解法
例3 设图中所示的矩形长梁,l >>h,试考
察应力函数 Φ
F 2h3
xy(3h2
4y2 )能解决什么
样的受力问题?
o
h/2
h/2
x
l y
f
x
x,
σ
y
2Φ x2
f
y
y,
(d)
τ
xy
2Φ xy
.
第三章 平面问题的直角坐标解答
逆解法
2 .逆解法 ── 先满足(a),再满足(b)。 步骤:
⑴ 先找出满足 4Φ的解0 Φ; ⑵ 代入(d), 求出 σ x , σ y , xy;
⑶ 在给定边界形状S下,由式(b)反推出 各边界上的面力,
f x (lσ x mτ xy )s,
⑶ 代入 4Φ,解0 出 ; Φ
第三章 平面问题的直角坐标解答
半逆解法
⑷ 由式(d),求出应力;
⑸ 校核全部应力边界条件(对于多连体, 还须满足位移单值条件)。 如能满足,则为正确解答;否则修改假 设,重新求解。
第三章 平面问题的直角坐标解答
§3-2 矩形梁的纯弯曲
问题提出
梁l×h×1,无体力,只受M作用(力矩/单 宽,与力的量纲相同)。本题属于纯弯曲问 题。
(e)
f y (mσ y lτ xy )s.
第三章 平面问题的直角坐标解答
逆解法
从而得出,在面力(e)作用下的解答, 就是上述 和应Φ力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

…第三章 平面问题的直角坐标解答【3-4】试考察应力函数3ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)【解答】⑴相容条件:不论系数a 取何值,应力函数3ay Φ=总能满足应力函数表示的相容方程,式(2-25).⑵求应力分量当体力不计时,将应力函数Φ代入公式(2-24),得6,0,0x y xy yx ay σσττ====⑶考察边界条件&上下边界上应力分量均为零,故上下边界上无面力. 左右边界上;当a>0时,考察x σ分布情况,注意到0xy τ=,故y 向无面力 左端:0()6x x x f ay σ=== ()0y h ≤≤ ()0y xy x f τ===右端:()6x x x l f ay σ=== (0)y h ≤≤ ()0y xy x l f τ=== 应力分布如图所示,当l h 时应用圣维南原理可以将分布的面力,等效为主矢,主矩yxf xf¥主矢的中心在矩下边界位置。

即本题情况下,可解决各种偏心拉伸问题。

偏心距e :因为在A 点的应力为零。

设板宽为b ,集中荷载p的偏心距e :2()0/6/6x A p pee h bh bh σ=-=⇒= 同理可知,当a <0时,可以解决偏心压缩问题。

/【3-6】试考察应力函数223(34)2F xy h y hΦ=-,能满足相容方程,并求出应力分量(不计体力),画出图3-9所示矩形体边界上的面力分布(在小边界上画出面力的主矢量和主矩),指出该应力函数能解决的问题。

【解答】(1)将应力函数代入相容方程(2-25)444422420∂Φ∂Φ∂Φ++=∂∂∂∂x x y y,显然满足 <(2)将Φ代入式(2-24),得应力分量表达式312,0,x y Fxyh σσ=-=2234(1)2==--xy yx F y h h ττ (3)由边界形状及应力分量反推边界上的面力: ①在主要边界上(上下边界)上,2hy =±,应精确满足应力边界条件式(2-15),应力()()/2/20,0y yx y h y h στ=±=±== 因此,在主要边界2h y =±上,无任何面力,即0,022x y h h f y f y ⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭②在x=0,x=l 的次要边界上,面力分别为:22340:0,1-2x y F y x f f h h ⎛⎫=== ⎪⎝⎭3221234:,12x y Fly F y x l f f h h h⎛⎫==-=-- ⎪⎝⎭"因此,各边界上的面力分布如图所示:y③在x=0,x=l 的次要边界上,面力可写成主矢、主矩形式:x=0上 x=l 上1212h/2/2/2/2h/2/2/2/2h/2/212-h/2/2=0, 0=, =0, h N x N x h h h S y S y h h h x x h x F f dy F f dy y F f dy F F f dy F M f ydy M f ydy Fl-----======-===-⎰⎰⎰⎰⎰⎰向主矢:向主矢:主矩:因此,可以画出主要边界上的面力,和次要边界上面力的主矢与主矩,如图:(a) (b)]因此,该应力函数可解决悬臂梁在自由端受集中力F 作用的问题。

【3-8】设有矩形截面的长竖柱,密度为ρ,在一边侧面上受均布剪力q (图3-10),试求应力分量。

【解答】采用半逆法求解。

由材料力学解答假设应力分量的函数形式。

(1)假定应力分量的函数形式。

根据材料力学,弯曲应力y σ主要与截面的弯矩有关,剪应力xy τ主要与截面的剪力有关,而挤压应力x σ主要与横向荷载有关,本题横向荷载为零,则0x σ=(2)推求应力函数的形式将0x σ=,体力0,x y f f g ρ==,代入公式(2-24)有)220x x f x yσ∂Φ=-=∂对y 积分,得xyo bg ρhhbq图3-10()f x y∂Φ=∂ (a ) ()()1yf x f x Φ=+ (b )其中()()1,f x f x 都是x 的待定函数。

(3)由相容方程求解应力函数。

将(b )式代入相容方程(2-25),得()()441440d f x d f x y dx dx+= (c ) &在区域内应力函数必须满足相容方程,(c )式为y 的一次方程,相容方程要求它有无数多个根(全竖柱内的y 值都应满足它),可见其系数与自由项都必须为零,即()()44140,0d f x d f x dx dx== 两个方程要求()()32321,f x Ax Bx Cx f x Dx Ex =++=+ (d )()f x 中的常数项,()1f x 中的常数项和一次项已被略去,因为这三项在Φ的表达式中成为y 的一次项及常数项,不影响应力分量。

将(d )式代入(b )式,得应力函数()()3232y Ax Bx Cx Dx Ex Φ=++++ (e )(4)由应力函数求应力分量220x x f x yσ∂Φ=-=∂ (f )~226262y y f y Axy By Dx E gy xσρ∂Φ=-=+++-∂ (g)2232xyAx Bx C x yτ∂Φ=-=---∂∂ (h)(5)考察边界条件利用边界条件确定待定系数A 、B 、C 、D 、E 。

主要边界0x =上(左):()000,()0x xy x x στ====将(f ),(h )代入()00x x σ==,自然满足'0()0xy x C τ==-= (i )主要边界x b =上,()0x x b σ==,自然满足()xy x b q τ==,将(h )式代入,得2()32xy x b Ab Bb C q τ==---= (j )在次要边界0y =上,应用圣维南原理,写出三个积分的应力边界条件:()2000()62320bby y dx Dx E dx Db Eb σ==+=+=⎰⎰ (k )()3200()6220b b y y xdx Dx E xdx Db Eb σ==+=+=⎰⎰ (l )…()23200()320b byx y dx Ax Bx C dx Ab Bb Cb τ==---=---=⎰⎰ (m )由式(i ),(j),(k ),(l ),(m )联立求得2, , 0q qA B C D E b b=-====代入公式(g ),(h)得应力分量230, 13, 2x y xy qx x q gy x x b b b b σσρτ⎛⎫⎛⎫==--=- ⎪ ⎪⎝⎭⎝⎭【3-11】设图3-13中的三角形悬臂梁只受重力作用,而梁的密度为ρ,试用纯三次式的应力函数求解。

【解答】采用半逆解法求解(1) 检验应力函数是否满足相容方程(2-25)(设应力函数3223=Ax Bx y Cxy Dy Φ+++,不论上式中的系数如何取值,纯三次式的应力函数总能满足相容方程(2-25)(2) 由式(2-24)求应力分量由体力分量0,x y f f g ρ==,将应力函数代入公式(2-24)得应力分量:2226x x f x Cx Dy yσ∂Φ=-=+∂ (a )2262y y f y Ax By gy y σρ∂Φ=-=+-∂ (b )222xy Bx Cy x yτ∂Φ=-=--∂∂ (c )(3)考察边界条件:由应力边界条件确定待定系数。

①对于主要边界0y =,其应力边界条件为:.0()0y y σ==,0()0yx y τ== (d )将式(d )代入式(b ),(c ),可得0=0A B =, (e )②对于主要边界tan y x α=(斜面上),应力边界条件:在斜面上没有面力作用,即0x y f f ==,该斜面外法线方向余弦为,sin l α=-,cos m α=.由公式(2-15),得应力边界条件 tan tan tan tan sin ()cos ()0sin ()cos ()0x y x yx y x xy y x y y x ααααασατατασ====-⋅+⋅=⎫⎬-⋅+⋅=⎭(f )将式(a )、(b )、(c )、(e )代入式(f ),可解得2cot ,cot 23g g C D ρραα==- (g )将式(e )、(g )代入公式(a )、(b )、(c ),得应力分量表达式:2cot 2cot cot x y xy gx gy gygy σραρασρτρα⎧=-⎪=-⎨⎪=-⎩ 【分析】本题题目已经给定应力函数的函数形式,事实上,也可通过量纲分析法确定应力函数的形式。

按量纲分析法确定应力函数的形式:三角形悬臂梁内任何一点的应力与x y g αρ,,和有关。

由于应力分量的量纲是12L MT --,而,x y 的量纲是L ,g ρ的量纲是12L MT --,又是量纲—的数量,因此,应力分量的表达式只可能是x 和y 的纯一项式,即应力分量的表达式只可能是,A gx B gy ρρ这两种项的结合,其中A ,B 是量纲一的量,只与α有关。

应力函数又比应力分量的长度量纲高二次,即为x 和y 的纯三次式,故可假设应力函数的形式为3223Ax Bx y Cxy Dy Φ=+++。

相关文档
最新文档