2020学年人教版高中数学必修一1.2.1函数的概念word教案
人教版高一数学必修1课件:1.2.1+函数的概念+情境互动课型
“八五”计划以来我国城镇居民恩格尔系数变化情况
时间(年) 城镇居 民恩格 尔系数 (﹪)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
(2) f ( 3)
1 x2
有意义的实数x的集合是{x|x≠-2},所以,这个函数
1 3 3 1; 3 2
2 f( ) 3
2 1 11 3 3 33 3 . 2 3 3 8 8 3 2 3
(3)因为a>0,所以f(a),f(a-1)有意义.
f (3) 3 3 2 7.
值域为 2,1, 4,7,13.
【总结提升】
初中各类函数的对应关系、定义域、值域分别是什么?
函数
正比例函数 反比例函数 一次函数
探究点1 函数的概念
观察下列三个实例有什么不同点和共同点? 1.炮弹的射高与时间的变化关系问题 一枚炮弹发射后,经过26s落到地面击中目标,炮 弹的射高为845m,且炮弹距地面的高度h(单位:m)随 时间t(单位:s)变化的规律为:h=130t-5t2.
这里,炮弹飞行时间t的变化范围是数集
A={t|0≤t≤26},炮弹距地面的高度h的变化范围是数
53.8
52.9
50.1
49.9
49.9Biblioteka 48.646.444.5
41.9
39.2
37.9
提示:
不同点
实例1是用解析式刻画变量之间的对应关系, 实例2是用图象刻画变量之间的对应关系, 实例3是用表格刻画变量之间的对应关系.
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2
第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
学年人教版高中数学必修一 教师用书word文件
1.1集__合1.1.1 集合的含义与表示 第一课时 集合的含义集合的概念[提出问题] 观察下列实例: (1)某公司的所有员工;(2)平面内到定点O 的距离等于定长d 的所有的点;(3)不等式组⎩⎪⎨⎪⎧x +1≥3,x 2≤9的整数解;(4)方程x 2-5x +6=0的实数根; (5)某中学所有较胖的同学.问题1:上述实例中的研究对象各是什么? 提示:员工、点、整数解、实数根、较胖的同学. 问题2:你能确定上述实例的研究对象吗? 提示:(1)(2)(3)(4)的研究对象可以确定.问题3:上述哪些实例的研究对象不能确定?为什么?提示:(5)的研究对象不能确定,因为“较胖”这个标准不明确,故无法确定. [导入新知] 元素与集合的概念 定义表示元素 一般地,我们把研究对象统称为元素 通常用小写拉丁字母a ,b ,c ,…表示 集合把一些元素组成的总体叫做集合(简称为集)通常用大写拉丁字母A ,B ,C ,…表示[化解疑难]准确认识集合的含义(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.(2)集合含义中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.元素的特性及集合相等[提出问题]问题1:“知识点一”中的实例(3)组成的集合的元素是什么?提示:2,3.问题2:“知识点一”中的实例(4)组成的集合的元素是什么?提示:2,3.问题3:“知识点一”中的实例(3)与实例(4)组成的集合有什么关系?提示:相等.[导入新知]1.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.集合元素的特性集合元素的特性:确定性、互异性、无序性.[化解疑难]对集合中元素特性的理解(1)确定性:作为一个集合的元素必须是明确的,不能确定的对象不能构成集合.也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.(2)互异性:对于给定的集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如由1,2,3构成的集与3,2,1构成的集合是同一个集合.元素与集合的关系及常用数集的记法[提出问题]某中学2017年高一年级20个班构成一个集合.问题1:高一(6)班、高一(16)班是这个集合中的元素吗?提示:是这个集合的元素.问题2:高二(3)班是这个集合中的元素吗?为什么? 提示:不是.高一年级这个集合中没有高二(3)班这个元素. [导入新知]1.元素与集合的关系(1)如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . (2)如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A . 2.常用的数集及其记法常用的数集 自然数集正整数集 整数集 有理数集实数集 记法NN *或N +ZQR[化解疑难]1.对“∈”和“∉”的理解(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a 与一个集合A 而言,只有“a ∈A ”与“a ∉A ”这两种结果.(2)“∈”和“∉”具有方向性,左边是元素,右边是集合,形如R ∈0是错误的. 2.常用数集关系网集合的基本概念[例1] (1)上到点A 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数是( )A .2B .3C .4D .5(2)判断下列说法是否正确,并说明理由. ①某个公司里所有的年轻人组成一个集合; ②由1,32,64,⎪⎪⎪⎪-12,12组成的集合有五个元素;③由a ,b ,c 组成的集合与由b ,a ,c 组成的集合是同一个集合.[解] (1)选A “接近于0的数”“比较小的正整数”标准不明确,即元素不确定,所以①②不是集合.同样,“2的近似值”也不明确精确到什么程度,因此很难判定一个数,比如2是不是它的近似值,所以⑤也不是一个集合.③④能构成集合.(2)①不正确.因为“年轻人”没有确定的标准,对象不具有确定性,所以不能组成集合. ②不正确.由于32=64,⎪⎪⎪⎪-12=12,由集合中元素的互异性知,这个集合是由1,32,12这三个元素组成的.③正确.集合中的元素相同,只是次序不同,但它们仍表示同一个集合. [类题通法]判断一组对象能否组成集合的标准及其关注点(1)标准:判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.(2)关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性和无序性.[活学活用]判断下列每组对象能否构成一个集合. (1)著名的数学家;(2)某校2017年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解; (5)平面直角坐标系内第一象限的一些点.解:(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合.(2)与(1)类似,也不能构成集合.(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)类似于(3),也能构成集合.(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.元素与集合的关系[例2](1)设集合A只含有一个元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A(2)下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2C.3 D.4[解析](1)由元素与集合的关系可知,a∈A.(2)①π∈R显然是正确的;②3是无理数,而Q表示有理数集,∴3∉Q,正确;③N*表示不含0的自然数集,∴0∉N*,③错误;④|-4|=4∈N*,④错误,所以①②是正确的.[答案](1)C(2)B[类题通法]判断元素与集合间关系的方法判断一个对象是否为某个集合的元素,就是判断这个对象是否具有这个集合的元素具有的共同特征.如果一个对象是某个集合的元素,那么这个对象必具有这个集合的元素的共同特征.[活学活用]给出下列说法:①R中最小的元素是0;②若a∈Z,则-a∉Z;③若a∈Q,b∈N*,则a+b∈Q.其中正确的个数为()A.0B.1C.2 D.3解析:选B实数集中没有最小的元素,故①不正确;对于②,若a∈Z,则-a也是整数,故-a∈Z,所以②也不正确;只有③正确.集合中元素的特性及应用[例3]已知集合A中含有两个元素a和a,若1∈A,求实数a的值.[解]若1∈A,则a=1或a2=1,即a=±1.当a =1时,a =a 2,集合A 中有一个元素,∴a ≠1. 当a =-1时,集合A 中含有两个元素1,-1,符合互异性.∴a =-1. [类题通法]关注元素的互异性根据集合中元素的确定性,可以解出字母的所有可能取值,但要时刻关注集合中元素的三个特性,尤其是互异性,解题后要注意进行检验.[活学活用]已知集合A 中含有三个元素1,0,x ,若x 2∈A ,求实数x 的值.解:∵x 2∈A ,∴x 2是集合A 中的元素.又∵集合A 中含有3个元素,∴需分情况讨论:①若x 2=0,则x =0,此时集合A 中有两个元素0,不符合互异性,舍去;②若x 2=1,则x =±1.当x =1时,此时集合A 中有两个元素1,舍去;当x =-1时,此时集合A 中有三个元素1,0,-1,符合题意;③若 x 2=x ,则x =0或x =1,不符合互异性,都舍去.综上可知,x =-1.1.警惕集合元素的互异性[典例] 若集合A 中有三个元素x ,x +1,1,集合B 中也有三个元素x ,x 2+x ,x 2,且A =B ,则实数x 的值为________.[解析] ∵A =B ,∴⎩⎪⎨⎪⎧ x +1=x 2,1=x 2+x 或⎩⎪⎨⎪⎧x +1=x 2+x ,1=x 2.解得x =±1.经检验,x =1不适合集合元素的互异性,而x =-1适合. ∴x =-1. [答案] -1 [易错防范]1.上面例题易由方程组求得x=±1后,忽视对求出的值进行检验,从而得出错误的结论.2.当集合中元素含字母并要求对其求值时,求出的值一定要加以检验,看是否符合集合元素的互异性.[成功破障]若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.解析:①若a-3=-3,则a=0,此时A={-3,-1,-4},满足题意.②若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.③若a2-4=-3,则a=±1.当a=1时,A={-2,1,-3},满足题意;当a=-1时,由②知不合题意.综上可知a=0或a=1.答案:0或1[随堂即时演练]1.下列选项中能构成集合的是()A.高一年级跑得快的同学B.中国的大河C.3的倍数D.有趣的书籍解析:选C根据集合的定义,选项A,B,D都不具备确定性.2.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是() A.梯形B.平行四边形C.菱形D.矩形解析:选A由于a,b,c,d四个元素互不相同,故它们组成的四边形的四条边都不相等.3.有下列说法:①集合N与集合N*是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的有________(填序号).解析:因为集合N*表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④4.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=________.解析:代入验证,若a=2,则6-2=4∈A,符合题意;若a=4,则6-4=2∈A,符合题意;若a=6,则6-6=0∉A,不符合题意,舍去.所以a=2或a=4.答案:2或45.已知集合A中含有两个元素x,y,集合B中含有两个元素0,x2,若A=B,求实数x,y的值.解:因为集合A,B相等,则x=0或y=0.①当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.②当y=0时,x=x2,解得x=0或x=1.由①知x=0应舍去.综上知x=1,y=0.[课时达标检测]一、选择题1.下列判断正确的个数为()(1)所有的等腰三角形构成一个集合.(2)倒数等于它自身的实数构成一个集合.(3)素数的全体构成一个集合.(4)由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3 D.4解析:选C(1)正确;(2)若1a=a,则a2=1,∴a=±1,构成的集合为{1,-1},∴(2)正确;(3)也正确,任何一个素数都在此集合中,不是素数的都不在;(4)不正确,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故选C.2.设不等式3-2x <0的解集为M ,下列正确的是( ) A .0∈M,2∈M B .0∉M,2∈M C .0∈M,2∉MD .0∉M,2∉M解析:选B 从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M .3.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x ≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于选项A 中P ,Q 元素完全相同,所以P 与Q 表示同一个集合,而选项B ,C ,D 中元素不相同,所以P 与Q 不能表示同一个集合.4.已知集合M 中的元素x 满足x =a +b 2,其中a ,b ∈Z ,则下列实数中不属于集合M 中元素的个数是( )①0;②-1;③32-1;④23-22;⑤8;⑥11-2. A .0 B .1 C .2 D .3解析:选A 当a =b =0时,x =0;当a =-1,b =0时,x =-1;当a =-1,b =3时,x =-1+32;23-22=2(3+22)(3-22)(3+22)=6+42,即a =6,b =4;当a =0,b =2时,x=22=8;11-2=1+2(1-2)(1+2)=-1-2,即a =-1,b =-1.综上所述:0,-1,32-1,23-22,8,11-2都是集合M 中的元素.5.由实数-a ,a ,|a |,a 2所组成的集合最多含有________个元素.( ) A .1 B .2 C .3D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a ≠0时,a 2=|a |=⎩⎪⎨⎪⎧a ,a >0,-a ,a <0,所以一定与a 或-a 中的一个一致.故组成的集合中最多有两个元素.二、填空题6.方程x 2-2x -3=0的解集与集合A 相等,若集合A 中的元素是a ,b ,则a +b =________.解析:∵方程x 2-2x -3=0的解集与集合A 相等, ∴a ,b 是方程x 2-2x -3=0的两个根, ∴a +b =2. 答案:27.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b ______A ,ab _____A .(填“∈”或“∉”)解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A . 答案:∉ ∈8.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A ,且3a ∈A ,则a 的值为________.解析:∵a ∈A ,且3a ∈A ,∴⎩⎪⎨⎪⎧a <6,3a <6, 解得a <2. 又∵a ∈N , ∴a =0或a =1. 答案:0或1 三、解答题9.已知集合M 由三个元素-2,3x 2+3x -4,x 2+x -4组成,若2∈M ,求x . 解:当3x 2+3x -4=2时,即x 2+x -2=0,x =-2或x =1,经检验,x =-2,x =1均不合题意;当x 2+x -4=2时,即x 2+x -6=0,x =-3或x =2,经检验,x =-3或x =2均合题意.∴x =-3或x =2.10.设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解:(1)由集合中元素的互异性可知,x ≠3,且x ≠x 2-2x ,x 2-2x ≠3. 解得x ≠-1且x ≠0,且x ≠3. (2)∵-2∈A ,∴x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, ∴x =- 2.11.数集M 满足条件:若a ∈M ,则1+a1-a∈M (a ≠±1且a ≠0).若3∈M ,则在M 中还有三个元素是什么?解:∵3∈M , ∴1+31-3=-2∈M , ∴1+(-2)1-(-2)=-13∈M ,∴1+⎝⎛⎭⎫-131-⎝⎛⎭⎫-13=2343=12∈M .又∵1+121-12=3∈M ,∴在M 中还有元素-2,-13,12.12.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面两小题的解答过程中,你能悟出什么道理?并大胆证明你发现的这个“道理”.解:根据已知条件“若a ∈A ,则11-a ∈A (a ≠1)”逐步推导得出其他元素.(1)其他所有元素为-1,12.(2)假设-2∈A ,则13∈A ,则32∈A .其他所有元素为13,32.(3)A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1.证明如下:由已知,若a ∈A ,则11-a ∈A 知,11-11-a =a -1a ∈A ,11-a -1a =a ∈A .故A 中只能有a ,11-a,a -1a 这3个元素.下面证明三个元素的互异性:若a =11-a ,则a 2-a +1=0有解,因为Δ=1-4=-3<0,所以方程无实数解,故a ≠11-a. 同理可证,a ≠a -1a ,11-a≠a -1a .结论得证.第二课时 集合的表示列举法[提出问题] 观察下列集合:(1)中国古代四大发明组成的集合; (2)20的所有正因数组成的集合.问题1:上述两个集合中的元素能一一列举出来吗?提示:能.(1)中的元素为造纸术、印刷术、指南针、火药,(2)中的元素为1,2,4,5,10,20. 问题2:如何表示上述两个集合? 提示:用列举法表示.[导入新知]列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.[化解疑难]使用列举法表示集合的四个注意点(1)元素间用“,”分隔开,其一般形式为{a1,a2,…,a n};(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含有有限个元素且个数较少的集合,采取该方法较合适;若元素个数较多或有无限个且集合中的元素呈现一定的规律,在不会产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.描述法[提出问题]观察下列集合:(1)不等式x-2≥3的解集;(2)函数y=x2-1的图象上的所有点.问题1:这两个集合能用列举法表示吗?提示:不能.问题2:如何表示这两个集合?提示:利用描述法.[导入新知]描述法(1)定义:用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[化解疑难]1.描述法表示集合的条件对于元素个数不确定且元素间无明显规律的集合,不能将它们一一列举出来,可以将集合中元素的共同特征描述出来,即采用描述法.2.描述法的一般形式它的一般形式为{x∈A|p(x)},其中的x表示集合中的代表元素,A指的是元素的取值范围;p(x)则是表示这个集合中元素的共同特征,其中“|”将代表元素与其特征分隔开来.一般来说,集合元素x 的取值范围A 需写明确,但若从上下文的关系看,x ∈A 是明确的,则x ∈A 可以省略,只写元素x .用列举法表示集合[例1] (1)设集合A ={1,2,3},B ={1,3,9},若x ∈A 且x ∉B ,则x =( ) A .1 B .2 C .3D .9(2)用列举法表示下列集合:①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[解] 选B (1)∵x ∈A , ∴x =1,2,3.又∵x ∉B ,∴x ≠1,3,9,故x =2.(2)①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集合是{0,2,4,6,8,10}.②方程x 2=x 的实数解是x =0或x =1,所以方程x 2=x 的所有实数解组成的集合为{0,1}. ③将x =0代入y =2x +1,得y =1,即交点是(0,1),故直线y =2x +1与y 轴的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.[类题通法]用列举法表示集合的步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.[活学活用]已知集合A={-2,-1,0,1,2,3},对任意a∈A,有|a|∈B,且B中只有4个元素,求集合B.解:对任意a∈A,有|a|∈B.因为集合A={-2,-1,0,1,2,3},由-1,-2,0,1,2,3∈A,知0,1,2,3∈B.又因为B中只有4个元素,所以B={0,1,2,3}.用描述法表示集合[例2](1)①A={x|x2-x=0},则1____A,-1____A;②(1,2)________{(x,y)|y=x+1}.(2)用描述法表示下列集合:①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.[解](1)①将1代入方程,成立;将-1代入方程,不成立.故1∈A,-1∉A.②将x=1,y=2代入y=x+1,成立,故填“∈”.(2)①偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,故限定n∈N*,所以正偶数集可表示为{x|x=2n,n∈N*}.②设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故x=3n+2,n∈N.所以被3除余2的正整数集合可表示为{x|x=3n+2,n∈N}.③坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.[答案](1)①∈∉②∈[类题通法]利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x ∈R|x <1}不能写成{x <1}.(2)所有描述的内容都要写在花括号内.例如,{x ∈Z|x =2k },k ∈Z ,这种表达方式就不符合要求,需将k ∈Z 也写进花括号内,即{x ∈Z|x =2k ,k ∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x 2-2x +1=0的实数解集可表示为{x ∈R|x 2-2x +1=0},也可写成{x |x 2-2x +1=0}.(5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等. [活学活用] 下列三个集合: ①A ={x |y =x 2+1}; ②B ={y |y =x 2+1}; ③C ={(x ,y )|y =x 2+1}. (1)它们是不是相同的集合? (2)它们各自的含义分别是什么?解:(1)由于三个集合的代表元素互不相同,故它们是互不相同的集合.(2)集合A ={x |y =x 2+1}的代表元素是x ,且x ∈R ,所以{x |y =x 2+1}=R ,即A =R ;集合B ={y |y =x 2+1}的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以{y |y =x 2+1}={y |y ≥1}.集合C ={(x ,y )|y =x 2+1}的代表元素是(x ,y ),是满足y =x 2+1的数对.可以认为集合C 是坐标平面内满足y =x 2+1的点(x ,y )构成的集合,其实就是抛物线y =x 2+1的图象.集合表示的应用[例3] (1)集合A ) A .{x |x =2n ±1,n ∈N} B .{x |x =(-1)n (2n -1),n ∈N} C .{x |x =(-1)n (2n +1),n ∈N} D .{x |x =(-1)n -1(2n +1),n ∈N}(2)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪62+x ∈N .①试判断元素1,2与集合B 的关系; ②用列举法表示集合B .[解] 选C (1)观察规律,其绝对值为奇数排列,且正负相间,且第一个为正数,故应选C.(2)①当x =1时,62+1=2∈N ; 当x =2时,62+2=32∉N.所以1∈B,2∉B . ②∵62+x∈N ,x ∈N , ∴2+x 只能取2,3,6.∴x 只能取0,1,4.∴B ={0,1,4}. [类题通法]判断元素与集合间关系的方法(1)用列举法给出的集合,判断元素与集合的关系时,观察即得元素与集合的关系. 例如,集合A ={1,9,12},则0∉A,9∈A .(2)用描述法给出的集合,判断元素与集合的关系时就比较复杂.此时,首先明确该集合中元素的一般符号是什么,是实数?是方程?…,其次要清楚元素的共同特征是什么,最后往往利用解方程的方法判断所给元素是否满足集合中元素的特征,即可确定所给元素与集合的关系.[活学活用]用列举法表示集合A ={(x ,y )|y =x 2,-1≤x ≤1,且x ∈Z}. 解:由-1≤x ≤1,且x ∈Z ,得x =-1,0,1,当x =-1时,y =1;当x =0时,y =0;当x =1时,y =1. ∴A ={(-1,1),(0,0),(1,1)}.1.集合与方程的综合应用[典例] 集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,求a 的取值范围.[解]当a=0时,原方程变为2x+1=0,,符合题意;此时x=-12当a≠0时,方程ax2+2x+1=0为一元二次方程,当Δ=4-4a=0,即a=1时,原方程的解为x=-1,符合题意.故当a=0或a=1时,原方程只有一个解,此时A中只有一个元素.[多维探究]解答上面例题时,a=0这种情况极易被忽视,对于方程“ax2+2x+1=0”有两种情况:一是a=0,即它是一元一次方程;二是a≠0,即它是一元二次方程,也只有在这种情况下,才能用判别式Δ来解决问题.求解集合与方程问题时,要注意相关问题的求解,如:1.在本例条件下,若A中至多有一个元素,求a的取值范围.解:A中至多有一个元素,即A中有一个元素或没有元素.当A中只有一个元素时,由例题可知,a=0或a=1.当A中没有元素时,Δ=4-4a<0,即a>1.故当A中至多有一个元素时,a的取值范围为{a|a=0或a≥1}.2.在本例条件下,若A中至少有一个元素,求a的取值范围.解:A中至少有一个元素,即A中有一个或两个元素.由例题可知,当a=0或a=1时,A中有一个元素;当A中有两个元素时,Δ=4-4a>0,即a<1.∴A中至少有一个元素时,a的取值范围为{a|a≤1}.3.若1∈A,则a为何值?解:∵1∈A,∴a+2+1=0,即a=-3.4.是否存在实数a,使A={1},若存在,求出a的值;若不存在,说明理由.解:∵A={1},∴1∈A,∴a+2+1=0,即a=-3.又当a=-3时,由-3x2+2x+1=0,得x=-1或x=1,3即方程ax 2+2x +1=0存在两个根-13和1,此时A =⎩⎨⎧⎭⎬⎫-13,1,与A ={1}矛盾.故不存在实数a ,使A ={1}.[随堂即时演练]1.方程组⎩⎪⎨⎪⎧x +y =1,x 2-y 2=9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D 解方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧x =5,y =-4,故解集为{(5,-4)}.2.下列四个集合中,不同于另外三个的是( ) A .{y |y =2} B .{x =2}C .{2}D .{x |x 2-4x +4=0}解析:选B 集合{x =2}表示的是由一个等式组成的集合,其他选项所表示的集合都是含有一个元素2.3.给出下列说法:①平面直角坐标内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{2,-2}; ③集合{(x ,y )|y =1-x }与集合{x |y =1-x }是相等的. 其中正确的是________(填序号).解析:直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧x =2,y =-2,解为有序实数对(2,-2),解集为{(2,-2)}或⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧ x =2,y =-2,故②不正确; 集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,前者是有序实数对,后者是实数,因此这两个集合不相等,故③不正确.答案:①4.已知A={-1,-2,0,1},B={x|x=|y|,y∈A},则B=________.解析:∵|-1|=1,|-2|=2,且集合中的元素具有互异性,∴B={0,1,2}.答案:{0,1,2}5.用适当的方法表示下列集合:(1)一年中有31天的月份的全体;(2)大于-3.5小于12.8的整数的全体;(3)梯形的全体构成的集合;(4)所有能被3整除的数的集合;(5)方程(x-1)(x-2)=0的解集;(6)不等式2x-1>5的解集.解:(1){1月,3月,5月,7月,8月,10月,12月}.(2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}.(3){x|x是梯形}或{梯形}.(4){x|x=3n,n∈Z}.(5){1,2}.(6){x|x>3}.[课时达标检测]一、选择题1.下列集合的表示,正确的是()A.{2,3}≠{3,2}B.{(x,y)|x+y=1}={y|x+y=1}C.{x|x>1}={y|y>1}D.{(1,2)}={(2,1)}解析:选C{2,3}={3,2},故A不正确;{(x,y)|x+y=1}中的元素为点(x,y),{y|x+y =1}中的元素为实数y,{(x,y)|x+y=1}≠{y|x+y=1},故B不正确;{(1,2)}中的元素为点(1,2),而{(2,1)}中的元素为点(2,1),{(1,2)}≠{(2,1)},故D不正确.2.已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M解析:选D 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M .当x ,y ,z 都小于零时,代数式的值为-4,所以-4∈M .当x ,y ,z 有两个为正,一个为负时,或两个为负,一个为正时,代数式的值为0.所以0∈M .综上知选D.3.集合{x ∈N *|x -3<2}的另一种表示法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:选B ∵x -3<2,x ∈N *, ∴x <5,x ∈N *, ∴x =1,2,3,4.4.已知集合A ={x |x =2m -1,m ∈Z},B ={x |x =2n ,n ∈Z},且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( )A .x 1·x 2∈AB .x 2·x 3∈BC .x 1+x 2∈BD .x 1+x 2+x 3∈A 解析:选D 集合A 表示奇数集,B 表示偶数集, ∴x 1,x 2是奇数,x 3是偶数,∴x 1+x 2+x 3应为偶数,即D 是错误的.5.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C 由题意知集合P *Q 的元素为点,当a =1时,集合P *Q 的元素为:(1,4),(1,5),(1,6),(1,7),(1,8)共5个元素.同样当a =2,3时,集合P *Q 的元素个数都为5个,当a =4时,集合P *Q 中元素为:(4,5),(4,6),(4,7),(4,8)共4个.因此P *Q 中元素的个数为19.二、填空题6.若集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则a -b =________.解析:由题意知a ≠0,a +b =0,b =1,则a =-1, 所以a -b =-2. 答案:-27.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:∵1∉{x |2x +a >0}, ∴2×1+a ≤0,即a ≤-2. 答案:{a |a ≤-2}8.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________. 解析:由-5∈{x |x 2-ax -5=0},得(-5)2-a ×(-5)-5=0,所以a =-4,所以{x |x 2-4x +4=0}={2},所以集合中所有元素之和为2.答案:2 三、解答题9.已知集合A ={a +3,(a +1)2,a 2+2a +2},若1∈A ,求实数a 的值. 解:①若a +3=1,则a =-2,此时A ={1,1,2},不符合集合中元素的互异性,舍去. ②若(a +1)2=1,则a =0或a =-2. 当a =0时,A ={3,1,2},满足题意; 当a =-2时,由①知不符合条件,故舍去. ③若a 2+2a +2=1,则a =-1, 此时A ={2,0,1},满足题意. 综上所述,实数a 的值为-1或0. 10.用适当的方法表示下列集合: (1)比5大3的数;(2)方程x 2+y 2-4x +6y +13=0的解集;(3)二次函数y =x 2-10的图象上的所有点组成的集合. 解:(1)比5大3的数显然是8,故可表示为{8}.(2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎪⎨⎪⎧x =2,y =-3,∴方程的解集为{(2,-3)}.(3)“二次函数y =x 2-10的图象上的所有点”用描述法表示为{(x ,y )|y =x 2-10}.11.(1)已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪61+x ∈Z ,求M ;(2)已知集合C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎪⎪61+x∈Z x ∈N ,求C . 解:(1)∵x ∈N ,61+x ∈Z ,∴1+x 应为6的正约数. ∴1+x =1,2,3,6,即x =0,1,2,5. ∴M ={0,1,2,5}. (2)∵61+x ∈Z ,且x ∈N ,∴1+x 应为6的正约数,∴1+x =1,2,3,6,此时61+x 分别为6,3,2,1,∴C ={6,3,2,1}.12.若集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎩⎪⎨⎪⎧y =kx 2-2x -1,y =0有且只有一个元素,试求出实数k 的值,并用列举法表示集合A .解:当k =0时,方程组⎩⎪⎨⎪⎧ y =kx 2-2x -1,y =0可化为⎩⎪⎨⎪⎧y =-2x -1,y =0,解得⎩⎪⎨⎪⎧x =-12,y =0,此时集合A 为-12,0;当k ≠0时,要使集合A 有且只有一个元素,则方程kx 2-2x -1=0有且只有一个根,所以⎩⎪⎨⎪⎧k ≠0,Δ=(-2)2+4k =0,解得k =-1,代入⎩⎪⎨⎪⎧y =kx 2-2x -1,y =0中得⎩⎪⎨⎪⎧y =-x 2-2x -1,y =0, 解得⎩⎪⎨⎪⎧x =-1,y =0,即A ={(-1,0)}.综上可知,当k =0时,A =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫-12,0;当k =-1时,A ={(-1,0)}.1.1.2 集合间的基本关系子 集[提出问题]具有北京市东城区户口的人组成集合A ,具有北京市户口的人组成集合B . 问题1:集合A 中元素与集合B 有关系吗? 提示:有关系,集合A 中每一个元素都属于集合B . 问题2:集合A 与集合B 有什么关系? 提示:集合B 包含集合A . [导入新知] 子集的概念定义一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集记法与读法记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”)图示结论(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,若A⊆B,且B⊆C,则A⊆C[化解疑难]对子集概念的理解(1)集合A是集合B的子集的含义是:集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B.例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A中存在着不是集合B的元素,那么集合A不包含于B,或B不包含A,此时记作A B或B⊉A.(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N,而不能写成{0}∈N;“∈”只能用于元素与集合之间,如0∈N,而不能写成0⊆N.集合相等[提出问题]设A={x|x是有三条边相等的三角形},B={x|x是等边三角形}.问题1:三边相等的三角形是何三角形?提示:等边三角形.问题2:两集合中的元素相同吗?提示:相同.问题3:A是B的子集吗?B是A的子集吗?提示:是.是.[导入新知]集合相等的概念如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.[化解疑难]对两集合相等的认识。
高一数学必修一1.2.1函数的概念_课件
例2 在下列各组函数中 f ( x)与 g ( x)是否相等?为 什么?
x (1) f ( x) 与g(x)=1; x (2)f ( x) x 与g ( x) ( x ) ;
2 2
(3) f ( x) x 1 1 x与g ( x) 1 x ;
2
(4) f ( x) x 2 x 1与g (t ) t 2t 1.
知识探究(二)
近几十年来,大气层中的臭氧迅速减少,因而出 现了臭氧层空洞问题. 下图中的曲线显示了南极 上空臭氧层空洞的面积从1979~2001年的变化情 况.
S(106km2) 30 26 25 20 15 10 5 0 t(年) 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001
其中定义域与对应关系确定了值域(两个函数相等的条件: 定义每一个数都有定义域中的一个数与 正确 之对应 2、函数的定义域和值域一定是无限集合 不正确 3、定义域和对应关系确定后,函数值域也就确定 正确 4、若函数的定义域只有一个元素,则值域也只有一 个 元素 正确 5、对于不同的x , y的值也不同 不正确 6、f (a)表示当x = a时,函数f (x)的值,是一个常量 正确
t A t 0 t 26
h B h 0 h 845
思考3:两个变量通过什么实现对应的?是怎样对应 的 通过关系式h=130t-5t2实现对应的 对于集合A中任意一个时间t,按照对应关系h=130t5t2 在数集B中都有唯一的高度h与之对应 思考4:若只有变量t的范围,没有关系式h=130t-5t2, 能求出高度h的值吗? 不能 若只有关系式h=130t-5t2,没有变量t的范围,能确 定高度h的值吗? 不能 若变量t的变化范围确定,关系式也确定,那么高 度h的值能确定吗? 能
高一数学 1.2.1函数的概念教案-人教版高一全册数学教案
1.2.1函数的概念一、关于教学内容的思考教学任务:帮助学生认识函数的构成要素;明确函数的定义;理解定义域、对应关系、值域的含义;掌握判断两个函数是否相等的方法;正确使用区间表示定义域、值域; 教学目的:引导学生树立函数思想研究变量之间的关系。
教学意义:培养学生通过观察事物的表象,分析事物变化的本质,揭示变量之间内在相互联系、相互制约的关系。
二、教学过程1.在背景材料下,引出函数的定义:一般地,设A,B是非空的数集,如果按照某种确定的对应关系f ,使对于集合A中的任意一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A到集合B的一个函数,记作(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A叫做函数的定义域;与x 的值对应的y 值叫做函数值;函数值的集合{()|}f x x A ∈叫做函数的值域,值域是集合B的子集。
注意:两个非空数集;一对一或多对一;集合A中的任意一个数已知R x ∈,在解析式x y x y x y 2,|||,|2===中,哪些可以成为函数的解析式? 2.一个函数的构成要素:定义域、对应关系和值域。
3.函数相等具备的条件:定义域、对应关系完全一致。
4.对应关系常见形式:①解析法②图象法③列表法5.理解和正确使用区间符号:),(],,(),,(),,[),,(),,[],,(],,[b b a a b a b a b a b a -∞-∞+∞+∞ 注意:对区间[,],(,],[,),(,)a b a b a b a b 来说,(前提条件b a <)6.求函数定义域:①由问题的实际背景确定;②能使解析式有意义的实数的集合。
注意:通过解析式求定义域,无需化简,应注意自变量取值的等价性。
7.掌握常数函数、一元一次函数、一元二次函数、反比例函数的值域情况。
三、教材节后练习(可以在课堂上随着教学内容穿插进行)四、教学备用例子 1.已知函数15)(2+=x x x f ,若2)(=a f ,则=a 。
【优化课堂】高一数学人教A版必修1 学案:第一章 1.2.1 函数的概念 Word版含答案[ 高考]
1.2函数及其表示1.2.1函数的概念[学习目标] 1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)2.了解构成函数的要素,会求一些简单函数的定义域和值域(重点).3.能够正确使用区间表示数集.(易混点)一、函数的有关概念f,使对于集合A中的任意的一个数x,在集合B中都有唯一确定的数f(x)和它对应结论称f:A―→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A 相关概念定义域x的取值范围A值域函数值的集合{}f(x)|x∈A二、两个函数相等的条件1.定义域相同;2.对应关系完全一致.三、区间的概念及表示1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示1.判断(正确的打“√”,错误的打“×”) (1)函数的定义域和值域一定是无限集合.( )(2)根据函数有定义,定义域中的一个x 可以对应着不同的y .( ) (3)f (a )表示当x =a 时函数f (x )的值,是一个常量.( ) 【答案】 (1)× (2)× (3)√ 2.已知f (x )=x +1,则f (3)=( )A .2B .4C .±6D .10 【解析】 ∵f (x )=x +1,∴f (3)=3+1=2.【答案】 A 3.函数f (x )=11-2x有定义域是________(用区间表示). 【解析】 由题意,需1-2x >0,解得x <12.故f (x )的定义域为⎝⎛⎭⎫-∞,12. 【答案】 ⎝⎛⎭⎫-∞,12 4.集合{}x |1<x ≤10用区间表示为________. 【解析】 集合{}x |1<x ≤10用区间表示为(1,10]. 【答案】 (1,10]预习完成后,请把你认为难以解决的问题记录在下面的表格中(1)(2014·长沙高一检测)设M =x -2≤x ≤2,N =}y 0≤y ≤2,函数y =f (x )的定义域为M ,值域为N ,对于下列四个图象,可作为函数y =f (x )的图象为( )(2)下列函数中,f (x )与g (x )相等的是( ) A .f (x )=x ,g (x )=(x )2 B .f (x )=x ,g (x )=x 2 C .f (x )=x +2,g (x )=x 2-4x -2D .f (x )=x ,g (x )=3x 3 (3)判断下列对应是否为函数. ①A =R ,B =R ,f :x →y =1x 2;②A =N ,B =R ,f :x →y =±x ; ③A =N ,B =N *,f :x →y =|x -2|;④A ={1,2,3},B =R ,f (1)=f (2)=3,f (3)=4.【解析】 (1)由函数定义可知任意作一条直线x =a 与函数图象至多有一个交点,故选项C 错误.由题设定义域中有元素-2,2知选项A 错误.由值域为{}y |0≤y ≤2知选项B 错误. (2)对于A ,f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{}x |x ≥0,两函数的定义域不相同,所以不是相等函数;对于B ,g (x )=x 2=|x |,与f (x )=x 的对应关系不相同,所以不是相等函数;对于C ,g (x )=x 2-4x -2=x +2(x ≠2),与f (x )=x +2的定义域不同,所以不是相等函数;对于D ,g(x)=3x3=x,与f(x)=x的对应关系和定义域都相同,所以是相等函数,故选D.【答案】(1)D(2)D(3)①因为A=R,B=R,对于A中的元素x=0,在对应关系f:x→y=1x2之下,在B 中没有元素与之对应,因而不能构成函数.②对于A中的元素,如x=9,y的值为y=±9=±3,即在对应关系f之下,B中有两个元素与之对应,不符合函数定义,故不能构成函数.③对于A中的元素x=2,在对应关系f的作用下,|2-2|=0∉B,从而不能构成函数.④依题意,f(1)=f(2)=3,f(3)=4,即A中的每一个元素在对应关系f之下,在B中都有唯一的元素与之对应,虽然B中有很多元素在A中无元素与之对应,但依函数的定义,仍能构成函数.1.判断一个对应关系是否为函数的步骤:(1)判断A,B是否是非空数集;(2)判断A中任一元素在B中是否有元素与之对应;(3)判断A是任一元素在B中是否有唯一确定的元素与之对应.2.判断函数是否相同的步骤:(1)看定义域是否相同;(2)看对应关系是否相同;(3)下结论.(1)f(x)=1x-2;(2)f(x)=3x+2;(3)f(x)=x+1+12-x.【思路探究】解答本题可根据函数解析式的结构特点,构造使解析式有意义的不等式(组),进而解不等式求解.【解】 (1)∵x ≠2时,分式1x -2有意义,∴这个函数的定义域是{}x |x ≠2. (2)∵3x +2≥0,即x ≥-23时,根式3x +2才有意义,∴这个函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-23. (3)∵要使函数有意义,必须⎩⎪⎨⎪⎧x +1≥02-x ≠0⇒⎩⎪⎨⎪⎧x ≥-1,x ≠2.∴这个函数的定义域是{}x |x ≥-1且x ≠2.1.求解析式给出的函数的定义域就是求使函数表达式有意义的自变量的取值集合.已知函数y =f (x ):(1)若f (x )为整式,则定义域为R ;(2)若f (x )为分式,则定义域是使分母不为零的实数的集合;(3)若f (x )是偶次根式,那么函数的定义域是根号内的式子不小于零的实数的集合; (4)若f (x )是由几个部分的数字式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合;5.若f (x )是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.(2014·济宁高一检测)函数y =1-x2x 2-3x -2定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫-12,1 D.⎝⎛⎫-∞,-12∪⎝⎛⎦⎤-12,1 【解析】 要使函数y =1-x 2x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,即⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2,所以x ≤1且x ≠-12,故选D.【答案】 Df (2x +1)的定义域;(2)已知函数f (2x +1)的定义域为[1,3],求函数f (x )的定义域.【思路探究】 (1)函数f (2x +1)的自变量是x ,而非2x +1,解不等式1≤2x +1≤3即可.(2)函数f (2x +1)的自变量是x ,本题实质是知1≤x ≤3,求2x +1的取值范围. 【解】 (1)∵函数f (x )的定义域为[1,3],即x ∈[1,3],函数f (2x +1)中2x +1的范围与函数f (x )中x 的范围相同,∴2x +1∈[1,3],∴x ∈[0,1], 即函数f (2x +1)的定义域是[0,1]. (2)∵x ∈[1,3],∴2x +1∈[3,7], 即函数 f (x )的定义域是[3,7].若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.已知函数f (x )的定义域为(0,1),则f (2x )的定义域为__________.【解析】 因为f (x )的定义域为(0,1),所以要使f (2x )有意义,须使0<2x <1,即0<x <12,所以函数f (2x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12.【答案】 ⎝⎛⎭⎫0,12已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.【思路探究】 (1)令x =2代入f (x ),g (x )→得出f (2),g (2) (2)求g (3)→求f [g (3)] 【解】 (1)∵f (x )=11+x ,∴f (2)=11+2=13, 又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)g (3)=32+2=11,∴f [g (3)]=f (11)=11+11=112.1.f (x )表示自变量为x 的函数,如f (x )=2x ,而f (a )表示的是当x =a 时的函数值,如f (x )=2x 中f (3)=2×3=6.2.求f {f [f (x )]}时,一般要遵循由里到外的原则.在题设条件不变的情况下,求g [f (3)]的值. 【解】 ∵f (3)=11+3=14, ∴g [f (3)]=g ⎝⎛⎭⎫14=⎝⎛⎭⎫142+2=3316.1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等,只须两个函数的定义域和对应关系一致即可.2.f(x)是函数符号,f表示对应关系,“y=f(x)”为“y是x的函数”这句话的数学表示,它仅仅是函数符号,并不表示“y等于f 与x的乘积”.3.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合,这是求某函数定义域的依据.相等函数判断中的误区下列各组函数相等函数的是()A.y=x+1与y=x2-1 x-1B.y=|x|+1和y=(x-1)2+1 C.y=2x和y=2x(x≤0) D.y=x2+1和y=t2+1【易错分析】 易失分点一:忽视函数定义域,误认为y =x 2-1x -1=x +1,而误选A.易失分点二:忽视对应关系,误认为定义域和值域相同就是相等函数,而误选B. 【防范措施】 1.判断函数相等时,对较为复杂的函数解析式的化简要慎重,注意其等价性,本例对选项A 中第二个函数解析式的化简易把定义域扩大,由解析式相同而误认为是相等函数.2.定义域相同,并且对应关系完全一致的两个函数才相等.【解析】 A 错误,由于函数y =x 2-1x -1中要求x -1≠0,即x ≠1,故两个函数的定义域不同,故不表示相等函数.B 错误,虽然定义域和值域相同,但对应关系不相同,因而不是相等函数.C 错误,显然定义域不同,因此不是相等函数.D 正确,虽然表示自变量的字母不同,但它们定义域和对应关系相同,因此是相等函数. 【答案】 D——[类题尝试]————————————————— 下列各组中的两个函数为相等函数的是( ) A .f (x )=x +1·x -1,g (x )=(x +1)(x -1) B .f (x )=(2x -5)2,g (x )=2x -5 C .f (x )=1-x x 2+1与g (x )=1+x x 2+1D .f (x )=(x )4x 与g (t )=⎝⎛⎭⎫t t 2 【解析】 A 中,f (x )=x +1·x -1的定义域为{x |x ≥1},g (x )=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},它们的定义域不相同;B 中,f (x )=(2x -5)2的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥52,g (x )=2x -5的定义域为R ,定义域不同,不是相等函数.C 中,f (x )=1-xx 2+1与g (x )=1+xx 2+1的对应关系不同,不相等.D 中,f (x )=(x )4x =x (x>0)与g (x )=⎝⎛⎭⎫t t 2=t (t >0)的定义域与对应关系都相同,它们相等.【答案】 D。
人教版高中数学必修一《函数概念》教学设计
《1.2.1函数的概念》
教学设计
《函数的概念》的教学设计
一、教学目标
知识与技能——通过函数概念这节课的学习,了解函数的定义及其三要素,掌握区间的符号表
示,会求简单函数的定义域和值域。
培养学生分析、判断、抽象、归纳概括的逻辑思维能力
过程与方法——通过函数定义获得的学习过程,体会由具体逐步过渡到符号化、代数化,特殊到
一般的数学思想。
情感态度与价值观—— 通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主
义观点;树立“数学源于实践,又服务于实践”的数学应用意识。
二、教学重点与难点
重点:了解函数定义及其三要素,掌握区间的符号表示方法,会求简单函数的定义域和值域。
难点:理解函数符号)(x f y 的含义,掌握区间的符号表示方法及无穷大的概念。
(完整word版)人教版_数学_必修1函数的基本性质_教案
31-ξ函数的基本性质1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。
(2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.(3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。
(1)判断或证明函数的单调性;(2)奇偶性概念的形成与函数奇偶性的判断。
一、 函数的单调性 1.单调函数的定义(1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。
(2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。
(3)单调性:如果函数()y f x =在某个区间是增函数或减函数。
那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。
2、单调性的判定方法 (1)定义法:判断下列函数的单调区间:21xy =(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。
(3)复合函数的单调性的判断: 设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在],[b a 上也是单调函数.①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。
②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同. 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。
【教案】1.2.1 第2课时 函数的定义域与值域-《新课程同步进阶(人教A版必修一》第一章集合与函数概念
第2课时函数的定义域与值域[目标] 1.了解构成函数的要素,理解函数相等的概念;2.会求简单函数的定义域与值域;3.会求形如f(g(x))的函数的定义域.[重点] 函数相等的概念,求函数的值域.[难点] 求函数的值域,求形如f(g(x))的函数的定义域.知识点一函数相等[填一填]1.条件:①定义域相同;②对应关系完全一致.2.结论:两个函数相等.[答一答]1.若两个函数的定义域和值域相同,它们是否为同一函数?对应关系和值域相同呢?提示:观察下表:对于f1(x)和f2(x),定义域和值域虽相同,但对应关系不同,故不是同一函数;对于f3(x)和f4(x),对应关系和值域虽相同,但定义域不同,故不是同一函数.知识点二函数的定义域[填一填]函数的定义域是使函数有意义的所有自变量的集合.求函数的定义域时,一般遵循以下原则:1.f(x)是整式时,定义域是全体实数的集合.2.f (x )是分式时,定义域是使分母不为0的一切实数的集合. 3.f (x )是偶次根式时,定义域是使被开方式为非负值的实数的集合. 4.零(负)指数幂的底数不能为零.5.对于含字母参数的函数,求其定义域时,需根据问题的具体情况对字母参数进行讨论.6.由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.[答一答]2.函数f (x )=x -1x -2+(x -1)0的定义域为( D ) A .{x |x ≥1} B .{x |x >1}C .{x |1≤x <2或x >2}D .{x |1<x <2或x >2}解析:要使函数有意义,则只需⎩⎪⎨⎪⎧x -1≥0,x -2≠0,x -1≠0,解得1<x <2或x >2,所以函数的定义域为{x |1<x <2或x >2}.故选D.知识点三 函数的值域[填一填]求函数的值域是一个较复杂的问题,要首先明确两点:一是值域的概念,即对于定义域A 上的函数y =f (x ),其值域就是指其函数值的集合:{f (x )|x ∈A };二是函数的定义域、对应关系是确定函数的依据.另外,在求函数的值域时,要根据所给的函数的形式,采用相应的方法.[答一答]3.已知函数y =x 2,x ∈{0,1,2,-1},函数y =x 2的值域是什么?提示:当x =0时,y =0;当x =±1时,y =1;当x =2时,y =4.所以函数的值域是{0,1,4}.类型一 函数相等的判断[例1] 下列各组函数: ①f (x )=x 2-xx ,g (x )=x -1;②f (x )=x x ,g (x )=x x; ③f (x )=x +1·1-x ,g (x )=1-x 2; ④f (x )=(x +3)2,g (x )=x +3;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是____________(填上所有正确的序号). [答案] ③⑤[解析] ①不同,定义域不同,f (x )定义域为{x |x ≠0},g (x )定义域为R .②不同,对应法则不同,f (x )=1x,g (x )=x .③相同,定义域、对应法则都相同.④不同,值域不同,f (x )≥0,g (x )∈R .⑤相同,定义域、对应法则都相同.讨论函数问题时,要保持定义域优先的原则.判断两个函数是否相等,要先求定义域,若定义域不同,则不相等;若定义域相同,再化简函数的解析式,若解析式相同,则相等,否则不相等.[变式训练1] 下列各组中两个函数是否表示相等函数? (1)f (x )=6x ,g (x )=63x 3; (2)f (x )=x 2-9x -3,g (x )=x +3;(3)f (x )=x 2-2x -1,g (t )=t 2-2t -1.解:(1)g (x )=63x 3=6x ,它与f (x )=6x 定义域相同,对应关系也相同,所以是相等函数. (2)f (x )=x 2-9x -3=x +3(x ≠3),它与g (x )=x +3的定义域不同,故不是相等函数.(3)虽然自变量用不同的字母表示,但两个函数的定义域和对应关系都相同,故是相等函数.类型二 函数的定义域 命题视角1:求具体函数的定义域[例2] 求下列函数的定义域,结果用区间表示: (1)y =x +2+1x 2-x -6;(2)y =(x +1)0|x |-x .[解] (1)要使函数有意义,则有⎩⎪⎨⎪⎧ x +2≥0,x 2-x -6≠0⇒⎩⎪⎨⎪⎧x ≥-2,x ≠-2且x ≠3,故函数的定义域是(-2,3)∪(3,+∞).(2)要使函数有意义,必须满足⎩⎪⎨⎪⎧x +1≠0,|x |-x >0,解得⎩⎪⎨⎪⎧x ≠-1,x <0,故函数的定义域是(-∞,-1)∪(-1,0).求函数的定义域就是求使函数式有意义的自变量的取值范围.当一个函数式由两个以上数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.[变式训练2] 求下列函数的定义域: (1)y =1-x +1x +5;(2)y =31-1-x.解析:(1)由已知得⎩⎪⎨⎪⎧1-x ≥0,x +5≠0,解得x ≤1且x ≠-5.所求定义域为{x |x ≤1且x ≠-5}.(2)由已知得⎩⎪⎨⎪⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0.所求定义域为{x |x ≤1且x ≠0}.命题视角2:求抽象函数的定义域[例3] (1)已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. (2)已知函数f (2x +1)的定义域是[-1,4],求函数f (x )的定义域.[分析] 在对应关系相同的情况下, f (x )中x 应与f (g (x ))中g (x )的取值范围相同,据此可解答该题.[解] (1)由已知f (x )的定义域是[-1,4], 即-1≤x ≤4.故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32.∴f (2x +1)的定义域是⎣⎡⎦⎤-1,32. (2)由已知f (2x +1)的定义域是[-1,4],即f (2x +1)中,应有-1≤x ≤4,∴-1≤2x +1≤9. ∴f (x )的定义域是[-1,9].因为f (g (x ))就是用g (x )代替了f (x )中的x ,所以g (x )的取值范围与f (x )中的x 的取值范围相同.若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域是指满足不等式a ≤g (x )≤b 的x 的取值范围;而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ],要求f (x )的定义域,就是求x ∈[a ,b ]时g (x )的值域.[变式训练3] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( B )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:因为f (x )的定义域为[0,2],所以对于函数g (x )满足0≤2x ≤2,且x ≠1,故x ∈[0,1).类型三 求函数的值域[例4] 求下列函数的值域. (1)f (x )=3x -1,x ∈[-5,2); (2)y =2x +1,x ∈{1,2,3,4,5}; (3)y =x 2-4x +6,x ∈[1,5);(4)y =5x -14x +2.[解] (1)∵x ∈[-5,2),∴-15≤3x <6,∴-16≤3x -1<5,∴函数f (x )=3x -1,x ∈[-5,2)的值域是[-16,5). (2)∵x ∈{1,2,3,4,5},∴2x +1∈{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}. (3)y =x 2-4x +6=(x -2)2+2.∵x ∈[1,5),∴其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∴所求函数的值域为[2,11). (4)y =5x -14x +2=54(4x +2)-1-1044x +2=54(4x +2)-1444x +2=54-72(4x +2).∵72(4x +2)≠0,∴y ≠54,∴函数y =5x -14x +2的值域为{y ∈R |y ≠54}.根据函数关系式,选择恰当的方法求函数的值域.(1)对于一次函数,已知自变量的取值范围,依据简单不等式的运算,求得函数的取值范围,即为函数的值域;(2)对于二次函数,可借助图象求函数的值域;(3)通过分离常数,借助反比例函数的特征求值域.无论哪种方法求值域,都应注意定义域的限制.[变式训练4] 求下列函数的值域: (1)y =2x +1,x ∈{0,1,3,4}; (2)y =xx +1;(3)y =x 2-4x ,x ∈[1,4]. 解:(1)∵y =2x +1,x ∈{0,1,3,4}, ∴y ∈{1,3,7,9}.(2)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0, ∴函数y =xx +1的值域为{y |y ≠1}.(3)配方,得y =(x -2)2-4. ∵x ∈[1,4],∴函数的值域为[-4,0].1.函数f (x )=x +1+12-x的定义域为( A ) A .[-1,2)∪(2,+∞) B .(-1,+∞) C .[-1,2)D .[-1,+∞)解析:由⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,解得x ≥-1且x ≠2.故选A.2.函数f (x )=x 2+1(0<x ≤2且x ∈N *)的值域是( D ) A .{x |x ≥1} B .{x |x >1} C .{2,3}D .{2,5}解析:∵0<x ≤2且x ∈N *, ∴x =1或x =2. ∴f (1)=2,f (2)=5, 故函数的值域为{2,5}.3.若函数f (x )与g (x )=32-x -2是相等的函数,则函数f (x )的定义域是[2,6)∪(6,+∞).解析:∵2-x -2≠0,∴x ≠6,又x -2≥0,∴x ≥2,∴g (x )的定义域为[2,6)∪(6,+∞). 故f (x )的定义域是[2,6)∪(6,+∞).4.已知函数f (x )的定义域为{x |-1<x <1},则函数f (2x +1)的定义域为{x |-1<x <0}. 解析:因为f (x )的定义域为{x |-1<x <1}, 所以-1<2x +1<1,解得-1<x <0.所以f (2x +1)的定义域为{x |-1<x <0}. 5.试求下列函数的定义域与值域: (1)f (x )=(x -1)2+1; (2)y =5x +4x -1;(3)y =x -x +1.解:(1)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}. (2)函数的定义域为{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(3)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =(t -12)2-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}.——本课须掌握的三大问题1.两个函数当且仅当它们的三要素完全相同时才表示同一函数,根据它们之间的关系,判断两个函数是否为同一函数,主要看它们的定义域和对应法则是否相同.因为只要定义域相同,对应法则相同,则值域就相同.2.研究函数问题必须树立“定义域优先”原则.求函数定义域一般有三种类型:(1)函数来自实际问题的定义域;(2)已知函数解析式求定义域;(3)抽象函数求定义域.3.求值域的方法有:(1)观察法:根据定义域和对应关系求出;(2)数形结合法:作出函数的图象,然后求解;(3)配方法:配方求解;(4)分离常数法:添一项、减一项,分离出常数再求解;(5)换元法:可以将无理函数转换成有理函数再求解.学习至此,请完成课时作业7 学科素养培优精品微课堂 复合函数与抽象函数开讲啦 1.复合函数的概念如果函数y =f (t )的定义域为A ,函数t =g (x )的定义域为D ,值域为C ,则当C ⊆A 时,称函数y =f (g (x ))为f (t )与g (x )在D 上的复合函数,其中t 叫做中间变量,t =g (x )叫做内层函数,y =f (t )叫做外层函数.2.抽象函数的概念没有给出具体解析式的函数,称为抽象函数. 3.抽象函数或复合函数的定义域理解抽象函数或复合函数的定义域,要明确以下几点: (1)函数f (x )的定义域是指x 的取值范围.(2)函数f (φ(x ))的定义域是指x 的取值范围,而不是φ(x )的范围.(3)f (t ),f (φ(x )),f (h (x ))三个函数中的t ,φ(x ),h (x )在对应关系f 下的范围相同. [典例] 若函数f (x )的定义域为[0,1],求g (x )=f (x +m )+f (x -m )(m >0)的定义域. [解] ∵f (x )的定义域为[0,1],∴g (x )=f (x +m )+f (x -m )中自变量x 需满足⎩⎪⎨⎪⎧ 0≤x +m ≤1,0≤x -m ≤1,解得⎩⎪⎨⎪⎧-m ≤x ≤1-m ,m ≤x ≤1+m .当1-m =m ,即m =12时,x =12;当1-m >m ,即0<m <12时,如图1,m ≤x ≤1-m .当1-m <m ,即m >12时,如图2,x ∈∅.综上所述,当0<m <12时,g (x )的定义域为[m,1-m ];当m =12时,g (x )的定义域为⎩⎨⎧⎭⎬⎫12;当m >12时,函数g (x )的定义域为∅.[对应训练] 已知函数f (x +3)的定义域为[-4,5],则函数f (2x -3)的定义域为⎣⎡⎦⎤1,112. 解析:∵函数f (x +3)的定义域为[-4,5],∴-4≤x ≤5,∴-1≤x +3≤8,即函数f (x )的定义域为[-1,8].由-1≤2x -3≤8,解得1≤x ≤112.故函数f (2x -3)的定义域为⎣⎡⎦⎤1,112.。
人教版高中数学必修1学案:1.2.1函数的概念(2)
1.2.1函数的概念(2)一、三维目标:知识与技能:进一步体会函数概念;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。
过程与方法:了解构成函数的三要素,会求一些简单函数的定义域和值域。
掌握判别两个函数是否相等的方法。
情感态度与价值观:激发学习兴趣,培养审美情趣。
二、学习重、难点:重点:用区间符号正确表示数的集合,求简单函数定义域和值域及函数相等的判断。
难点:求函数定义域和值域。
三、学法指导:阅读教材, 熟练使用“区间”的符号表示函数的定义域和值域。
四、知识链接:1. 写出函数的定义:注:(1)对应法则f(x)是一个函数符号,表示为“y 是x 的函数”,绝对不能理解为“y 等于f 与x 的乘积”,在不同的函数中,f 的具体含义不一样;y=f(x)不一定是解析式,在不少问题中,对应法则f 可能不便使用或不能使用解析式,这时就必须采用其它方式,如数表和图象,在研究函数时,除用符号f(x)表示外,还常用g(x)、F(x)、G(x)等符号来表示;f(a)是常量,f(x)是变量,f(a)是函数f(x)中当自变量x=a 时的函数值。
(2)定义域是自变量x 的取值范围;(3)值域是全体函数值所组成的集合,在大多数情况下,一旦定义域和对应法则确定,函数的值域也随之确定。
2.集合的表示方法有: 。
五、学习过程:A 问题1. 区间的概念 (1)满足不等式b x a ≤≤的实数x 的集合叫做 ,表示为 ;(2)满足不等式b x a <<的实数x 的集合叫做 ,表示为 ;(3)满足不等式b x a <≤的实数x 的集合叫做 ,表示为 ;(4)满足不等式b x a ≤<的实数x 的集合叫做 ,表示为 ;在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用 表示包括在区间内的端点,用 表示不包括在区间内的端点;实数集R 也可以用区间表示为 ,“∞”读作“ ”,“-∞”读作“ ”,“+∞”读作“ ”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的集合分别表示为 。
高一数学必修一课件1.2.1函数的概念
定义域是R,值域是集合B,当a>0时,B={y︱ y≥ 4ac - b2},当a<0时,B={y︱y≤ 4ac - b}2. 对于R4中a 的任意一个数x,在B中都有4a唯一确定的
y = a素x2是+定b构x义+成c域函(a、数0对的) 和应三它关要对应.
3.y 系= k和(值k 域 0. ) x
定义域是A={ xR︱x≠0 },值域是R.
对于集合A中的每一个x,在R中都有唯一确定的 值 y = k (k 0) 与它对应.
x
用实心点表示包括在区 与函数相间关内的的概端念点—,—用区空间心点表示
不包括在区间内的点.
定义 {x︱a≤x≤b} {x︱a<x<b}
域就是{x︱x<0}.
(2)使根式 x + 2 有意义的实数的集合是{x︱x≥-2}, 使分式 1 成立的实数的集合是{x︱x≠10}.所以,这
10 - x
个函数的定义域就是
{x︱x≥-2} {x︱x≠10}={x︱x ≥-2,且x≠10} .
例2 已知函数 f(x) = 3 - x + x + 1 - 1 (1)求f(-1),f(0)的值; (2)当-1≤a ≤ 3时,求f(a)的值.
x
A. f ( x) ln x B. f (x) 1
x
C. f (x) | x | D. f ( x) e x
1
解析:y = x的定义域为{x|x>0},而 f ( x) ln x
的定义域也为{x|x>0}.
3.(2008 山东)设函数
f
(
x
)
1.2.1函数的概念
配人教版
数学
必修1
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}.
x-1≥0, (3)要使函数有意义, 则 1-x≥0, x≥1, 即 x≤1,
所以 x=1,
+1)的定义域. 【错解】∵1≤x≤2,∴2≤x+1≤3. ∴y=f(x+1)的定义域为[2,3].
配人教版
数学
必修1
【错因】未弄清函数的定义域概念而致错,实际上此类问 题学生易分不清函数y=f(x+1)的自变量是x,常常错误地认为 是“x+1”.两函数中第一个函数的“x”与第二个函数的“x+
1”地位是等同的.
x-1≥0, 【解析】 由题意可知, 要使函数有意义, 需满足 x-2≠0,
即 x≥1 且 x≠2.
配人教版
数学
必修1
3.已知f(x)=x2+x+1,则f[f(1)]的值是( A.11 B.12
)
C.13
【答案】C
D.10
【解析】f[f(1)]=f(3)=9+3+1=13.
配人教版
配人教版
数学
必修1
2x+3≥0, (2)要使函数有意义,需2-x>0, x≠0, 3 解得-2≤x<2 且 x≠0, 1 1 所以函数 y= 2x+3- +x 的定义域为 2-x
3 x- ≤x 2 <2且x≠0.
配人教版 求函数值
数学
必修1
必修1
2.做一做(请把正确的答案写在横线上) (1)集合{x|1<x≤10}用区间表示为________. (2)已知函数f(x)=x-1,则f(1)=________.
河北省容城中学高一数学1.2.1函数的概念教案新必修1
河北省容城中学高中数学《1.2.1 函数的概念》教案新人教A版必修1一、教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。
二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2、教学用具:投影仪 .四、教学思路(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)研探新知1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x .(2)构成函数的三要素是什么?定义域、对应关系和值域(3)区间的概念①区间的分类:开区间、闭区间、半开半闭区间;②无穷区间;③区间的数轴表示.(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0)y =ax 2+b x +c (a ≠0)y =xk (k ≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。
《函数的概念及其表示》教案完美版
《函数的概念及其表示》教案第一课时: 1.2.1 函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。
教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法.二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-.B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图)C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).④讨论:值域与B 的关系?构成函数的三要素?一次函数(0)y ax b a =+≠、二次函数2(0)y ax bx c a =++≠的定义域与值域? ⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。
高中数学必修一教案§1.2.1函数的概念
课题:函数的概念一.课题:1.2.1函数的概念.(人教版必修一).二.教学目标1.知识目标:理解函数的概念,明确函数是两个变量之间的一种依赖关系;掌握求定义域、函数值的方法;理解函数的三要素及符号)y .f(x2.能力目标:会求分式型和偶次根式型函数的定义域;通过给定的自变量x值,能求出函数值;能利用函数的思想辩证法考虑实际问题.3.情感目标:通过学习函数概念,培养学生观察问题、提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;通过课堂活动培养学生团队意识,明确团队的力量依赖于每一个人的智慧,揭示函数之间的依赖关系;在函数概念深化的过程中,体会数学形成和发展的一般规律,由函数所揭示的因果关系,培养学生的辨证思想.三.教材分析1.教学重点:正确理解函数的概念.2.教学难点:函数定义域和值域的求法以及用区间表示.3.关键:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言来刻画函数,函数的思想方法将贯穿于高中数学课程的始终.四.课型与教法1.课型:讲授课.2.教法:通过学生熟悉的函数知识引入课题,为概念学习创设情境,拉近未知与已知的距离,通过搭建新概念与学生原有认识结构间的桥梁,使学生心理上得到认同,建立新的认识结构. 五.教学过程1.创设情景,揭示课题.在初中我们已经学习过函数的概念,并且知道可以用函数描述变量之间的依赖关系.初中学过的函数的传统定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x和y,如果对于每一个x值,y都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值范围的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.初中已经学过的函数:正比例函数、反比例函数、一次函数、二次函数等. 2.互动交流,研讨新知.(1)一枚炮弹发射后,经过s 26落到地面击中目标.炮弹的射高(指斜抛运动中物 体飞行轨迹最高点的高度)为m 845,且炮弹距地面的高度h (单位m )随时间t (单位s )变化的规律是25130t t h -=.提出问题:你能得出炮弹飞行s 5、s 10、s 20时距地面多高吗?其中,时间t 的变化范围是什么?炮弹距离地面高度h 的变化范围是什么?s 5时距地面高度为m 525,s 10时距地面高度为m 800,s 20时距地面高度为m 600,根据题意可知炮弹飞行时间t 的变化范围是数集}260{≤≤=t t A ,炮弹距地面的高度h 的变化范围是数集}8450{≤≤=h h B .从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系25130t t h -=,在数集B 中都有唯一确定的高度h 和它对应,满足函数定义,应为函数,发现解析式可以用来刻画函数.1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.提出问题:观察分20 25 5 10 15 30 图126 25 tS O1979 1981 19831985 1987198919911993 1995 19971999 2001析图中曲线,时间t 的变化范围是多少?臭氧层空洞面积s 的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系.根据图中曲线可知,时间t 的变化范围是数集}20011979{≤≤=t t A ,臭氧层空洞面积s 的变化范围是数集}260{≤≤=S S B .引导学生看图启发,从图中明显得知,对于数集A 中的每一个时刻t 在数集B 中都有唯一确定的臭氧层空洞面积s 与之对应,满足函数定义,也应为函数,发现图像也可以来刻画函数.(3)国际上常用恩格尔系数(食物支出金额/总支出金额)反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表11-中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.时间(年) 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001城镇居民家庭 恩格尔系数(%)表11-提出问题:恩格尔系数与时间(年)之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.根据上表,可知时间t 的变化范围是数集},20011991{*∈≤≤=N t t t A ,恩格尔系数y 的变化范围是数集}8.539.37{≤≤=y y B .引导学生探讨交流发现,对于表格中的任意一个时间t 都有唯一确定的恩格尔系数与之对应,即在数集A 中的任意一个时间t 在数集B 中都有唯一确定的恩格尔系数与之对应,满足函数定义,应为函数,发现表格也可以用来刻画函数. 3.问题探讨,归纳概括.(1)以上三个实例有什么不同点和共同点?归纳以上三个实例,可看出其不同点是:实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图像刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.其共同点是:①都有两个非空数集A ,B ;②两个数集之间都有一种确定的对应关系;③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 值和它对应. 记作B A f →:.引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数,你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢? (2)函数的概念.一般地,设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.显然,值域是集合B 的子集. (3)我们所熟悉的一次函数、二次函数、反比例函数的定义域、值域、对应关系分别是什么?①.一次函数b ax x f +=)()0(≠a :定义域R, 值域R ; ②.反比例函xkx f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ; ③.二次函数c bx ax x f ++=2)()0(≠a :定义域R ,值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0<a 时,⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|2.(4)设a ,b 是两个实数,而且b a <.我们规定:①满足不等式b x a ≤≤的实数x 的集合叫做闭区间,表示为],[b a ; ②满足不等式b x a <<的实数x 的集合叫做开区间,表示为),(b a ;③满足不等式b x a <≤或b x a ≤<的实数x 的集合叫做半开半闭区间,表示为),[b a ,],(b a .这里的实数a 与b 都叫做相应区间的端点.用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点.实数集R 可以用区间表示为),(+∞-∞,“∞”读作“无穷大”,“∞-”读作“负无穷大”,“∞+”读作“正无穷大”.我们可以把满足a x ≥,a x >,b x ≤,b x <的实数集合分别表示为),[+∞a ,),(+∞a ,],(b -∞,),(b -∞.定义域和值域可以用集合表示,也可以用区间表示. 4.质疑答辩,排难解惑.213)(+++=x x x f , (1)求函数的定义域;(2)求)3(-f ,)32(f 的值;(3)当0>a 时,求)(a f ,)1(-a f 的值. 解:(1)定义域:能使函数式有意义的实数x 3+x 有意义的实数x 的集合是}{3-≥x x ,使分式21+x 有意义的实数x 的集合是}{2-≠x x .所以,这个函数的定义域就是 }{}{23-≠-≥x x x x {3-≥=x x ,且}2-≠x . (2)123133)3(-=+-++-=-f ; 333832321332)32(+=+++=f . (3)因为0>a ,所以)(a f ,)1(-a f 有意义. 213)(+++=a a a f ;11221131)1(+++=+-++-=-a a a a a f . 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域相同,对应关系完全一致,我们就称两个函数相等.x y =相等?(1)2)(x y =; (2)33x y =;(3)2x y =; (4)xx y 2=.解:(1))0()(2≥==x x x y ,这个函数与函数)(R x x y ∈=虽然对应关系相同,但是定义域不相同.所以,这个函数与函数)(R x x y ∈=不相等.(2))(33R x x x y ∈==,这个函数与函数)(R x x y ∈=不仅对应关系相同,而且定义域相同.所以,这个函数与函数)(R x x y ∈=相等.(3)⎩⎨⎧<-≥===.0,,0,2x x x x x x y 这个函数与函数)(R x x y ∈=的定义域都是实数集R ,但是当0<x 时,它的对应关系与函数)(R x x y ∈=不相同.所以,这个函数与函数)(R x x y ∈=不相等.(4)xx y 2=的定义域是}{0≠x x ,与函数)(R x x y ∈=)(R x x y ∈=不相等.小结:函数的概念是一般地,设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(.定义域和值域是x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.区间是①满足不等式b x a ≤≤的实数x 的集合叫做闭区间,表示为],[b a ;②满足不等式b x a <<的实数x 的集合叫做开区间,表示为),(b a ;③满足不等式b x a <≤或b x a ≤<的实数x 的集合叫做半开半闭区间,表示为),[b a ,],(b a .5.布置作业.(1)举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、对应关系和值域.P习题1、2、3(2)课本19六.板书设计。
人教版高中数学必修一 第一章 1.2.1 函数的概念
人教版高中数学必修一第一章1.2.1函数的概念1.2.1函数的概念[学习目标] 1.理解函数的概念,了解构成函数的三要素.2.能正确使用区间表示数集.3.会求一些简单函数的定义域、函数值.知识点一函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.知识点二函数的三要素函数的三个要素:定义域,对应关系,值域.(1)定义域定义域是自变量x的取值集合.有时函数的定义域可以省略,如果未加特殊说明,函数的定义域就是指能使这个式子有意义的所有实数x的集合.(2)对应关系对应关系f是核心,它是对自变量x进行“操作”的“程序”或者“方法”,是连接x与y的纽带,按照这一“程序”,从定义域集合A中任取一个x,可得到值域{y|y=f(x)且x∈A}中唯一确定的y与之对应.(3)值域函数的值域是函数值的集合,通常一个函数的定义域和对应关系确定了,那么它的值域也会随之确定.思考(1)符号“y=f(x)”中“f”的意义是什么?(2)有人认为“y=f(x)”表示的是“y等于f与x的乘积”,这种看法对吗?(3)f(x)与f(a)有何区别与联系?答(1)符号“y=f(x)”中“f”表示对应关系,在不同的具体函数中,“f”的含义不一样.例如y=f(x)=x2中,“f”表示的对应关系为因变量y等于自变量x的平方,从而f(a)=a2,f(x+1)=(x+1)2,而函数y=f(x)=2x中,“f”表示的对应关系为因变量y等于自变量x的二倍,从而f(a)=2a,f(x+1)=2(x +1).(2)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(3)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.知识点三函数相等如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.思考函数y=x2+x与函数y=t2+t相等吗?答相等,这两个函数定义域相同,都是实数集R,而且这两个函数的对应关系也相同,因此这两个函数相等.函数相等与否与自变量用什么字母没有关系,只是习惯上自变量用x表示.知识点四区间概念区间的定义、名称、符号及数轴表示如下表:思考(1)对于区间[a,b]而言,区间端点a,b应满足什么关系?(2)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(3)“∞”是数吗?如何正确使用“∞”?答(1)若a,b为区间的左右端点,则a<b.(2)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(3)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.题型一函数概念的应用例1设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N 的函数关系的有()A.0个B.1个C.2个D.3个答案 B解析①错,x=2时,在N中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x=2时,对应元素y=3∉N,不满足任意性.④错,x=1时,在N中有两个元素与之对应,不满足唯一性.反思与感悟 1.判断一个对应关系是不是函数关系的方法:(1)A,B必须都是非空数集;(2)A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.2.函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.跟踪训练1下列对应关系式中是A到B的函数的是()A.A⊆R,B⊆R,x2+y2=1B.A={-1,0,1},B={1,2},f:x→y=|x|+1C.A=R,B=R,f:x→y=D.A=Z,B=Z,f:x→y=答案 B解析对于A,x2+y2=1可化为y=±,显然对任意x∈A,y值不唯一,故不符合.对于B,符合函数的定义.对于C,2∈A,但在集合B中找不到与之相对应的数,故不符合.对于D,-1∈A,但在集合B中找不到与之相对应的数,故不符合.题型二判断是否为同一函数例2判断下列函数是否为同一函数:(1)f(x)=与g(x)=(2)f(x)=与g(x)=;(3)f(x)=x2-2x-1与g(t)=t2-2t-1;(4)f(x)=1与g(x)=x0(x≠0).解(1)f(x)的定义域中不含有元素0,而g(x)的定义域为R,定义域不相同,所以二者不是同一函数.(2)f(x)的定义域为[0,+∞),而g(x)的定义域为(-∞,-1]∪[0,+∞),定义域不相同,所以二者不是同一函数.(3)尽管两个函数的自变量一个用x表示,另一个用t表示,但它们的定义域相同,对应关系相同,对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者为同一函数.(4)f(x)的定义域为R,g(x)的定义域为{x|x≠0},因此二者不是同一函数.反思与感悟判断两个函数是否相同,只需判断这两个函数的定义域与对应关系是否相同.(1)定义域和对应关系都相同,则两个函数相同;(2)定义域不同,则两个函数不同;(3)对应关系不同,则两个函数不同;(4)即使定义域和值域都分别相同的两个函数,也不一定相同,例如y=x和y=2x-1的定义域和值域都是R,但不是同一函数;(5)两个函数是否相同,与自变量用什么字母表示无关.跟踪训练2下列各组函数中,表示同一函数的是()A.y=x+1与y=B.y=x2与y=(x+1)2C.y=()3与y=xD.f(x)=()2与g(x)=答案 C题型三求函数的定义域例3求下列函数的定义域:(1)y=-;(2)y=.解(1)要使函数有意义,自变量x的取值必须满足即所以函数的定义域为{x|x≤1,且x≠-1}.(2)要使函数有意义,必须满足|x|-x≠0,即|x|≠x,∴x<0.∴函数的定义域为{x|x<0}.反思与感悟 1.当函数是由解析式给出时,求函数的定义域就是求使解析式有意义的自变量的取值集合,必须考虑下列各种情形:(1)负数不能开偶次方,所以偶次根号下的式子大于或等于零;(2)分式中分母不能为0;(3)零次幂的底数不为0;(4)如果f(x)由几部分构成,那么函数的定义域是使各部分都有意义的实数的集合;(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况.2.求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.跟踪训练3求下列函数的定义域:(1)y=;(2)y=-+.解(1)由于00无意义,故x+1≠0,即x≠-1.又x+2>0,x>-2,所以x>-2且x≠-1.所以函数y=的定义域为{x|x>-2,且x≠-1}.(2)要使函数有意义,需解得-≤x<2,且x≠0,所以函数y=-+的定义域为.题型四求函数值例4已知f(x)=(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.解 (1)∵f (x )=,∴f (2)==. 又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)==.反思与感悟 求函数值时,首先要确定出函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别. 跟踪训练4 已知函数f (x )=. (1)求f (2);(2)求f [f (1)]. 解 (1)∵f (x )=,∴f (2)==. (2)f (1)==,f [f (1)]=f ==.抽象函数定义域理解错误致误例5 已知函数f (3x +1)的定义域为[1,7],求函数f (x )的定义域. 错解 因为f (3x +1)的定义域为[1,7], 即1≤3x +1≤7,解得0≤x ≤2, 所以f (x )的定义域为[0,2]. 正解 令3x +1=t ,则4≤t ≤22, 即f (t )中,t ∈[4,22], 故f (x )的定义域为[4,22]. 易错警示跟踪训练5若f(x)的定义域为[-3,5],求φ(x)=f(-x)+f(x)的定义域.解由f(x)的定义域为[-3,5],得φ(x)的定义域需满足即解得-3≤x≤3.所以函数φ(x)的定义域为[-3,3].1.下列图象中能表示函数y=f(x)图象的是()答案 B解析由函数的概念知答案为B.2.下列各组函数中表示同一函数的是()A.f(x)=x与g(x)=()2B.f(x)=|x|与g(x)=x(x>0)C.f(x)=2x-1与g(x)=2x+1(x∈N*)D.f(x)=与g(x)=x+1(x≠1)答案 D解析选项A,B,C中两个函数的定义域均不相同,故选D.3.函数f(x)=+的定义域为________.答案{x|x≥-1且x≠2}解析由,得x≥-1且x≠2.4.函数f(x)对任意自然数x满足f(x+1)=f(x)+1,f(0)=1,则f(5)=________. 答案 6解析f(1)=f(0)+1=1+1=2,f(2)=f(1)+1=3,f(3)=f(2)+1=4,f(4)=f(3)+1=5,f(5)=f(4)+1=6.5.已知函数f(x)=x2+x-1.(1)求f(2),f();(2)若f(x)=5,求x的值.解(1)f(2)=22+2-1=5,f()=+-1=.(2)∵f(x)=x2+x-1=5,∴x2+x-6=0,∴x=2,或x=-3.1.对函数相等的概念的理解:(1)函数有三个要素:定义域、值域、对应关系.函数的定义域和对应关系共同确定函数的值域,因此当且仅当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一个函数. (2)定义域和值域都分别相同的两个函数,它们不一定是同一函数,因为函数对应关系不一定相同.如y=x与y=3x的定义域和值域都是R,但它们的对应关系不同,所以是两个不同的函数. 2.区间实质上是数轴上某一线段或射线上的所有点所对应的实数的取值集合,即用端点所对应的数、“+∞”(正无穷大)、“-∞”(负无穷大)、方括号(包含端点)、小圆括号(不包含端点)等来表示的部分实数组成的集合.如{x|a<x≤b}=(a,b],{x|x≤b}=(-∞,b]是数集描述法的变式.一、选择题1.下列四个图象中,是函数图象的是()A.①B.①③④C.①②③D.③④答案 B解析由每一个自变量x对应唯一一个f(x)可知②不是函数图象,①③④是函数图象.2.设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是()答案 B解析A项中,当0<x≤2时,每一个x都没有y与它对应,故不可能是函数的图象;B项中,-2≤x≤2时,每一个x都有唯一的y值与它对应,故它是函数的图象且是f(x)的图象;C项中,-2≤x<2时,每一个x都有两个不同的y值与它对应,故它不是函数的图象;D项中,-2≤x≤2时,每一个x都有唯一的y值与它对应,故它是某个函数的图象,但函数的值域不是N={y|0≤y≤2},故它是某个函数的图象但不是f(x)的图象.3.已知函数y=f(x)的定义域为[-1,5],则在同一坐标系中,函数f(x)的图象与直线x=1的交点个数为()A.0B.1C.2D.0或1答案 B解析因为1在定义域[-1,5]上,所以f(1)存在且唯一.4.函数f(x)=的定义域为()A.(1,+∞)B.[0,+∞)C.(-∞,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案 D解析因为f(x)=,所以x≥0且x≠1,故可知定义域为[0,1)∪(1,+∞),故选D.5.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为()A.{-2,0,4}B.{-2,0,2,4}C.{y|y≤-}D.{y|0≤y≤3}答案 A解析依题意,当x=-1时,y=4;当x=0时,y=0;当x=2时,y=-2;当x=3时,y=0.所以函数y=x2-3x的值域为{-2,0,4}.6.若函数f(x)=的定义域为R,则实数m的取值范围是()A.(-∞,+∞)B.(0,)C.(,+∞)D.[0,)答案 C解析(1)当m=0时,分母为4x+3,此时定义域不为R,故m=0不符合题意.(2)当m≠0时,由题意,得解得m>.由(1)(2),知实数m的取值范围是(,+∞).二、填空题7.用区间表示下列集合:(1){x|-≤x<5}=________;(2){x|x<1或2<x≤3}=________.答案(1)[-,5);(2)(-∞,1)∪(2,3]解析(1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x|-≤x<5}=[-,5). (2)注意到集合中的“或”对应区间中的“∪”,则{x|x<1或2<x≤3}=(-∞,1)∪(2,3].8.已知函数f(x)的定义域为(-1,1),则函数g(x)=f+f(x-1)的定义域是________.答案(0,2)解析由题意知即∴0<x<2.9.设f(x)=2x2+2,g(x)=,则g[f(2)]=________.答案解析∵f(2)=2×22+2=10,∴g[f(2)]=g(10)==.10.已知f(x)=x2+2x+4(x∈[-2,2]),则f(x)的值域为________.答案[3,12]解析函数f(x)的图象对称轴为x=-1,开口向上,而-1在区间[-2,2]上,所以f(x)的最小值为f(-1)=3,最大值为f(2)=12,所以f(x)在[-2,2]上的值域为[3,12].三、解答题11.已知函数f(x)=+.(1)求函数的定义域;(2)求f(-3),f()的值;(3)当a>0时,求f(a),f(a-1)的值.解(1)由得函数的定义域为[-3,-2)∪(-2,+∞).(2)f(-3)=-1,f()=+.(3)当a>0时,f(a)=+,a-1∈(-1,+∞),f(a-1)=+.12.求下列函数的值域.(1)y=-1(x≥4);(2)y=2x+1,x∈{1,2,3,4,5};(3)y=x+;(4)y=x2-2x-3(x∈[-1,2]).解(1)∵x≥4,∴≥2,∴-1≥1,∴y∈[1,+∞).(2)y={3,5,7,9,11}.(3)方法一函数y=x+的定义域为[,+∞),易知在定义域内y随x的增大而增大,故函数在x=时取最小值,无最大值,故值域为[,+∞).方法二设u=,则u≥0,且x=,于是,y=+u=(u+1)2≥,∴y=x+的值域为[,+∞).(4)y=x2-2x-3=(x-1)2-4,作出其图象可得值域为[-4,0].13.已知函数f(x)=.(1)求f(2)+f,f(3)+f的值;(2)求证f(x)+f是定值.(1)解∵f(x)=,∴f(2)+f=+=1.f(3)+f=+=1.(2)证明f(x)+f=+=+==1.第11页共11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1 函数的概念
教学目标:1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。
2.了解对应关系在刻画函数概念中的作用。
3.了解构成函数的三要素,会求一些简单函数
的定义域和值域。
教学重点:函数概念和函数定义域及值域的求法。
教学难点:函数概念的理解。
教学方法:自学法和尝试指导法
教学过程:
(Ⅰ)引入问题
问题1 初中我们学过哪些函数?(正比例函数、反比例函数、一次函数和二次函数) 问题2 初中所学函数的定义是什么?(设在某变化过程中有两个变量x 和y ,,如果给定了一个x 的值,相应地确定唯一的一个y 值,那么就称y 是x 的函数,其中x 是自变量,y 是因变量)。
(Ⅱ)函数感性认识
教材例子(1):炮弹飞行时间的变化范围是数集{026}A x x =≤≤,炮弹距地面的高度h 的变化范围是数集{0845}B h h =≤≤,对应关系21305h t t =- (*)。
从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(*),在数集B 中都有唯一确定的高度h 和它对应。
例子(2)中数集{19792001}A t t =≤≤,{026}B S S =≤≤,并且对于数集A 中的任意一个时间t ,按图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应。
例子(3)中数集{1991,1992,,2001},{53.8,52.9,,37.9(%)}A B ==,且对于数集A 中的每一个时间(年份),按表格,在数集B 中都有唯一确定的恩格尔系数和它对应。
(III )归纳总结给函数“定性”
归纳以上三例,三个实数中变量之间的关系都可以描述为两个数集A 、B 间的一种对应关系:对数集A 中的每一个x ,按照某个对应关系,在数集B 中都有唯一确定的y 和它对应,记作:f A B →。
(IV)理性认识函数的定义
设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数(function ),记作(),y f x x A =∈,其中x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain ),与x 的值相队对应的y 的值叫做函数值,函数值的集合{()}f x x A ∈叫做函数的值域(range)。
定义域、值域、对应法则,称为函数的三个要素,缺一不可;
(1)对应法则f(x)是一个函数符号,表示为“y 是x 的函数”,绝对不能理解为“y 等于f 与x 的乘积”,在不同的函数中,f 的具体含义不一样;
y=f(x)不一定是解析式,在不少问题中,对应法则f 可能不便使用或不能使用解析式,这时就必须采用其它方式,如数表和图象,在研究函数时,除用符号f(x)表示外,还常用g(x)、F(x)、G(x)等符号来表示;
自变量x 在其定义域内任取一个确定的值a 时,对应的函数值用符号f(a)来表示。
如
函数f(x)=x 2+3x+1,当x=2时的函数值是:f(2)=22+3×2+1=11。
注意:f(a)是常量,f (x)是变量,f(a)是函数f(x)中当自变量x=a 时的函数值。
(2)定义域是自变量x 的取值范围;
注意:①定义域不同,而对应法则相同的函数,应看作两个不同函数;
如:y=x 2(x 与)R ∈y=x 2(x>0); y=1与y=x 0
②若未加以特别说明,函数的定义域就是指使这个式子有意义的所有实数x 的集合;在实际中,还必须考虑x 所代表的具体量的允许值范围;
如:一个矩形的宽为xm ,长是宽的2倍,其面积为y=2x 2,此函数的定义域为x>0,而不是R x ∈。
(3)值域是全体函数值所组成的集合,在大多数情况下,一旦定义域和对应法则确定,函数的值域也随之确定。
(V)区间的概念 (1)满足不等式b x a ≤≤的实数的x 集合叫做闭区间,表示为[]b ,a ;
(2)满足不等式b x a <<的实数的x 集合叫做开区间,表示为()b ,a ;
(3)满足不等式b x a <≤的实数的x 集合叫做半开半闭区间,表示为[)b a ,;
(4)满足不等式b x a ≤<的实数的x 集合叫做也叫半开半闭区间,表示为(]b ,a ; 说明:① 对于[]b ,a ,()b ,a ,[)b a ,,(]b ,a 都称数a 和数b 为区间的端点,其中a 为左端点,b 为右端点,称b-a 为区间长度;
② 引入区间概念后,以实数为元素的集合就有三种表示方法:
不等式表示法:3<x<7(一般不用);集合表示法:{}7x 3x <<;区间表示法:()73,
; ③ 在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点;
④ 实数集R 也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的集合分别表示为[a,+∞]、(a,+∞)、(-∞,b)、(-∞,b)。
例题分析:(投影2)
例1.已知函数1()32f x x x =
+++,(教材第20页例1) (1)求函数的定义域;
(2)求2(3),()3
f f -的值;
(3)当a>0时,求(),(1)f a f a -的值。
分析:函数的定义域通常由问题的实际背景确定,如前述的三个实例。
如果只给出解析式()y f x =,而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合。
(解略)
例2.求下列函数的定义域。
(1)1()(12)(1)
f x x x =-+;(2)()42f x x x =-+(3) 分析:给定函数时,要指明函数的定义域,对于用解析式表示的函数,如果没有给出定
x x x f -++=211)(
义域,那么就认为函数的定义域是指使函数有意义的自变量取值的集合。
从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:
(1)如果f(x)是整式,那么函数的定义域是实数集R ;
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;
(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;
(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);
(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合。
由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定。
例3.下列函数中,哪个与函数y=x 是同一函数?(书P 21例2) (1) y=(x )2 ; (2) y=x x 2 ; (3) y=33x ; (4)y=2x . 分析:判断两个函数是否相同,要看定义域和对应法则是否完全相同。
只有完全一致时,这两个函数才算相同。
(解略)
课堂练习:课本P 22练习1、2、3。
课时小结:
本节课我们学习了函数的定义(包括定义域、值域的概念)及求函数定义域的方法。
函数定义中注意的问题及求定义域时的各种情形应该予以重视。
课后作业
1、书面作业:课本P 28习题1.2A 组题第1,2,3,4题;B 组第1、2题。
2、预习作业:
(1) 预习内容:课本P 22—P 23;
(2) 预习提纲:
a.函数的表示方法分别有哪几种?
c.回顾初中学过的做函数图象的方法步骤;
教学后记。