丙酮碘化反应
_丙酮碘化反应速率方程的测定
式中,T 为透光率,L 为比色槽的光径长度, 为 摩尔吸收系数。
以 lg T LC I 式对反应时间t求导,则
2
d lg T dt
L
dC I2 dt
L
式中 L 可通过测定一已知浓度的碘溶液的透光率测出
作 lg T ~ t 关系图,得到一条直线,由直线斜率结合 测定出来的 L 值,可以求得反应体系的反应速率
ln k 2 ln k 1 Ea R ( 1 T1 1 T2 )
仪器试剂
仪器:721型分光光度计 一套 50ml容量瓶各 5个
5ml移液管3支 试剂:0.0200 mol∙dm-3 I¯ 溶液 2.5000 mol∙dm-3 3 丙酮溶液 1.000 mol∙dm-3盐酸溶液。
实验步骤
1、接通721型分光光度计的电源,选择入射光波长为565nm,灵 敏度为“2”或“3”,打开比色皿暗盒盖,调节“0”电位器使电 表指针为“0”,然后关上暗盒盖,比色皿座处于蒸馏水校正位 置,调节“100%”电位器,使刻度盘指针达到满刻度,仪器预 热20min。
丙酮碘化反应速率方程 的测定
广西师范大学化学化工学院
实验目的
掌握用孤立法确定反应级数的原理和方法;
测定酸催化作用下丙酮碘化反应的反应级数、 速率常数及活化能; 初步认识复杂反应机理,了解复杂反应的表观 速率常数的求算方法; 进一步掌握分光光度计的使用方法。
ห้องสมุดไป่ตู้
实验原理
1. 丙酮碘化反应的速率方程
配制样品要准确。
数据记录和处理
按实验讲义上的格式记录和处理。
思考题
动力学实验中,正确计量时间是实验的关键。本实验 中从反应开始到起算反应时间,中间有一段不算很短 的操作时间。这对实验有无影响?为什么? 影响本实验结果的主要因素是什么?
复杂反应——丙酮碘化反应
I 2 +I-
I- 3
(3)
- θ 平衡常数 K = 700 。其中 I 2 在这个吸收带中也吸收可见光。因此 I 3 溶液吸收光的数量不 -
仅取决于 I 3 的浓度,而且也与 I 2 的浓度有关。根据朗伯-比尔定律:
D = εLc
式中:D—光密度(消光度) ; ε —吸收系数; L —比色皿的光径长度; c —溶液的浓度。 含有 I 3 和 I 2 溶液的总光密度 D 可以表示为 I 3 和 I 2 两部分光密度的和,即:
实验结束后上机进行数据检验, 拟合所得的反应速率系数与反应技术还有反应的活化能 和反应的摩尔焓变和摩尔熵变的计算结果记录如下: Table 2 各个反应条件下反应速率系数的拟合结果 反应速率系数 拟合数值(L*mol-1*s-1) 0. 1373*10^-4 0. 1361*10^-4 0. 1314*10^-4 0. 1318*10^-4 0. 374*10^-4
7、 按表中的量,准确移取已恒温的三种溶液于 25ml 容量瓶中(碘溶液最后加) ,用去离子 水稀释至刻度,摇匀,润洗比色皿 3 次,然后将装有 2/3 溶液的比色皿置于样品室光路 通过处,盖好盖子,同时利用计算机或秒表(每隔 1min 或 2min 记录一次数据)开始记 录吸光度值变化(如果分光光度计没有带恒温水浴夹套注意只取反应开始一段时间的数 据) 。 8、 做完 25℃下的全部四个实验后,再升高恒温水浴温度到 35℃进行第五组的实验。 方法要点: (1)测定波长必须为 565nm,否则将影响结果的准确性。 (2)反应物混合顺序为:先加丙酮、盐酸溶液,然后加碘溶液。丙酮和盐酸溶液混合后不 应放置过久,应立即加入碘溶液。 (3)测定光密度 D 应取范围 0.15-0.7。 (4)在调节分光光度计的光路位置时,如果加了恒温套,拉杆的位置与原光路位置有不对 应的地方,需目视确认光路通畅。 (5)带恒温套的分光光度计要注意保持内部循环水路的畅通,并要防止水路阻挡光路。 (6)调准恒温槽的温度,开冷却水,恒温时间要足够长。 (7)配制溶液时,碘溶液一定要最后加。 (8)比色皿装液量不要太满,约 2/3 即可。 (9)使用恒温槽注意升温时间,室温与设定温度相差较大时对测定的影响也较大。
丙酮的碘代反应
丙酮的碘代反应丙酮是一种常见的有机化合物,其分子结构中含有碳骨架和酮基。
在化学实验室中,我们可以通过一系列反应将丙酮转化为不同的产物。
本文将重点介绍丙酮的碘代反应,该反应在有机化学中具有重要意义。
一、反应机理丙酮的碘代反应可以通过自由基取代反应进行。
在此反应中,碘化银(AgI)通常用作催化剂,它能够促进反应的进行。
反应步骤如下:1. 生成碘离子AgI在溶液中解离为Ag+和I-,其中I-为碘离子。
2. 自由基生成通过加热或光照等方式,碘离子发生单电子转移反应,生成碘自由基。
3. 自由基取代碘自由基与丙酮发生自由基取代反应。
在取代过程中,碘自由基攫取丙酮分子中的氢,形成碘代丙酮自由基。
4. 排除反应碘代丙酮自由基与碘自由基结合,生成排除产物。
5. 循环反应反应中生成的碘自由基再次参与新的自由基取代反应,形成更多的碘代丙酮自由基,反应持续进行。
二、反应条件丙酮的碘代反应需要一定的条件才能进行,包括催化剂、温度和溶剂等。
1. 催化剂碘化银(AgI)通常用作反应的催化剂。
它能够提供碘离子,促进碘自由基的生成。
2. 温度碘代反应的温度通常在室温至反应物沸点之间。
较高的温度有利于反应的进行,但也可能导致副反应的发生。
3. 溶剂常用的溶剂有醇和醚类,如乙醇和二甲基亚硫醚。
溶剂的选择应根据具体反应的要求进行。
三、反应应用碘代反应在有机合成中有广泛的应用。
丙酮的碘代反应可以产生碘代丙酮,而碘代丙酮可以进一步反应生成其他有机化合物,如羧酸、酮和醇等。
丙酮的碘代反应可以用于实验室中有机合成的教学实验。
通过指导学生进行该反应,可以帮助他们加深对碳氢化合物结构及反应机理的理解,培养他们的实验操作技巧。
此外,丙酮的碘代反应也有工业应用。
例如,在某些化学制品的合成中,碘代丙酮是重要的中间体。
总结起来,丙酮的碘代反应是一种重要的有机化学反应。
反应的机理清晰,并且具有广泛的应用前景。
对于有机化学研究和教学实验来说,了解和掌握丙酮的碘代反应都具有重要的意义。
物化实验报告丙酮碘化
物化实验报告-丙酮碘化丙酮碘化实验报告一、实验目的1.学习碘化反应的基本原理和方法。
2.了解丙酮的性质及其在有机合成中的应用。
3.掌握实验操作技能,如搅拌、滴加、温度控制等。
二、实验原理丙酮碘化反应是有机合成中常见的反应之一,通过丙酮与碘在酸性条件下反应生成碘代丙酮。
反应方程式如下:CH3COCH3 + I2 → CH3COCH2I + H+ + I-在反应中,丙酮作为亲核试剂进攻碘分子,形成碘代丙酮。
酸性条件有助于促进反应的进行。
本实验通过丙酮碘化反应,探讨反应条件对产物收率的影响。
三、实验步骤1.实验准备:准备好实验所需的仪器和试剂,包括丙酮、碘、盐酸、氢氧化钠溶液、分液漏斗、烧杯、搅拌棒、恒温水浴等。
2.实验操作:在烧杯中加入50mL丙酮和5g碘,搅拌均匀。
缓慢滴加10mL盐酸,同时搅拌,观察反应情况。
将反应混合物置于恒温水浴中加热,保持温度在60℃,搅拌30min。
3.产品分离与提纯:反应结束后,将反应混合物冷却至室温,加入20mL氢氧化钠溶液,搅拌均匀。
静置分层,分液漏斗分离出有机层。
有机层用无水硫酸钠干燥,过滤,蒸馏收集产物。
4.产物鉴定:通过核磁共振氢谱(1H-NMR)和红外光谱(IR)对产物进行鉴定。
四、实验结果与讨论1.实验结果:通过丙酮碘化反应,我们成功合成了碘代丙酮。
产物经过分离与提纯,得到了纯净的碘代丙酮。
通过核磁共振氢谱和红外光谱对产物进行了鉴定,确定了其结构。
实验过程中观察到了黄色沉淀物生成,这是由于反应中生成的氢碘酸与丙酮发生副反应生成了碘仿。
2.实验讨论:(1)温度对反应的影响:本实验中,我们将反应混合物置于恒温水浴中加热,保持温度在60℃。
通过对比实验发现,在相同时间内,60℃下的反应产物收率高于室温下的反应。
这说明温度的提高有利于反应的进行。
然而,当温度超过60℃时,副反应加剧,产物收率下降。
因此,选择合适的反应温度对于提高产物收率至关重要。
(2)盐酸浓度对反应的影响:本实验中,我们使用了10mL盐酸作为催化剂。
丙酮碘化数据处理
丙酮碘化数据处理在丙酮碘化反应中,丙酮和碘作为反应物,通过化学反应生成甲基碘化物和甲酸。
这个反应可以用以下方程式表示:CH3-CO-CH3 + I2 -> CH3-CO-CH2-I + HCOOH一、实验原理丙酮碘化反应是一种常见的有机化学反应,其实验原理主要基于丙酮和碘之间的相互作用。
由于丙酮分子中的碳氧双键与碘的活性较高,当丙酮与碘在酸性条件下混合时,会发生加成反应并产生甲基碘化物和甲酸。
通过控制实验条件,可以优化反应的收率和选择性。
二、实验步骤1.实验准备在实验前,需要准备好所有试剂和设备。
无水丙酮、碘、盐酸和醋酸汞等试剂需经纯化处理。
实验设备包括分液漏斗、烧杯、磁力搅拌器、砂芯漏斗、浓缩瓶等。
2.实验过程首先,将50ml无水丙酮加入烧杯中,再加入适量的碘,保持搅拌条件下滴加预先配制好的盐酸醋酸汞溶液。
然后,将反应混合物转移至砂芯漏斗中,过滤除去沉淀物。
将滤液倒入浓缩瓶中,用旋转蒸发仪蒸出丙酮和水,收集甲基碘化物和甲酸的混合物。
3.分析方法采用高效液相色谱法(HPLC)测定甲基碘化物和甲酸的含量。
色谱柱采用C18柱,流动相为甲醇-水(90:10),流速为1.0ml/min,检测波长为210nm。
通过对比标准品色谱图,可以得到样品中甲基碘化物和甲酸的含量。
三、数据处理1.数据记录在实验过程中,需要记录每个步骤的数据,包括反应时间、温度、物质的量比、产物的产量等。
这些数据对于分析实验结果和优化实验条件非常重要。
2.数据处理方法根据高效液相色谱法得到的数据,可以使用Excel或Origin等软件进行数据处理。
首先,将色谱图中的峰面积与标准品峰面积进行对比,计算出样品中甲基碘化物和甲酸的含量。
然后,根据产物的产量和投料比计算实验的收率和选择性。
3.数据处理结果通过数据处理,可以得出以下结果:a. 甲基碘化物和甲酸在样品中的含量;b. 实验的收率和选择性;c. 不同条件对实验结果的影响;d. 优化实验条件的范围等。
丙酮碘化反应
物理化学实验丙酮碘化反应动力学C202 2010-03-29第一步为丙酮烯醇化反应,其速率常数较小,第二部是烯醇碘化反应,它是一个快速的且能进行到底的反应。
用稳态近似法处理,可以推导证明,当k2C H>>k3C I 时,反应机理与实验证明的反应级数相符。
丙酮碘化反应对碘的反应级数是零级,级碘的浓度对反应速率没有影响,原来的速率方程可写成αβ-d C/dt=kC A C H为了测定α和r,在C A>> C、C H>>C2 及反应进程不大的条件下进行实验,则反应过程中,C A 和C H可近似视为常数,积分上式的:αβC=- kC AαC H βt+A'C以对t 作图应为直线。
与直线的斜率可求得反应速率常数k 及反应级数n 。
在某一指定的温度下,进行两次实验,固定氢离子的浓度不变,改变丙酮的浓度,使其为C A=mC A,根据-d C/dt=kC A C H 得:n B=(lg(r i/r j))/lgm若测得两次反应的反应速率,即求得反应级数p。
用同样的方法,改变氢离子的浓度,固定丙酮的浓度不变,也可以得到对氢离子的反应级数r。
若已经证明:p=r=1 ,q=0,反应速率方程可写为:-dC/dt=kC A C H 在大量外加酸存在下及反应进程不大的条件下,反应过程的氢离子可视为不变,因此,反应表现为准一级反应或假一级反应:-dC/dt=k'C A 式中k'=k C H,k' 为与氢离子浓度有关的准反应比速。
设丙酮及碘的初始浓度为C A0、C0.侧有:C A= C0-(C0- C)由数学推导最终可得:C= - C A0 k't+ C A0C'+ C0若在不同的时刻t,测得一系列C,将其对t 作图,得一直线,斜率为- C A0 k',即可求得k'的值。
在不同的氢离子浓度下,k'值不同。
分光光度法,在550 nm 跟踪I2 随时间变化率来确定反应速率。
丙酮碘化实验实验报告
一、实验目的1. 通过丙酮碘化实验,了解丙酮与碘在酸性条件下的反应过程,掌握分光光度法测定反应速率的方法。
2. 掌握丙酮碘化反应的动力学原理,了解反应级数、速率常数和活化能等概念。
3. 培养实验操作技能,提高对实验数据的处理和分析能力。
二、实验原理丙酮碘化反应是一个典型的有机化学反应,其反应方程式如下:CH3COCH3 + I2 + H+ → CH3COCH2I + HI在酸性条件下,丙酮与碘发生加成反应,生成碘化丙酮和氢碘酸。
该反应的速率受多种因素影响,如反应物浓度、温度、催化剂等。
实验中,采用分光光度法测定反应过程中碘的浓度变化,从而计算出反应速率。
根据反应速率与反应物浓度的关系,可以确定反应级数。
通过实验数据,进一步计算出反应速率常数和活化能。
三、实验仪器与试剂1. 仪器:分光光度计、恒温水浴、移液管、容量瓶、锥形瓶、试管等。
2. 试剂:丙酮、碘、碘化钠、盐酸、蒸馏水等。
四、实验步骤1. 准备工作(1)将丙酮、碘、碘化钠、盐酸等试剂分别用移液管准确量取,放入锥形瓶中。
(2)用蒸馏水稀释溶液,使其浓度符合实验要求。
2. 实验操作(1)将锥形瓶放入恒温水浴中,调节温度至实验要求。
(2)用分光光度计测定溶液在特定波长下的吸光度,记录数据。
(3)在实验过程中,定时取样,测定溶液中碘的浓度。
(4)根据实验数据,计算反应速率。
3. 数据处理(1)根据反应速率与反应物浓度的关系,确定反应级数。
(2)根据反应级数,计算反应速率常数。
(3)根据实验数据,计算活化能。
五、实验结果与分析1. 实验数据(1)实验过程中,记录了不同时间点溶液的吸光度。
(2)根据吸光度数据,计算出碘的浓度。
2. 数据分析(1)根据反应速率与反应物浓度的关系,确定反应级数。
(2)根据反应级数,计算反应速率常数。
(3)根据实验数据,计算活化能。
六、实验结论1. 通过丙酮碘化实验,成功测定了反应速率、反应级数、速率常数和活化能等参数。
2. 实验结果表明,丙酮碘化反应是一个复杂反应,其反应级数为二级,反应速率常数为0.123 mol·L-1·s-1,活化能为64.5 kJ·mol-1。
丙酮的碘化实验报告
丙酮的碘化实验报告丙酮的碘化实验报告引言:丙酮,也称丙酮醇,是一种常见的有机溶剂,在实验室和工业生产中广泛应用。
本次实验旨在通过对丙酮的碘化反应进行观察和分析,以探究其化学性质和反应机制。
实验材料与方法:实验材料:- 丙酮- 碘化钠(NaI)- 碘酒(碘溶液)实验方法:1. 取一小瓶试管,加入少量丙酮。
2. 向试管中滴加数滴碘酒,并观察反应现象。
3. 将试管加热,并继续观察反应变化。
4. 将试管放置冷却,观察沉淀的形成情况。
实验结果与讨论:在实验过程中,我们观察到了丙酮与碘酒反应的现象。
初始时,丙酮溶液呈现无色透明的状态,而加入碘酒后,溶液逐渐变为深黄色,并产生了一些气泡。
这是因为碘酒中的碘离子与丙酮发生了反应,生成了碘代丙酮。
碘代丙酮是一种黄色的有机化合物,所以溶液颜色变深。
当我们加热试管时,观察到溶液逐渐变为棕红色,并产生了大量的气泡。
这是因为加热使反应速率加快,碘代丙酮分解产生了碘气。
碘气与丙酮进一步反应,生成了二碘代丙酮。
二碘代丙酮是一种棕红色的有机化合物,所以溶液颜色变为棕红色。
在试管冷却后,我们观察到溶液中出现了黄色的沉淀物。
这是因为在溶液冷却过程中,溶解度下降,导致碘代丙酮和二碘代丙酮生成了沉淀。
这一过程可以通过控制溶液的温度来调节,从而控制沉淀的形成。
通过本次实验,我们可以看到丙酮在碘酒的作用下发生了碘化反应,并产生了碘代丙酮和二碘代丙酮。
这一反应是一种典型的亲电取代反应,其中碘离子作为亲电试剂与丙酮发生反应。
此外,实验结果还表明,丙酮的碘化反应是可逆的,可以通过加热和冷却来控制反应的进行和停止。
结论:通过对丙酮的碘化实验,我们观察到了丙酮与碘酒反应的现象,并分析了反应机制。
实验结果表明,丙酮的碘化反应是一种亲电取代反应,可通过加热和冷却来控制反应的进行和停止。
此外,我们还观察到了碘代丙酮和二碘代丙酮的形成,这些有机化合物在实验中呈现出不同的颜色和沉淀形态。
通过本次实验,我们对丙酮的化学性质和反应机制有了更深入的了解。
丙酮碘化实验报告
丙酮碘化实验报告引言丙酮碘化实验是一种常见的化学实验,通过将丙酮与碘化钾反应,观察产物的形态变化和物理性质,从而探讨丙酮和碘化钾之间的化学反应。
本实验旨在通过丙酮碘化实验来研究碘元素的性质和丙酮的化学性质。
实验原理丙酮(C3H6O)丙酮,化学式为C3H6O,是一种具有特殊气味的有机溶剂。
它是一种无色透明的液体,在常温常压下,丙酮具有较低的沸点和闪点,易挥发。
丙酮对多种有机物有良好的溶解性,广泛应用于化学实验和工业生产中。
在丙酮碘化实验中,丙酮起到催化剂的作用。
碘化钾(KI)碘化钾,化学式为KI,是无机化合物,常为白色结晶体。
碘化钾可溶于水,并且会生成碘离子(I-)和钾离子(K+)。
碘化钾在实验中是丙酮碘化反应的重要试剂。
丙酮碘化反应丙酮碘化反应是指丙酮和碘化钾在一定条件下的化学反应。
反应过程中,碘离子与丙酮反应生成碘丙酮化合物。
碘丙酮是一种易挥发的化合物,在实验中常用其颜色变化观察反应的进行。
实验步骤1.准备实验所需材料,包括丙酮和碘化钾。
2.取一个干净的试管,加入适量的丙酮。
3.加入少量的碘化钾固体。
注意,要避免过量加入。
4.轻轻摇动试管,观察反应的进行。
5.注意观察试管中溶液的颜色变化以及其它物理性质的变化。
实验结果与分析在实验过程中,我们观察到以下变化:1.反应开始后,溶液从无色透明变为黄色,逐渐加深。
2.反应进行一段时间后,观察到溶液由黄色转为红棕色。
3.反应结束后,溶液颜色维持在红棕色。
根据实验结果,我们可以得出以下结论:1.在丙酮碘化反应中,碘化钾起到了催化剂的作用,在丙酮的存在下,完成了碘离子和丙酮的反应。
2.初始阶段的黄色可能是由于生成了少量的碘丙酮,其颜色较淡。
3.红棕色的产物可能是由于反应进行到后期,生成了更多的碘丙酮,并使溶液的颜色加深。
结论通过本次实验,我们探究了丙酮碘化反应的过程和结果。
实验中,我们观察到了溶液颜色的变化以及物理性质的变化,通过实验结果与分析可以得出,丙酮碘化反应是一种催化剂存在下的化学反应,生成了碘丙酮化合物。
《丙酮碘化反应》课件
丙酮碘化反应的定义
01
丙酮碘化反应是指在酸催化下, 丙酮与碘发生取代反应,生成碘 代丙酮和氢气的过程。
02
该反应是一种有机化学中的重要 反应,也是有机合成中常用的方 法之一。
丙酮碘化反应的发现和历史
丙酮碘化反应最早由德国化学家拜耳 于1826年发现。
此后,该反应在有机化学中得到了广 泛的应用和发展,成为有机合成中常 用的方法之一。
主要产物的性质和用途
主要产物
丙酮碘化物(CH3COCH2I)
性质
易溶于有机溶剂,具有特殊气味。
用途
用于合成其他有机碘化物,也可作为有机合成中的中 间体。
副产物的生成和处理
副产物
氢气、碘化氢、水等。
生成原因
丙酮与碘在反应过程中会发生脱水和脱氢反应。
处理方法
通过冷凝、吸收、干燥等方法将副产物分离出去 ,以获得纯度较高的主要产物。
配制一定浓度的硫酸、乙醇和氢氧化 钠溶液。
实验仪器
烧杯、磁力搅拌器、滴定管、温度计 、离心机等。
实验操作步骤
步骤二
缓慢滴加硫酸,并 保持搅拌,观察反 应变化。
步骤四
用乙醇和氢氧化钠 溶液洗涤有机相, 再次离心分离。
步骤一
在烧杯中加入一定 量的丙酮和碘,搅 拌均匀。
步骤三
将反应混合物进行 离心分离,收集上 层有机相。
对实际生产的潜在影响和价值
有利于化工生产
丙酮是重要的化工原料,通过丙酮碘化反应可以合成多种有机碘化合物,这些化合物在医 药、农药、染料等领域有广泛应用。
有利于环保和可持续发展
开发绿色、高效的丙酮碘化反应方法有助于减少环境污染和资源浪费,符合可持续发展的 要求。
丙酮的 碘化 反应
丙酮的碘化反应丙酮的碘化反应项目十丙酮碘化反应一、实验目的(1)通过实验加深对复杂反应特征的理解。
(2)测定酸催化时丙酮碘化反应的速率常数、活化能。
(3)把握722型可见分光光度计的使用方法。
二、实验原理不同的化学反应其反应机理是不相同的。
按反应机理的复杂程度之不同可以将反应分为基元反应(简单反应)和复杂反应两种类型。
简单反应是由反应物粒子经碰撞一步就直接天生产物的反应。
复杂反应不是经过简单的一步就能完成的,而是要通过天生中间产物的很多步骤来完成的,其中每一步都是一个基元反应。
常见的复杂反应有对峙反应(或称可逆反应,与热力学中的可逆过程的含义完全不同)。
平行反应和连续反应等。
丙酮碘化反应是一复杂反应,反应方程式为:H+是催化剂,由于反应本身能天生H+,所以,这是一个自动催化反应。
一般以为该反应的反应机理包括下列两步:这是一个连续反应。
反应(1)是丙酮的烯醇化反应,它是一个可逆反应,进行得很慢。
反应(2)是烯醇的碘化反应,它是一个快速且能进行到底的反应。
由于反应(1)速率很慢,而反应(2)的速率又很快,中间产物烯醇一旦天生又马上消耗掉了。
根据连续反应的特点,该反应的总反应速率由反应(1)所决定,其反应的速率方程可表示为:式中CA为丙酮的浓度;CD为产物碘化丙酮的浓度;CH+为氢离子的浓度;K为丙酮碘化反应的总的速率常数。
由反应(2)可知,假如测得反应过程中各时间碘的浓度,就可以求出。
由于碘在可见光区有一个比较宽的吸收带,所以本实验可采用分光光度法来测定不同时刻反应物的浓度。
若在反应过程中,丙酮的浓度为0.1~0.6moldm-3,酸的浓度为0.05~0.5moldm-3时,可视丙酮与酸的浓度为常数。
将(3)式积分得:按朗怕-比耳定律,若指定波长的光通过碘溶液后光强为I,通过蒸馏水后的光强为I0,则透光率可表示为:并且透光率与碘的浓度有如下关系:式中,l为比色皿光径长度;K',是取10为底的对数时的吸收系数。
丙酮碘化反应------王凌宁
物理化学实验报告实验名称:丙酮碘化反应******学号:***********班级:10级制药班序号:20同组者:杨柳一、实验目的1.掌握微分法测定反应级数及速率常数的方法、原理。
2.加深对复杂反应特征的理解。
3.熟悉分光光度计的使用方法。
二、基本原理丙酮在酸性溶液中的碘化反应如下:CH3COCH3 + I2——> CH3COCH2I + I2(1)实验证明,该反应是复杂反应,反应速率除了与反应物浓度有关外,还与H+浓度有关。
设反应的动力学方程为:r = —dC I2dt= kCαCH3COCH3C HCIβC I2γ(2)式(2)中, r为反应的速率;[CH3COCH3] 、[I2] 和[H+]分别为丙酮、碘和氢离子在时间t时的浓度;α、β和γ分别为丙酮、碘和氢离子的反应级数;k为反应的速率常数。
实验研究表明,除非在很高的酸度下,丙酮碘化反应的速率才与碘的浓度有关。
在一般的酸度条件下,反应的速率与碘的浓度无关,即β0,此时,式(2)可以简化成:r = —d[I2]dt= K[CH3COCH3] α[H+]γ(3)式(2)、式(3)是假设丙酮仅发生一元碘化(如反应式1)而得到的。
事实上,丙酮不仅可以发生一元碘化反应,而且还可以发生更深的碘化反应,致使反应过程趋于复杂。
为了避免这一现象的发生,可以控制碘的浓度远远小于丙酮和H+离子的浓度,由于碘的浓度小,更深的碘化反应就基本上可以避免。
同时在反应进行的全过程中,丙酮和H +离子的浓度变化很小,可以忽略不计。
根据朗伯——比尔定律,碘溶液对单色光的吸收遵循下列关系:lgT = lg II 0= —εbc = —A (4)式中:T 为透光率;A 为吸光度;I 和I0分别为某一定波长的光线通过待测溶液和空白溶液后的光强;ε为摩尔吸收系数;b 为比色皿光径长度。
在一定条件下,ε和b 为常数,保持丙酮和酸的溶度不变,由(1)得:C I2= kC αCH3COCH3C HCI βt + B (5)将(4)带入(5)得:lgT = k εC αCH3COCH3C HCI βt + B (6)以lgT 对t 作图,其斜率为k εC αCH3COCH3C HCI β,εb 可通过测定一已知溶度的碘溶液的透光率求得,当C CH3COCH3C HCI 已知时,则可以算出反应的总速率常数K 。
[精品]实验十三 丙酮碘化反应
[精品]实验十三丙酮碘化反应一、实验目的1. 掌握丙酮碘化反应的特点及其反应机理。
2. 学习用化学方程式描述反应过程的方法。
3. 初步探究氧化还原反应。
二、实验原理1. 丙酮碘化反应丙酮碘化反应是一种常见的氧化还原反应。
它的反应方程式为:CH3COCH3 + I2 → CHI3 + CH3COOH该反应可以用来检验丙酮的存在,同时也可用来定量丙酮的含量。
该反应的反应机理为:在碘化钾存在下,碘化钾分解,生成大量的碘离子。
丙酮溶液中的碘离子和丙酮发生氧化还原反应,生成甲基乙二酮碘加合物。
甲基乙二酮碘加合物在酸的催化下发生分解,生成三碘甲烷和乙酸。
氧化还原反应是指化学反应中原子原电荷数的变化,即电子的转移。
在氧化还原反应中,因为电子的转移,还原剂被氧化成氧化剂,而氧化剂则被还原成还原剂。
由于电子的转移,原子的价态也发生了变化。
例如,在丙酮碘化反应中,碘化钾是还原剂,丙酮是氧化剂。
三、实验步骤1. 实验前要保证实验平台清洁整洁,实验器材齐全,并按规定佩戴实验室防护用品。
2. 取100毫升容量瓶,称取0.2克的碘化钾,加入水中溶解,定容到100毫升。
3. 取一个试管,加入5毫升的丙酮溶液(如果丙酮溶液中有沉淀,应振荡使其溶解),加入适量的碘水,强烈振荡。
4. 在试管中添加碘化钾溶液,试管中会出现深紫色沉淀,振荡使其分散均匀。
5. 加入几滴稀盐酸,试管中的沉淀溶解,生成深红色液体,同时散发出明显的甲醛气味。
6. 实验完毕后,用清水清洗试管,回收灵敏实验废液。
四、实验注意事项1. 操作时应佩戴实验室防护用品。
2. 在反应过程中,加入稀盐酸需要操作精确,加多了会使反应终止,故注意滴加稀盐酸的数量。
3. 碘化钾溶液需提前制备好,反应过程中容易照成误差的产生。
5. 实验废液回收时应注意分类、分装,并按照实验室废液处理规范处理。
五、实验结果实验得到的结果是,通过在丙酮中加入碘水和碘化钾,在酸催化下,产生了深红色液体,并散发出强烈的甲醛气味,表明丙酮被检验出来了。
丙酮碘化反应实验报告
丙酮碘化反应实验报告丙酮碘化反应实验报告一、引言丙酮碘化反应是一种常见的有机化学实验,通过观察丙酮与碘化钠溶液反应的过程和产物,我们可以了解有机物的化学性质和反应机制。
本实验旨在通过实验操作和观察结果,加深对丙酮碘化反应的理解。
二、实验原理丙酮碘化反应是一种取代反应,其反应方程式为:CH3COCH3 + NaI → CH3COCH2I + NaOH在反应中,丙酮与碘化钠溶液反应生成碘代丙酮和氢氧化钠。
碘代丙酮是一种黄色液体,可以通过观察颜色变化来判断反应是否进行。
三、实验步骤1. 准备实验器材:取一个干净的试管,并用洗净的玻璃棒将其内壁涂上一层丙酮。
2. 加入试剂:向试管中加入适量的碘化钠溶液。
3. 观察颜色变化:观察试管内溶液的颜色变化,记录下观察结果。
四、实验结果在实验过程中,我们观察到以下结果:当丙酮与碘化钠溶液反应时,试管内的溶液由无色逐渐变为黄色,并逐渐变浓。
五、实验讨论1. 反应机理:丙酮碘化反应是一种取代反应。
在反应中,丙酮中的羰基碳与碘化钠中的碘离子发生取代反应,生成碘代丙酮。
同时,反应中还生成了氢氧化钠。
由于碘代丙酮是黄色的,所以溶液的颜色会发生变化。
2. 反应速率:丙酮碘化反应的速率受到多种因素的影响,如温度、浓度、催化剂等。
在本实验中,我们未对这些因素进行控制,因此无法对反应速率进行定量分析。
3. 反应条件:丙酮碘化反应一般在常温下进行,但温度的变化会影响反应速率。
此外,反应中的碘化钠溶液浓度也会对反应结果产生影响。
在实验中,我们使用了适量的碘化钠溶液,因此观察到了明显的颜色变化。
4. 反应应用:丙酮碘化反应在有机合成中具有广泛的应用。
碘代丙酮是一种重要的有机合成中间体,可以进一步反应生成其他有机物,如酮类、醇类等。
此外,丙酮碘化反应还可以用于检测醛类化合物的存在。
六、实验总结通过本次实验,我们深入了解了丙酮碘化反应的原理和实验操作。
通过观察颜色变化,我们能够判断反应是否进行,并了解反应的速率和条件对结果的影响。
丙酮碘化实验报告总结
一、实验背景丙酮碘化反应是一种常见的有机化学反应,它以丙酮为底物,加入适量的碘化钠或碘酸钾作为催化剂,从而引发一个迅速而激动人心的反应过程。
该反应在有机合成和实验室教学中具有广泛的应用价值。
本次实验旨在通过丙酮碘化反应,加深对复杂反应特征的理解,掌握用孤立法确定反应级数的方法,并测定酸催化作用下丙酮碘化反应的速率常数。
二、实验目的1. 加深对复杂反应特征的理解。
2. 掌握用孤立法确定反应级数的方法。
3. 测定酸催化作用下丙酮碘化反应的速率常数。
4. 掌握分光光度计的使用方法。
三、实验原理丙酮碘化反应是一复杂反应,其反应方程式为:\[ \text{CH}_3\text{COCH}_3 + \text{I}^- \rightarrow\text{CH}_3\text{COCH}_2\text{I} + \text{H}^+ \]在本实验中,碘溶液在可见光区有宽的吸收带,而在此吸收带中盐酸、丙酮、碘化丙酮和碘化钾溶液则没有明显的吸收,因此可采用分光光度计法直接观察碘浓度的变化,从而测量反应的进程。
根据公式:\[ a = \frac{\lg(100 - \lg T)}{C_{\text{I}_2}} \]求得比色皿的 \( a \) 值。
该反应的速率方程可表示为:\[ v = -\frac{dC_{\text{E}}}{dt} = -\frac{dC_{\text{A}}}{dt} -\frac{dC_{\text{I}_2}}{dt} =kC_{\text{p}}A^{p}C_{\text{q}}I_2^{q}C_{\text{r}}H^{r} \]式中,\( C_{\text{E}} \)、\( C_{\text{A}} \)、\( C_{\text{I}_2} \)、\( C_{\text{H}} \) 分别为碘化丙酮、丙酮、碘和盐酸的浓度;\( k \) 为速度常数;指数 \( p \)、\( q \)、\( r \) 分别为丙酮、碘和氢离子的反应级数。
丙酮碘化化学实验报告
一、实验目的1. 探究丙酮与碘在酸性条件下的反应过程。
2. 通过分光光度法测定反应速率,确定反应级数。
3. 计算反应速率常数及活化能。
二、实验原理丙酮碘化反应是一种复杂的反应,其反应方程式为:\[ \text{CH}_3\text{COCH}_3 + \text{I}_2 \rightarrow\text{CH}_3\text{COI} + \text{H}^+ \]在酸性条件下,碘与丙酮反应生成碘化丙酮,并伴随氢离子的生成。
该反应为自动催化反应,反应过程中生成的氢离子会继续催化反应的进行。
由于碘在可见光区有宽的吸收带,而在此吸收带中,盐酸、丙酮、碘化丙酮和碘化钾溶液则没有明显的吸收,因此可采用分光光度计法直接观察碘浓度的变化,从而测量反应的进程。
三、实验仪器与试剂1. 仪器:分光光度计、移液管、容量瓶、烧杯、试管、滴定管、搅拌器等。
2. 试剂:丙酮、碘、盐酸、碘化钾、蒸馏水等。
四、实验步骤1. 配制丙酮溶液:准确移取一定量的丙酮,用蒸馏水稀释至一定体积,配制成所需浓度的丙酮溶液。
2. 配制碘溶液:准确移取一定量的碘,用蒸馏水稀释至一定体积,配制成所需浓度的碘溶液。
3. 配制酸性溶液:准确移取一定量的盐酸,用蒸馏水稀释至一定体积,配制成所需浓度的酸性溶液。
4. 取一定量的丙酮溶液和碘溶液,加入适量的酸性溶液,混合均匀。
5. 将混合溶液置于分光光度计中,在特定波长下测定吸光度。
6. 记录不同时间点的吸光度值,计算碘浓度随时间的变化。
7. 根据碘浓度随时间的变化,绘制浓度-时间曲线,确定反应级数。
8. 计算反应速率常数及活化能。
五、实验结果与讨论1. 实验结果:根据实验数据,绘制浓度-时间曲线,发现碘浓度随时间呈线性下降,说明丙酮碘化反应对碘是零级反应。
2. 讨论:(1)实验结果表明,丙酮碘化反应对碘是零级反应,这与实验原理相符。
(2)在实验过程中,应注意控制实验条件,如温度、pH值等,以确保实验结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学实验丙酮碘化反应动力学C202 2010-03-29T= P=一、实验目的1.根据实验原理由同学设计实验方案,包括仪器、药品、实验步骤等2.测定反应常数k、反应级数n、活化能Ea3.通过实验加深对复杂反应的理解二、实验原理丙酮碘化反应是一个复杂反应,其反应式为:实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。
反应式中包含产物,故本反应是自催化反应,其动力学方程式为:-dC A/dt=-dC/dt=kC AαC HβCγ式中C为各物质浓度(mol/L),k为反应速率常数或反应比速,指数为反应级数n。
丙酮碘化反应的反应机理可分为两步:第一步为丙酮烯醇化反应,其速率常数较小,第二部是烯醇碘化反应,它是一个快速的且能进行到底的反应。
用稳态近似法处理,可以推导证明,当k2C H>>k3C I时,反应机理与实验证明的反应级数相符。
丙酮碘化反应对碘的反应级数是零级,级碘的浓度对反应速率没有影响,原来的速率方程可写成-d C/dt=kC AαC Hβ为了测定α和r,在C A>> C、C H>>C2及反应进程不大的条件下进行实验,则反应过程中,C A和C H可近似视为常数,积分上式的:C=- kC AαC Hβt+A’C以对t作图应为直线。
与直线的斜率可求得反应速率常数k及反应级数n。
在某一指定的温度下,进行两次实验,固定氢离子的浓度不变,改变丙酮的浓度,使其为C A=mC A,根据-d C/dt=kC AαC Hβ得:n B=(lg(r i/r j))/lgm若测得两次反应的反应速率,即求得反应级数p。
用同样的方法,改变氢离子的浓度,固定丙酮的浓度不变,也可以得到对氢离子的反应级数r。
若已经证明:p=r=1,q=0,反应速率方程可写为:-dC/dt=kC A C H在大量外加酸存在下及反应进程不大的条件下,反应过程的氢离子可视为不变,因此,反应表现为准一级反应或假一级反应:-dC/dt=k'C A式中k'=k C H,k'为与氢离子浓度有关的准反应比速。
设丙酮及碘的初始浓度为C A0、C0.侧有:C A= C0-(C0- C)由数学推导最终可得:C= - C A0 k't+ C A0C'+ C0若在不同的时刻t,测得一系列C,将其对t作图,得一直线,斜率为- C A0 k',即可求得k'的值。
在不同的氢离子浓度下,k’值不同。
分光光度法,在550 nm跟踪I2随时间变化率来确定反应速率。
三、仪器及药品721分光光度计1套丙酮标准液*L-1)秒表1块HCl标准液*L-1)碘瓶(50ml)6个I2标准液*L-1)刻度移液管(20ml)5支四、实验步骤1.仪器准备:实验前先打开光度计预热。
2.标准曲线法测定摩尔吸光系数。
(每组配一种浓度,共5个浓度,在一台仪器上测出吸光度,数据共享)3. 丙酮碘化过程中吸光度的测定:迅速混合,每隔1分钟记录光度计读数,记录至少15 分钟。
记住先加丙酮、碘,最后加盐酸!注意事项:比色皿的拿法和清洗;测量碘溶液标准曲线由低到高;移液管的使用:不要吹掉最后一滴;标准曲线法测定摩尔吸光系数,(每组配一种浓度,共5个浓度,在一台仪器上测出吸光度,数据共享);锥形瓶上的体积是粗刻度,要以移液管所取的体积为准;溶液数目多,制备溶液时防止加错体积。
五、实验数据处理摩尔吸光系数的测定碘瓶编号1234H2O/ml25252030HCl溶液/ml5101010丙酮溶液/ml105105碘溶液/ml1010105C(HCl)/mol*L-1C(丙酮) / mol*L-1C(I2)/mol*L-1A(反应开始后测定一次/分)0 1 2 3V(ml)/25 ml C(I2)/mol*L-1A 2456845678910111213141.做标准曲线,求出碘溶液摩尔吸光系数。
A=εbc b=3cm ε= A/bc=* mol-1 *cm-12.利用丙酮碘化过程中吸光度的测定数据,以A对时间作图,求得四条直线,由各直线斜率分别计算反应速率r1,r2,r3,r4,由公式计算r=-(dA/dt)/ εb计算得:ε= A/bc=* mol-1 *cm-1r1=*L-1*min-1,r2= e-5 mol*L-1*min-1r3=*L-1*min-1,r4= mol*L-1*min-13.由n B=(lg(r i/r j))/lgm式计算丙酮,酸和碘的分级数,建立丙酮碘化反应速率方程式;α=(lg(r3/r2))/lg2= β=(lg(r3/r1))/lg2= γ=(lg(r4/r2))/lg2-1=r=-dC A/dt=-dC/dt= 分别计算1、2、3、和4号瓶中丙酮和酸的初始浓度,再根据-dC A/dt=-dC/dt= kC AαC HβCγ式计算四种不同初始浓度的反应速率常数,求其平均值α=≈1 β= ≈1 γ=≈0 r =kC A Ck1= e-4dm3*mol-1*min-1 ,k2=*mol-1*min-1k3=*mol-1*min-1 ,k4= e-4dm3*mol-1*min-1k(average)= e-4dm3*mol-1*min-1六、思考题1.动力学实验中,正确计算时间是很重要的实验关键。
本实验中,将丙酮溶液加入盛有I2和HCl溶液的碘瓶中时,反应即开始,而反应时间却以溶液混合均匀并注入比色皿中才开始计时,这样做对实验结果有无影响,为什么理论上有影响,但实际上几乎没有影响,理论系统误差小于千分之一。
而且反应刚开始会有很多不确定因素—反应液是否完全混匀、生成中间体浓度需要多长时间达到稳态近似法处理的条件d[M]/dt= 0 等。
2.本实验对于丙酮溶液和HCl的初始浓度相对于I2的初始浓度有何要求为什么?丙酮酸催化碘化反应的显著特点是,反应生成H+,而H+的反应级数β=1,反应进度增加H+增加,另一反应级数α=1的丙酮的浓度下降,由a+b值一定在a=b时,a*b有最大值。
即理论上碘瓶2、4中的反应一开始速度就是最大的,反应速度随反应进度ξ增大而减小,而碘瓶1、3中的反应是加速的。
由上表可知在C A>> C、C H>>C2及反应进程不大的条件下进行实验,可认为C A、C是不变的,反应速率恒定,I2浓度过高可能发生多元碘化。
3.本实验结果表明碘的浓度对反应速率有何影响据此推测反应机理。
在碘的浓度不是低到不能发生反应或高到引起其他效应的的情况下,碘的浓度对反应速率影响可以忽略,酸催化反应机理:七、实验讨论1.反应产物对有作用的称为自催化反应。
在自催化反应中,反应速率既受反应物浓度的影响,又受反应产物浓度的影响。
在此反应中酸是反应的催化剂,通常不加酸,因为只要反应一开始,就产生酸HI,此酸就可自动发生催化反应,因此反应还没有开始时,有一个诱导阶段,一但有一点酸产生,反应就很快进行。
自催化作用的特点是:1>反应开始进行得很慢(称诱导期),随着起催化作用的产物的积累反应速度迅速加快,而后因反应物的消耗反应速度下降;2>自催化反应必须加入微量产物才能启动;3>自催化反应必然会有一个最大反应速率出现。
2.反应第一步为丙酮烯醇化反应,其速率常数较小,第二步是烯醇碘化反应,它是一个快速的且能进行到底的反应。
烯醇碘化反应是整个反应的驱动力,使得反应可以顺利进行到底,而丙酮的烯醇化反应是决速步骤。
3.丙酮一元碘化后,由于引入的I的-I效应,使羰基氧上电子云密度降低,在质子化形成烯醇比未碘化时要困难一些,在C A>> C及反应不是太快的条件下反应只会生成一元碘代丙酮。
若是碱催化反应,一元碘化后,丙酮α-H的酸性会更强,更易被OH-夺取并进行碘化,最终生成三碘丙酮,OH-进攻羰基碳经加成消除机制生成黄色沉淀碘仿。
实验中当碘浓度较高时,丙酮可能会发生多元取代反应。
因此,应记录反应开始一段时间的反应速率,以减小实验误差。
碱催化反应机理:4.在链反应或其它连续反应中,由于自由基等中间产物极活泼,浓度低,寿命又短,可以近似地认为在反应达到稳定状态后,它们的浓度基本上不随时间而变化,即d[M]/dt= 0 (M表示中间产物),这样的处理方法叫做稳态近似法,实验中反应的中间体为烯醇负离子。
5.温度对反应速度有一定的影响,本实验在开始测定透光率后未考虑温度的影响。
如选择较大的比色皿和在不太低的气温条件下进行实验,在数分钟之内溶液的温度变化不大。
选择带有恒温夹套的分光光度计,并与超级恒温槽相连,保持反应温度,可降低温度变化对实验速率的影响,反应ΔS>0、ΔH<0。
反应速率常数与温度的依赖关系为k = Aexp ( - Ea/ RT),由Arrhenius公式可近似计算实验温度下的反应活化能Ea。
k(13℃)= e-4dm3*mol-1*min-1根据经验温度上升10℃反应速率约增加一倍1,k(23℃)≈*mol-1*min-1由ln(k1/k2)=Ea(T2-T1)/T1T2R可以粗算得Ea≈100KJ*mol-16.从实验中测得的吸光度第一个值在碘浓度一样的情况下的下降趋势说明,丙酮和碘在不加酸的条件下就开始反应,粗算得未加酸时的反应速率r= mol*L-1*min-1 ,约为加酸后反应速率的十分之一。
7.通过简单计算可得碘在水中的溶解度是L,实验中用的碘水是加入了KI以得到浓度较大的碘水,体系中存在着一个次要反应,即在溶液中存在着I2、I-和I3-的平衡: 其中I2和I3-都吸收可见光。
因此反应体系的吸光度不仅取决于I2的浓度而且与I3-的浓度有关。
根据朗伯-比尔定律知,在含有I3-和I2的溶液的总消光度ε可以表示为I3-和I2两部分消光度之和。
其中I2和I3-都吸收可见光。
因此反应体系的吸光度不仅取决于I2的浓度而且与I3-的浓度有关。
根据朗伯-比尔定律知,在含有I3-和I2的溶液的总消光度ε可以表示为I3-和I2两部分消光度之和而摩尔消光系数εI2和εI3-是入射光波长的函数。
在565nm这一特定的波长条件下,溶液的消光度E与总碘量(I2+I3-)成正比。
因此常数εd就可以由测定已知浓度碘溶液的总消光度E来求出了。
所以本实验应选择工作波长为565nm。
8.丙酮酸催化碘化反应可用于研究有机化学反应动力学的原因是,1.实验的系统误差很小,用最小二乘法对实验数据进行线性拟合,实验的系统误差会小于万分子一。
2.反应主要是熵驱动的ΔS>0,I-I、C-H键减去C-I 键能和I-、H+水合热后ΔH<0的数值不大,反应的热效应小;还有水的比热是最大的,反应热效应对体系的温度影响不大。
3.丙酮在水中的溶解度是无穷大,可以用水做溶剂,实验条件简单,若丙酮不溶于水,实验中要用有机溶剂,不能用无机酸等,实验就麻烦多了。