降次——解一元二次方程

合集下载

22.2.2 降次--解一元二次方程(公式法)

22.2.2 降次--解一元二次方程(公式法)

东辛店镇中学人教版初中数学九年级教学案
年级: 九年级 学科: 数学 命题人: 王金涛 审核人: 叶书生
东 辛 店 中 学 验 标 题
(满分: 50+20 时间: 10 分钟 成绩: )
必做题:(共5题,每题10分)
1、方程()002≠=++a c bx ax 的根的判别式是 ,求根公式是 。

2、方程()()1422-=-+x x x 化为一般形式得 ,其中,a= ,b= ,c= ,=-ac b 42 ,用求根公式求得方程的两根=1x ,=2x 。

3、方程 ()()
22312+-=+x x x x 化简整理后,写出 ()002≠=++a c bx ax 的形式,其中a = ,b = ,c = 。

4、用公式法解下列方程:
(1)1382-=x x
(2)()()43213-+=-x x x
选做题:(共2题,每题10分)
1、(2012·德州)若关于x 的方程()0222
=+++a a ax 有实数解,那么实数a 的取值范围是 。

2、用长为100cm 的金属丝制成一个矩形框子,框子的面积不能是( )
A 2325cm
B 2500cm
C 2625cm
D 2
800cm。

【初中数学】22.2 降次-解一元二次方程(重难点)

【初中数学】22.2  降次-解一元二次方程(重难点)

降次-解一元二次方程(重难点、易错点)课前检测1、简述一元二次方程的常见解法,并分析和比较这几种解法的优缺点。

2、结合一元二次方程的几种解法分析一元二次方程无实数根、有两个相等的实数根和有两个不相等的实数根的情况。

3、通过配一元二次方程的一般式得到一元二次方程的求根公式。

重难点讲解1、配方法判断多项式的值。

例题1:用配方法证明:2x x-+-的值恒小于0.31216变式1:对于二次三项式21036-+,小明同学得到如下结论:无论x取何值,它的值都x x不可能是10.你是否同意他的说法?请说明理由。

2、一元二次方程的根例题2:已知方程20++=有一个根是(0)x bx a-≠,则下列代数式的值恒为常a a数的是()C.a b+D.a b-A.a bB.ab例题3:关于x的一元二次方程20+=解的情况是___________________________;mx nx例题4:已知关于x的一元二次方程2-++-=,试证明不论m取何值,原9(7)30x m x m方程都有两个不相等的实数根。

3、根据一元二次方程根的情况判断三角形形状例题5:若,,a b c 是A B C 的三边,且关于x 的方程22(1)2(1)0a x cx b x --++=有两个相等的实数根,试判断A B C 的形状。

变式2:在R t A B C 中,090C ∠=,若,,a b c 是R t A B C 的三边,试证明关于x 的方程21()()04a c x bx c a +-+-=有两个相等的实数根。

变式3:若,,c a b 是A B C 的三条边的长,且,a b 是方程2-33+1=0x x 的两根,5c =试判断A B C 的形状。

4、根据方程的根求多项式的值例题6:(2010北京海淀第一学期期中)已知关于x 的一元二次方程21(31)04a x ax --+=有两个相等的实数根,求代数式2121a a a-++的值。

例题7:已知12,x x 是方程2310x x ++=的两实根,则312820x x ++=____________;5、根与系数关系例题8:已知关于x 的方程222(3)410x k x k k --+--=。

降次--解一元二次方程(初中数学九年级)

降次--解一元二次方程(初中数学九年级)

降次--解一元二次方程(初中数学九年级) 学情分析:在学习本节之前,学生对一元一次方程及一元一次方程的解的有关知识有一定的了解,并且九年级的学生有一定的数学思维基础,分析和概括能力相对于八年级学生有很大的提高,容易开发学生的主观能动性,适合有特殊到一般的探究方式教学内容分析:本节课主要学习运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标:1、经历推导求根公式的过程,加强推理技能的训练。

2、会用公式法解简单系数的一元二次方程。

3、会利用b2-4ac来判断一元二次方程根的情况。

教学难点分析:重点:运用开平方法解形如(m x+ n)2=p(p≥0)的方程.难点:通过根据平方根的意义解形如x2=n的方程,知识迁移到形如(x+m)2=n(n≥0)的方程.关键:理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.教学课时: 1课时教学过程:一、温故知新:1、用配方法解一元二次方程的步骤有哪些?(口答)2、用配方法解下列方程:(1)x 2-6x+5=0 (2)2x 2-7x+3=0(学生扳演,教师点评)二、自主学习:〈一〉自学课本P40---P 41思考下列问题:1、结合配方法的几个步骤,看看教材中是怎样推导出求根公式的?2、配方时,方程两边同时加是什么?3、教材中方程②()224422a acb a b x -=+能不能直接开平方求解吗?为什么?4、什么叫公式法解一元二次方程?求根公式是什么?交流与点拨:公式的推导过程既是重点又是难点,也可以由师生共同完成,在推导时,注意学生对细节的处理,教师要及时点拨;还要强调不要死记公式。

关键感受推导过程。

在处理问题3时,要结合前边学过的平方的意义,何时才能开方。

三、例题学习:例1(教材P 41例2)解下列方程:(1)2x 2-x-1=0 (2)x 2+1.5x=-3 x(3)x 2-x 2= -21(4)4x 2-3x+2=0解:将方程化成一般形式 解:a=4, b= -3, c=2.x 2-x 2+21=0 b 2-4ac=(-3)2-4×4×2=9-32=-23<0a=1, b= -2, c=21 因为在实数范围负数不能开平方,所以方b 2-4ac=(-2)2-4×1×21=0 程无实数根。

九年级数学第二十二章降次—解一元二次方程人教实验版知识精讲

九年级数学第二十二章降次—解一元二次方程人教实验版知识精讲

初三数学第二十二章降次—解一元二次方程人教实验版【本讲教育信息】一. 教学内容:用因式分解法解一元二次方程1. 用因式分解(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 根据具体一元二次方程的特征,灵活选择方程的解法.体会解决问题方法的多样性.二. 知识要点: 1. 因式分解法解方程x 2-x =0.方程左边x 2-x 可以分解因式:x 2-x =x (x -1),于是: x =0或x -1=0.所以x 1=0,x 2=1. 上述解法过程中,不是不用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法. 2. 因式分解法解一元二次方程的主要步骤: (1)将方程化成右边等于0的形式;(2)将方程左边分解因式(两个一次因式的积),方程化成(ax +m )(bx +n )=0的形式;(3)由ax +m =0或bx +n =0得出方程的根.3. 直接开方法、配方法、公式法、因式分解法的对比形如x 2=a (a ≥0)或(ax +b )2=c (c ≥0)的用直接开方法解.因为一元二次方程的求根公式是由配方法推导出来的,对一般形式的一元二次方程一般不用配方法求根,可考虑因式分解法或公式法.三. 重点难点:因式分解法把一个一元二次方程化为两个一元一次方程来解,体现了“降次”的思想,这种思想不但是本节的重点,而且在以后处理其他方程时也是非常重要的.【典型例题】例1. 用因式分解法解下列方程:(1)5x 2+3x =0;(2)7x (3-x )=4(x -3);(3)9(x -2)2=4(x +1)2. 分析:(1)左边=x (5x +3),右边=0;(2)先把右边化为0,7x (3-x )-4(x -3)=0,找出(3-x )与(x -3)的关系;(3)应用平方差公式.解:(1)因式分解,得x (5x +3)=0, 于是得x =0或5x +3=0,x 1=0,x 2=-35;(2)原方程化为7x (3-x )-4(x -3)=0, 因式分解,得(x -3)(-7x -4)=0, 于是得x -3=0或-7x -4=0,x 1=3,x 2=-47;(3)原方程化为9(x -2)2-4(x +1)2=0, 因式分解,得[3(x -2)+2(x +1)][3(x -2)-2(x +1)]=0, 即(5x -4)(x -8)=0, 于是得5x -4=0或x -8=0,x 1=45,x 2=8.评析:(1)用因式分解法解一元二次方程的关键有两个:一是要将方程右边化为0,二是熟练掌握多项式的因式分解.(2)对原方程变形时不一定要化为一般形式,要从便于分解因式的角度考虑,但各项系数有公因数时可先化简系数.例2. 选择合适的方法解下列方程.(1)2x 2-5x +2=0; (2)(1-x )(x +4)=(x -1)(1-2x );(3)3(x -2)2=x 2-2x . 分析:(1)题宜用公式法;(2)题中找到(1-x )与(x -1)的关系用因式分解法;(3)题中x 2-2x =x ·(x -2)用因式分解法.解:(1)a =2,b =-5,c =2, b 2-4ac =(-5)2-4×2×2=9>0, x =-(-5)±92×2=5±34,x 1=2,x 2=12;(2)原方程化为(1-x )(x +4)+(1-x )(1-2x )=0, 因式分解,得(1-x )(5-x )=0, 即(x -1)(x -5)=0, x -1=0或x -5=0, x 1=1,x 2=5;(3)原方程变形为3(x -2)2-x (x -2)=0, 因式分解,得(x -2)(2x -6)=0, x -2=0或2x -6=0, x 1=2,x 2=3. 评析:(1)解一元二次方程的几种方法中,如果不能直接由平方根定义解得,首先考虑的方法通常是因式分解法,对于不易分解的应考虑公式法,而配方法比较麻烦.公式法、配方法一般可以解所有一元二次方程.例3. 已知(a 2+b 2)2-(a 2+b 2)-6=0,求a 2+b 2的值.分析:若把(a 2+b 2)看作一个整体,则已知条件可以看作是以(a 2+b 2)为未知数的一元二次方程.解:设a 2+b 2=x ,则原方程化为x 2-x -6=0.a =1,b =-1,c =-6,b 2-4ac =12-4×(-6)×1=25>0, x =1±252,∴x 1=3,x 2=-2.即a 2+b 2=3或a 2+b 2=-2, ∵a 2+b 2≥0,∴a 2+b 2=-2不合题意应舍去,取a 2+b 2=3.评析:(1)本题求的是a 2+b 2,而题中条件是关于a 2+b 2的,把a 2+b 2看成一个整体是一个朴素的数学思想,能帮助我们解决一些较“麻烦”的问题.(2)根据非负数的性质有a 2+b 2≥0,在做题时要注意隐含条件.例4. (1)当代数式x 2+7x +6的值与x +1的值相同时,x 的值为多少?(2)方程x 2+2x -8=0的正整数解为几?分析:(1)两个代数式值相等,即x 2+7x +6=x +1,解这个方程可得x 的值;(2)先解出方程的两个根再看其中的正整数根.解:(1)x 2+7x +6=x +1, x 2+6x +5=0,a =1,b =6,c =5,b 2-4ac =16>0.所以x =-6±162,x 1=-1,x 2=-5,所以x 的值为-1或-5.(2)解方程x 2+2x -8=0, a =1,b =2,c =-8,b 2-4ac =22-4×1×(-8)=36>0, x =-2±362=-1±3, x 1=2,x 2=-4.所以方程x 2+2x -8=0的正整数解为2.评析:(1)题中涉及代数式的值的问题,实质上方程就是表示含有未知数的两个代数式的值相等的式子;(2)题中方程用了公式法,用因式分解法也很方便.例5. 用一根长40cm 的铁丝围成一个面积为91cm 2的矩形,问这个矩形长是多少?若围成一个正方形,它的面积是多少?分析:设长为xcm ,则宽为(402-x )cm ,由相等关系长×宽=面积列出方程.解:设长为xcm ,则宽为(402-x )cm ,由矩形面积等于91cm 2,得x ·(402-x )=91,解这个方程,得x 1=7,x 2=13.当x =7cm 时,402-x =20-7=13(cm )(舍去);当x =13cm 时,402-x =20-13=7(cm ).当围成正方形时,它的边长为404=10(cm ),面积为102=100(cm 2).答:矩形的长为13cm ,若围成正方形,则这个正方形的面积为100cm 2.评析:有一些几何面积问题用到一元二次方程,解这类题时要注意一些条件,如习惯上矩形中较长的边称为长,而较短的边称为宽,故本题中取长为13cm ,宽为7cm 较合适.例6. 解方程2(12-x )2-(x -12)-1=0.分析:因为(12-x )2=(x -12)2,如果把(x -12)看成一个整体,并设x -12=y ,则原方程化为2y 2-y -1=0,先求出y 的值,再反过来求x 的值. 解:设x -12=y ,原方程化为2y 2-y -1=0,a =2,b =-1,c =-1,b 2-4ac =9>0,y =-(-1)±92×2=1±34.y 1=1,y 2=-12.当y =1时,x -12=1,x =32;当y =-12时,x -12=-12,x =0.所以原方程的解是x 1=32,x 2=0.评析:本题如果化成一般形式再求解可能要麻烦些,这里使用了把x -12设为y 的做法,回避了很多计算,这种方法叫做换元法.【方法总结】1. 对某些方程而言因式分解法比较快捷,一般选择方法时应先考虑因式分解法,不适合因式分解法的再考虑其它方法.2. 注意体验类比、转化、降次的数学思想方法.解一元一次方程的基本思路是整理后把未知数的系数化成1;解一元二次方程的基本思路是通过开平方或因式分解把一元二次方程降次、转化成一元一次方程.【预习导学案】(实际问题与一元二次方程) 一. 预习前知1. 两个数的差等于3,积等于18,则这两个数是__________.2. 三个连奇数的平方和等于155,则这三个数是__________.3. 矩形的长比宽大4厘米,面积等于60厘米2,则它的周长为__________.4. 经实验,某物体运动规律满足等式s =40t -5t 2,问t =__________时,s =60. 二. 预习导学1. 两个数的和为2,且积为-15,那么求其中一个数x ,列方程为( )A .x 2-2x -15=0B .x 2+2x +15=0C .x 2-2x +15=0D .x 2+2x -15=02. 某厂2008年总产值达1493万元,比2007年增长11.8%,下列说法: ①2007年总产值为1493(1-11.8%)万元; ②2007年总产值为1493÷(1-11.8%)万元; ③2007年总产值为1493÷(1+11.8%)万元;④若按11.8%的年增长率计算,2010年总产值预计为1493(1+11.8%)万元.其中正确的是( ) A .③④ B .②④ C .①④ D .①②③3. 在一块长12m ,宽10m 的长方形平地中央划出一块地,砌成面积为48m 2的长方形花台,使花台四周的空地的宽度一样,①则花台面积占长方形平地面积的__________;②空地面积与花台面积的比是__________;③如果求花台四周空地的宽度x ,则所列方程为__________. 反思:(1)列一元二次方程解实际问题的一般步骤是怎样的?(2)用一元二次方程解实际问题应该注意什么?【模拟试题】(答题时间:50分钟)一. 选择题1. 方程x (x -1)=0的根是( ) A. 0 B. 1 C. 0,-1 D. 0,12. 方程9(x +1)2-4(x -1)2=0的正确解法是( ) A. 直接开方得3(x +1)=2(x -1)B. 化为一般形式13x 2+5=0C. 分解因式得[3(x +1)+2(x -1)][3(x +1)-2(x -1)]=0D. 直接得x +1=0或x -1=03. 解方程(5x -1)2=3(5x -1)的适当方法是( ) A. 直接开方法 B. 配方法 C. 公式法 D. 因式分解法 4. 若实数x 、y 满足(x +y +2)(x +y -1)=0,则x +y 的值为( ) A. 1 B. -2 C. 2或-1 D. -2或1 5. 方程3x (x -2)=0的解是( )A. x 1=3,x 2=2B. x 1=0,x 2=2C. x 1=13,x 2=2 D. x 1=0,x 2=-2*6. 若a 使得x 2+4x +a =(x +2)2-1成立,则a 的值为( ) A. 5 B. 4 C. 3 D. 2*7. 如果x 2+x -1=0,那么代数式x 3+2x 2-7的值是( ) A. 6 B. 8 C. -6 D. -8 **8. 已知(x +y )(1-x -y )+6=0,则x +y 的值为( ) A. 2 B. -3 C. -2或3 D. 2或-3二. 填空题1. 一元二次方程x 2-2x =0的根是__________. 2. 方程(x -1)(x +2)=2(x +2)的根是__________. *3. 方程 (x -1)(x +2)(x -3)=0的根是__________. 4. 方程x (2x -1)=3(2x -1)的根是__________.*5. 使代数式x 2+x -2的值为0的x 的值是__________.6. 一个数平方的2倍等于这个数的7倍,这个数是__________.**7. 三角形两边的长分别是8和6,第三边的长是方程x 2-12x +20=0的一个实数根,则三角形的周长是__________.*8. 一元二次方程ax 2+bx +c =0,若b =a +c ,则这个方程必有一根为__________.三. 解答题1. 用因式分解法解下列方程:(1)(x -2)2-9=0;(2)3y 2+y =0;(3)2x (3x +2)=9x +6;(4)(3x -1)2=4(x +2)2.2. 用适当的方法解下列方程:(1)(5-8x )2=2;(2)x 2+8x =20;(3)3x 2+2x -3=0;(4)(x -1)(x +2)=70.3. 试求使代数式(x -7)(x +3)的值比(x +5)大10的x 的值.4. 审查下面解方程(x -1)2=2(x -1)的过程回答问题. 方程两边都除以(x -1)得x -1=2, ∴x =3.上述过程对不对,为什么?*5. 直角三角形的三边长是三个连续整数,求这个直角三角形的斜边的长.试题答案一. 选择题1. D2. C3. D4. D5. B6. C7. C8. C二. 填空题1. x 1=0,x 2=22. x 1=-2,x 2=33. x 1=1,x 2=-2,x 3=34. x 1=12,x 2=3 5. x 1=-2,x 2=1 6. 0或72 7. 24 提示:方程的解为2或10,当x =2时,与另两边8和6不能组成三角形应舍去.所以x =10,三角形周长为24. 8. x =-1三. 解答题1. (1)x 1=-1,x 2=5;(2)y 1=0,y 2=-33;(3)x 1=32,x 2=-23;(4)x 1=5,x 2=-35. 2. (1)x 1=5-28,x 2=5+28;(2)x 1=2,x 2=-10;(3)x 1=-1+103,x 2=;(4)x 1=8,x 2=-9.3. 根据题意(x -7)(x +3)-(x +5)=10,解得x 1=9,x 2=-4.4. 不对.当x -1=0时,原方程成立,此时x =1;当x -1≠0时,两边同除以x -1得x -1=2.即x =3.所以原方程的解是x 1=1,x 2=3.5. 设斜边长为x ,则两直角边分别为x -2,x -1.根据题意可得(x -2)2+(x -1)2=x 2,解得x 1=1,x 2=5.当x =1时x -2=-1,x -1=0,不符合题意舍去;当x =5时x -2=3,x -1=4,所以三角形的斜边长为5.。

22. 2.3 降次——解一元二次方程(因式分解法)

22. 2.3 降次——解一元二次方程(因式分解法)

100 x1 , x2 0 49
100 x1 , x2 0 49
探究
10 x 4.9 x 0
2
x 10 4.9x 0
x0
因式分解
如果a ·b = 0, 那么 a = 0或 b = 0。
两个因式乘积为 0 降次,化为两个一次方程 或 10 4.9 x 0
右化零 左分解
两因式 各为0
布置作业
第5次 课本第17页第6、10、11题
例3 解下列方程:
(1) x( x 2) x 2 0; 1 3 2 2 (2)5 x 2 x x 2 x . 4 4
分解因式法解一元二次方程的步骤是: 1.使方程右边等于0; (有时化为一般形式) 2. 将方程左边因式分解为a×b; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
例3 解下列方程:
1 x x 2 x 2 0;
2
x-2看成是一个整体
(1)因式分解,得 解: (x-2)(x+1)=0.
于是得
1 3 2 5x 2 x x 2 x . 2 4 4
(2)移项、合并同类项,得
2
因式分解,得
于是得
4 x 1 0.
5 5 r1 , r2 (舍去). 2 1 1 2
答:小圆形场地的半径是
5 m. 2 1
小结
分解因式法解一元二次方程的步骤是: 1. 将方程左边因式分解,右边等于0;
2. 根据“至少有一个因式为零”,转化为两个一元 一次方程. 3. 分别解两个一元一次方程,它们的根就是原方 程的根.

22.2降次——解一元二次方程-因式分解法

22.2降次——解一元二次方程-因式分解法

(4)x = x x1 = 0, x2 = 1
2
3
2
2.下面的解法正确吗?如果不正确, 下面的解法正确吗?如果不正确, 下面的解法正确吗 错误在哪? 错误在哪? (1)解方程: x + 2)( x − 1) = 3 (1)解方程 ( 解方程:
Q 解: ( x + 2)( x − 1) = 3 × 1
∴ x + 2 = 3, x − 1 = 1 ×
则x1 = 1, x 2 = 2
这个方程需要先转化为一般形式再求解. 这个方程需要先转化为一般形式再求解.
(2)解方程: y = 4 y (2)解方程 解方程:
2
解:Q y = 4 y
2
∴y=4
×
根据等式性质,等式两边都除以一 根据等式性质, 个不为0的数时,等式仍然成立。 个不为0的数时,等式仍然成立。上式 方程两边同除以y 有可能为0. 中,方程两边同除以y,而y有可能为0. 那么,这个方程应该怎样解呢? 那么,这个方程应该怎样解呢?
x2+x=0 解:原方程整理得 x(x+1)=0 ∴x=0 或 (x+1)=0 则x1=0 ,x2=-1 可以发现, 可以发现,利用因式分解可以很快 捷地解出方程。 捷地解出方程。
梳理
上述解法中,通过因式分解使一元 上述解法中, 二次方程化为两个一次式的乘积等于0 二次方程化为两个一次式的乘积等于0的 形式,再使这两个一次式分别等于0,从 形式,再使这两个一次式分别等于0 而实现降次,求出方程的根, 而实现降次,求出方程的根,这种解法 叫做因式分解法 叫做因式分解法。 因式分解法。
(2)(3x +1) − 5 = 0
2
(1)3x(x + 2) = 5(x + 2)

22.2降次——解一元二次方程(共8课时)

22.2降次——解一元二次方程(共8课时)

22.2降次——解一元二次方程(共8课时)第一课时:配方法(1)一、教学目的1.使学生掌握用直接开平方法解一元二次方程.2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c<0)的方法.二、教学重点、难点重点:准确地求出方程的根.难点:正确地表示方程的两个根.三、教学过程复习过程回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.求下列各式中的x:1.x2=225; 2.x2-169=0;3.36x2=49; 4.4x2-25=0.回答解题过程中的依据.解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.即一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数.引入新课我们已经学过了一些方程知识,那么上述方程属于什么方程呢?新课教学过程设计做一做1.一桶某种油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?(课件:盒子的棱长)2.对照上述解方程的过程,你能解下列方程吗?从中你能得到什么结论?(1)2x-=;(2)2692(21)5x x++=.学生独立分析问题,在必要的时候进行讨论.经过分析发现(1)和问题1中的方程形式类似,可以利用平方根的定义直接得到21x-=对于(2),发现方程左边是一个完全平方式,可以化为(1)的形式,然后利用(1)的方法解决.鼓励学生独立解决问题,在解决问题的过程中体会解简单的一元二次方程的思想“降次”——把二次降为一次,进而解一元一次方程即可.引导学生归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.即,如果方程能化成2xp=或2()(0)m x n p p +=≥的形式,那么可得x =m x n+=课堂练习解下列方程.学生独立思考、独立板书解题1.x 2-3=0 2.4x 2-9=0 3. 4x 2+4x+1=1 4. x 2-6x+9=03、应用拓展市政府计划2年内将人均住房面积由现在的10m 2提高到14.4m ,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x .•一年后人均住房面积就应该是10+•10x=10(1+x );二年后人均住房面积就应该是10(1+x )+10(1+x )x=10(1+x )2解:设每年人均住房面积增长率为x , 则:10(1+x )2=14.4 (1+x )2=1.44直接开平方,得1+x=〒1.2 即1+x=1.2,1+x=-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.课堂小结问题:本节课你学到了什么知识?从中得到了什么启发?1.本节主要学习了简单的一元二次方程的解法——直接法.2.直接法适用于ax 2+c=0(a >0,c <0)型的一元二次方程.由应用直接开平方法解形如x 2=p (p ≥0),那么x=开平方法解形如(mx+n)2=p(p≥0),那么mx+n=的.作业31页练习1、2第二课时:配方法(2)教学目的1.使学生掌握用配方法解一元二次方程的方法.2.使学生能够运用适当变形的方法,转化方程为易于用配方法求解的形式,来解某些一元二次方程.并由此体会转化的思想.重点:掌握配方的法则.难点:凑配的方法与技巧.教学过程一、复习回顾、引入新课用开平方法解下列方程:(1)x2=441; (2)196x2-49=0;我们知道,形如x2-A=0的方程,可变形为x2=A(A≥0),再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如ax2+bx+c=0(a>0)的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题.二、探究新知、归纳配方法一般过程.学生通过思考,自己列出方程,然后讨论解方程的方法.问题:要使一块矩形场地的长比宽多6 cm,并且面积为16 cm2,场地的长和宽分别是多少?设场地的宽为x m,则长为(x+6)m,根据矩形面积为16 cm2,得到方程x(x+6)=16,整理得到x2+6x-16=0,对于如何解方程x2+6x-16=0可以进行讨论,根据问题1和问题2以及归纳的经验可以想到,只要把上述方程左边化成一个完全平方式的形式,问题就解决了,于是想到把方程左边进行配方,对于代数式x2+6x只需要再加上9就是完全平方式(x+3)2,因此方程x2+6x=16可以化为x2+6x+9=16+9,即(x+3)2=25,问题解决.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程探究二:利用配方法解下列方程,你能从中得到在配方时具有的规律吗?(课件:配方)学生首先独立思考,自主探索,然后交流配方时的规律. (1)x 2-8x + 1 = 0; (2)2213x x+=;(3)23640x x -+=.(1)中经过移项可以化为281x x -=-,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到2228414x x -+=-+,得到(x -4)2=15;(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即23122x x -=-,方程两边都加上23()4,方程可以化为231()416x -=;(3)按照(2)的方式进行处理.在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理),然后让学生分析利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式2a xb xc ++=;(2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.三、应用提高、拓展创新,培养学生应用意识.绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长应是多少米?师生活动设计:学生在独立思考的基础上解决问题,在必要时教师进行适当引导,遇到问题时可以让学生讨论解决.…解答‟设绿地的宽是x 米,则长是(x +10)米,根据题意得x (x +10)=900.整理得210900x x +=,配方得2(5)925x +=.解得1255x x =-+=--由于绿地的边长不可能是负数,因此绿地的宽只能是5-+的长是5+四、课堂练习解方程x 2-4x-3=0. 解方程2x 2+3=7x .五、归纳总结、布臵作业1、 在解决问题的过程中你采取了什么方法?2、应用配方法解一元二次方程ax 2+bx+c=0(a ≠0)的要点是: (1)化二次项系数为1;(2)移项,使方程左边为二次项和一次项,右边为常数; (3)方程两边各加上一次项系数一半的平方; 作业:习题22.2第1~3题.第三课时:用公式法解一元二次方程。

降次——解一元二次方程

降次——解一元二次方程

22.2 降次——解一元二次方程情境感知我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长十二步(宽比长少12步),问阔及长各几步?”基础准备一、配方法1.配方法的定义把一元二次方程的左边化成一个____________________,右边变成一个___________.通过这种形式解一元二次方程的方法,叫做配方法.2.用配方法解一元二次方程的步骤(1)如果二次项系数不是1,就在方程两边同时除以_____________,将其化为1;(2)把___________移到方程的右边;(3)方程两边都加上_________________的平方,使方程的左边变为一个完全平方式;(4)如果方程的右边是一个非负数,根据平方根的定义解方程.问题1.用配方法解方程:21090x x ++=.二、公式法3.一元二次方程()200ax bx c a ++=≠的根可用式子______________________求得,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法. 问题2.用公式法解方程:260x x --=.4.求根公式中的____________叫做一元二次方程()200ax bx c a ++=≠的根判别式. (1)当__________时,一元二次方程()200ax bx c a ++=≠有两个不相等的实数根; (2)当__________时,一元二次方程()200ax bx c a ++=≠有两个相等的实数根;(3)当__________时,一元二次方程()200ax bx c a ++=≠没有实数根.问题3.不解方程,判断下列关于x 的方程的根的情况:(1)245x +=;(2)()22410x mx m -+-=.三、因式分解法5.对于一元二次方程,一边是_________,另一边化为两个_____________的乘积,再使这两个因式分别等于0,从而实现降次,这种方法叫做因式分解法.问题4.用因式分解法解下列方程(1)20x -=;(2)23180x x +-=.要点探究探究1.一元二次方程四种解法的选择例1.用适当的方法解下列方程.(1)2710x x --=.(2)220x x +=.(3)2160x -=.(4)()44x x -=-. 解析:针对方程特点选择最简捷的方法解题.答案:(1)1a =,7b =-,1c =-,()()2247411530b ac -=--⨯⨯-=>,()77212x --±==⨯,∴172x =,272x =. (2)因式分解,得()20x x +=,∴0x =或20x +=,∴10x =,22x =-.(3)移项,得216x =,∴14x =,24x =-.(4)将方程化为一般形式2440x x -+=,即()220x -=,∴122x x ==. 智慧背囊:一元二次方程解法的选择顺序:先特殊,后一般,即先考虑是否可以用直接开平方法,若不能,则看能否用因式分解法,再考虑用公式法,一般没有特殊说明不用配方法,因为配方法比较麻烦,四种解法中最简单的是直接开平方法,最常用的是公式法.活学活用:选择适当的方法解下列方程:(1)2230x x --=;(2)29x =;(3)()2211x x +=+;(4)221x x -=-.探究2.一元二次方程的判别式例2.不解方程,判断下列方程根的情况.(1)22340x x +-=;(2)216924y y +=;(3)()25170x x +-=. 解析:先将方程化成一般形式,确定a ,b ,c 的值,再计算24b ac -的值,并与0进行比较.答案:(1)∵2a =,3b =,4c =-,∴()2243424410b ac -=-⨯⨯-=>,∴原方程有两个不相等的实数根.(2)原方程可变形为2162490y y -+=,∵16a =,24b =-,9c =,∴24b ac - ()22441690=--⨯⨯=,∴原方程有两个相等的实数根.(3)原方程可变形为25750x x -+=,∵5a =,7b =-,5c =,∴24b a c -=()27- 45549100510-⨯⨯=-=-<.∴原方程没有实数根.智慧背囊:判断方程根的情况的关键是准确计算24b ac -的值,并将其与0进行比较. 活学活用:不解方程,判断下列方程根的情况.(1)2100x -+=;(2)()11x x =+-.例3.已知关于x 的方程2450kx kx k -+-=有两个相等的实数根,求k 的值,并解这个方程.解析:若一元二次方程有两个相等的实数根,则240b ac -=.解题时注意题中隐含条件二次项系数0k ≠.答案:∵a k =,4b k =-,5c k =-,∴()()22244451220b ac k k k k k -=---=+. ∵方程有两个相等的实数根,∴240b ac -=,即212200k k +=,解得10k =,253k =-.当0k =时,原方程不是一元二次方程,∴0k =不合题意,舍去,当53k =-时,原方程化为2440x x -+=,解得122x x ==.智慧背囊:对于一次项系数含有字母的一元二次方程,在用根的判别式时必须考虑题目中的隐含条件,即二次项系数不能等于0.活学活用:已知关于x 的方程()21230m x mx m -+++=有两个不相等的实数根,求m 的取值范围.随堂尝试A 基础达标1.选择题(1)一元二次方程240x -=的解是( )(A )2x =.(B )2x =-.(C )12x =,22x =-.(D )1x =2x =(2)方程20x x +=的解是( )(A )1x =±.(B )0x =.(C )1x =.(D )10x =,21x =-.(3)用配方法将代数式245a a -+变形的结果是( )(A )()221a -+.(B )()221a ++.(C )()221a +-.(D )()221a --.(4)已知228x x k ++是完全平方式,则k 的取值是( )(A )4.(B )-4.(C )4±.(D )16.(5)下列方程中,无实数根的是( )(A )270x =.(B )()2116x -=.(C )()()112x x +-=-.(D )()210x +-=. 2.填空题(1)对于方程2316x x =,用_____________法解最简便.(2)当y =_____________时,代数式276y y ++的值与1y +的值相同.(3)当x =_____________(4)一个三角形两边长为2和4,第三边长适合方程2210120x x -+=,则三角形的周长为_____________.3.用适当的方法解下列方程: (1)21943x ⎛⎫+= ⎪⎝⎭;(2)260x x --=;(3)2310y y -+=;(4)22110362x x --=.4.若关于x 的方程()22(21)10m x m x -+++=有两个不相等的实数根,求m 的取值范围.B 能力升级5.试分别写出一个一元二次方程,使它的两根:(1)一根是0,一根是负数;(2)一根是正数,另一根是在-2与-1之间.6.已知实数a ,b ,c ()2130b c +++=,求方程20ax bx c ++=的根.7.若规定两个数a ,b 通过运算得4ab ,即a △b 4ab =,例如:2△642648=⨯⨯=.(1)求3△5的值;(2)求x △x 2+△x -2△40=中x 的值;(3)若不论x 是什么数时,总有a △x x =,求a 的值.C 感受中考8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )(A )240x +=.(B )24410x x -+=.(C )230x x ++=.(D )2210x x +-=.9.方程220x x +=的解为_____________.10.已知关于x 的一元二次方程2410x x m ++-=.(1)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根;(2)设α,β是(1)中你所得到的方程的两个实数根,求22αβαβ++的值.课后实践高次方程有求根公式吗一元二次方程有求根公式,一般的一元三次方程、一元四次方程等高次方程是否也有类似的求根公式呢?数学家们也曾提出过类似的问题,在意大利的数学家们之间还发生了一连串有趣的故事.1535年,意大利数学家塔尔塔利亚与另一位数学家举行了一场数学比赛,双方各出30个三次方程的问题,限30日交卷,约定谁解出的题目多谁就获胜,结果塔尔塔利亚取得了胜利.这次胜利促使塔尔塔利亚进一步潜心研究一般三次方程的解法.1541年,他终于完全解决了三次方程的求解问题.意大利米兰城有个学者卡尔达诺听说塔尔塔利亚会三次方程的解法,就多次向塔尔塔利亚恳求教他,并保证严守秘密,不告诉别人.当塔尔塔利亚把这个方法告诉了他之后,卡尔达诺却将其公开发表,因此现在还习惯称三次方程的求解公式为卡尔达诺公式.当然,塔尔塔利亚大为光火,两人为此曾展开公开论战.一元三次方程一经解出,一元四次方程的解法很快就被卡尔达诺的学生费拉里获得.此后200多年的时间里,推求四次以上高次方程的解法的人不可胜数,但都没有结果.久而久之,人们怀疑这个问题难以解决.挪威数学家阿贝尔证明了一般的五次及五次以上的方程都不可能有公式解法.而代数方程可解性问题的完满解决应归功于法国数学奇才伽罗瓦,他的成果被后人称之为伽罗瓦理论.。

22.2 降次-解一元二次方程-配方法,公式法,因式分解法

22.2 降次-解一元二次方程-配方法,公式法,因式分解法
2
2 3 2 3 y1 1 , y2 1 . 3 3
(1)3 x 2 x 5 0;
2
(2)2 y y 6 0;
2
(3)3 x 6 x 1.
2
1.熟悉配方法解方程的步骤 2.体会转化的数学思想.
解下列方程:
(1)t 2t 48;
2
(2)2 x 4 x 5 0.
x 3 5, x1 3 5 , x2 3 5.
解: x 2 5 x 6,
(2)
5 5 x 5x 6 , 2 2
2
2
2
x 5x 6 0.
2
5 25 x 6 , 2 4 5 49 x , 2 4 5 7 5 7 x1 , x2 , 2 2 2 2 x1 1, x2 6.
课时总结
(1)、可直接开方解形如 x p ( p 0) 的方程,那么 x p 达到降次的目的;
2
(2)、可直接开方解形如 ( mx n) p ( p 0) 的方程,那么 mx n p 达到降次的目 的;
2
一元二次方程配方的一般步骤: 化简:把方程化简为一般形式, 把二次项系数化为1 配方:方程两边都加上一次项系数一半的平方 开方:根据平方根意义,方程两边开平方 求解:解一元二次方程 定解:写出原方程的解
2
(2) 可直接开方解形如 (mx n) p ( p 0) 的方程, 那么 mx n p 达到降次的目的;
2
问题2 要使一块矩形场地的长比宽多6m , 并且 面积为16 m2 ,场地的长和宽应各是多少?
解:设场地的宽为 x m ,长为( x 6) m .根据 2 矩形面积为16 m ,列方程

22.2 降次——解一元二次方程 辅导资料(含答案)

22.2 降次——解一元二次方程 辅导资料(含答案)

22.2 降次——解一元二次方程本章内容“一元二次方程”是《课程标准》“数与代数”的重要内容,解一元二次方程的算法是《一元二次方程》一章的重点内容,也是方程中重点内容,是学习二次函数等内容的基础,本节的主要内容是一元二次方程的解法。

这部分知识是对一次方程(组)知识学习的延续和深化,是后续内容学习的基础和工具。

主要学习下列三个内容:1.配方法配方法是继探索一元二次方程近似解的基础上研究的一种求精确解的方法.它是一元二次方程的解法的通法.因为用配方法解一元二次方程比较麻烦,一个一元二次方程需配一次方,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是导出求根公式的关键,且在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程.根据教材的特点主要设置了直接开平方法解一元二次方程和二次项系数是1的一元二次方程的解法.直接开平方法解一元二次方程比较简单,主要设置了【典例引路】中的例1、例2.【当堂检测】中的第1、2题,【课时作业】中的第1,2,11题.配方及二次项系数是1的一元二次方程的解法为本节的难点,为此设置了【拓展应用】中的例2,【当堂检测】中的第3,5题,【课时作业】中的第4,5,6,7,8,9,10,12题,【选做题】中的第1,2题,【备选题目】中的第1,2题。

2.公式法此内容是本节课的重点,是学习一元二次方程的基础,为此设计【典例引路】的例3、[当堂检测]的第1、2、4题,[课时作业]的第1—5题。

3.因式分解法利用方程解的含义,可求方程中的待定系数,也可由此把二次三项式变形求值,为此设计【典例引路】的例4,[当堂检测]的第3题,[选做题]和[备选题目]的问题。

4.整体思想和数感整体思想是数与代数中常用的数学思想,为此设计[拓展应用]的例1,课标虽不要求解含字母系数的方程,为提高数感, 为此设计[备选题目]的问题。

点击一:利用直接开平方法解一元二次方程用此法可解形如c x =2、)0()(2≥=+c c b ax 或可化为这种形式的一类方程,这种解法的优点是能迅速准确地求出方程的解,缺点是只适用于一些特殊的方程。

22.2降次-解一元二次方程(七个课时)教案

22.2降次-解一元二次方程(七个课时)教案

22.2 降次——解一元二次方程课题:22.2.1配方法(第1课时)一、教学目标1.经历探究过程,会用配方法解较简单的一元二次方程(二次项系数为1).2.培养思考能力和探索精神.二、教学重点和难点1.重点:用配方法解一元二次方程.2.难点:配方.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .(二)尝试指导,讲授新课(师出示下面的板书)直接开平方法:第一步:化成什么2=常数;第二步:开平方降次;第三步:解一元一次方程.师:上节课我们学习了用直接开平方法解一元二次方程.(指准板书)用直接开平方法解一元二次方程有这么三步,第一步化成什么2=常数;第二步开平方降次,把一元二次方程转化为一元一次方程;第三步解一元一次方程,得到两个根.师:按这三步,我们来做一个题目.(师出示例1)例1 解方程:x2-4x+4=5.(先让生尝试,然后师边讲解边板书,解题过程如下)解:原方程化成(x-2)2=5.,开平方,得x-2=5x1=5+2,x2=-5+2.(三)试探练习,回授调节2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,x1= ,x2= .(四)尝试指导,讲授新课师:下面我们再来做一个题目.(师出示例2)例2 解方程:x2+6x-16=0.师:(指准板书)怎么解这个一元二次方程?(稍停)还是要按这三步来做.按这三步来做,关键是哪一步?(稍停)关键是第一步,把方程化成什么2=常数的这种样子,也就是左边化成含有x的式子的平方,右边是一个常数这种样子.怎么化呢?大家自己先化一化.(生尝试,师巡视)师:下面我们一起来化.师:(指准方程)要把这个方程化成什么2=常数这种样子,首先要把常数项移到右边去(板书:解:移项,得x2+6x=16),然后在这个方程的两边加上32(板书:x2+6x+32=16+32),左边x2+6x+32等于什么?(稍停)等于(x+3)2(边讲边板书:(x+3)2),右边16+32等于25(边讲边板书:=25).这样我们把原方程化成了含有x的式子的平方=常数这种样子.师:方程化成这种样子,下面就很好做了.开平方,得x+3=±5(边讲边板书:开平方,得x+3=±5),解一元一次方程,得到两个根,x1=2,x2=-8(边讲边板书:x1=2,x2=-8).师:(指准解题过程)这个题目做完了,通过做这个题目,大家不难发现,解这个题目的关键是在方程两边加上32,把方程的左边配成(x+3)2.这样做叫什么?叫配方(板书:配方).师:像这道例题那样,通过把方程左边配成平方形式来解一元二次方程的方法,叫配方法(板书:配方法).师:下面请大家做几个有关配方法的练习.(五)试探练习,回授调节3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.(六)归纳小结,布置作业师:这节课我们学习了什么?(稍停)我们学习了用配方法解一元二次方程.怎么用配方法解一元二次方程?(指准板书)和直接开平方法一样,都是这么三步,所不同的是,直接开平方法很容易把原方程化成什么2=常数这种样子,而配方法需要通过配方才能把原方程化成这种样子.课外补充作业:6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得,.开平方,得,x1= ,x2= .8.用配方法解方程:x2-6x+7=0.四、板书设计直接开平方法、配方法例1 例2第一步:化成什么2=常数;第二步:开平方降次;第三步:解一元一次方程.课题:22.2.1配方法(第2课时)一、教学目标1.会用配方法解一元二次方程(二次项系数不为1).2.培养数感和运算能力.二、教学重点和难点1.重点:用配方法解一元二次方程.2.难点:配方法.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得,.开平方,得,x1= ,x2= .2.填空:(1)x 2-2·x ·13+ =(x- )2; (2)x 2+5x+ =(x+ )2; (3)x 2-32x+ =(x- )2; (4)x 2+x+ =(x+ )2.(订正时告诉学生,加上的那个数是一次项系数一半的平方) (二)尝试指导,讲授新课 (师出示下面的板书) 配方法第一步:化成什么2=常数; 第二步:开平方降次; 第三步:解一元一次方程.师:(指准板书)上节课我们学习了用配方法解一元二次方程.怎么用配方法解一元二次方程?有这么三步,第一步:通过移项、配方把原方程化成什么2=常数这种样子;第二步:开平方,把一元二次方程转化为一元一次方程;第三步:解一元一次方程,得到两个根.在这三步中,第一步中的配方是关键,所以这种解法叫做配方法.师:下面我们用配方法再来解几个一元二次方程,先看例1. (师出示例1)(三)尝试指导,讲授新课 例1 用配方法解方程:x 2+5x+14=0. (先让生尝试,然后师边讲解边板书,解题过程如下) 解:移项,得x 2+5x=-14. 配方 x 2+5x+252⎛⎫ ⎪⎝⎭=-14+252⎛⎫ ⎪⎝⎭,25x+=62⎛⎫⎪⎝⎭.开平方,得x+52=6±, x 1=5-+62,x 2=5--62.(四)试探练习,回授调节3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方,.开平方,得,x1= ,x2= .(五)尝试指导,讲授新课师:下面我们再来做一个题目.(师出示例2)例2 用配方法解方程:2x2+1=3x.师:(指准方程)这个方程与例1这个方程有点区别,区别在哪儿?(稍停)区别主要是,例1这个方程的二次项系数是1,而这个方程的二次项系数不是1.怎么办?我们可以设法把这个方程二次项系数化为1.下面大家自己先试着做一做.(以下生尝试,然后师边讲解边板书,解题过程如下)解:移项,得2x2-3x=-1.二次项系数化为1,得231x-x=-22.配方2223313x-x+=-+2424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,231x-=416⎛⎫⎪⎝⎭开平方,得31x-=44±,x1=1, x2=12.(六)试探练习,回授调节4.完成下面的解题过程:用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得 .配方,.开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.(七)归纳小结,布置作业师:这节课我们继续学习了用配方法解一元二次方程,(指板书)用配方法解一元二次方程就这么三步,解题的关键是第一步.怎么做第一步?(指例2)先移项,再把二次项系数化为1,然后配方.配方时,要在方程两边加上一次项系数一半的平方.(作业:P42习题2.3.)四、板书设计配方法例1 例2第一步:化成什么2=常数;第二步:开平方降次;第三步:解一元一次方程.课题:22.2.1配方法(第3课时)一、教学目标1.会先整理再用配方法解一元二次方程(包括没有实数根的情况).2.培养数感和运算能力.二、教学重点和难点1.重点:先整理再用配方法解一元二次方程.2.难点:没有实数根的情况.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得 .配方,. 开平方,得 , x 1= ,x 2= . (二)创设情境,导入新课师:上节课我们用配方法解了几个一元二次方程,这节课我们用配方法再来做几个题目.(三)尝试指导,讲授新课 (师出示例题) 例 用配方法解方程: (1)(x-2)(x+3)=6; (2)3x(x-1)=3x-4.(先让生尝试,然后师边讲解边板书,解题过程如下) 解:(1)整理,得x 2+x-12=0. 移项,得x 2+x=12.配方 x 2+x+212⎛⎫ ⎪⎝⎭=12+212⎛⎫ ⎪⎝⎭,2149x+=24⎛⎫ ⎪⎝⎭.开平方,得x+12=72±, x 1=3, x 2=-4. (2)整理,得3x 2-6x+4=0. 移项,得3x 2-6x=-4.二次项系数化为1,得24x -2x=-3配方 224x -2x+1=-+13, ()21x-1=-3. 原方程没有实数根.师:例题做完了,从这个例题,谁能概括怎么用配方法解一元二次方程?(让生思考一会儿,再叫学生)生:……(让一两名好生回答)师:用配方法解一元二次方程,(指准例2)第一步要把原方程化成什么2=常数这种样子,怎么化呢?(稍停)先整理,把原方程化成一元一次方程的一般形式;再移项;然后把二次项系数化为1;然后再配方,配方时,在方程两边加上一次项系数一半的平方.第一步完成后,看右边的常数,如果右边的常数为负数,说明原方程没有实数根;(指准例1)如果右边的常数为非负数,则继续第二步第三步,第二步开平方,第三步解一元一次方程得到两个实数根.(四)试探练习,回授调节2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得 .配方,.开平方,得,x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.(五)归纳小结,布置作业师:本节课我们用配方法解了几个一元二次方程,通过做题,同桌之间互相说一说,怎么用配方法解一元二次方程?(同桌之间互相说)(作业:P34练习2(5)(6))四、板书设计(略)课题:22.2.2公式法(第4课时)一、教学目标1.经历一元二次方程求根的推导过程,会用公式法解一元二次方程.2.发展符号感.二、教学重点和难点1.重点:一元二次方程求根公式的推导和运用.2.难点:一元二次方程求根公式的推导. 三、教学过程(一)尝试指导,讲授新课师:(板书:ax 2+bx+c=0,并指准)这是一个一元二次方程,x 是未知数,a ,b ,c 都是常数,而且a ≠0(板书:(a ≠0)).怎么用配方法来解这个一元二次方程?大家自己先试一试.(生尝试,师巡视,要给学生充足的尝试时间)师:我们一起来解这个一元二次方程.首先我们要把这个方程化成什么2=常数这种样子,怎么化呢?师:先把常数项c 移到右边(板书:移项,得ax 2+bx=-c ). 师:再把二次项系数化为1,得2bcx +x=-a a(板书:二次项系数化为1,得2b cx +x=-a a).师:然后配方(板书:配方),怎么配方?(稍停)在方程两边加上一次项系数一半的平方(板书:222b b c b x +x+=-+a 2a a 2a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭),左边是2b x+2a ⎛⎫ ⎪⎝⎭(板书:2b x+2a ⎛⎫ ⎪⎝⎭=),右边=222222222c b b c b 4ac b -4ac -+=-=-=a 4a 4a a 4a 4a 4a (边讲边在黑板的其它地方板演),所以2b x+2a ⎛⎫ ⎪⎝⎭=22b -4ac 4a (边讲边板书:22b -4ac 4a ). 师:(指准板书)通过移项、二次项系数化为1、配方,现在我们把原方程化成了什么2=常数这种形式,接下来怎么做呢?师:(指准方程)接下来开平方(板书:开平方,得),22b b -4acx+=2a 4a ±(边讲边板书:22b b -4ac x+=2a 4a ±),这个二次根式还可以化简,化简结果是2b -4ac2a (边讲边将上面的二次根式改写成2b -4ac2a).师:(指准方程)把b 2a 移到方程右边去,可以解出x ,2-b b -4acx=2a±(边讲边板书:2-b b-4acx=2a±).师:21-b+b-4acx=2a(边讲边板书),22-b-b-4acx=2a(边讲边板书).师:(指准板书)这个方程解完了,通过解这个方程我们得出,一元二次方程ax2+bx+c=0的两个根是2-b b-4acx=2a±(在这个式子外加框).师:(指ax2+bx+c=0)忙乎了半天,有的同学可能会问:这个方程尽是字母,很难解,解它有什么用?是啊,大家想一想,解这个方程有什么用啊?(让生思考一会儿,再叫学生)生:……(让几名同学发表看法)师:以前我们解一元二次方程用的是配方法,要一步一步来解,过程比较麻烦.现在好了,通过解这个方程,(指准求根公式)有了这个式子,只需要把二次项系数a、一次项系数b、常数项c代入这个式子,就可以求出根.因为利用这个式子可直接求根,所以我们把这个式子叫做一元二次方程的求根公式(板书:求根公式).师:(指求根公式)求根公式挺复杂,大家把求根公式写一写,记一记,熟悉熟悉.(生熟悉公式)师:下面我们利用求根公式来解几个一元二次方程.(师出示例题)例利用求根公式解下列方程:(1)x2-4x-7=0; (2)5x2-3x=x+1;(3)2x2-22x+1=0; (4)x2+17=8x.师:(指(1)题)怎么利用求根公式解这个一元二次方程?(板书:解:(1))师:(指(1)题)首先要找出这个方程的二次项系数a、一次项系数b、常数项c,这个方程的a,b,c等于什么?生:a=1,b=-4,c=-7(生答师板书:a=1,b=-4,c=-7).师:找出了a,b,c,接下来干什么?接下来要计算b2-4ac的值(板书:b2-4ac=). b2-4ac=(-4)2-4×1×(-7)=44(边讲边板书:(-4)2-4×1×(-7)=44)师:大家可能觉得有点奇怪,找出了a,b,c,为什么不把a,b,c直接代入求根公式,而是先计算b 2-4ac 的值?(稍停后指准求根公式)大家看求根公式,公式中这个二次根式的被开方数是b 2-4ac ,可见b 2-4ac 必须大于等于0.计算b 2-4ac 的目的是什么?目的是看一看b 2-4ac 的值是大于等于0还是小于0.如果b 2-4ac 的值大于等于0,下一步才把a ,b ,c 代入求根公式;如果b 2-4ac 的值小于0,这个二次根式没有意义,说明方程没有实数根.总之,要根据b 2-4ac 值的符号来决定下一步怎么做,所以不能直接把a ,b ,c 代入求根公式,先要求b 2-4ac 的值.师:(指准板书)这个方程的b 2-4ac 等于44,大于0(边讲边板书:>0),所以下一步可以把a ,b ,c 代入求根公式.师:2-b b -4ac -(-4)444211x===2a 212±±±⨯(边讲边板书). 师:1x =2+11,1x =2-11(边讲边板书). (以下师边讲解边板书其它各题,解题过程如下) (2)整理,得5x 2-4x-1=0. a=5,b=-4,c=-1,b 2-4ac=(-4)2-4×5×(-1)=36>0.2-b b -4ac -(-4)3646x===2a 2510±±±⨯,14+6x ==110,14-61x ==-105. (3)a=2,b=-22,c=1, b 2-4ac=(-22)2-4×2×1=0.2-b b -4ac -(-22)0220x===2a 224±±±⨯,122x =x =2. (4)整理,得x 2-8x+17=0. a=1,b=-8,c=17,b 2-4ac=(-8)2-4×1×17=-4<0. 方程没有实数根.(二)试探练习,回授调节 1.完成下面的解题过程: 利用求根公式解方程:x 2+x-6=0. 解:a= ,b= ,c= .b 2-4ac= = >0.2-b b -4acx==___________________=_________2a,1x =_________,1x =__________. 2.利用求根公式解下列方程: (1)21x -3x-=04; (2)24x +45x+5=0; (3)3x 2-4x+2=0; (三)归纳小结,布置作业师:本节课我们学习了利用求根公式解一元二次方程,利用求根公式解一元二次方程,这种方法叫公式法(板书课题:22.2.2公式法).师:和配方法相比,用公式法解一元二次方程要简单得多,不过我们还要看到,公式法所用的求根公式是用配方法推导出来的,所以我们说,公式法更简单,配方法更基本.(作业:P 42习题5(1)(2)(5)(6)) 四、板书设计(略)22.2.2公式法ax 2+bx+c=0(a ≠0) 例移项,得…… 二次项系数化为1,得……配方…… …… 开平方,得…… x 1=……x 2=……课题:22.2.2公式法(第5课时) 一、教学目标1.会较熟练地用公式法解一元二次方程.2.知道什么是判别式,会根据判别式的值确定解的情况. 二、教学重点和难点1.重点:根据判别式的值确定解的情况.2.难点:根据判别式的值确定解的情况. 三、教学过程(一)基本训练,巩固旧知 1.完成下面的解题过程: 用公式法解下列方程: (1)2x 2-3x-2=0.解:a= ,b= ,c= . b 2-4ac= = >0.2-b b -4acx==___________________=_________2a±,1x =_________,1x =__________. (2)x(2x-6)=6x-3.解:整理,得 . a= ,b= ,c= . b 2-4ac= = .2-b b -4acx==__________________=_________2a±, 12x =x =_________. (3)(x-2)2=x-3.解:整理,得 . a= ,b= ,c= .b 2-4ac= = <0. 方程 实数根.(二)尝试指导,讲授新课(师出示下面的板书)一元二次方程ax2+bx+c=0(1)当b2-4ac 时,方程有两个不相等的实数根;(2)当b2-4ac 时,方程有两个相等的实数根;(3)当b2-4ac 时,方程没有实数根.师:刚才我们解了个一元二次方程,我们是怎么解方程的?(稍停)师:(指准板书)首先我们把方程化成一元二次方程的一般形式,也就是ax2+bx+c=0这样的形式.师:然后计算b2-4ac的值,(指准板书)当b2-4ac的值怎么样时,方程有两个不相等的实数根?生:当b2-4ac>0时(多让几名同学回答,然后师填入:>0).师:(指准板书)当b2-4ac的值怎么样时,方程有两个相等的实数根?生:当b2-4ac=0时(多让几名同学回答,然后师填入:=0).师:(指准板书)当b2-4ac的值怎么样时,方程没有实数根?生:当b2-4ac<0时(生答师填入:<0).师:(指板书)通过解一元二次方程,我们得到了这个的结论,请大家一起来把这个结论读两遍.(生读)师:(指板书)这是一个很重要的结论,这个结论告诉我们,一元二次方程根的情况由式子b2-4ac决定,所以我们把式子b2-4ac叫做一元二次方程根的判别式(板书:b2-4ac 叫做根的判别式),记作△(板书:记作△).师:下面我们就利用这个结论来做一个题目.(师出示下面的例题)例利用判别式判断下列方程的根的情况:(1)2x2+3x-4=0;(2)4y2+9=12y;(3)5(x2+1)-7x=0.(师边讲解边板书,解题过程如下)解:(1)a=2,b=3,c=-4.△=b2-4ac=32-4×2×(-4)=9+32>0,方程有两个不相等的实数根.(2)整理,得4y2-12y+9=0a=4,b=-12,c=9.△=b2-4ac=(-12)2-4×4×9=144-144=0,方程有两个相等的实数根.(3)整理,得5x2-7x+5=0a=5,b=-7,c=5.△=b2-4ac=(-7)2-4×5×5=49-100<0,方程没有实数根.(三)试探练习,回授调节2.利用判别式判断下列方程的根的情况:(1)x2-5x=-7;(2)(x-1)(2x+3)=x;(3)x2+5=25x.(四)归纳小结,布置作业师:本节课我们学习了什么?(稍停)我们学习了利用判别式判断方程根的情况.请大家再把这个结论读一遍.(生读)(作业:P42习题4.5(3)(4))四、板书设计(略)一元二次方程ax2+bx+c=0 例(1)当b2-4ac>0时……(2)当b2-4ac=0时……(3)当b2-4ac<0时……课题:22.2.3因式分解法(第6课时)一、教学目标1.会用因式分解法解一元二次方程,领会因式分解法的实质是降次.2.培养式的变形能力,发展符号感.二、教学重点和难点1.重点:用因式分解法解一元二次方程.2.难点:式的变形. 三、教学过程(一)基本训练,巩固旧知 1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3) 解:整理,得 . a= ,b= ,c= .b 2-4ac= = >0. x=__________________=______, 1x =_________,2x =__________. (二)尝试指导,讲授新课师:刚才我们解了一个方程,我们是怎么解的?(稍停)我们先整理得到了方程2x 2-3x=0(边讲边板书:2x 2-3x=0),然后用公式法求出两个根.师:(指2x 2-3x=0)除了用公式法,大家想一想,还有别的更简单的方法解这个方程吗?(让生思考一会儿)师:(指2x 2-3x=0)我们把这个方程的左边分解因式(板书:因式分解,得),得到x(2x-3)=0(边讲边板书:x(2x-3)=0).师:(指准x(2x-3)=0)x 乘以2x-3等于0,这说明什么? 生:……(多让几名同学发表看法)师:(指准x(2x-3)=0)x 乘以2x-3等于0,说明x=0或者2x-3=0(板书:于是得x=0或2x-3=0).师:(指准板书)这样我们通过因式分解把一元二次方程转化成了两个一元一次方程.接下来解这两个一元一次方程,由x=0得到x 1=0(板书:x 1=0),由2x-3=0,得到23x =2(板书:23x =2).师:(指板书)用这种方法解出的结果与用公式法解出的结果是一样的,但显然用这种方法解更简单.大家再看一看,用这种方法解方程,哪一步是关键?生:因式分解.(多让几名同学回答)师:因式分解是这种方法的关键,那么这种方法应该叫做什么法?生:(齐答)因式分解法.(师板书课题:22.2.3因式分解法)师:通过因式分解来解一元二次方程,这种方法叫做因式分解法.下面我们用因式分解法再来解几个一元二次方程.(师出示例题)例用因式分解法解下列方程:(1)x(x-2)+x-2=0;(2)5x2-2x-14=x2-2x+34;(3)(2y+3)2=(y-1)2.(师边讲解边板书,(1)(2)题解题过程如课本第39页所示,(3)题解题过程如下) (3)移项,得 (2y+3)2-(y-1)2=0.因式分解,得(3y+2)(y+4)=0.于是得 3y+2=0或y+4=0,12y=-3,y2=-4.师:我们用因式分解法做了几个题,通过做题,哪位同学会归纳用因式分解法解一元二次方程的步骤?(让生思考一会儿再叫学生)生:……(让两名学生归纳)师:(指准例(3)题)用因式分解法解一元二次方程,先把方程右边移到左边,再把左边分解因式,化为两个一次式的乘积等于0的形式,然后得到两个一元一次方程,最后分别解这两个一元一次方程,得到两个根.师:按这样的步骤,下面同学们自己做几个练习.(三)试探练习,回授调节2.完成下面的解题过程:用因式分解法解方程:x2=23x.解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .3.用因式分解法解下列方程:(1)x2+x=0;(2)4x2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2.(四)归纳小结,布置作业师:本节课我们学习了用因式分解法解一元二次方程,因式分解法是一种比较简单的解方程的方法,它是通过因式分解把一元二次方程转化为一元一次方程,从而达到降次的目的(边讲边板书:降次).解一元二次方程的基本思路是什么?(稍停)基本思路是降次.配方法是通过配方来降次,因式分解法是通过因式分解来降次.降次是解一元二次方程的基本思路,这一点还希望同学们能好好理解,好好体会.(作业:P43习题6)四、板书设计(略)22.2.3因式分解法2x2-3x=0 例因式分解,得x(2x-3)=0于是得x=0或2x-3=0,x1=0,x2=3 2课题:22.2.3因式分解法(第7课时)一、教学目标1.通过基本训练,复习巩固解一元二次方程的四种方法(直接开平方法、配方法、公式法、因式分解法).2.会选择适当的方法解一元二次方程.二、教学重点和难点1.重点:复习巩固四种方法.2.难点:选择适当的方法解一元二次方程.三、教学过程(一)基本训练,巩固旧知1.填空:解一元二次方程的方法有四种,它们是直接开平方法、、、 .2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0; 解:原方程化成 . 开平方,得 , x 1= ,x 2= . (2)用配方法解方程:3x 2-x-4=0; 解:移项,得 .二次项系数化为1,得 . 配方 , . 开平方,得 , x 1= ,x 2= . (3)用公式法解方程:x(2x-4)=2.5-8x. 解:整理,得 . a= ,b= ,c= .b 2-4ac= = >0.2-b b -4acx==__________________=_________2a, x 1= ,x 2= . (4)用因式分解法解方程:x(x+2)=3x+6. 解:移项,得 . 因式分解,得 . 于是得 或 , x 1= ,x 2= . (二)尝试指导,讲授新课 (师出示下表)直接开平方法配方法公式法因式分解法过程简单复杂较简单简单适用某些所有所有某些师:前面我们学习了解一元二次方程的四种方法,哪四种方法?(指准表)直接开平方法、配方法、公式法、因式分解法.这四种方法各有各的特点,这个表反映了它们各自的特点.师:(指准表格)直接开平方法解方程的过程简单,但这种方法只能用于解某些一元二次方程.譬如,3x2-5=0,2(x+1)2=7(边讲边板书),这样的方程可以用直接开平方法来解.师:(指准表格)配方法解方程过程最复杂,但这种方法适用于所有的一元二次方程,也就是说,任何一元二次方程都可以用配方法来解.师:(指准表格)公式法解方程的过程比较简单,而且这种方法适用于所有的一元二次方程.师:(指准表格)因式分解法解方程的过程简单,但这种方法和直接开平方法一样只能用于解某些一元二次方程.譬如,x2+6x=0,x2=(2x+1)2(边讲边板书方程),这样的方程可以用因式分解法来解.师:知道了四种方法各自的特点,下面我们来看一道例题.(师出示例题)例指出下列方程用哪种方法来解比较适当:(1)3x(x+2)=5(x+2);(2)x2+3x-6=0;(3)2(x-4)2-5=0.师:解一元二次方程有四种方法,现在要你指出这几个方程用哪种方法来解比较适当,请大家自己先考虑考虑.(让生思考一会儿)师:谁来说说你的想法?生:……(多让几名同学发表看法,最好要说出理由)师:(指准表格)在四种方法中,用直接开平方法、因式分解法解方程最简单,所以先要看能不能用这两种方法来解.如果不能用直接开平方法来解,也不能用因式分解法来解,就要用公式法来解.因为公式法能解所有的一元二次方程,它是“万能”的,而且比较简单.师:根据这样的思路,我们来看这道例题.师:(指例(1)题)这个方程能用直接开平方法解吗?(稍停)不能.能用因式分解法解吗?(稍停)能(板书:解:(1)因式分解法).师:(指例(2)题)这个方程能用直接开平方法解吗?(稍停)不能.能用因式分解法解吗?(稍停)不能.所以要用公式法解(板书:(2)公式法).师:(指例(3)题)这个方程用什么方法解合适?生:(齐答)直接开平方法(生答师板书:(3)直接开平方法).师:这个例题做完了,做完了例题有的同学可能会提出一个问题,什么时候用配方法解方程?(稍停)老师要告诉大家,因为用配方法解方程最复杂,所以我们一般不用配方法解方程.师:有的同学可能会接着问:既然不用配方法解方程,为什么要学配方法?(稍停)在四种方法中,公式法最有用,什么方程都可以用公式法来解,而且比较简单,但求根公式是怎么推导出来的?(稍停)求根公式是用配方法推导出来的,不学配方法哪有公式法?所以我们说,公式法最有用,配方法最基本,而直接开平方法、因式分解法最简单,但这两种方法只适用于某些特殊的一元二次方程.(三)试探练习,回授调节2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.(四)归纳小结,布置作业师:本节课我们复习了解一元二次方程的四种方法,这四种方法各有各的特点,但它们的基本思路是相同的.相同的思路是什么?(稍停)相同的思路是把一元二次方程化为一元一次方程,也就是降次(板书:降次).不管用什么方法,降次是解一元二次方程的基本思路.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.四、板书设计表格例3x2-5=0 2(x+1)2=7x2+6x=0 x2=(2x+1)2。

02 降次-一元二次方程的解法

02 降次-一元二次方程的解法
中小学数学精品视频课程
一元二次方程根的判别式
【例题】
不解方程,判断下列方程根的情况 (2)2������2 + 3 = 0
【答案】������ < 0,方程无实数根
中小学数学精品视频课程
一元二次方程根的判别式
【例题】
不解方程,判断下列方程根的情况 (3) ������2 − ������ ������2 − 2������ − 1 ������ + 1 = 0(关于������的方程)
中小学数学精品视频课程
因式分解法解一元二次方程
【例题】
用因式分解法解一元二次方程 3������ 2������ + 1 = 4������ + 2.
【答案】������1
=
−1,
2
������2
=
2 3
中小学数学精品视频课程
因式分解法解一元二次方程
【例题】

������ 2������
当������2 − 4������������ < 0时,方程������������2 + ������������ + ������ = 0 ������ ≠ 0 无实数根
中小学数学精品视频课程
公式法解一元二次方程
【例题】
用公式法解下列方程 ������2 − 2 2������ + 1 = 0
设这两个实数根分别为������1, ������2,由求根公式得
−������ ± ������ =
������2 − 4������������ 2������
������2 − 4������������ ≥ 0
即������1
=

21.2_降次—解一元二次方程_因式分解法

21.2_降次—解一元二次方程_因式分解法
x1 2; x2 1.
学习是件很愉快的事
淘金者
2.(x+1)2-25=0. 2.[(x+1)+5][(x+1)-5]=0,
• 你能用因式分解法解下列方程吗?
1 .x2-4=0; 解:1.(x+2)(x-2)=0,
∴x+2=0,或x-2=0.
∴x1=-2, x2=2.
∴x+6=0,或x-4=0.
因式分解,得
r 5
2r r 5 2r 0.


于是得 r 2r 5 0或r 2r 5 0.
5 5 r1 , r2 (舍去). 2 1 1 2 5 m. 答:小圆形场地的半径是 2 1
小结
拓展
回味无穷
当一元二次方程的一边是0,而另一边易于分解成两个一次因式的 乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一 元二次方程的方法称为因式分解法. • 因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟 练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零, 那么至少有一个因式等于零.” • 因式分解法解一元二次方程的步骤是: • (1)化方程为一般形式; • (2)将方程左边因式分解; • • (3)根据“至少有一个因式为零”,得到两个一元一次方程. (4)两个一元一次方程的根就是原方程的根.
10 4.9 x 0 以上解方程 x 是如何使二次方程降为一次的?
的方法
x 10 4.9 x 0

x 0 或 10 4.9 x 0,

可以发现,上述解法中,由①到②的过程,不是用开方降 次,而是先因式分解使方程化为两个一次式的乘积等于0 的形式,再使这两个一次式分别等于0,从而实现降次, 这种解法叫做因式分解法.

22.2.2 降次—解一元二次方程--公式法

22.2.2 降次—解一元二次方程--公式法
式子
2
2
2
因为a≠0,所以4
a>0
2
b 4ac 0 (3) b 4ac 0, 这时 4a
2
b 4ac的值有以下三种情况: 2
2
b 而x取任何实数都不可能使( x ) 2a
因此方程无实数根
0

一般地,式子 b 4ac 叫做方程 ax2+bx+c=0(a≠0)根的判别式, 通常用希腊字母△表示它,即
分析: b 2 4ac 0
2 4、如果关于 x 的方程 x x k 0(k为常数)有两个实数 1 k≤ 分析: b 2 4ac 0 4 根,那么k的取值范围________
2 5、若一元二次方程 x 2 x m 0无实数解,则 m的
m>1 取值范围_________
3 2 6 x 2 0 3x
解:
a 3, b 6, c 2.
b 4ac 6 4 3 2 60.
2 2
6 60 6 2 15 3 15 x , 6 6 3
3 15 3 15 x1 , x2 . 3 3

解方程
x 2 17 8 x
解:方程化为:x 8x 17 0
2
a 1, b 8, c 17
b 4ac 8 4 117
2
2
4 0
方程无实数根 .
解方程:
x 2 1 3 x 6
解:去括号,化简为一般式:
分析: b 2 4ac 0
例 解下列方程: 2x 1 2 x 1 0; x 2 1.5 3x; 2

降次解一元二次方程

降次解一元二次方程

5
D.(x-
2 3
)2=1,x1=
5 3
,x2=-
1 3
二、填空题
1.若 8x2-16=0,则 x 的值是_________.
2.如果方程 2(x-3)2=72,那么,这个一元二次
方程的两根是________.
3.如果 a、b 为实数,满足 3a 4 +b2-12b+36=0,
那么 ab 的值是_______.
2
2
问题 2:设 x 秒后△PBQ 的面积等于 8cm2
则 PB=x,BQ=2x 依题意,得: 1 x·2x=8
2
x2=8
根据平方根的意义,得 x=±2 2
审阅人: 年月日
教学设计(续页)
年月日
教学活动设计
补充内容
即 x1=2 2 ,x2=-2 2 可以验证,2 2 和-2 2 都是方程 1 x·2x=8 的两根,
补充内容
二年后人均住房面积就应该是 10(1+x)+10(1+x)
x=10(1+x)2
解:设每年人均住房面积增长率为 x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得 1+x=±1.2
即 1+x=1.2,1+x=-1.2
所以,方程的两根是 x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,
7 方法 法、演示法 安排
拓展 延伸
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”, 转化为两个一元一次方程.
板 书 设 计

用配方法、公式法、分解因式法解一元一次方程的过程,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.2降次——解一元二次方程(1)
【教学目标】知识技能:运用开平方法解形如(m x+ n)2=p(p≥0)的方程.
数学思考:通过根据平方根的意义解形如x2=n的方程,知识迁移到解形如(m x+ n)2=p(p≥0)的方程.解决问题:列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解
a(ex+f)2+c=0型的一元二次方程.
情感态度:通过探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性以及数学结论的确定性。

【教学重点】运用开平方法解形如(x+m)2=n(n≥0)的方程;
【教学难点】认清具有(ax+b)2=c(a≠0,c≥0,a,b,c为常数)这样结构特点的一元二次方程适用于直接开平方法.(2)一元二次方程可能有两个不相等的实数解,也可能有两个相等的实数解,也可能无实数解.如:(ax +b)2=c(a≠0,a,b,c常数),当c>0时,有两个不等的实数解,c=0时,有两个相等的实数解,c<0时无实数解
预习作业:
一、知识回顾
1、求出下列各式中x的值,并说说你的理由.
(1)x2=9 (2)x2=5 (3)x2=a(a>0).
2. 填空
(1)x2-8x+____=(x-___)2;(2)9x2+12x+_____=(3x+___)2;
(3)x2+px+_____=(x+______)2.
【教学过程设计】。

相关文档
最新文档